
Robotics and Autonomous Systems 54 (2006) 472–485
www.elsevier.com/locate/robot
Aibo and Webots: Simulation, wireless remote control and controller transfer

Lukas Hohl, Ricardo Tellez, Olivier Michel, Auke Jan Ijspeert∗

School of Computer and Communication Sciences, Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland

Received 20 February 2005; received in revised form 19 January 2006; accepted 30 January 2006
Available online 4 April 2006

Abstract

This article introduces a new software tool that provides an accurate simulation of Sony Aibo robots and the capability to transfer controller
programs from the simulation to the real robot. Five components are described: (1) a simulated physics-based model of the Sony Aibo ERS-210(A)
and ERS-7 quadruped robots; (2) a graphical user interface for controlling the simulated and real robots; (3) a wireless communication protocol for
controlling the robot from within Webots; (4) software components on the robot that enable remote control; and (5) a method for cross-compiling
Webots robot controllers. The complete system has been calibrated and proof tested. It enables simultaneous control of both a simulated and a real
Aibo robot and provides the user with a platform for convenient robot programming without any knowledge of the underlying robot firmware.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Aibo; Webots; Robot simulation; Remote control; Cross-compilation
1. Introduction

Simulations play an important role in robotics research.
In comparison with real robot investigations, simulations are
easier to set up, less expensive, faster, more convenient to use,
and allow the user to perform experiments without the risk of
damaging the robot. Building up new robot models and setting
up experiments only takes a few hours and control programs can
be tested extensively on a host computer, offering convenient
debugging facilities. Simulators are especially preferred when
using time-consuming algorithms for the learning or evolution
of intelligent controllers. Simulations are really useful if their
results can be transfered easily onto real robots. Simulators
that integrate remote control facilities provide additional
advantages. They enable fast transitions from simulations to
real robots without controller program transfers and thus they
significantly speed up testing procedures, exploration of the
robot’s capabilities, and simulation calibration. Nowadays,
wireless communication protocols, offering easier handling and
greater range, are an interesting alternative to cable connections
between a host computer and a robot.

∗ Corresponding author. Fax: +41 21 693 3705.
E-mail addresses: lukas.hohl@bluewin.ch (L. Hohl),

r tellez@ouroboros.org (R. Tellez), Olivier.Michel@cyberbotics.com
(O. Michel), auke.ijspeert@epfl.ch (A.J. Ijspeert).

0921-8890/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2006.02.006
Simulators, of course, do have limitations and there are some
problems to be solved. It is difficult to simulate the physics of
a robot (actuators, interaction with the environment, sensors)
realistically, and the transfer from simulation to the real robot
is not always simple.

One of our main motivations was the development of a
robotics research tool with a variety of applications, e.g., fast
design and testing of controllers, simulation calibration, use of
the robot as a programming interface or interaction between
real and simulated environments. We wanted to provide the user
with a convenient environment where she/he is able to program
the robot independently of the underlying firmware and as close
to simulation control as possible.

The WebotsTM [8,9] mobile robotics simulation software
developed by Cyberbotics provides the user with a rapid
prototyping environment for modelling, programming and
simulating mobile robots. Webots relies on ODE (Open
Dynamics Engine) to perform accurate dynamic physics
simulation. With Webots it is possible to define and modify
a complete mobile robotics setup, and even several different
robots sharing the same environment.

AiboTM [7] is a four-legged robotic dog produced by
Sony. Despite the fact that it is principally sold as an
entertainment robot system (at an affordable price), it has
powerful capabilities such as wireless network communication,
a wide range of input and output devices such as a speaker

http://www.elsevier.com/locate/robot
mailto:lukas.hohl@bluewin.ch
mailto:r_tellez@ouroboros.org
mailto:Olivier.Michel@cyberbotics.com
mailto:auke.ijspeert@epfl.ch
http://dx.doi.org/10.1016/j.robot.2006.02.006


L. Hohl et al. / Robotics and Autonomous Systems 54 (2006) 472–485 473
and microphone, a color camera, a distance sensor, acceleration
sensors, various touch sensors, light-emitting diodes (LEDs)
and, of course, controllable joints. What makes the robot even
more interesting (besides its sophisticated hardware), is the
possibility to write advanced programs for Aibo using the
Software Development Kits (SDKs) provided by Sony [13,17,
18]. The binary files are put onto a Memory StickTM which is
plugged into Aibo.

In this article, we first make an overview of related work
(Section 2). We then describe the system as a whole (Section 3).
The reader can then learn how we developed an Aibo simulation
model in Webots (Section 4) and added a graphical user
interface (GUI) for its control (Section 6) in addition to its
control by a controller program which is a fundamental concept
in Webots (Section 7). We also implemented wireless remote
control facilities for a real Aibo robot, making it possible to
command the robot by means of Webots controller programs or
via the same graphical user interface that is used for simulation
control. To achieve this, we designed a communication protocol
and programmed special software for Aibo (Section 5). The
protocol is not restricted to Aibo or Webots and might be
reused for the control of other robots or simulators. The
concepts adopted for programming the robot are not limited
to remote movement control. Finally, we implemented the
cross-compilation of Webots controller programs for direct
execution on Aibo’s hardware (Section 8). Based on this work,
languages other than the Webots robot controller programming
interface could potentially be used for cross-compilation. Some
examples of applications (Section 9) and a detailled evaluation
(Section 10) are presented before future work (Section 11) and
the final conclusion (Section 12).

2. Related work

In this section, we explain what were the features for
robot remote control and cross-compilation in Webots before
we included these functionalities for Aibo (Section 2.2). The
possibilities for Aibo programming that exist are also presented
(Section 2.1) as well as other Aibo and robot simulators
(Section 2.3).

2.1. Aibo Software Development Environment

Sony is promoting the Aibo Software Development
Environment (SDE) for the creation of software that either
executes on Aibo or on a PC and controls Aibo by using a
wireless local area network (LAN). The SDE is provided free
of charge and contains three SDKs and the Aibo Motion Editor.
The OPEN-RTM SDK is typically used for research in robotics
programming. The R-CODE SDK is used with a scripting
language and the Aibo Remote Framework is a development
environment for Windows PC applications that can control
Aibo via a wireless LAN. Different SDKs can not be combined.
The Aibo Motion Editor creates files containing joint positions
over a certain number of so-called key frames for usage in the
three SDKs.
In all development environments except the OPEN-R SDK,
only predefined movements can be played back. The OPEN-
R SDK is a cross-development environment based on the
gcc (C++) offering the greatest flexibility. Programming with
the OPEN-R SDK is the only possibility to create software
that exploits Aibo’s hardware limits. The remote control and
cross-compilations software that we implemented for Aibo puts
additional layers of abstraction above OPEN-R and therefore
programming the robot becomes much easier.

2.2. Transfer from Webots to real robots

The Webots simulation software already includes transfer
capability for a number of commercially available robots. This
includes the Khepera robot [19] (http://www.k-team.com), the
Lego MindstormsTM [6] (http://mindstorms.lego.com) and the
Hemisson robot (http://www.hemisson.com). For these robots,
different transfer systems have been developed, including
remote control and cross-compilation.

The remote control mode consists of redirecting the inputs
and outputs of a Webots controller program to a real robot
using a wired or wireless connection between the robot and the
computer. This means that a special program has to be running
on the real robot to interface the Webots requests to the robot’s
hardware. In the second mode, the controlling program is cross-
compiled on the host computer and downloaded to the robot,
which in turn executes the controller on board and no longer
interacts with the host computer.

The cross-compilation consist of using a cross-compiler to
compile the controller program on the computer for the target
robot. The resulting binary program can be uploaded onto
the real robot and executed autonomously, i.e., without any
interaction with the computer.

2.3. Aibo and robot simulators

There are currently several three-dimensional (3D) simula-
tors available that are either specifically designed for the Aibo
robot, usually for the Sony Four-Legged Robot League (http://
www.tzi.de/4legged/) of the Robocup competition, or general-
purpose simulators that include, or may include, Aibo simula-
tion. For the RoboCup competition, multiple teams have devel-
oped their own Aibo simulators, but only a few of them are
publicly available and documented.

The AISim simulator from the ASURA Robocup team [4,
22] is one of the open-source simulators available for the
specific simulation of Aibo within the Robocup environment.
This simulator allows for the simulation of a soccer match,
including all types of interesting processes like vision
processing, planning and behavior generation, but not including
a detailed simulation of the Aibo robot, which is treated as a
unique block. It can generate controllers through the simulation
and transfer them to the real robot, but these are high-level
controllers, which are not able to issue low-level commands
to control every joint; also performing experiments outside the
Robocup framework is not possible.

The German team simulation, called SimRobot [11,23], is a
generic 3D robot simulator that relies on an XML description

http://www.k-team.com
http://www.k-team.com
http://www.k-team.com
http://www.k-team.com
http://mindstorms.lego.com
http://mindstorms.lego.com
http://mindstorms.lego.com
http://mindstorms.lego.com
http://www.hemisson.com
http://www.hemisson.com
http://www.hemisson.com
http://www.hemisson.com
http://www.tzi.de/4legged/
http://www.tzi.de/4legged/
http://www.tzi.de/4legged/
http://www.tzi.de/4legged/
http://www.tzi.de/4legged/


474 L. Hohl et al. / Robotics and Autonomous Systems 54 (2006) 472–485
for the modeling of the robots and their environment. The
robot controllers are directly linked with the simulator library to
produce an executable file. A preliminary simulation of rigid-
body dynamics by using the ODE library was included. The
sensor library includes cameras (OpenGL rendering), distance
sensors and bumpers. The actuator library appears to be limited
to motors. This simulator was designed for the Aibo RoboCup
competition, but is no longer restricted to the simulation of
a RoboCup soccer match; other setups and other types of
robots are now allowed. However, in contrast to Webots, it
has a smaller library of sensors and actuators, and special
domains such as underwater environments or the simulation
of flying robots are not supported. Furthermore, the transfer of
controllers from simulation to a real robot is not possible.

UCHILSIM [20] is a 3D robot simulator developed
by the University of Chile. It is specially designed for
the RoboCup Four-Legged League. The simulator contains
dynamics simulation using the Open Dynamics Engine (ODE)
[12], a graphics engine, and has a Windows-based graphical
interface. The environment and the robots are described in
a VRML structure that is extended by nodes for simulator
elements and physical attributes. It has interfaces to their
UChile1 software package and their learning component. At
the current stage, this simulator is rather specific to the Aibo
RoboCup competition.

In addition to the simulators that are mainly dedicated to
the simulation of Aibo, there exist other general simulators that
could, in principle, be used for the simulation of Aibo, even
though it is the user that has to create the whole model of the
Aibo robot on them, since it is not provided by the simulator
environment as in Webots.

In this category comes the Gazebo simulator [24] from the
Player/Stage project [25]. This is an open-source simulator
that gives you the tools to simulate your own robot, including
several types of sensor and actuator. It provides off-the-
shelf simulation models for Pioneer robots, but not for Aibo.
Nevertheless, a simulation of the Aibo robot is possible in
theory using this simulator.

Another simulator in the same line is the Ubersim simulator
[26] by Carnegie Mellon University. Like Webots, it relies
on ODE for the simulation of the dynamics of the system,
and allows the creation of the user’s own robot, even though
the types of sensor currently available are a little limited.
Ubersim has a focus on vision-centric robots in dynamic
environments and includes Aibo models. It has a client/server-
based architecture, where clients communicate with the server
over TCP/IP. The simulator also uses ODE for dynamics
simulation. One’s own robots can be modeled by programming
their structure in C classes. In the current release, only two
sensors are predefined: a camera sensor and an inclinometer. At
the moment, there seems to be no graphical user interface for
interacting directly with the robots or the environment during
the simulation time.

A lot of work on robot simulators in general has been done
by Jerry Pratt at the MIT Leg Lab [10] and Oussama Khatib
at Stanford University [5]. They developed various types of
simulation software for mobile robots, including very advanced
Fig. 1. Operating modes: simulation, remote control and cross-compilation.

physics simulation, but none of them were specific to the
Aibo robots, nor intended to be reused or adapted by Aibo
robot users. Hence, covering the details of these interesting
simulation tools is outside the scope of this paper.

3. System overview

We conceived a system that allows a Webots user to control
both a real Sony Aibo robot and its physical simulation.
We currently support the Aibo ERS-210(A) model equipped
with an ERA-201D1 wireless LAN card and the newer Aibo
ERS-7 model which has a built-in wireless LAN card. The
system consists of five developments: (1) a simulated physics-
based model of Aibo (Section 4); (2) a GUI for controlling
the simulated and real robots (Section 6); (3) a wireless
communication protocol for controlling the robot from within
Webots (Sections 5 and 7); (4) software components on the
robot that enable remote control (Section 5); and (5) a method
for cross-compiling Webots robot controllers (Section 8). Fig. 1
illustrates the main components.

There are three modes in which Webots and Aibo can be
used: simulation, wireless remote control, cross-compilation.
All modes can be active in parallel, and numerous combinations
for controlling the robot and/or its simulation are possible.
When working in simulation or remote control mode, command
input can be given by a graphical user interface (two arrows
starting at the GUI window in Fig. 1) or by a Webots controller
program compiled and running on the host computer (two
arrows starting at the source file icon in Fig. 1). In cross-
compilation mode, Webots controllers written in C or C++ are
cross-compiled on the host computer and wirelessly transferred
to Aibo, where the commands are executed without user



L. Hohl et al. / Robotics and Autonomous Systems 54 (2006) 472–485 475
Fig. 2. Aibo ERS-210 model node hierarchy.
interaction (the arrow from source file icon to Aibo in Fig. 1).
Giving commands (in the GUI or in controller programs)
can mean either to individually control joints and other robot
components or to start the playback of MTN files containing
predefined movements.

4. Simulation

This section describes how we developed a simulated
model of Aibo in Webots. We first explain how models can
be constructed in Webots in general (Section 4.1) and then
discuss how we represent Aibo’s hardware with the capabilities
of Webots (Section 4.2). The Aibo types that are used in
research (because they have comparable capabilities and can be
programmed with the OPEN-R SDK) are ERS-210, ERS-220
and ERS-7. More information on the different Aibo models can
be found in [1–3,14–16].

4.1. Webots

Webots is physics-based general-purpose mobile robotics
simulation software. A demo version of the most recent Webots
version is available from http://www.cyberbotics.com. The
main components of Webots are the world (one or more robots
and their environment), the supervisor (a user-written program
to control an experiment, i.e., to change and observe the
world) and the controller of each robot (a user-written program
defining its behavior).

The user can choose from a library of robot models (and
modify them) or construct her/his own models. Each robot
can be equipped with a large number of available sensors
and actuators. For each object, a number of properties can
be defined, such as shape, color, texture, mass, friction, etc.
The user can then program the robots using an arbitrary
development environment, simulate them, and optionally
transfer the resulting programs onto a real robot.

4.2. Webots model of Aibo

We developed a model of the Aibo robot. This involved
implementing its graphical aspect, replicating its kinematic
structure, its dynamics properties (masses and moments of
inertia) and its control.

The graphical representation was imported from a graphical
model provided by Sony. The dimensions were determined
using the official model information [14–16] and the weights
Fig. 3. Simulation of Aibo ERS-7 in Webots.

were estimated based on measured block weights. The model
parts have uniform mass distribution inside their bounding box.
Fig. 3 shows the bounding boxes of those objects having a mass.

All robot actuators and sensors are called primitives in the
OPEN-R terminology. The robot body is the only part of the
simulation model that does not correspond to a robot primitive.
Fig. 2 shows the hierarchy relations between all nodes of the
Aibo ERS-210 model. The Aibo ERS-7 model has a very
similar structure.

The Webots Servo node models a servo motor, which is
adequate for the simulation of Aibo’s joints. The Servo node
also simulates a position sensor. All parts of the model having a
mass, except the body, are Servo nodes. In Webots, a servo can
be controlled in position, maximum velocity, maximum force
and acceleration from the Servo programming interface.

Aibo’s Position Sensing Device (PSD) is modeled by a
DistanceSensor node of “infra-red” type (see Fig. 3). We
modeled Aibo’s paw touch sensors by TouchSensor nodes
which return binary values. Because only the paw touch sensors
are of interest for the simulation of Aibo’s movements, the
back sensors, the chin switch and the head sensors are not
yet included in the model. Acceleration and thermo sensors
do not have corresponding Webots nodes and can therefore not
be simulated. Similarly, the speaker and microphone cannot be
simulated in Webots, but there is a Camera node type, which
we used to include Aibo’s color camera in the model.

http://www.cyberbotics.com
http://www.cyberbotics.com
http://www.cyberbotics.com
http://www.cyberbotics.com


476 L. Hohl et al. / Robotics and Autonomous Systems 54 (2006) 472–485
Fig. 4. OPEN-R objects on Aibo.
In Section 10, the accuracy of the physics-based mode is
analysed extensively.

5. Control of the real robot

In this section, we discuss the developments made to achieve
remote control of a real Aibo robot. The general concept of
OPEN-R software is also treated (Section 5.2). The remote
control functionalities that we added to Webots require a
computer equipped with an IEEE 802.11b-compliant wireless
LAN card. This is the client side. It establishes a wireless
TCP/IP connection with its server counterpart on Aibo, a
special OPEN-R software that we developed (Section 5.3).
Then Aibo and Webots exchange messages were defined in our
communication protocol (Section 5.1).

5.1. Communication protocol

We developed a message protocol between Aibo and
Webots. The messages are inspired by a command line
interface. There are commands for the reading of sensor values,
the control of LEDs, plungers and joints (position, speed,
acceleration) and for MTN file handling. Aibo’s answer is
always the current value of the read sensor or the value that
was actually taken into account for a piloting command. New
commands are only read by Aibo when the previous response
was sent back successfully. Aibo does not send any data that is
not requested by a command. Thus the command protocol used
by Aibo and the client is synchronous.

5.2. OPEN-R

The application software for Aibo consists of several OPEN-
R software modules called “objects”. An object corresponds to
one executable file. Each object has its own thread of execution.
Processing is performed by multiple objects with various
functionalities running concurrently and communicating via
inter-object communication on their connection ports (entry
points).

The OPEN-R system layer provides a set of services
(e.g., output of control data to joints and input of data
from various sensors) as the interface to the application
layer. This interface is also implemented by inter-object
communication. The system layer also provides the interface
to the TCP/IP protocol stack, which enables the creation of
wireless networking applications.

5.3. Remote control software

The remote control software on Aibo that we developed
as the counterpart of Webots consists of four OPEN-R
objects. Fig. 4 shows them as filled circles. PowerMonitor
is isolated from the other objects. JointMover, RCServer and
Controller, however, have multiple entry points (in addition
to the default entry points, which are not shown). RCServer
possesses additional entry points that are necessary for network
communication (not drawn individually). The entry points are
labeled with the service names. OVirtualRobotComm is part
of Aibo’s system software and provides services for sending
commands to the robot, reading sensor values and retrieving
images from the camera. Joint and LED commands need to be
passed to the robot in the form of command vectors containing
commands for multiple primitives and over a certain period of
time. We will next describe the functionality of the four other
objects on Fig. 4.



L. Hohl et al. / Robotics and Autonomous Systems 54 (2006) 472–485 477
5.3.1. PowerMonitor
In PowerMonitor, every change in the robot and battery

status is observed. Aibo is immediately shut down when the
pause switch is on, the battery capacity is low, or when Aibo is
connected to an external connector.

5.3.2. RCServer
The RCServer object listens for TCP connection requests

and then handles all the network traffic with the client. It
interprets the commands received and performs the appropriate
actions, either directly (sensor reading) or by delegating them
to specialized objects (JointMover, Controller). The answer to
a command is generated and returned over the same network
connection.

5.3.3. Controller
For the cross-compilation of the robot controller, we

developed the Controller OPEN-R object, which can integrate
custom Webots controller programs. Controller implements the
Webots controller programming interface and the controller
main loop, including the exact timing of consecutive loop
iterations. Controller also treats LED and ear commands.
Section 8 gives more details on the role of the Controller object
for the cross-compilation of Webots controller programs.

5.3.4. JointMover
The JointMover object executes all the commands con-

cerning joints (setting positions, velocities, accelerations and
playback of MTN files). It receives them from RCServer and
Controller.

Speed and acceleration are concepts not foreseen in OPEN-
R. We had to implement ourselves the algorithm to smoothly
reach individual goal positions, respecting a user-given speed
and acceleration limit.

In the algorithm for individual commands, the command
vector frames (position values, one frame lasts 8 ms) are
filled by iteratively adding or subtracting the acceleration or
maximum speed value (per frame) to the current velocity,
depending on the current phase. In order to obtain smooth
trajectories, we designed JointMover to decompose every
movement into the three following phases. The duration of
every phase (a certain number of frames) is reevaluated every
time a joint receives a new command:

• acceleration;
• constant speed;
• deceleration,

MTN files (see Section 2.1) contain joint positions and other
commands for a certain number of so-called “key frames” and
thus completely define a sequence of movement. Besides the
control of individual joints using our algorithm, JointMover
can also play back MTN files. As soon as an MTN playback
command comes in, JointMover pilots Aibo to the position
specified by the first key frame in the file (using the algorithm
for individual smooth joint commands). Afterwards, the MTN
file is executed as many times as loops are desired by simply
mapping the file content to consecutive command vectors.
No calculations as for individually commanded goal positions
are performed. When Aibo has successfully reached the final
posture, JointMover again accepts commands.

Fig. 5 shows how both a simulated and a real Aibo robot
execute one cycle of a forward walking movement defined by
an MTN file. Eight positions are shown in the figure, whereas
the MTN file contains approximately 80 key frames to specify
the joint trajectories.

6. Graphical user interface

Here we discuss the graphical user interface that we added
for manual control of both the simulation and real robots. The
3D view is an integral part of Webots so we did not have to
implement it. Every simulated Aibo has its own instance of a
graphical user interface for controlling the simulation and/or a
real robot. There is no theoretical limit on the number of Aibos
that can be simulated in parallel. In practice, it is possible to
simulate a soccer match (four robots in each team) in real time
on a high-end personal computer (see Fig. 7).

The interface is divided into two parts, actually tabs, with
logically grouped controls. One tab includes configuration
items (like the IP address the real robot) while the other tab
includes individual controls for robot devices (like servos,
LEDs, sensors, etc.). We specially designed the (interactive)
robot pictures and the sliders; the other controls are generic.
Fig. 6 shows what the interface and the controlled model
look like when both the simulation and the real robot are
commanded.

The simulation is always controlled when no connection
to a real Aibo is open. Once a connection is established,
simultaneous control of the simulation and the real robot can
be turned on and off. All this is done in the top part of the
interface. The bottom part of the interface handles the upload
and playback of MTN files, possibly with multiple loops.

In the middle part, head lights and ears are represented as
a sliced bitmap. The slices change their appearance when they
are clicked and send a command to the real robot and/or call
the appropriate method of the simulated device. Every joint has
an associated slider. These sliders contain a position indicator
that is set according to the read sensor value. The moveable part
of the slider indicates the desired goal position Aibo will go to
with respect to velocity and acceleration limits. There is a slider
for the global velocity limit and one for the acceleration limit. If
both the real and the simulated robots are controlled at the same
time, only the sensor values of the real robot are displayed.

7. Controller program

This section explains how we implemented simulation and
remote control by Webots controller programs. We explain
what controller programs are (Section 7.1) and how they can
interact with the real robot (Section 7.2).

7.1. Webots robot controller programs

Webots robot controller programs are typically written in C
and are used to control a simulated robot in Webots. The Webots



478 L. Hohl et al. / Robotics and Autonomous Systems 54 (2006) 472–485
Fig. 5. MTN file playback: Walking cycle.
Fig. 6. Simulation and robot controlled by graphical user interface and controller.
controller programming interface is usually the only way for
the user to give commands to her/his simulation models. No
modification had to be made in Webots in order to program
the control algorithms for the Aibo robots, as Webots controller
programming relies on standard Webots devices included in the
models of the Aibo robots.



L. Hohl et al. / Robotics and Autonomous Systems 54 (2006) 472–485 479
7.2. Remote control by controller programs

Remote control functionalities for controller programs are
foreseen in the concept of Webots. A special function can
be called when the value of a simulated device is read or
when it is given a command by a controller program. In
our implementation of this function, the simulation system is
overridden when connected to Aibo by setting (via Webot’s
internal programming interface) the simulated sensor value
to the measurement received from Aibo. Thus the object
representing the simulated sensor is actually a representation
of the real sensor on Aibo. As a consequence, the call to the
sensor reading function in the controller program returns the
real value. For actuators, it is checked whether the commanded
value differs from the last value set by the controller program
and a corresponding command is sent to Aibo if necessary.

8. Cross-compilation

In this section, we describe how we achieved the controller
cross-compilation for direct execution on Aibo (Section 8.1)
while taking into account Aibo’s programming scheme
(Section 8.2).

Cross-compilation has the advantage that the robot can run
independently of the host computer and no network connection
is needed. This potentially enables applications where a large
amount of data must be handled, e.g., image and sound
processing. We provide a graphical interface for the uploading
of binary files in Webots, but the files can also be transfered by
other means, e.g., a Memory Stick Reader. When Aibo boots up
the next time, the new binary file is loaded and executed.

8.1. Controller cross-compilation

What was developed for controller cross-compilation is not
really a cross-compiler but an OPEN-R object that can integrate
custom Webots controller programs without modifications to
the controller code itself. This OPEN-R object is called
Controller and it runs concurrently with other objects (see
Fig. 4) and a robot running a cross-compiled compiler can still
receive and execute commands coming in over the wireless
network connection. The actual cross-compiler is Sony’s
OPEN-R cross-compiler included in the OPEN-R SDK, which
has to be installed previously in order to take advantage of the
cross-compilation functionality in Webots. Because OPEN-R
programs are written in C++, it was rather straightforward to
combine Webots controller program files and the source code
files of the Controller object. The Controller object source code
contains Aibo-specific implementations of the most important
and most interesting functions of the controller programming
interface. Every cross-compilation process creates a new binary
file that replaces the complete Controller object on Aibo (see
Fig. 4).
8.2. Aibo specific programming scheme

The major problem for cross-compilation was the infinite
loop in the Webots controller main function. Aibo’s program-
ming scheme is contrary to writing infinite loops in order to
have a program running without interruption. The whole life
cycle of an object is an infinite loop, but it is an implicit infi-
nite loop consisting of the continuous reception and sending of
messages from and to other objects.

With respect to this particularity, it must be guaranteed that
all OPEN-R methods terminate. In order to make Controller
compatible with this programming scheme, we had to extend
the Webots controller programming interface in order to replace
the explicit infinite loop by a run function that is implicitly
repeated infinitely.

There are no timing or wait methods in OPEN-R. The
most convenient and precise way to respect the desired time
step between consecutive calls to the run function is to take
advantage of the period for LED commands. For every LED
value in a command vector, an illumination duration (period)
can be specified in Aibo’s basic time unit (a frame of 8 ms).
We thus set the period of all LED commands to the time step
selected in the controller program (which should be a multiple
of 8 ms).

9. Examples of applications

Fig. 6 shows a situation where both the simulation and
the real robot are commanded. Parallel control of both the
simulation and the real robot can be used for direct comparison
and has proven to be a convenient testing and debugging tool
during the construction and calibration of the simulated model.

Fig. 7 shows two simulation-only scenarios, i.e., with
multiple robots simultaneously simulated and on a ground with
special properties.

In one of the controllers that was tested for cross-
compilation, the motors of the front left leg are turned off
and the values of this leg’s three joints are read and passed
to the other three legs as their goal positions. This allows
a user to move the front left robot leg while the others are
quickly following on a trajectory generated by JointMover.
This suggests than an Aibo robot running a cross-compiled
controller could be used as a programming interface for
learning trajectories, i.e., the trajectory is recorded on the
robot. Furthermore, simulation could directly copy or record
the positions of the real robot by running a simple controller
that just reads sensor values in Webots in remote control mode.

Another controller that was tested for cross-compilation
was a program that consecutively plays back an MTN file for
forward walking, but plays back a backward walking movement
when an obstacle is detected by the distance sensor at a distance
of 20 cm or less. Only a few lines of code were needed for
both cross-compilation examples. They show how simple it is,
thanks to the Webots controller programming interface, to write
relatively complex behavior.

More complex and extensive use of the cross-compilation
was made in [27] where a group of 24 recurrent neural networks



480 L. Hohl et al. / Robotics and Autonomous Systems 54 (2006) 472–485
Fig. 7. Simulation of multiple ERS-7 robots (left) and an ERS-210 robot on rough terrain (right).
were evolved using the simulation in order to allow the Aibo
robot to walk. The evolved controller was then cross-compiled
and transferred to the robot with no significant difference
between simulation and real robot.

10. Evaluation of the simulation accuracy

In this section, we qualitatively and quantitatively evaluate
the Aibo simulation in Webots by comparing the simulation
with the real Aibo while performing various tasks. We
implement measurements on the robot in static and dynamic
situations, and compare performance between them. The
comparison procedure is always the same. A Webots controller
is created for the simulation. This controller makes the robot
perform an action that we want to measure. The controller
is then executed in the simulator and the measure taken.
Next, the controller is cross-compiled using the Webots cross-
compilation system, and executed on the real robot. Finally,
the measure of the real robot is taken and compared with the
simulation result. The cross-compilation of the code ensures
that the same control program will be executed in both the
simulator and the real robot, and allows us to perform a fair
comparison of performance between them.

10.1. Static measurement

The first comparison consists of measuring how the
simulation differs from the real robot when confronted with
extreme static positions of the joints. In this case, a Webots
controller is created that slowly moves one of the leg joints
to the maximum or minimum of the joint range, starting from
an initial natural position. The controller is executed in the
simulator and in the real robot but, in both cases, only one joint
is moved at the same time. The final positions reached by the
simulator and the real robot are recorded and compared visually
and numerically. The velocity at which joints are moved is very
slow, so static states can be assumed at any position of the joint.

Due to the fact that a single joint was moved at one time,
the robot was required to slide over the ground. For this reason,
the friction against the ground was reduced to the minimum.
In the simulation, this was achieved by reducing the friction
coefficient of the simulated ground. In the real robot, this was
achieved by placing some small sheets of paper under the paws
of the robot.
The results of these tests can be seen in Fig. 8. We observe
that both the simulator and the real robot achieve the same
final position and that, morever, the trajectory described by
both, from the initial position to the final position, is practically
identical.

10.2. Dynamic measurement

We carried out dynamic measurements to analyze the
difference between the simulation and the real robot when
they perform a movement. We will show the results obtained
from three different experiments, with an increasing degree
of complexity in the robot behavior. Experiments conducted
consisted of the characterization of the movement of one leg
alone, the characterization of the whole robot when performing
a walking gait, and the characterization of the whole robot when
performing a walking gait and stopping at a specified distance
to an obstacle detected by the long-distance sensor.

10.2.1. Movement of one leg
In this experiment, the three joints of a leg are moved

following a sinusoid trajectory. This movement is the result
of a direct command to the servos, not the execution of
an MTN motion file. Trajectories obtained from the real
and the simulated robots were obtained and a measure of
error calculated, comparing differences between the desired
trajectories and the trajectories obtained in both cases. For
every joint, three trajectories where performed at three different
frequencies of oscillation. The error is calculated as the mean
square error per period, normalised by the amplitude.

Fig. 9 shows the trajectories obtained for joint J1 at every
testing frequency, including the desired trajectory, the trajectory
obtained by the simulated leg, and the trajectory of the real
robot leg. Fig. 10 summarizes the errors obtained between
desired trajectory and actual trajectory, for the simulator and
the real robot for all types of joints.

From both figures, we observe that the error obtained at
these frequencies is small. Nevertheless, the error increases
exponentially with the frequency of the oscillation, and higher
frequencies started to be difficult to follow for the joints,
especially for the real robot. At the same time, errors between
the simulation and real robots also increased exponentially,
showing that, at high frequencies, the simulator starts to differ



L. Hohl et al. / Robotics and Autonomous Systems 54 (2006) 472–485 481
Fig. 8. List of pairs of static figures obtained in the simulator and the real robot when moving one joint at a time. The first two pictures show the initial position,
and the resting pairs are the results of moving joints LeftFront J1, J2, J3, and Left Hind J1, J2 and J3, respectively.
Fig. 9. Trajectories obtained for the J1 joint at three different frequencies. From left to right, oscillations at 0.25, 0.5 and 1 Hz.

Fig. 10. Error measures obtained for the three types of joints. Each figure shows the error between the desired trajectory (Des), the simulator (Sim) and the real
robot (Real). From left to right, errors for joints J1, J2 and J3.
more from the real robot. The two types of errors present
at higher frequencies are phase differences and attenuation
of the shape trajectory, i.e., typical tracking errors of a PD
controller. However, these are only observed at frequencies far
from the typical use for this robot and should not affect much
the simulation.



482 L. Hohl et al. / Robotics and Autonomous Systems 54 (2006) 472–485
Fig. 11. Walking sequence performed by simulator and real robot.
Fig. 12. Joint trajectories during walking for the left fore leg, in the simulator and with the real robot.
10.2.2. Performing a walking gait
This section shows how similarly the simulator and the real

robot behave when implementing a complex movement. Both
the simulator and the real robot run a Webots controler that
executes an MTN file specifying a walking gait. Any MTN file
specifies the exact sequence of movements for each robot joint
at any time step in order to generate a sequence of movements
(in this case a walking pattern). The walking gait obtained for
the simulator and the real robot are compared visually, joint
trajectories are recorded and compared, and speed is measured
and compared.

The robot was placed on a parquet floor and its friction
parameter introduced on the simulator. The paws of the robot
are made of rubber. Typical values for the friction of a parquet
floor against rubber are between 0.55 and 1.36 [21]. A mean
value of 0.7 was selected. The robot then executed a sequence
of five walking steps, and the distance and time to accomplish
these was measured.

First, a visual comparison of walking was performed. Fig. 11
shows a sequence of movements obtained in both systems.
Walking gait was very similar, with no appreciable visual
difference.

Second, the motor positions on each legs were also recorded
for comparison. Differences between the positions of the left
fore leg in simulation and on the real robot can be seen in
Fig. 12. Trajectories are also very similar, as visual inspection
of the gait indicated, the only significant difference being the
value of the paw sensor. This is due to the fact that the real paw
is more noisy than the simulated one, and some contacts are not
detected by it. Fig. 12 only shows joints of one leg, but other
legs behave in the same manner (including paw sensor errors).

Finally, the velocity in both systems was measured. Due to
the chaotic nature of the real robot, a statistical measurement
was required to obtain its velocity. A mean value was calculated
out of ten runs. For the simulator, no statistical measurement
was required, since no noise was introduced into the simulation
and the results could then be repeated all the time with the
same final value. Nevertheless, due to small variations in some
variables, it was noted that the final distance was not exactly the
same in different rounds, but the difference was so small that
it was discarded. This difference may indicate the presence of
chaotic behavior in the simulator that may affect more complex
setups, and may come from the accumulation of numerical
errors due to loss of precision.

The measurements of the velocities showed a velocity of
3.50 cm/s for the simulator, and a mean velocity value of
3.25 cm/s for the real robot, with a variance of 0.0261.

The results in this section again show that small differences
between the simulator and the real robot can be observed, but
none of them are really significant.



L. Hohl et al. / Robotics and Autonomous Systems 54 (2006) 472–485 483
Fig. 13. Simulator and real robot setup for distance measurement.

10.2.3. Walking up to a distance
This experiment measures the difference between the

simulator and the real robot when the whole robot is put to test,
in a behavioral task involving movements and sensor readings
(see Fig. 13).

In this case, Aibo is requested to start walking from an initial
position in the same way as in the previous experiment, but to
stop after it detects any obstacle at less than 40 cm. Obstacle
detection is performed by using the Far distance sensor situated
in the head of the robot. The mechanism is the same as in
previous sections: a webots controller is created and executed
in both the simulator and the real robot (cross-compiled), and
the differences between both are measured. In this case, we
compare the distance at which the robot stopped from the
obstacle, but also all the measures taken by the distance sensor
during the walking period. The measures of distance taken
during walking are obtained from the far distance sensor of
the robot, which directly provides a value of the distance in
milimeters.

Since there exist sensor errors in both simulated and real
robots (simulated sensors are modeled with noise), a unique
and absolute measure of the distance cannot be used for
stopping the robot. Because of that, a hysteresis mechanism
was implemented, consisting of stopping the robot only after
a distance below 40 cm has been detected for ten consecutive
time steps of 96 ms. The final distance and the trajectories were
measured ten times in each type of robot.

The experiments showed that the simulated robot stopped at
a mean distance of 33.6 cm from the obstacle with a variance of
0.22 cm, meanwhile the real robot stopped at a mean distance of
32.72 cm from the obstacle with a variance of 15.67 cm. Even
though the mean distances at which both robots stopped are
very similar, the variance values among them are very different.
The simulated robot has a very small variance, only due to the
noise of the distance sensor. On the other hand, the real robot
has a very large variance due to several factors not included
in the simulation: first, the distance measurement method is
far from exact in the real robot (it is a manual measurement
performed with a ruler). Second, all the joints have their own
noise that affects the final position of the robot head, amplifying
the difference in the distance measured. Third, movements of
the head of the robot can produce reflections of the infrared ray,
producing even more measurement differences.

All these differences can be seen in Fig. 14. In that figure,
the mean distance measurement value obtained at each time
step is presented, together with the standard deviation at
some randomly selected points. It can be seen that, while the
simulator presents a clean line, the real robot has a more noisy
line, showing the high variance detected in the measurements.

11. Future work

Even the current version of the graphical interface has
some capabilities that are unused in simulation. There are
features of Aibo that are not included in the simulation
model, either because there’s no interest in modeling them or
because it is not possible to simulate them, e.g., acceleration
and thermo sensors, the speaker and the microphone. Those
features could be integrated in the model by implementing
new simulated device types with appropriate controller
programming interfaces. On the other hand, there are devices
for which Webots nodes exist but which are not controllable
via the remote control software and therefore not integrated
in the user interface, e.g., the camera. The controller remote
control mode and the cross-compilation could be extended
to support the complete controller programming interface of
the existing node types. Going even further, there are devices
on Aibo for which it would be nice to have a convenient
Fig. 14. Mean distance value to an obstacle for the simulator (left) and the real robot (right), obtained during walking of the robot towards the obstacle. The mean
value is represented by the thick black line. Vertical lines represent the standard deviation of the measure at those points.



484 L. Hohl et al. / Robotics and Autonomous Systems 54 (2006) 472–485
programming interface in cross-compilation, even if there is no
Webots equivalent, e.g., thermo and acceleration sensors.

12. Conclusion

This article has described how we implemented a Webots
simulation model, a remote control system, and the cross-
compilation of Webots controllers for Aibo ERS-210 and ERS-
7. The complete system enables simultaneous control of both
a simulated and a real Aibo robot and provides the user with
a platform for convenient robot programming without any
knowledge of the underlying robot firmware. The simulation
and remote control capabilities are almost identical, but do
not cover all of Aibo’s features. Most available functions
are related to motion control and trajectory generation,
but the system architecture was conceived to be extensible
to other device types. The complexities of most system
components (simulation model, Webots nodes, remote control,
graphical user interface, controller programming interface) are
closely related. For the purpose of our new developments,
modifications to Webots and, especially, the controller program
interface could not be avoided. Except for the challenging
task of implementing all simulated devices, it is probably
easiest to obtain equivalence between a (complete) Aibo model
controlled by a simulated controller and a real Aibo running
the same cross-compiled controller. The implementation of
full wireless remote control by a controller and GUI running
on the client side would imply an important extension of the
communication protocol.

With the current set of features, the extended version of
Webots can be used for a variety of applications, e.g., fast
design and testing of controllers, simulation calibration, use of
the robot as a programming interface or interaction between real
and simulated environments. The combination of simulation,
remote control and cross-compilation allows the users to test
Aibo in various environments and under numerous conditions.
Simulation results are easily transferrable to the real robot using
controller cross-compilation and the convenient graphical user
interface for the transfer. Despite the overhead compared to
a direct solution programmed in OPEN-R, the results of the
cross-compilation enable efficient and precise control of an
Aibo robot in an easy way. The remote control mode enables
even faster switching between the simulation and the real
robot. Parallel control of both the simulation and the real robot
can be used for direct comparison. Thanks to the graphical
user interface for manual control of the simulation and the
real robot, no controller program has to be written to explore
the robot’s capabilities. We have already taken advantage of
this during construction and calibration of the basic simulated
model.

Acknowledgements

This work was funded by the Swiss Federal Office
for Professional Education and Technology, http://www.bbt.
admin.ch/f/index.htm (Technology Transfer CTI http://www.
bbt.admin.ch/kti/aufgaben/f/, project 6395.1 ENS-ET), and by
the Swiss National Science Foundation (young professorship
award to Auke Ijspeert).

Appendix. Trademarks

• “Aibo”, “Memory Stick”, “OPEN-R” and “OPEN-R”
logos are trademarks or registered trademarks of Sony
Corporation.

• “Webots” is a registered trademark of Cyberbotics Ltd.
• “Mindstorms” and “RCX” are registered trademarks of the

Lego Group.
• Other system names, product names, service names and firm

names contained in this document are generally trademarks
or registered trademarks of the respective makers.

References

[1] M. Fujita, Digital creatures for future entertainment robotics, in:
Proceedings IEEE International Conference on Robotics and Automation,
2000, pp. 801–806.

[2] M. Fujita, K. Kageyama, An open architecture for robot entertainment,
in: Proceedings First International Conference on Autonomous Agents,
1997, pp. 435–442.

[3] M. Fujita, H. Kitano, Development of an autonomous quadruped robot for
robot entertainment, Autonomous Robots 5 (1) (1998) 7–18.

[4] T. Ishimura, T. Kato, K. Oda, T. Ohashi, An open robot simulation
environment, in: Proceedings Robot Soccer World Cup VII, Springer,
2003.

[5] O. Khatib, O. Brock, K. Chang, F. Conti, D. Ruspini, L. Sentis, Robotics
and interactive simulation, Communicaton of the ACM 45 (3) (2002)
46–51.

[6] F. Klassner, S.D. Anderson, Lego mindstorms: not just for K-12 anymore,
IEEE Robotics & Automation Magazine 10 (2) (2003) 12–18.

[7] T. Makimoto, T.T. Doi, Chip technologies for entertainment robots —
present and future, in: Digest of the International Electron Devices
Meeting, 2002, pp. 9–16.

[8] O. Michel, Cyberbotics ltd. Webots: professional mobile robot simulation,
International Journal of Advanced Robotic Systems 1 (1) (2004) 39–42.

[9] O. Michel, Webots: symbiosis between virtual and real mobile robots,
in: J.-C. Heuding (Ed.), Proceedings First International Conference on
Virtual Worlds, VW’98, in: LNCS/AI, vol. 1434, Springer, 1998.

[10] J. Pratt, G. Pratt, Exploiting natural dynamics in the control of a 3d
bipedal walking simulation, in: Proceedings International Conference on
Climbing and Walking Robots, CLAWAR99, Portsmouth, UK, 1999.

[11] T. Roefer, German Team RoboCup, Technical Report, 2003. http://www.
germanteam.org/.

[12] R. Smith, Open dynamics engine user guide, 2004, http://ode.org/.
[13] Sony Corporation, Level2 reference guide, OPEN-R SDK Documents

English, 2004, http://openr.aibo.com/.
[14] Sony Corporation, Model information for ERS-210, OPEN-R SDK

Documents English, 2004, http://openr.aibo.com/.
[15] Sony Corporation, Model information for ERS-220, OPEN-R SDK

Documents English, 2004, http://openr.aibo.com/.
[16] Sony Corporation, Model information for ERS-7, OPEN-R SDK

Documents English, 2004, http://openr.aibo.com/.
[17] Sony Corporation, OPEN-R Internet protocol version 4, OPEN-R SDK

Documents English, 2004, http://openr.aibo.com/.
[18] Sony Corporation, Programmer’s guide, OPEN-R SDK Documents

English, 2004, http://openr.aibo.com/.
[19] L.F. Wang, K.C. Tan, V. Prahlad, Developing khepera robot applications

in a Webots environment, in: Proceedings International Symposium on
Micromechatronics and Human Science, 2000, pp. 71–76.

[20] J.C. Zagal, J. Ruiz-del-Solar, A dynamically and visually realistic
simulator for the robocup four legged league, in: International Workshop
on RoboCup 2004, in: Lecture Notes in Artificial Intelligence, Springer,
Lisbon, Portugal, 2004.

http://www.bbt.admin.ch/f/index.htm
http://www.bbt.admin.ch/f/index.htm
http://www.bbt.admin.ch/f/index.htm
http://www.bbt.admin.ch/f/index.htm
http://www.bbt.admin.ch/f/index.htm
http://www.bbt.admin.ch/f/index.htm
http://www.bbt.admin.ch/f/index.htm
http://www.bbt.admin.ch/f/index.htm
http://www.bbt.admin.ch/kti/aufgaben/f/
http://www.bbt.admin.ch/kti/aufgaben/f/
http://www.bbt.admin.ch/kti/aufgaben/f/
http://www.bbt.admin.ch/kti/aufgaben/f/
http://www.bbt.admin.ch/kti/aufgaben/f/
http://www.bbt.admin.ch/kti/aufgaben/f/
http://www.bbt.admin.ch/kti/aufgaben/f/
http://www.bbt.admin.ch/kti/aufgaben/f/
http://www.germanteam.org/
http://www.germanteam.org/
http://www.germanteam.org/
http://www.germanteam.org/
http://ode.org/
http://ode.org/
http://ode.org/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/
http://openr.aibo.com/


L. Hohl et al. / Robotics and Autonomous Systems 54 (2006) 472–485 485
[21] R. Brough, F. Malkin, R. Harrison, Measurement of the coeficient of
friction of floors, Journal of Physics D: Applied Physics 12 (1979).

[22] K. Asunuma, K. Umeda, R. Ueda, T. Arai, Development of a simulator of
environment and measurement for autonomous mobile robots considering
camera characteristics, in: Proceedings Robot Soccer World Cup VII,
Springer, 2003.

[23] T. Laue, K. Spiess, T. Röfer, SimRobot — a general physical robot
simulator and its application in robocup, in: RoboCup 2005: Robot Soccer
World Cup IX, in: Lecture Notes in Artificial Intelligence, Springer,
2005.

[24] N. Koening, A. Howard, Gazebo — 3D Multiple Robot Simulator With
Dynamics, http://playerstage.sourceforge.net/index.php?src=gazebo.

[25] B. Gerkey, R.T. Vaughan, A. Howard, The player/stage project: tools for
multi robot and distributed sensor systems, in: Proceedings of the 11th
International Conference on Advanced Robotics, 2003, pp. 317–323.

[26] J. Go, B. Browing, M. Veloso, Accurate and flexible simulation for
dynamic, vision-centric robots, in: Proceedings of the International
Joint Conference on Autonomous Agents and Multi-Agent Systems,
AAMAS’04, 2004.

[27] R. Tellez, C. Angulo, D. Pardo, Evolving the walking behaviour of a 12
DOF quadruped using a distributed neural architecture, in: Proceedings of
the 2nd International Workshop on Biologically Inspired Approaches to
Advanced Information Technology, Bio-ADIT’2006, Springer, 2006.

Lukas Hohl has a MSc in Computer Science from
the Swiss Federal Institute of Technology in Lausanne
(2005). At the Biologically Inspired Robotics Group
(BIRG), he carried out two projects concerning Aibo
simulation and remote control in Webots. After his
industry internship and master thesis about mobile
healthcare supervised by the Distributed Systems
Laboratory (LSR) he joined Swisscom Innovations,
the research and development department of the

leading telecommunications provider in Switzerland, where he is currently
working on various projects in the multimedia services division.

Ricardo Tellez is a Telecommunications engineer,
with several years of experience in R&D at the
private industry. Now finishing a Ph.D. on artificial
intelligence at the Technical University of Catalonia
in Spain, based on the distributed neural control
on complex robots for the generation of complex
behaviors.
Olivier Michel has a Ph.D. in computer sci-
ence from the University http://birg2.epfl.ch/stats.
php?pn=27900&redir=http://www.unice.fr/ of Nice
Sophia Antipolis (1996). He carried out postdocs at
LAMI http://birg2.epfl.ch/stats.php?pn=27900&redir=
http://diwww.epfl.ch/w3lami/ and LSA http://birg2.
epfl.ch/stats.php?pn=27900&redir=http://lsa.epfl.ch/
(1996–2000) with Prof. J.D. Nicoud and Prof. R. Sieg-
wart. In 1998, he founded Cyberbotics http://birg2.

epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/ Ltd., a com-
pany developing Webots http://birg2.epfl.ch/stats.php?pn=27900&redir=http://
www.cyberbotics.com/products/webots/, a mobile robot simulation software.
In April 2003, he joined the EPFL http://birg2.epfl.ch/stats.php?pn=27900&
redir=http://www.epfl.ch/ as a scientific collaborator (40%) of Prof. Auke
Jan Ijspeert at the Biologically Inspired Robotics Group (BIRG http://birg.
epfl.ch/) within the Logic Systems Lab (LSL http://birg2.epfl.ch/stats.php?
pn=27900&redir=http://lslwww.epfl.ch/). Since September 2003, he is also
working as a scientific collaborator (20%) of Prof. Alcherio Martinoli (SWIS
http://www.coro.caltech.edu group). He is currently working on a project
co-funded by the Swiss http://birg2.epfl.ch/stats.php?pn=27900&redir=http://
www.bbt.admin.ch/f/ Federal Office for Professional Education and Technol-
ogy, (Technology Transfer CTI http://birg2.epfl.ch/stats.php?pn=27900&redir=
http://www.bbt.admin.ch/kti/aufgaben/f/) and Cyberbotics http://birg2.epfl.ch/
stats.php?pn=27900&redir=http://www.cyberbotics.com/ on the development
of a physics based simulation software for mobile robots with multiple degrees
of freedom.

Auke Jan Ijspeert Auke Ijspeert is a SNF (Swiss
National Science Foundation) assistant professor at
the EPFL (the Swiss Federal Institute of Technology
at Lausanne), and head of the Biologically Inspired
Robotics Group (BIRG). He has a BSc/MSc in Physics
from the EPFL, and a PhD in artificial intelligence
from the University of Edinburgh. He carried out
postdocs at the EPFL and at the University of Southern
California (USC) in Los Angeles. Before returning

to the EPFL, he was a research assistant professor at USC, and an external
collaborator at ATR (Advanced Telecommunications Research institute) in
Japan. His research interests are at the intersection between computational
neuroscience, optimization algorithms, nonlinear dynamical systems, and
robotics. He is interested in using numerical simulations and robots to get a
better understanding of the functioning of animals, and in using inspiration
from biology to design novel types of robots and adaptive controllers.
With his colleagues, he has received the Best Paper Award at ICRA2002,
and the Industrial Robot Highly Commended Award at CLAWAR2005. He
is/was Technical Program Chair of 5 international conferences (BioADIT2004,
SAB2004, AMAM2005, BioADIT2006, LATSIS2006), and has been a
program committee member of over 25 conferences.

http://playerstage.sourceforge.net/index.php?src=gazebo
http://playerstage.sourceforge.net/index.php?src=gazebo
http://playerstage.sourceforge.net/index.php?src=gazebo
http://playerstage.sourceforge.net/index.php?src=gazebo
http://playerstage.sourceforge.net/index.php?src=gazebo
http://playerstage.sourceforge.net/index.php?src=gazebo
http://playerstage.sourceforge.net/index.php?src=gazebo
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.unice.fr/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.unice.fr/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.unice.fr/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.unice.fr/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.unice.fr/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.unice.fr/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.unice.fr/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.unice.fr/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.unice.fr/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.unice.fr/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.unice.fr/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://diwww.epfl.ch/w3lami/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://diwww.epfl.ch/w3lami/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://diwww.epfl.ch/w3lami/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://diwww.epfl.ch/w3lami/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://diwww.epfl.ch/w3lami/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://diwww.epfl.ch/w3lami/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://diwww.epfl.ch/w3lami/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://diwww.epfl.ch/w3lami/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://diwww.epfl.ch/w3lami/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://diwww.epfl.ch/w3lami/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://diwww.epfl.ch/w3lami/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://diwww.epfl.ch/w3lami/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://diwww.epfl.ch/w3lami/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lsa.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lsa.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lsa.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lsa.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lsa.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lsa.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lsa.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lsa.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lsa.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lsa.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lsa.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/products/webots/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/products/webots/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/products/webots/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/products/webots/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/products/webots/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/products/webots/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/products/webots/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/products/webots/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/products/webots/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/products/webots/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/products/webots/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/products/webots/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/products/webots/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.epfl.ch/
http://birg.epfl.ch/
http://birg.epfl.ch/
http://birg.epfl.ch/
http://birg.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lslwww.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lslwww.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lslwww.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lslwww.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lslwww.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lslwww.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lslwww.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lslwww.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lslwww.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lslwww.epfl.ch/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://lslwww.epfl.ch/
http://www.coro.caltech.edu
http://www.coro.caltech.edu
http://www.coro.caltech.edu
http://www.coro.caltech.edu
http://www.coro.caltech.edu
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/kti/aufgaben/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/kti/aufgaben/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/kti/aufgaben/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/kti/aufgaben/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/kti/aufgaben/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/kti/aufgaben/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/kti/aufgaben/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/kti/aufgaben/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/kti/aufgaben/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/kti/aufgaben/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/kti/aufgaben/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/kti/aufgaben/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/kti/aufgaben/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/kti/aufgaben/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/kti/aufgaben/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.bbt.admin.ch/kti/aufgaben/f/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/
http://birg2.epfl.ch/stats.php?pn=27900&redir=http://www.cyberbotics.com/

	Aibo and Webots: Simulation, wireless remote control and controller transfer
	Introduction
	Related work
	Aibo Software Development Environment
	Transfer from Webots to real robots
	Aibo and robot simulators

	System overview
	Simulation
	Webots
	Webots model of Aibo

	Control of the real robot
	Communication protocol
	OPEN-R
	Remote control software
	PowerMonitor
	RCServer
	Controller
	JointMover


	Graphical user interface
	Controller program
	Webots robot controller programs
	Remote control by controller programs

	Cross-compilation
	Controller cross-compilation
	Aibo specific programming scheme

	Examples of applications
	Evaluation of the simulation accuracy
	Static measurement
	Dynamic measurement
	Movement of one leg
	Performing a walking gait
	Walking up to a distance


	Future work
	Conclusion
	Acknowledgements
	Trademarks
	References


