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Abstract

This paper presents the design of a stable non-linear control system for the remote visual tracking of cellular robots. The robots are controlled
through visual feedback based on the processing of the image captured by a fixed video camera observing the workspace. The control algorithm
is based only on measurements on the image plane of the visual camera – direct visual control – thus avoiding the problems related to camera
calibration. In addition, the camera plane may have any (unknown) orientation with respect to the robot workspace. The controller uses an on-line
estimation of the image Jacobians. Considering the Jacobians’ estimation errors, the control system is capable of tracking a reference point moving
on the image plane – defining the reference trajectory – with an ultimately bounded error. An obstacle avoidance strategy is also developed in the
same context, based on the visual impedance concept. Experimental results show the performance of the overall control system.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Cellular robots; Visual tracking; Mobile robots; Lyapunov stability
1. Introduction

The use of robots for remote observation and task
performance in a workspace can be of interest for many
applications, e.g. surveillance, inspection, mine localization,
space exploration, underwater tasks, etc. [10,11]. In this
paper, we address the problem of using visual feedback for
controlling simple and inexpensive cellular robots that can
operate individually or cooperatively in a large remote area [14,
10]. Likewise in [10] it is assumed that a fixed camera observes
the workspace, allowing a remote user to monitor the scene, to
specify new tasks for the robot and to observe its operation.
It is also assumed that the image plane may have a general
(unknown) orientation with respect to the workspace. Each
robot has a very simple design and it communicates via
radio with the central processing unit including all the costly
system components, such as the camera, frame grabbers and
computing processor. In order to operate the system, the user
specifies on the image the trajectory to be followed by each
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robot, with its time evolution. The control of the robots is
based on the processing of the images captured by the video
camera. The general setup of the control system is illustrated
in Fig. 1.

The main references for this work are the following ones.
In [10], a linear controller to drive the robot to a final position
has been designed and tested on an experimental cellular robot.
In [6], an adaptive tracking controller for a mobile robot using
a non-calibrated camera system is developed. The controller
generates torque signals for the actuators and it requires,
in addition to the estimation of kinematic variables in the
image space, to know the actual robot orientation and angular
velocities from the robot encoders. Besides, the approach relies
on using a fixed camera whose image plane must be parallel
to the working space, thus largely simplifying the viewing
geometry. Also, in [8], to control a planar manipulator, the
image plane is assumed to be parallel to the robot’s workspace,
and stability is proved with respect to the camera orientation
about the optical axis. Instead, in the present approach, the
camera may be installed in a general (unknown) position and
orientation, thus offering a much greater flexibility. Indeed, if
a camera is deployed at a remote site, it is difficult (if not
impossible) to ensure that the image plane be parallel to the
ground surface. Even if some nominal configuration could be
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Fig. 1. Overall system setup.

established, it may always change over time, since the camera
is subject to disturbances.

In summary, the contribution of the present paper is the
design of a stable tracking control system based only on the
visual feedback from a fixed camera, without requiring any
knowledge about camera configuration. The controller uses
the image Jacobians for computing the control signals. The
Jacobians are estimated online and the associated estimation
errors are taken into consideration, when analysing the stability
proof.

The paper is organized as follows. Section 2 presents
the system modelling including the image formation model.
Section 3 describes the control objective and the controller
design, which includes the stability proof. In Section 4 some
experiments are discussed to show the practical feasibility
and the performance of the proposed tracking control system.
Finally, Section 5 draws some conclusions and establishes
future directions of work.

2. System modelling

2.1. Robot kinematics

In this work a unicycle-like robot is considered with a
differential architecture having two independent motors to
drive the left and right wheels. The kinematics equations,
which relate the linear and angular velocities of the robot
to the angular velocity of each wheel can be expressed
as:[
vw
ωw

]
=

[
R/2 R/2

−R/D R/D

] [
ωL
ωR

]
where ωR, ωL represent the right and left wheel angular
velocities; vw, ωw denote the linear and angular velocities of
a robot coordinate frame attached to the central point of the
robot. Parameter R stands for the wheel radius, and the distance
between wheels is 2D, as illustrated in Fig. 2.

The robot can be considered as a point c moving on the plane
of an absolute coordinate system (x, y) as shown in Fig. 3. The
usual set of kinematics equations, which describe the vehicle’s
Cartesian position (x, y) and heading ϕ are [1],

ẋw = vw cosϕw
ẏw = vw sinϕw
ϕ̇w = ωw.

(2.1)
Fig. 2. Unicycle robot.

Fig. 3. Robot and reference system.

2.2. Robot dynamics

The linear and rotational dynamics of the robot are
approximated by the following linear differential equations,

vw(t)+ Tv v̇w(t) = Kvu+(t)

ωw(t)+ Tωω̇w(t) = Kωu−(t)

u+ = u R + uL ; u− = u R − uL

(2.2)

where Tv, Tω are the linear and rotational time constants;
Kv, Kω are the corresponding model gains; u R, uL are the input
voltages applied to the right and left motors respectively, and
u+, u− are the common and differential voltages.

2.3. Image formation model

A fixed vision camera monitors the robot evolution on the
workplane, and the controller uses image measurements to
drive the vehicle. This strategy is called direct vision control,
because it does not involve coordinate transformations between
the image- and workplanes. This strategy has the advantage
of avoiding the problems associated with camera calibration
and the calculation of coordinate transformations, because
the control errors are directly computed in terms of image
coordinates. Since the controller design is based on image
measurements, the system’s dynamics will be expressed in
terms of the image plane’s coordinates.

Points in the workspace and their image projections are
related by a planar-projective transformation (homography)
between these two planes [2]. Similarly, the geometry of image
formation introduces a (non-linear) mapping, Hϕ , between
angles ϕw, measured on the workplane, and the corresponding
angle ϕ projected on the image plane [10]:

ϕ = Hϕ(ϕw). (2.3)
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Following the same rationale, the camera also introduces a
mapping Hs , between a distance, sw on the workplane and the
corresponding distance, s, measured on the image plane:

s = Hs(sw). (2.4)

In general, both Hϕ and Hs depend on the camera position
and orientation (in the same way as homographies do) relative
to the working plane, and on the camera’s intrinsic parameters.
Under normal viewing conditions, these functions are smooth
differentiable maps, whereas singularities arise for extreme
configurations, like when the image plane is perpendicular to
the workplane. By taking time derivatives of (2.3) and (2.4), it
yields:

ϕ̇ = H ′
ϕ(ϕw)ϕ̇w = Jω(ϕw)ϕ̇w

ṡ = H ′
s(sw)ṡw = Jv(sw)ṡw

(2.5)

where Jv, Jω are referred to as the image Jacobians, and will
be used to obtain the overall system dynamics in terms of the
image plane coordinates.

When using a calibrated camera, the image coordinates can
always be transformed back into the workspace coordinate
system. However, this transformation is not feasible in a non-
calibrated setting. The objective of this work is the design of a
stable control system, in spite of the existence of this unknown,
non-linear mapping. To this aim, some properties of the viewing
geometry will be used to provide the necessary technical
constraints for the control system design, as explained in the
following paragraphs. Without loss of generality, it is assumed
that the camera is always positioned above the workplane, thus
excluding the singular configuration of having the image plane
perpendicular to the workplane. Under these normal viewing
conditions the following properties hold:

(a) By defining coherent coordinates both on the image plane
and on the workplane, positive increments on angles (or
distances) on the working space always correspond to
positive increments of angles (and distances) on the image
plane [10]. That is, both Jacobian functions Jv, Jω are
positive.

(b) As a second observation, it is noted that the Jacobian
functions that relate velocities on the image space to
velocities on the working space are bounded,

J m
ω < Jω(ϕw) < J M

ω

J m
v < Jv(sw) < J M

v

and, due to the dynamics of the robot, are such that they
change slowly.

2.4. Dynamics on the image plane

The image formation model has been defined by the
mappings Hϕ and Hs , and the Jacobian functions Jv, Jω. From
(2.5), the following expressions can be obtained:

v = Jvvw
ω = Jωωw.

(2.6)

These functions allow expressing the dynamic model of
(2.2) in terms of image measurements as,
Fig. 4. Robot reference velocity and reference point on the image plane.

J−1
v v + Tv J−1

v v̇ + Tv
d(J−1

v )

dt
v = Kvu+

J−1
ω ω + Tω J−1

ω ω̇ + Tω
d(J−1

ω )

dt
ω = Kωu−.

(2.7)

Considering Property (b), that regards slow variations of the
Jacobians, the dynamics of (2.7) can be approximated by,

J−1
v v + Tv J−1

v v̇ = Kvu+

J−1
ω ω + Tω J−1

ω ω̇ = Kωu−.
(2.8)

The dynamic model of the system, expressed in image
coordinates, will be used in the next section to design the
tracking controller.

3. Control system design

3.1. Tracking control algorithms

This section presents the design of a tracking controller
exclusively based on the visual feedback from a fixed camera,
without requiring any knowledge about camera configuration.
The commands, the measurements and the control objective
are specified directly on the image obtained by the camera,
i.e. direct visual control. Given a reference point moving on
the image plane and, assuming that the attitude and velocity
of the robot can be measured on the image plane, the control
objective is to provide commands such that the robot follows
the reference point on the image plane.

In a first step, a reference velocity vector for the robot is
specified as a time function, calculated as follows:

ẋcr , ẋd + K(x̃)x̃

x̃ = xd − xc.
(3.1)

In (3.1), ẋcr is the reference velocity (ẋcr = vr 6 ϕr ); xd, ẋd is
the position and velocity of the reference point to be followed;
xc is the actual position of the robot (Fig. 4). The matrix
function K(x̃) is introduced to avoid the saturation of the
reference velocity, and it is selected so as to make that x̃TK(x̃)
be globally positive definite. For example, it can be selected
as

K(x̃) = diag
{

k

a + |x̃i |

}
. (3.2)
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From (3.1), if ẋc ≡ ẋcr, then ˙̃x + K(x̃)x̃ = 0. By
introducing the following Lyapunov candidate function and its
time derivative,

V =
1
2

x̃Tx̃

V̇ = x̃T(−K(x̃)x̃) = −x̃TK(x̃)x̃ < 0

it is clear that x̃(t) → 0 asymptotically. Of course, this
condition is verified for the ideal case that the robot follows
exactly the reference velocity. This will not be so for a real
controller, which will eventually reach the reference velocity
asymptotically. The convergence of the control error to zero
under this real condition will be analyzed at the end of this
section.

The control commands of common and differential voltages
to the robot actuators will be calculated to ensure the robot
reaches the velocity reference asymptotically. These control
laws are of the inverse dynamics type [4], based on the
dynamics of the unicycle-type robot expressed in image
coordinates (Eq. (2.8)). They rely on the online estimation of
the image Jacobians relating the linear and heading velocities
on the image plane and on the workplane. The proposed control
law for heading control is:

u− =:
J−1
ω

Kω

[
Tω

(
ϕ̈r + k2 ˙̃ϕ + k3ϕ̃

)
+ ω

]
k2, k3 > 0 (3.3)

where ϕr is the reference orientation of the robot on the image
plane, ϕ̃ = ϕr − ϕ is the heading error of the robot, Jω is the
angular Jacobian, and the constants are design parameters and
robot model constants. By equating (3.3) with the second of
(2.8), the closed loop equation is obtained,

¨̃ϕ + k2 ˙̃ϕ + k3ϕ̃ = 0 (3.4)

which implies that ϕ̃(t) → 0 exponentially as t → ∞.
By considering the linear velocity control, the proposed

common voltage command will be:

u+ =:
J−1
v

Kv

[
Tv (v̇r + k1ṽ cos ϕ̃)+ v

]
k1 > 0

ṽ = vr − v

(3.5)

where vr is the module of the reference velocity on the image
plane; ṽ = vr − v is the error of the velocity modules; Jv is the
linear Jacobian, and the constants are design parameters and
robot model constants. The cosϕ factor allows us to attenuate
the velocity module correction when the orientation of the robot
is wrong. By equating (3.5) to the first of (2.8), the closed loop
equation is obtained,

˙̃v + k1ṽ cos ϕ̃ = 0. (3.6)

Considering the following positive definite function,

V =
1
2
ṽ2

the time derivative is given by

V̇ = ṽ ˙̃v = −k1ṽ
2 cos ϕ̃. (3.7)
According to (3.4), cos ϕ̃ takes positive values in a finite
time, while ṽ remains finite.

Therefore, (3.7) is negative definite in a finite time, which
allows us to conclude that

ṽ(t) → 0 as t → ∞.

The Jacobians needed for (3.3) and (3.5) are estimated on-
line using the α − β filter [7] as described in Section 3.2.

It can be concluded now that the control error x̃(t) tends to
zero asymptotically. In the controller design it has been proven
that ẋcr(t) − ẋc(t) = ρ(t), with ρ(t) → 0. Now (3.1) can be
written as

˙̃x + K(x̃)x̃ = ρ(t). (3.8)

Considering the following Lyapunov candidate and its time
derivative,

V =
1
2

x̃Tx̃

V̇ = −x̃TK(x̃)x̃ + x̃Tρ.

(3.9)

A sufficient condition for the second of (3.9) to be negative
definite is

k

a + ‖x̃‖
‖x̃‖

2 > ‖ρ‖‖x̃‖

(k − ‖ρ‖) ‖x̃‖ > a‖ρ‖

‖x̃‖ >
a‖ρ‖

k − ‖ρ‖
, if k > ‖ρ‖ or it is verified in a finite time.

As ρ(t) → 0, it implies that ‖x̃(t)‖ → 0 as t → ∞.

3.2. On-line estimation of Jacobian functions

The control (3.3) and (3.5) proposed so far require the use
of the Jacobian functions Jv, Jω. To overcome this constraint,
these Jacobians are estimated on-line using the α − β filter [7].
In order to write the filter equations, the following state and
measurement variables are defined for the linear Jacobian:

X(k) =
[
Jv J̇v

]T
Z(k) = v. (3.10)

The state-space stochastic dynamic model is now defined as:

X(k + 1) = ΦX(k)+ ψµ(k)

Z(k) = UX(k)+ λ(k)
(3.11)

where k is the discrete time instant, µ, λ are the state and
measurement noises and Φ,ψ are transition matrices,

Φ =

[
1 T
0 1

]
U =

[
vw 0

]
with T the sampling time. The filter equations are now written
as:

Predictor: X̂(k/k − 1) = ΦX̂(k − 1/k − 1) (3.12)

Filter: X̂(k/k) = X̂(k/k − 1)+ K[Z(k)− UX̂(k/k − 1)]

(3.13)
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where K =
[
α β/T

]T with α, β selected by following [7].
Considering that the Jacobians change slowly – Property (b) –
the following simple expressions for the filter can be written:

Predictor: Ĵv(k/k − 1) = Ĵv(k − 1/k − 1) (3.14)

Filter: Ĵv(k/k) = Ĵv(k/k − 1)+ α[v − vw Ĵv(k/k − 1)].

(3.15)

Similarly, the angular Jacobian is estimated on-line using the
following filter equations:

Predictor: Ĵω(k/k − 1) = Ĵω(k − 1/k − 1) (3.16)

Filter: Ĵω(k/k) = Ĵω(k/k − 1)+ α[ω − ωw Ĵω(k/k − 1)].

(3.17)

It can be seen from (3.15) and (3.17) that the filter inputs
are the linear and angular velocities on the image plane and
on the workplane. The first ones are measured on the images
captured by the camera, and the last ones are estimated using
the dynamic model of the robot. This model has been identified
by off-line experiments.

3.3. Effect of the errors in the Jacobians’ estimation

The previous sections have shown how to derive a stable
control law for the proposed control problem and the means for
estimating the Jacobians online. The estimation of the Jacobian
functions immediately raises the problem of analysing the
effect of the estimation error on the control errors. The Jacobian
function estimates are used to calculate the control actions, as
done in (3.3) and (3.5). The differential control action of (3.3)
is first considered with the estimated angular Jacobian,

u− =:
Ĵ−1
ω

Kω

[
Tω

(
ϕ̈r + k2 ˙̃ϕ + k3ϕ̃

)
+ ω

]
. (3.18)

By equating (3.18) with the second of (2.8), the closed-loop
expression is obtained,

¨̃ϕ + k2 ˙̃ϕ + k3ϕ̃ = η1 + η2 (3.19)

where

η1 = Jω J̃−1
ω

[(
k2 −

1
Tω

)
˙̃ϕ + k3ϕ̃

]
= Jω J̃−1

ω K
[
˙̃ϕ ϕ̃

]T

η2 = Jω J̃−1
ω

(
ϕ̈r +

1
Tω
ϕ̇r

)
= Jω J̃−1

ω Φr .

Eq. (3.19) can be expressed in state variables with state
xT

=
[
ϕ̃ ˙̃ϕ

]
ẋ = Ax + N1(x)+ N2(t), N1(0) = 0[

˙̃ϕ
¨̃ϕ

]
=

[
0 1

−k3 −k2

] [
ϕ̃
˙̃ϕ

]
+

[
0
η1

]
+

[
0
η2

]
(3.20)

with, ‖N1(x)‖ ≤ ‖Jω J̃−1
ω ‖‖K‖‖x‖ = γ1‖x‖ and ‖N2(t)‖ ≤

‖Jω J̃−1
ω ‖‖Φr‖ = γ2.

By regarding the following Lyapunov function candidate [3],

V = xTPx (3.21)
its time derivative on the system’s trajectories is given by,

V̇ =

(
∂V

∂x

)
ẋ =

(
∂V

∂x

)
Ax +

(
∂V

∂x

)
N1(x)+

(
∂V

∂x

)
N2(t)

(3.22)

V̇ ≤ −α‖x‖
2
+ 2λmax(P) γ2‖x‖ (3.23)

where α = λmin(Q)− 2λmax(P)γ1 is positive by selecting γ1 <
λmin(Q)

2 λmax(P)
. It is concluded that the heading error is ultimately

bounded [3] with a bound given by

‖ϕ̃‖ < 2λmax(P)
γ2

α
= Φ. (3.24)

The Jacobian estimation error is now considered, in relation
to the common control action of (3.5),

u+ =:
Ĵ−1
v

Kv

[
Tv (v̇r + k1ṽ cos ϕ̃)+ v

]
(3.25)

by equating (3.25) with the first of (2.8), the closed loop
dynamics is obtained,

˙̃v + k1ṽ cos ϕ̃ = η1(ṽ, ϕ, t)+ η2(t) (3.26)

with

η1(ṽ, ϕ, t) = Jv J̃−1
v

(
k1 cos ϕ̃ +

1
Tv

)
ṽ

η2(t) = Jv J̃−1
v

(
v̇r +

vr

Tv

)
= Jv J̃−1

v Ωr .

By taking the positive definite function,

V =
1
2
ṽ2 (3.27)

the time derivatives in the system’s trajectories is given by

V̇ = ṽ ˙̃v = ṽ
[
−k1ṽ cos ϕ̃ + η1(ṽ, ϕ, t)+ η2(t)

]
. (3.28)

Recalling that ϕ̃ is an ultimately bounded variable,

V̇ ≤ −k1 cos Φ‖ṽ‖2
+ ‖Jv J̃−1

v ‖

(
k1 +

1
Tv

)
‖ṽ‖2

+ ‖Jv J̃−1
v ‖‖Ωr‖‖ṽ‖ = −δ‖ṽ‖2

+ β‖ṽ‖. (3.29)

If the condition

k1 cos Φ > ‖Jv J̃−1
v ‖

(
k1 +

1
Tv

)
is fulfilled, then δ > 0. Under this condition, V̇ < 0 for
δ‖ṽ‖2 > β‖ṽ‖, which implies that ṽ is ultimately bounded by

‖ṽ‖ ≤
β

δ
= Θ . (3.30)

Since it has been proven that the velocity and heading errors
are ultimately bounded by (3.24) and (3.30), the system’s error
equation (3.8) can now be expressed as

˙̃x + K(x̃)x̃ = ρ(t) ‖ρ(t)‖ → R (3.31)
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with

R =
‖ẋcr‖Φ
cos ε

, ε = arctan
Θ

‖ẋcr‖Φ
.

By considering the following Lyapunov candidate and its
time derivative,

V =
1
2

x̃Tx̃

V̇ = −x̃TK(x̃)x̃ + x̃Tρ(t) ≤ −x̃TK(x̃)x̃ + R‖x̃‖

(3.32)

the condition for V̇ < 0 can be expressed as

k

a + ‖x̃‖
‖x̃‖

2 > R‖x̃‖ (3.33)

which implies that x̃ is ultimately bounded, with bound ‖x̃‖ ≤
a R

k−R , k > R.

3.4. Obstacle avoidance

It is important to endow the robot with the capability of
avoiding any obstacles that may appear on the trajectory. Any
strategy developed to this aim should be integrated with the
proposed tracking controller described above, which operates
with measurements on the image plane. The concept of visual
impedance with fictitious forces [9,13,5,12] is used here to
modify the desired velocity, thus deviating the desired robot
trajectory to avoid the obstacle. The obstacle is detected by
the vision system, and the fictitious forces are generated as a
function of the relative posture of the robot and the obstacle on
the image plane.

In robotics, the concept of impedance control aims at
establishing the dynamic regulation between the motion and the
interacting force of the robot with the environment. The linear
impedance can be expressed as

f(t) = Z(p)x̃(t)

with p = d/dt the time derivative operator, f(t) is the
interacting force of the robot with the environment; x̃(t) =

xd(t)− xc(t) represents the robot motion error in relation to the
specified trajectory, and Z(p) = Ip2

+Bp+K is the impedance
function. In relation to the force vector f(t), physical forces are
considered when trying to regulate the mechanical interaction
of a robot by using information from force sensors. Fictitious
forces are used instead, when a non-contact regulation is
preferred, i.e., a virtual interaction captured by the image in
a visually controlled system. The control objective is then
defined as the regulation of the dynamic relationship between
the fictitious forces and the position error on the image plane.

Regarding the obstacle avoidance strategy developed here
for the visual tracking control of cellular robots, the following
impedance relation is considered,

f = (I p2
+ Bp + K )xa = Z xa

xa = Z−1 f cosβ
(3.34)

where I , B and K are positive constants; f is the fictitious force
module; ft is the tangential component of the fictitious force as
Fig. 5. Rotation of the velocity vector due to the fictitious force effect.

shown in Fig. 5, and xa represents an error which will be used
to deviate the robot from the desired trajectory. Constants I, B
and K represent the inertial, damping and spring effect of the
impedance interaction.

The fictitious force module is calculated as,

f (t) = a − b · (d(t)− dmin)
n (3.35)

where a, b are positive constants such that

a − b · (dmax − dmin)
n

= 0. (3.36)

In the above equations, d(t) is the distance between the robot
and the obstacle (dmin < d(t) < dmax); dmax defines a repulsive
zone within which the obstacle avoidance strategy becomes
active, see Fig. 5. Finally, dmin represents the minimum distance
for non-contact of the robot with the obstacle. The choice of the
value for the exponent n will depend on how fast it is required
that the fictitious force increase while the robot approaches the
obstacle.

Now, a modified desired velocity vector ẋ′

d is calculated, by
rotating an angle ψ

ẋ′

d =

[
cosψ − sinψ
sinψ cosψ

]
ẋd. (3.37)

The rotation angle ψ is calculated as a function of the error
signal xa , and of the angle β of incidence of the robot in the
repulsive zone, Fig. 5,

ψ = xasign( fr )

fr = f sin(β).
(3.38)

4. Experimental results

The controller proposed in the previous section has been
implemented and tested on experimental cellular robots
developed at the Instituto de Automática, National University of
San Juan, Argentina. The system consists of a robot controlled
via a radio link from a PC. A host computer executes the
tasks of determining the robot position and orientation on the
image coordinates, and generates the proper control signals.
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Fig. 6. Experimental setup and cellular robots.

The visual tracking system runs at 20 Hz, without using any
special processing hardware. The reference trajectories and the
saturation function in (3.1) have been selected such that the
available sampling rate is adequate for the experiments. The
communication is ensured via serial port, with a simple protocol
to send the control commands. The robots are assembled from
LEGO components and they contain a CPU-board consisting
of a radio receiver, the decoding logic and PWM generation
for the differential control of the robot. Each robot is identified
by a four bit address and, consequently, up to 16 cellular
vehicles can be controlled. There are no on-board sensors. The
experimental setup and the cellular robots are shown in Fig. 6.

To localize the robot on the image plane, a tracking system
was developed which estimates the robot position and heading
direction over time from the video stream. The video camera
uses a RGB representation, allowing colour detection for robot
segmentation in the image plane. The robot position on the
image plane is thus estimated by calculating the centre of mass
on the binary image obtained from the colour segmentation. In
a similar way, the robot heading direction is estimated using the
angle of the vector passing through the centre of mass of two
distinct colour bars located at the front and back of the robot.
These variables and its derivatives required in the control laws
of (3.3) and (3.5) are estimated using the α − β filter [7].

In a first experiment, the reference point moves on the image
plane describing a straight line with velocity defined by the
relation vx/vy = 0.81 with vx = 13 pix/s. The controllers’
design constants are set to k1 = 3; k2 = 4; k3 = 8; k = 60;
a = 50. Fig. 7 shows the robot evolution on the image plane.
Fig. 8 represents the evolution of the tracking error; Fig. 9, the
evolution of the linear and angular velocities and, Fig. 10, the
evolution of the estimated Jacobians.

In a second experiment, the target point moves on the image
plane describing a circular trajectory, with a 75 pixels radius
and angular velocity ω = 0.18 rad/s. The parameters of the
controller are set to: k1 = 2; k2 = 5; k3 = 8; k = 70;
a = 50. Fig. 11 shows the robot evolution on the image plane.
Fig. 12, represents the evolution of the tracking error; Fig. 13,
the magnitude of the angular and lineal velocities, and Fig. 14,
Fig. 7. Robot evolution on the image plane.

Fig. 8. Evolution of the tracking error.

Fig. 9. Evolution of linear and angular velocities.

the behavior of the estimated linear and angular Jacobians for
this experiment.
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Fig. 10. Evolution of the estimated Jacobians.

Fig. 11. Robot evolution on the image plane.

Fig. 12. Evolution of the tracking error.

In a third experiment, the reference point moves on the
image plane describing a third grade polynomial. The tangential
velocity is v = 12 pix/s, and the parameters are set to: k1 = 3;
Fig. 13. Evolution of linear and angular velocities.

Fig. 14. Evolution of the estimated Jacobians.

k2 = 6; k3 = 8; k = 60; a = 50. Fig. 15 shows the robot
evolution on the image plane. Fig. 16 represents the evolution
of the tracking error; Fig. 17 the magnitude of the angular
and lineal velocities and Fig. 18, the behavior of the estimated
linear and angular Jacobians of this experiment. All the above
experiments show a good performance of the designed tracking
controller.

A fourth and final experiment is presented to show the
performance of the obstacle avoidance strategy described in
Section 3.4. To this aim, a straight trajectory similar to the one
used in the first experiment has been defined through a circular
obstacle. Fig. 19 shows the robot evolution on the image plane
while avoiding the obstacle. Fig. 20 represents the evolution of
the angle of rotation of the desired velocity vector ẋd and the
evolution of the fictitious force.

5. Conclusions

This paper has presented a tracking controller for cellular
robots and a fixed camera configuration by using direct visual
feedback, without knowledge about camera parameters and
configuration. The robot’s kinematics and dynamics have
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Fig. 15. Robot evolution on the image plane.

Fig. 16. Evolution of the tracking error.

Fig. 17. Evolution the linear and angular velocities.

been considered for the design of a non-linear controller.
The controller requires the estimation of the linear and
angular image Jacobians. A proof of the stability properties
Fig. 18. Evolution of the estimated Jacobians.

Fig. 19. Robot evolution on the image plane.

Fig. 20. Evolution of the rotation angle and the fictitious force.

of the proposed control system has been provided, including
the effects of the Jacobian estimation errors in the control
errors. In addition, an obstacle avoidance strategy has been
designed by considering fictitious forces on the image plane.
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Finally, representative experiments were presented to show the
performance of the proposed control system. As regards the
difficulties found implementing the proposed controller, it can
be noted that the controller includes many parameters that
need to be tuned before operating the system to get a good
tracking performance. In addition, it should be emphasized
that the trajectory control is performed on the image plane,
which does not need any transformation onto the working
plane, but requires the definition of some landmarks whose
projection on the image plane allows a proper definition of
the desired trajectory. For future work, the proposed controller
can be easily applied to the problem of controlling multiple
cellular robots performing cooperative tasks. Besides, the
use of multiple cameras observing the scene, and a proper
commutation between them, can contribute to the enlargement
of the workspace. More confident measurements can also be
achieved if a data fusion from redundant images is applied.
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