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Abstract

Mobile robots in real-life settings would benefit from beingable to localize and track sound
sources. Such a capability can help localizing a person or aninteresting event in the en-
vironment, and also provides enhanced processing for othercapabilities such as speech
recognition. To give this capability to a robot, the challenge is not only to localize simulta-
neous sound sources, but to track them over time. In this paper we propose a robust sound
source localization and tracking method using an array of eight microphones. The method
is based on a frequency-domain implementation of a steered beamformer along with a par-
ticle filter-based tracking algorithm. Results show that a mobile robot can localize and track
in real-time multiple moving sources of different types over a range of 7 meters. These new
capabilities allow a mobile robot to interact using more natural means with people in real
life settings.

1 Introduction

Sound source localization is defined as the determination ofthe coordinates of
sound sources in relation to a point in space. The auditory system of living creatures
provides vast amounts of information about the world, such as localization of sound
sources. For us humans, it means to be able to focus our attention on events and
changes surrounding us, such as a cordless phone ringing, a vehicle honking, a
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person who is talking to us, etc. Hearing complements well other sensors such as
vision by being omni-directional, capable to work in the dark and not limited by
physical structure (such as walls). For those who do not havehearing impairments,
it is hard to imagine going a day without being able to hear, especially having to
move in a very dynamic and unpredictable world. Marschark [1] even suggests that
although deaf children have similar IQ results compared to other children, they
do experience more learning difficulties in school. So, the intelligence manifested
by autonomous robots will surely be influenced by providing them with auditory
capabilities.

To perform sound localization, our brain combines timing (more specifically de-
lay or phase) and amplitude information from the sound perceived by two ears [2],
sometimes in addition to information from other senses. However, localizing sound
sources using only two inputs is a challenging task. The human auditory system is
very complex and resolves the problem by accounting for the acoustic diffraction
around the head and the ridges of the outer ear. Without this ability, localization
with two microphones is limited to azimuth only, along with the impossibility to
distinguish if the sounds come from the front or the back. Also, obtaining high-
precision readings when the sound source is in the same axis as the pair of micro-
phones is more difficult.

One advantage with robots is that they do not have to inherit the same limitations
as living creatures. Using more than two microphones allowsreliable and accurate
localization in both azimuth and elevation. Also, having multiple signals provides
additional redundancy, reducing the uncertainty caused bythe noise and non-ideal
conditions such as reverberation and imperfect microphones. It is with this principle
in mind that we have developed an approach allowing to localize sound sources
using an array of microphones.

Our approach is based on a frequency-domain beamformer thatis steered in all pos-
sible directions to detect sources. Instead of measuring TDOAs and then converting
to a position, the localization process is performed in a single step. This makes the
system more robust, especially in the case where an obstacleprevents one or more
microphones from properly receiving the signals. The results of the localization
process are then enhanced by probability-based post-processing which prevents
false detection of sources. This makes the system sensitiveenough for simultane-
ous localization of multiple moving sound sources. This approach is an extension
of earlier work [3] and works for both far-field and near-fieldsound sources. De-
tection reliability, accuracy, and tracking capabilitiesof the approach are validated
using a mobile robot, with different types of sound sources.We consider both our
robust steered beamformer and our probabilistic post-processing to contain signifi-
cant contributions to the subject of robust localization ofsound sources.

The paper is organized as follows. Section 2 situates our work in relation to other
research projects in the field. Section 3 presents a brief overview of the system.
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Section 4 describes our steered beamformer implemented in the frequency-domain.
Section 5 explains how we enhance the results from the beamformer using a proba-
bilistic post-processor. This is followed by experimentalresults in Section 6, show-
ing how the system behaves under different conditions. Section 7 concludes the
paper and presents future work.

2 Related work

Signal processing research that addresses artificial audition is often geared toward
specific tasks such as speaker tracking for videoconferencing [4]. An artificial au-
dition system for a mobile robot can be used for three purposes: 1) localizing sound
sources; 2) separating sound sources in order to process only signals that are rel-
evant to a particular event in the environment; and 3) processing sound sources to
extract useful information from the environment (like speech recognition).

Even though artificial audition on mobile robots is a research area still in its in-
fancy, most of the work has been done in relation to localization of sound sources
and mostly using only two microphones. This is the case of theSIG robot that uses
both inter-aural phase difference (IPD) and inter-aural intensity difference (IID) to
locate sounds [5]. The binaural approach has limitations when it comes to evalu-
ating elevation and usually, the front-back ambiguity cannot be resolved without
resorting to active audition [6].

More recently, approaches using more than two microphones have been developed.
One approach uses a circular array of eight microphones to locate sound sources
[7]. In our previous work also using eight microphones [8], we presented a method
for localizing a single sound source where time delay of arrival (TDOA) estimation
was separated from the direction of arrival (DOA) estimation. It was found that
a system combining TDOA and DOA estimation in a single step improves the
system’s robustness, while allowing localization (but nottracking) of simultaneous
sources [3]. Kagamiet al.[9] reports a system using 128 microphones for 2D sound
localization of sound sources: obviously, it would not be practical to include such
a large number of microphones on a mobile robot.

Most of the work so far on localization of source sources doesnot address the
problem of tracking moving sources. It is proposed in [10] touse a Kalman filter
for tracking a moving source. However the proposed method assumes that a single
source is present. In the past years, particle filtering [11](a sequential Monte Carlo
method) has been increasingly popular to resolve object tracking problems. Wardet
al. [12,13] and Vermaak [14] use this technique for tracking single sound sources.
Asohet al. [15] even suggested to use this technique for mixing audio and video
data to track speakers. But again, the technique is limited to a single source due to
the problem of associating the localization observation data to each of the sources
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being tracked. We refer to that problem as the source-observation assignment prob-
lem. Some attempts are made at defining multi-modal particlefilters in [16], and the
use of particle filtering for tracking multiple targets is demonstrated in [17,18,19].
But so far, the technique has not been applied to sound sourcetracking. Our work
demonstrates that it is possible to track multiple sound sources using particle filters
by solving the source-observation assignment problem.

3 System Overview

The proposed localization and tracking system, as shown in Figure 1, is composed
of three parts:

• A microphone array;
• A memoryless localization algorithm based on a steered beamformer;
• A particle filtering tracker.

The array is composed of up to eight omni-directional microphones mounted on the
robot. Since the system is designed to be installed on any robot, there is no strict
constraint on the position of the microphones: only their positions must be known in
relation to each other (measured with∼0.5 cm accuracy). The microphone signals
are used by a beamformer (spatial filter) that is steered in all possible directions
in order to maximize the output energy. The initial localization performed by the
steered beamformer is then used as the input of a post-processing stage that uses
particle filtering to simultaneously track all sources and prevent false detections.
The output of the localization system can be used to direct the robot attention to
the source. It can also be used as part of a source separation algorithm to isolate the
sound coming from a single source [3].

Steered
beamformer

.

.

.

Particle
filtering

Source
positions

Omni-directional
microphones

Beamformer
energy

Figure 1. Overview of the localization system
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4 Localization Using a Steered Beamformer

The basic idea behind the steered beamformer approach to source localization is
to direct a beamformer in all possible directions and look for maximal output.
This can be done by maximizing the output energy of a simple delay-and-sum
beamformer. The formulation in both time and frequency domain is presented in
Section 4.1. Section 4.2 describes the frequency-domain weighting performed on
the microphone signals and Section 4.3 shows how the search is performed. A
possible modification for improving the resolution is described in Section 4.4.

4.1 Delay-And-Sum Beamformer

The output of anM-microphone delay-and-sum beamformer is defined as:

y(n) =
M−1
∑

m=0

xm (n− τm) (1)

wherexm (n) is the signal from themth microphone andτm is the delay of arrival
for that microphone. The output energy of the beamformer over a frame of length
L is thus given by:

E =
L−1
∑

n=0

[y(n)]2

=
L−1
∑

n=0

[x0 (n− τ0) + . . .+ xM−1 (n− τM−1)]
2 (2)

Assuming that only one sound source is present, we can see that E will be maximal
when the delaysτm are such that the microphone signals are in phase, and therefore
add constructively.

One problem with this technique is that energy peaks are verywide [20], which
means that the resolution is poor. Moreover, in the case where multiple sources
are present, it is likely for the two or more energy peaks to overlap, making them
impossible to differentiate. One way to narrow the peaks is to whiten the micro-
phone signals prior to computing the energy [21]. Unfortunately, the coarse-fine
search method as proposed in [20] cannot be used in that case because the narrow
peaks can then be missed during the coarse search. Therefore, a full fine search
is necessary, which requires increased computing power. Itis possible to reduce
the amount of computation by calculating the beamformer energy in the frequency
domain. This also has the advantage of making the whitening of the signal easier.
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To do so, the beamformer output energy in Equation 2 can be expanded as:

E =
M−1
∑

m=0

L−1
∑

n=0

x2
m (n− τm)

+ 2
M−1
∑

m1=0

m1−1
∑

m2=0

L−1
∑

n=0

xm1 (n− τm1)xm2 (n− τm2) (3)

which in turn can be rewritten in terms of cross-correlations:

E = K + 2
M−1
∑

m1=0

m1−1
∑

m2=0

Rxm1 ,xm2
(τm1 − τm2) (4)

whereK =
∑M−1

m=0

∑L−1
n=0 x

2
m (n− τm) is nearly constant with respect to theτm

delays and can thus be ignored when maximizingE. The cross-correlation function
can be approximated in the frequency domain as:

Rij(τ) ≈
L−1
∑

k=0

Xi(k)Xj(k)
∗e2πkτ/L (5)

whereXi(k) is the discrete Fourier transform ofxi[n], Xi(k)Xj(k)
∗ is the cross-

spectrum ofxi[n] andxj [n] and (·)∗ denotes the complex conjugate. The power
spectra and cross-power spectra are computed on overlapping windows (50% over-
lap) ofL = 1024 samples at 48 kHz. The cross-correlationsRij(τ) are computed
by averaging the cross-power spectraXi(k)Xj(k)

∗ over a time period of 4 frames
(40 ms). Once theRij(τ) are pre-computed, it is possible to computeE using only
M(M − 1)/2 lookup and accumulation operations, whereas a time-domaincom-
putation would require2L(M + 2) operations. ForM = 8 and 2562 directions, it
follows that the complexity of the search itself is reduced from 1.2 Gflops to only
1.7 Mflops. After counting all time-frequency transformations, the complexity is
only 48.4 Mflops, 25 times less than a time domain search with the same resolu-
tion.

4.2 Spectral Weighting

In the frequency domain, the whitened cross-correlation iscomputed as:

R
(w)
ij (τ) ≈

L−1
∑

k=0

Xi(k)Xj(k)
∗

|Xi(k)| |Xj(k)|
e2πkτ/L (6)

While it produces much sharper cross-correlation peaks, the whitened cross-correla-
tion has one drawback: each frequency bin of the spectrum contributes the same
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amount to the final correlation, even if the signal at that frequency is dominated by
noise. This makes the system less robust to noise, while making detection of voice
(which has a narrow bandwidth) more difficult. In order to alleviate the problem,
we introduce a weighting function that acts as a mask based onthe signal-to-noise
ratio (SNR). For microphonei, we define this weighting function as:

ζni (k) =
ξni (k)

ξni (k) + 1
(7)

whereξni (k) is an estimate of thea priori SNR at theith microphone, at time frame
n, for frequencyk. It is computed using the decision-directed approach proposed
by Ephraim and Malah [22]:

ξni (k) =
(1− αd)

[

ζn−1
i (k)

]2 ∣
∣

∣Xn−1
i (k)

∣

∣

∣

2
+ αd |Xn

i (k)|2

σ2
i (k)

(8)

whereαd = 0.1 is the adaptation rate andσ2
i (k) is the noise estimate for micro-

phonei. It is easy to estimateσ2
i (k) using the Minima-Controlled Recursive Aver-

age (MCRA) technique [23], which adapts the noise estimate during periods of low
energy.

It is also possible to make the system more robust to reverberation by modifying the
weighting function in Equation 8 to use a new noise estimateσ̃2

i (k) that includes a
reverberation termλrev

n,i (k) and defined as:

σ̃2
i (k) = σ2

i (k) + λrev
n,i (k) (9)

We use a simple reverberation model with exponential decay defined as:

λrev
n,i (k) = γλrev

n−1,i(k) + (1− γ)δ
∣

∣

∣ζni (k)X
n−1
i (k)

∣

∣

∣

2
(10)

whereγ represents the reverberation decay for the room,δ is the level of reverber-
ation andλrev

−1,i(k) = 0. In some sense, Equation 10 can be seen as modeling the
precedence effect[24,25] in order to give less weight to frequency bins where aloud
sound was recently present. The resulting enhanced cross-correlation is defined as:

R
(e)
ij (τ) =

L−1
∑

k=0

ζi(k)Xi(k)ζj(k)Xj(k)
∗

|Xi(k)| |Xj(k)|
e2πkτ/L (11)
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4.3 Direction Search on a Spherical Grid

In order to reduce the computation required and to make the system isotropic, we
define a uniform triangular grid for the surface of a sphere. To create the grid, we
start with an initial icosahedral grid [26]. Each triangle in the initial 20-element
grid is recursively subdivided into four smaller triangles, as shown in Figure 2.
The resulting grid is composed of 5120 triangles and 2562 points. The beamformer
energy is then computed for the hexagonal region associatedwith each of these
points. Each of the 2562 regions covers a radius of about2.5◦ around its center,
setting the resolution of the search.

Figure 2. Recursive subdivision (2 levels) of a triangular element

Algorithm 1 Steered beamformer direction search
for all grid indexd do
Ed ← 0
for all microphone pairij do

τ ← lookup(d, ij)

Ed ← Ed +R
(e)
ij (τ)

end for
end for
direction of source← argmaxd (Ed)

Once the cross-correlationsR(e)
ij (τ) are computed, the search for the best direction

on the grid is performed as described by Algorithm 1. Thelookupparameter is a
pre-computed table of the time delay of arrival (TDOA) for each microphone pair
and each direction on the sphere. Using the far-field assumption [8], the TDOA in
samples is computed as:

τij =
Fs

c
(~pi − ~pj) · ~u (12)

where~pi is the position of microphonei, ~u is a unit-vector that points in the
direction of the source,c is the speed of sound andFs is the sampling rate. Equation
12 assumes that the time delay is proportional to the distance between the source
and microphone. This is only true when there is no diffraction involved. While this
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hypothesis is only verified for an “open” array (all microphones are in line of sight
with the source), in practice we demonstrate experimentally (see Section 6) that
the approximation is good enough for our system to work for a “closed” array (in
which there are obstacles within the array).

For an array ofM microphones and anN-element grid, the algorithm requires
M(M−1)N table memory accesses andM(M−1)N/2 additions. In the proposed
configuration (N = 2562, M = 8), the accessed data can be made to fit entirely in
a modern processor’s L2 cache.

Algorithm 2 Localization of multiple sources
for q = 1 to assumed number of sourcesdo
Dq ← Steered beamformer direction search
for all microphone pairij do

τ ← lookup(Dq, ij)

R
(e)
ij (τ) = 0

end for
end for

Using Algorithm 1, our system is able to find the loudest source present by maxi-
mizing the energy of a steered beamformer. In order to localize other sources that
may be present, the process is repeated by removing the contribution of the first
source to the cross-correlations, leading to Algorithm 2. Since we do not know
how many sources are present, we always look for four sources, as this is the max-
imum number of sources our beamformer is able to locate at once. This situation
leads to a high rate of false detection, even when four or moresources are present.
That problem is handled by the particle filter described in Section 5.

4.4 Direction Refining

When a source is located using Algorithm 1, the direction accuracy is limited by
the size of the grid used. It is however possible, as an optional step, to further refine
the source location estimate. In order to do so, we define a refined grid for the
surrounding of the point where a source was found. To take into account the near-
field effects, the grid is refined in three dimensions: horizontally, vertically and over
distance. Using five points in each direction, we obtain a 125-point local grid with
a maximum resolution error of around1◦. For the near-field case, Equation 12 no
longer holds, so it is necessary to compute the time differences as:

τij =
Fs

c
(‖d~u− ~pj‖ − ‖d~u− ~pi‖) (13)

whered is the distance between the source and the center of the array. Equation
13 is evaluated for five distancesd (ranging from 50 cm to 5 m) in order to find
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Algorithm 3 Particle-based tracking algorithm. Steps 1 to 7 correspondto Subsec-
tions 5.1 to 5.7.

(1) Predict the states(t)j from s
(t−1)
j for each sourcej

(2) Compute instantaneous direction probabilities associated with the steered
beamformer response

(3) Compute probabilitiesP (t)
q,j associating beamformer peaks to sources being

tracked
(4) Compute updated particle weightsw(t)

j,i

(5) Add or remove sources if necessary
(6) Compute source localization estimatex̄

(t)
j for each source

(7) Resample particles for each source if necessary and go back to step 1.

the direction of the source with improved accuracy. Unfortunately, it was observed
that the value ofd found in the search is too unreliable to provide a good estimate
of the distance between the source and the array. The incorporation of the distance
nonetheless provides improved accuracy for the near field case.

5 Particle-Based Tracking

The steered beamformer detailed in Section 4 provides only instantaneous, noisy in-
formation about sources being possibly present and provides no information about
the behavior of the source in time (tracking). For that reason, it is desirable to use a
probabilistic temporal integration to track the differentsound sources based on all
measurements available up to the current time. It has been shown [12,13,15] that
particle filters are an effective way of tracking sound sources. Using this approach,
all hypotheses about the location of each source are represented as a set of particles
to which different weights are assigned.

At time t, we consider the case of sourcesj = 0, 1, . . . ,M−1, each modeled using
N particles of directionsx(t)

j,i and weightsw(t)
j,i . The state vector for the particles is

composed of six dimensions, three for position and three forits derivative:

s
(t)
j,i =







x
(t)
j,i

ẋ
(t)
j,i





 (14)

Since the particle position is constrained to lie on a unit sphere and the speed
is tangent to the sphere, there are only four degrees of freedom. The sampling
importance resampling (SIR) particle filtering algorithm is outlined in Figure 3
and generalizes sound source tracking to an arbitrary and non-constant number of
sources. The probability density function (pdf) for the location of each source is
approximated by a set of particles that are given different weights. The weights are
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updated by taking into account observations obtained from the steered beamformer
and by computing the assignment between these observationsand the sources being
tracked. From there, the estimated location of the source isthe weighted mean of
the particle positions.

5.1 Prediction

As a predictor, we use the excitation-damping model as proposed in [13] because
it has been observed to work well in practice and can easily model different source
dynamics only two parameters. The model is defined as:

ẋ
(t)
j,i = aẋ

(t−1)
j,i + bFx (15)

x
(t)
j,i =x

(t−1)
j,i +∆T ẋ

(t)
j,i (16)

wherea = e−α∆T controls the damping term,b = β
√
1− a2 controls the excitation

term,Fx is a normally distributed random variable of unit variance and∆T is the
time interval between updates. We consider three possible states:

• Stationary source (α = 2, β = 0.04);
• Constant velocity source (α = 0.05, β = 0.2);
• Accelerated source (α = 0.5, β = 0.2).

A normalization step ensures thatx
(t)
i still lies on the unit sphere (

∥

∥

∥x
(t)
j,i

∥

∥

∥ = 1) after
applying Equations 15 and 16.

5.2 Instantaneous Direction Probabilities from Beamformer Response

The steered beamformer described in Section 4 produces an observationO(t) for
each timet. The observationO(t) =

[

O
(t)
0 . . . O

(t)
Q−1

]

is composed ofQ potential

source locationsyq found by Algorithm 2. We also denoteO(t), the set of all
observationsO(t) up to timet. We introduce the probabilityPq that the potential
sourceq is a true source (not a false detection). The value ofPq can be interpreted
as our confidence in the steered beamformer output. We know that the higher the
beamformer energy, the more likely a potential source is to be true. Forq > 0, false
alarms are very frequent and independent of energy. With this in mind, we define
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Pq empirically as:

Pq =























































ν2/2, q = 0, ν ≤ 1

1− ν−2/2, q = 0, ν > 1

0.3, q = 1

0.16, q = 2

0.03, q = 3

(17)

with ν = E0/ET , whereE0 is the beamformer output energy for the first source
found andET is a threshold that depends on the number of microphones, theframe
size and the analysis window used (we useET = 150). Figure 3 shows an example
of Pq values for potential sources found by the steered beamformer with four people
speaking continuously while moving around the microphone array in a moderately
reverberant room. Only the azimuth part ofyq is shown as a function of time.
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Figure 3. Beamformer output probabilitiesPq for azimuth as a function of time. Observa-
tions withPq > 0.5 shown in red,0.2 < Pq < 0.5 in blue,Pq < 0.2 in green.

At time t, the probability density of observingO(t)
q for a source located at particle

positionx(t)
j,i is given by:

p
(

O(t)
q

∣

∣

∣x
(t)
j,i

)

= N
(

yq;xj,i; σ
2
)

(18)

whereN (yq;xj,i; σ
2) is a normal distribution centered atxj,i with varianceσ2

evaluated atyq, and models the localization accuracy of the steered beamformer.
We useσ = 0.05, which corresponds to an RMS error of 3 degrees for the loca-
tion found by the steered beamformer. This error takes into account the resolution
error (1 degree) as well as other sources of errors, such as noise, reverberation,
diffraction, imperfect microphones and errors in microphone placement.
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5.3 Probabilities for Multiple Sources

Before we can derive the update rule for the particle weightsw
(t)
j,i , we must first

introduce the concept of source-observation assignment. For each potential source
q detected by the steered beamformer, there are three possibilities:

• It is a false detection (H0).
• It corresponds to one of the sources currently tracked (H1).
• It corresponds to a new source that is not yet being tracked (H2).

In the case ofH1, we need to determine which tracked sourcej corresponds to
potential sourceq. First, we assume that a potential source may correspond to at
most one tracked source and that a tracked source can correspond to at most one
potential source.

New source

False
detection

Potential
source q

Tracked
source j

Not observed

Figure 4. Assignment example where two of the tracked sources are observed,
with one new source and one false detection. The assignment can be described as
f({0, 1, 2, 3}) = {1,−2, 0,−1}.

Let f : {0, 1, . . . , Q − 1} −→ {−2,−1, 0, 1, . . . ,M − 1} be a function assigning
observationq to the sourcej (values -2 is used for false detection and -1 is used for
a new source). Figure 4 illustrates a hypothetical case withfour potential sources
detected by the steered beamformer and their assignment to the tracked sources.
KnowingP

(

f
∣

∣

∣O(t)
)

(the probability thatf is the correct assignment given obser-

vationO(t)) for all possiblef , we can derivePq,j, the probability that the tracked
sourcej corresponds to the potential sourceq as:

P
(t)
q,j =

∑

f

δj,f(q)P
(

f
∣

∣

∣O(t)
)

(19)

P (t)
q (H0)=

∑

f

δ−2,f(q)P
(

f
∣

∣

∣O(t)
)

(20)

P (t)
q (H2)=

∑

f

δ
−1,f(q)P

(

f
∣

∣

∣O(t)
)

(21)

whereδi,j is the Kronecker delta. Equation 19 is in fact the sum of the probabilities
of all f that assign potential sourceq to tracked sourcej and similarly for Equations
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20 and 21.

Omitting t for clarity, the probabilityP (f |O) is given by:

P (f |O) =
p(O|f)P (f)

p(O)
(22)

Knowing that there is only one correct assignment (
∑

f P (f |O) = 1), we can avoid
computing the denominatorp(O) by using normalization. Assuming conditional
independence of the observations given the mapping function, we can decompose
p (O| f) into individual components:

p (O| f) =
∏

q

p (Oq| f(q)) (23)

We assume that the distribution of the false detections (H0) and the new sources
(H2) are uniform, while the distribution for tracked sources (H1) is the pdf approx-
imated by the particle distribution convolved with the steered beamformer error
pdf:

p (Oq| f(q)) =



























1/4π, f(q) = −2
1/4π, f(q) = −1
∑

i wf(q),ip (Oq|xj,i) , f(q) ≥ 0

(24)

Thea priori probability off being the correct assignment is also assumed to come
from independent individual components, so that:

P (f) =
∏

q

P (f(q)) (25)

with:

P (f(q)) =



























(1− Pq)Pfalse, f(q) = −2
PqPnew f(q) = −1
PqP

(

Obs
(t)
j

∣

∣

∣O(t−1)
)

f(q) ≥ 0

(26)

wherePnew is thea priori probability that a new source appears andPfalse is thea

priori probability of false detection. The probabilityP
(

Obs
(t)
j

∣

∣

∣O(t−1)
)

that source
j is observable (i.e., that it exists and is active) at timet is given by:

P
(

Obs
(t)
j

∣

∣

∣O(t−1)
)

= P
(

Ej

∣

∣

∣O(t−1)
)

P
(

A
(t)
j

∣

∣

∣O(t−1)
)

(27)
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whereEj is the event that sourcej actually exists andA(t)
j is the event that it is

active (but not necessarily detected) at timet. By active, we mean that the sig-
nal it emits is non-zero (for example, a speaker who is not making a pause). The
probability that the source exists is given by:

P
(

Ej

∣

∣

∣O(t−1)
)

= P
(t−1)
j +

(

1− P
(t−1)
j

) PoP
(

Ej

∣

∣

∣O(t−2)
)

1− (1− Po)P (Ej |O(t−2) )
(28)

wherePo is thea priori probability that a source is not observed (i.e., undetected
by the steered beamformer) even if it exists (withP0 = 0.2 in our case) andP (t)

j =
∑

q P
(t)
q,j is the probability that sourcej is observed (assigned to any of the potential

sources).

Assuming a first order Markov process, we can write the following about the prob-
ability of source activity:

P
(

A
(t)
j

∣

∣

∣O(t−1)
)

=P
(

A
(t)
j

∣

∣

∣A
(t−1)
j

)

P
(

A
(t−1)
j

∣

∣

∣O(t−1)
)

+P
(

A
(t)
j

∣

∣

∣¬A(t−1)
j

) [

1− P
(

A
(t−1)
j

∣

∣

∣O(t−1)
)]

(29)

with P
(

A
(t)
j

∣

∣

∣A
(t−1)
j

)

the probability that an active source remains active (set to

0.95), andP
(

A
(t)
j

∣

∣

∣¬A(t−1)
j

)

the probability that an inactive source becomes active
again (set to 0.05). Assuming that the active and inactive states are equiprobable,
the activity probability is computed using Bayes’ rule and usual probability manip-
ulations:

P
(

A
(t)
j

∣

∣

∣O(t)
)

=
1

1 +

[

1−P

(

A
(t)
j |O(t−1)

)][

1−P

(

A
(t)
j |O(t)

)]

P

(

A
(t)
j |O(t−1)

)

P

(

A
(t)
j |O(t)

)

(30)

5.4 Weight Update

At timest, the new particle weights for sourcej are defined as:

w
(t)
j,i = p

(

x
(t)
j,i

∣

∣

∣O(t)
)

(31)

Assuming that the observations are conditionally independent given the source
position, and knowing that for a given sourcej,

∑N
i=1w

(t)
j,i = 1, we obtain through

Bayesian inference:
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∣
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x
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)

w
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(32)

Let I(t)j denote the event that sourcej is observed at timet and knowing that

P
(

I
(t)
j

)

= P
(t)
j =

∑

q P
(t)
q,j , we have:

p
(

x
(t)
j,i

∣

∣

∣O(t)
)

=
(

1− P
(t)
j

)

p
(

x
(t)
j,i

∣

∣

∣O(t),¬I(t)j

)

+ P
(t)
j p

(

x
(t)
j,i

∣

∣

∣O(t), I
(t)
j

)

(33)

In the case where no observation matches the source, all particles have the same
probability, so we obtain:

p
(

x
(t)
j,i

∣

∣

∣O(t)
)

=
(

1− P
(t)
j

) 1

N
+ Pj

∑Q
q=1 P

(t)
q,j p

(

O(t)
q

∣

∣

∣x
(t)
j,i

)

∑N
i=1

∑Q
q=1 P

(t)
q,j p

(

O
(t)
q

∣

∣

∣x
(t)
j,i

) (34)

where the denominator on the right side of Equation 34 provides normalization for
theI(t)j case, so that

∑N
i=1 p

(

x
(t)
j,i

∣

∣

∣O(t), I
(t)
j

)

= 1.

5.5 Adding or Removing Sources

In a real environment, sources may appear or disappear at anymoment. If, at any
time,Pq(H2) is higher than a threshold equal to0.3, we consider that a new source
is present. In that case, a set of particles is created for source q. Even when a
new source is created, it is only assumed to exist if its probability of existence
P

(

Ej

∣

∣

∣O(t)
)

reaches a certain threshold, which we set to 0.98. At this point, the
probability of existence is set up 1 and ceases to be updated.

In the same way, we set a time limit on sources. If the source has not been observed
(P (t)

j < Tobs) for a certain amount of time, we consider that it no longer exists. In
that case, the corresponding particle filter is no longer updated nor considered in
future calculations.
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5.6 Parameter Estimation

The estimated position of each source is the mean of the pdf and can be obtained
as a weighted average of its particles position:

x̄
(t)
j =

N
∑

i=1

w
(t)
j,ix

(t)
j,i (35)

It is however possible to obtain better accuracy simply by adding a delay to the
algorithm. This can be achieved by augmenting the state vector by past position
values. At timet, the position at timet− T is thus expressed as:

x̄
(t−T )
j =

N
∑

i=1

w
(t)
j,ix

(t−T )
j,i (36)

Using the same example as in Figure 3 we show in Figure 5 how theparticle
filter is able to remove the noise and produce smooth trajectories. The added delay
produces an even smoother result.
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Figure 5. Tracking of four moving sources, showing azimuth as a function of time. Left: no
delay, right: delayed estimation (500 ms).

5.7 Resampling

Resampling is performed only whenNeff ≈
(

∑N
i=1w

2
j,i

)

−1
< Nmin [27] with

Nmin = 0.7N . That criterion ensures that resampling only occurs when new data is
available for a certain source. Otherwise, this would causeunnecessary reduction
in particle diversity, due to some particles randomly disappearing.
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6 Results

The proposed localization system is tested using an array ofomni-directional
microphones, each composed of an electret cartridge mounted on a simple pre-
amplifier. The array is composed of eight microphones, as it is the maximum num-
ber of analog input channels on commercially available soundcards. Two array con-
figurations are used for the evaluation of the system. The first configuration (C1)
is an open array and consists of inexpensive (∼$1 each) microphones arranged
on the summits of a 16 cm cube mounted on top of theSpartacusrobot (shown
left in Figure 6). The second configuration (C2) is a closed array and uses smaller,
middle-range (∼$20 each) microphones, placed through holes at different locations
on the body of the robot (shown right in Figure 6). For both arrays, all channels are
sampled simultaneously using an RME Hammerfall Multiface DSP connected to a
laptop through a CardBus interface. Running the localization system in real-time
currently requires 30% of a 1.6 GHz Pentium-M CPU. Due to the low complexity
of the particle filtering algorithm, we are able to use 1000 particles per source with-
out noticeable increase in complexity. This also means thatthe CPU time does not
increase significantly with the number of sources present.

Figure 6. Spartacus robot in configuration C1 (left) and C2 (right).

Experiments are performed in two different environments. The first environment
(E1) is a medium-size room (10 m× 11 m, 2.5 m ceiling) with a reverberation
time (-60 dB) of 350 ms. The second environment (E2) is a hall (16 m× 17 m, 3.1
m ceiling, connected to other rooms) with 1.0 s reverberation time. For all tasks,
configurations and environments, all parameters have the same value, except for
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the reverberation decayγ, which is set to 0.65 in the E1 environment and 0.85 in
the E2 environment.

6.1 Characterization

The system is characterized in environment E1 in terms of detection reliability
and accuracy. Detection reliability is defined as the capacity to detect and localize
sounds to within 10 degrees, while accuracy is defined as the localization error for
sources that are detected. We use three different types of sound: a hand clap, the
test sentence “Spartacus, come here”, and a burst of white noise lasting 100 ms.
The sounds are played from a speaker placed at different locations around the robot
and at three different heights: 0.1 m, 1 m, 1.4 m.

6.1.1 Detection Reliability

Detection reliability is tested at distances (measured from the center of the array)
ranging from1 m (a normal distance for close interaction) to7 m (limitation of
the room). Three indicators are computed: correct localization (within 10 degrees),
reflections (incorrect elevation due to roof of ceiling), and other errors. For all
indicators, we compute the number of occurrences divided bythe number of sounds
played. This test includes 1440 sounds at a 22.5◦ interval for 1 m and 3 m and
360 sounds at a 90◦ interval for 5 m and 7 m. Because of the limited size of the
room used for the experiment, the tests for 5 m and 7 m had to usefixed positions
for the robot and the source, leading to less variability in the conditions. This can
explain differences between these results and those obtained for shorted distances,
especially for reflections.

Results are shown in Table 1 for both C1 and C2 configurations.In configuration
C1, results show near-perfect reliability even at seven meter distance. For C2, we
noted that the reliability depends on the sound type, so detailed results for different
sounds are provided in Table 2, showing that only hand clap sounds cannot be
reliably detected passed one meter. We expect that a human would have achieved a
score of 100% for this reliability test.

Like most localization algorithms, our system is unable to detect pure tones. This
behavior is explained by the fact that sinusoids occupy onlya very small region
of the spectrum and thus have a very small contribution to thecross-correlations
with the proposed weighting. It must be noted that tones tendto be more difficult
to localize even for the human auditory system.
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Table 1
Detection reliability for C1 and C2 configurations

Distance Correct (%) Reflection (%) Other error (%)

C1 C2 C1 C2 C1 C2

1 m 100 94.2 0.0 7.3 0.0 1.3

3 m 99.4 80.6 0.0 21.0 0.3 0.1

5 m 98.3 89.4 0.0 0.0 0.0 1.1

7 m 100 85.0 0.6 1.1 0.6 1.1

Table 2
Correct localization rate as a function of sound type and distance for C2 configuration

Distance Hand clap (%) Speech (%) Noise burst (%)

1 m 88.3 98.3 95.8

3 m 50.8 97.9 92.9

5 m 71.7 98.3 98.3

7 m 61.7 95.0 98.3

6.1.2 Localization Accuracy

In order to measure the accuracy of the localization system,we use the same setup
as for measuring reliability, with the exception that only distances of1m and3m are
tested (1440 sounds at a 22.5◦ interval) due to limited space available in the testing
environment. Neither distance nor sound type has significant impact on accuracy.
The root mean square accuracy results are shown in Table 3 forconfigurations C1
and C2. Both azimuth and elevation are shown separately. According to [28,29],
human sound localization accuracy ranges between two and four degrees in similar
conditions. The localization accuracy of our system is thusequivalent or better than
human localization accuracy.

Table 3
Localization accuracy (root mean square error)

Localization error C1 (deg) C2 (deg)

Azimuth 1.10 1.44

Elevation 0.89 1.41

6.2 Source Tracking

We measure the tracking capabilities of the system for multiple sound sources.
These are performed using the C2 configuration in both E1 and E2 environments.
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In all cases, the distance between the robot and the sources is approximately two
meters. The azimuth is shown as a function of time for each source. The elevation is
not shown as it is almost the same for all sources during thesetests. The trajectories
for the three experiments are shown in Figure 7.

Figure 7. Source trajectories (robot represented as an X). Left: moving sources. Center:
moving robot. Right: sources with intersecting trajectories.

6.2.1 Moving Sources

In a first experiments, four people were told to talk continuously (reading a text
with normal pauses between words) to the robot while moving,as shown on the
left of Figure 7. Each person walked 90 degrees towards the left of the robot before
walking 180 degrees towards the right.

Results are presented in Figure 8 for delayed estimation (500 ms). In both environ-
ments, the source estimated trajectories are consistent with the trajectories of the
four speakers and only one false detection was present (in E1, at t = 15 s) for a
short period of time.
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Figure 8. Four speakers moving around a stationary robot. Left: E1, right: E2. False detec-
tion shown in black.

6.2.2 Moving Robot

Tracking capabilities of our system are also evaluated in the context where the
robot is moving, as shown in the center of Figure 7. In this experiment, two people
are talking continuously to the robot as it is passing between them. The robot
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then makes a half-turn to the left. Results are presented in Figure 9 for delayed
estimation (500 ms). Once again, the estimated source trajectories are consistent
with the trajectories of the sources relative to the robot for both environments. Only
one false detection was present (in E1, att = 38 s) for a short period of time.
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Figure 9. Two stationary speakers with the robot moving. Left: E1, right: E2. False detection
shown in black.

6.2.3 Sources with Intersecting Trajectories

In this experiment, two moving speakers are talking continuously to the robot, as
shown on the right of Figure 7. They start from each side of therobot, intersecting
in front of the robot before reaching the other side. Resultsin Figure 10 show that
the particle filter is able to keep track of each source. This result is possible because
the prediction step imposes some inertia to the sources and despite the fact that the
steered beamformer typically only “sees” one source when the two sources are very
close.
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Figure 10. Two speakers intersecting in front of the robot. Left: E1, right: E2.

6.2.4 Number of Microphones

These results evaluate how the number of microphones used affect the system ca-
pabilities. To do so, we use the same recording as in 6.2.1 forC2 in E1 with only a
subset of the microphone signals to perform localization. Since a minimum of four
microphones are necessary for localizing sounds without ambiguity, we evaluate
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the system for four to seven microphones (selected arbitrarily as microphones num-
ber1 throughN). Comparing results of Figure 11 to those obtained in Figure8 for
E1, it can be observed that tracking capabilities degrade gracefully as microphones
are removed. While using seven microphones makes little difference compared to
the baseline of eight microphones, the system is unable to reliably track more than
two of the sources when only four microphones are used. Although there is no theo-
retical relationship between the number of microphones andthe maximum number
of sources that can be tracked, this clearly shows the how redundancy added by
using more microphones can help in the context of sound source localization.
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Figure 11. Tracking of four sources using C2 in the E1 environment, using 4 to 7 micro-
phones.

6.3 Localization and Tracking for Robot Control

This experiment is performed in real-time and consists of making the robot follow
the person speaking to it. At any time, only the source present for the longest time is
considered. When the source is detected in front (withing 10degrees) of the robot,
it is made to go forward. At the same time, regardless of the angle, the robot turns
toward the source in such a way as to keep the source in front. Using this simple
control system, it is possible to control the robot simply bytalking to it, even in
noisy and reverberant environments.

This has been tested by controlling the robot going from environment E1 to envi-
ronment E2, having to go through corridors and an elevator, speaking to the robot
with normal intensity at a distance ranging from one meter tothree meters. The sys-
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tem worked in real-time, providing tracking data at a rate of25 Hz (no additional
delay on the estimator) with the robot reaction time limitedmainly by the inertia of
the robot. One problem we encountered during the experimentis that when going
through corridors, the robot would sometimes mistake reflections on the walls for
real sources. Fortunately, the fact that the robot considers only the oldest source
present reduces problems from both reflections and noise sources.

7 Conclusion

Using an array of eight microphones, we have implemented a system that is able to
localize and track simultaneous moving sound sources in thepresence of noise and
reverberation, at distances up to seven meters. We have alsodemonstrated that the
system is capable of controlling in real-time the motion of arobot, using only the
direction of sounds. The tracking capabilities demonstrated result from combining
our frequency-domain steered beamformer with a particle filter tracking multiple
sources. Moreover, the original solution we found to the source-observation assign-
ment problem is also applicable to other multiple objects tracking problems. Other
novelties in this paper include the frequency-domain implementation of our steered
beamformer and the way we make it robust to reverberation.

A robot using the proposed system has access to a rich, robustand useful set of in-
formation derived from its acoustic environment. This can certainly affect its ability
of making autonomous decisions in real life settings, and show higher intelligent
behavior. Also, because the system is able to localize multiple sound sources, it can
be exploited by a sound separation algorithm and enable speech recognition to be
performed. This will allow to identify the localized sound sources so that additional
relevant information can be obtained from the acoustic environment.
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