
Motion Design and Learning of Autonomous Robots Based on Primitives and
Heuristic Cost-to-Go

Keyong Li Raffaello D’Andrea
likeyong@ieee.org rd28@cornell.edu

Dept. of Mechanical & Aerospace Engineering,
Cornell University,
Ithaca, NY 14853.

Abstract

The task of trajectory design of autonomous vehicles is typically two-fold. First, it needs to
take into account the intrinsic dynamics of the vehicle, which are sometimes termed local con-
straints. Second, on a higher level, the designed trajectories must allow the vehicle to achieve some
application-specific task. The specification of the task results in the so-called global constraints.
Both of these two components of trajectory design are generally nontrivial problems, and very
often, they are pursued as two parallel areas. When the results drawn from the two areas are applied
in conjunction, the synthesis is usually somewhat arbitrary.

In this paper, we assume some optimal control strategy that addresses the vehicle dynamics is
available as a set of motion primitives. The trajectories that achieve the task are determined solely
through the primitives and do not reference the vehicle dynamics directly. For the higher level,
we translate the task into a very special type of cost-to-go function, which is partially specified
artificially, and partially determined by an admissibility condition imposed by the set of primitives.
The optimality feature of the primitives is formally extended to the final trajectory design. We
illustrate our result with the example of a mobile robot retrieving an object, which is an interesting
problem of its own right. Both a direct design approach and a learning approach are presented.

I. INTRODUCTION

Layering is necessary for efficient control design in most autonomous systems. It facilitates
the sharing of behavior elements and accommodates the coexistence of multiple control
paradigms. It also coincides with the understanding of our own intelligence as human beings.
For an autonomous system to achieve a mission in the real world, its control design must take
into account of both its own dynamics, sometimes referred to as the local constraints, and the
environment, sometimes referred to as the global constraints. Two levels of control can then
be distinguished naturally (see [18]) — the motion primitive level, which concentrates on the
local constraints, and the elementary move level, which is to achieve simple tasks based on

Both authors gratefully acknowledge support from the Air Force under grant F49620-02-1-0388 and from the NSF under
grant ECS-0329743.



the primitives. From a broader perspective, the elementary moves are only building blocks for
higher level control, including strategic planning, cooperation, etc., hence the name. However,
it is the higher one between the only two levels considered in this paper. So, this paper will
use the term move or task instead of elementary move.

The control problems subject to either local constraints (primitive level) or global constraints
(task level) alone are generally nontrivial. Results that concentrate on the local constraints of
autonomous vehicles include, for example, [3], [5], [20], [10], [19], [22], [27], etc. Among
these, the first three are on nonholonomic vehicles while the other four are on omnidirectional
vehicles. Work that concentrate on global constraints include [14], [17], [24], [26], [28], etc.
In [14], both the roadmap method and the potential field method are discussed. The other
four examples listed here develop various techniques based on potential fields. Although
techniques that solve the combined problem have also been proposed, it seems that they all
have to trade-off between optimality and heavy computation. See [4], [7]-[9], [13]-[16], [23],
etc. In particular, [16] discusses two different approaches — dynamic programming iteration,
which finds the optimal solution but is computationally very expensive; and rapidly-exploring
random tree, which involves less computation but does not ensure optimality. An excellent
review of trajectory design in the presence of both local and global constraints is also provided
by [16].

In this paper, we introduce a scheme for rigorously integrating the control designs of the
primitive level and the task level, with emphases on preserving optimality, avoiding heavy on-
line computation, and learning. We assume some optimal control strategy that addresses the
vehicle dynamics is available as a set of motion primitives. For the higher level, we capture
the characteristic of the desired move using a heuristic cost-to-go function. Based on this
cost-to-go, we show that the trajectory design that preserves the optimality of the primitives
(in a sense further explained in this paper) can be calculated with very little computation. A
very interesting finding is: For the optimality feature of the primitives to be fully preserved,
the heuristic cost-to-go function must satisfy certain conditions which depend on the low-level
system dynamics through the set of primitives. These conditions help us narrow down the
candidates.

In the particular case of an omnidirectional robot driven by acceleration, it turns out that
these conditions may be combined with the existing artificial potential field-based motion
planning techniques to produce the heuristic cost-to-go and the trajectory design. For studies
of artificial potential fields, see [12], [17], [24], [26], etc. These motion planning techniques
are computationally efficient. However, they concentrate mostly on the global constraints,
and their synthesis with lower level control has been more or less arbitrary. Thus, in this
particular case, our result provides a significant improvement for motion synthesis based
on artificial potential fields. Moreover, we will present both a direct design approach and a
learning approach. Their pros and cons will be discussed.

2



Section II formulates the problem of optimal trajectory design based on optimal motion
primitives. Section III proves the main theorem of this paper, which shows how to compute
the trajectory design based on a heuristic cost-to-go function, as well as the admissibility
condition for the heuristic cost-to-go function. The next two sections apply the main theorem
to trajectory design and learning of an omnidirectional robot driven by acceleration. In both
sections, the general-task solutions of the omnidirectional robot are derived first; then they
are illustrated with the more concrete task of the robot retrieving and object. Section IV
takes a direct design approach. The heuristic cost-to-go is prescribed by a human expert for
a subspace of the state space. Then the prescription is extended in closed form to the whole
state space according to the admissibility condition. Section V discusses a learning approach.
The robot is commanded to make attempts without a priori knowledge of how to achieve
the task, but only knows what constitute failures. The robot then “learns” from the failures
and construct the heuristic cost-to-go using a set of basis functions. Section VI concludes the
paper and suggests future work.

II. PROBLEM FORMULATION

Let the system model at the primitive level be

ẋ = g(x, u), (1)

in which x ∈ Rx is the state, u ∈ Ru is the control, and g(x, u) is Lipschitz in x and
differentiable to the second order with respect to u. Assume all the possible equilibria of this
plant can be reached from arbitrary initial conditions.

Let the primitives be control laws of the form

u = f(x, d), (2)

in which f(x, d) is Lipschitz in x and differentiable in d. The vector d ∈ Rd parameterizes
the set of primitives. Assume the dimension of Rd equals that of Ru, f(x, d1) 6= f(x, d2) for
any x and d1 6= d2, and ∂f/∂d is non-singular.

Further suppose each primitive is the solution of the optimization problem parameterized
by d:

V (x(0), d) = min
u

∫ ∞

0

[r(u, x) + q(x, d)]dt, (3)

for arbitrary values of x(0) and subject to (1) and (2). V (x, d), x ∈ Rx, d ∈ Rd, is the
cost-to-go function for driving the system from x to some desired state that depends on d.
Assume r(u, x), q(x, d) ≥ 0 for all u, x and d, equalities are achieved only when x is at the
desired equilibrium state and u renders no motion in x. Also assume r(u, x) is differentiable
to the second-order with respect to u. Given the functions r(u, x) and q(x, d), the optimal

3



control u = f(x, d) and cost-to-go V (x, d) satisfy the principle of dynamic programming (see
[6]): {

f(x, d) = argmin
u
{J(x, u, d)}

0 = J(x, f(x, d), d),
(4)

in which
J(x, u, d) = r(u, x) + q(x, d) + ∂V (x,d)

∂x
ẋ

= r(u, x) + q(x, d) + ∂V (x,d)
∂x

g(x, u).

By assuming the range of u is the whole Ru, it is implied that u = f(x, d) is a regular optimal
solution of (4), thus

∂J(x, u)

∂u

∣∣∣∣
u=f(x,d)

= (
∂r

∂u
+

∂V (x, d)

∂x

∂g

∂u
) = 0. (5)

We further assume for simplicity that

∂2J(x, u)

∂u2

∣∣∣∣
u=f(x,d)

=
∂

∂u
(
∂r

∂u
+

∂V

∂x

∂g

∂u
) is positive definite. (6)

Note that this assumption is introduced only to simplify the exposition; the results in this
paper do not depend on it.

For the task level, the question is to choose a control law for d,

d = h(x),

such that x goes to a desired state while avoiding the global constraints, and in an optimal
manner in some sense.

In association with the primitives, one may formulate the question as the optimization:

U(x(0)) = min
d

∫ ∞

0

[r(f(x, d), x) + l(x)]dt, (7)

subject to both the dynamics of the system given by (1) and (2) and the global constraints,
assuming a unique optimal solution does exist. Note that the cost term on control effort is
the same as in the primitives. The function l(x) is yet to be chosen.

One may specify the function l(x) intuitively and solve the optimization problem (7)
using numerical dynamic programming iterations (see [6] and [16]), which would explore
the feasible state space either by simulation — if reliable model of the global constraints is
available — or by physical experiments. Because such design is based on the intuitive choice
of l(x), tuning is usually needed. But l(·) is not a good tuning knob, because evaluating the
effect of changing l(·) requires running dynamic programming iterations or similar algorithms,
which is computationally costly.

Here, we do not specify l(·) directly. Instead, we let it inherit from the primitive design to
take the form

l(x) = q(x, d∗), (8)

4



in which d∗ equals the optimal solution of d. Note that given the desired move, d∗ is fixed
although unknown.

Up to this point, the trajectory design still cannot be determined, because the specification
of the task has yet to play its role. In this paper, we introduce the specifications of the tasks
through cost functions instead of considering the global constraints explicitly. Since l(x) does
not serve as a good tuning knob, we try an alternative one: U(x). Indeed, if we somehow
know the optimal cost-to-go function U(x), x ∈ Rx, then the optimal trajectory design can
be determined with relatively little amount of computation. In general, the true cost-to-go is
determined by the dynamics of the vehicle, the global constraints, and the nominal context
of the task as well. Of course, we usually do not know the true cost-to-go easily. However,
as will be shown in this paper, heuristic cost-to-go functions can be constructed, tuned, and
used to produce desirable trajectories.

III. TRAJECTORY DESIGN BASED ON MOTION PRIMITIVES AND HEURISTIC COST-TO-GO

Continuing from the formulation of the last section, the following theorem provides both
a way to calculate the optimal primitive-based control law, d = h(x), and the admissibil-
ity condition for the heuristic cost-to-go, U(x). Without loss of generality, we assume the
destination is x = 0.

Theorem 1: Assume the optimization (7) subject to (1), (2) and the global constraints has
a unique solution. If U(x), x ∈ Rx, U(0) = 0, is the optimal cost-to-go subject to the robot
dynamics and the global constraints, then the solution of d of





(
∂U(x)

∂x
− ∂V (x, d)

∂x
)

∂g(x, u)

∂u

∣∣∣∣
u=f(x,d)

= 0

(
∂U(x)

∂x
− ∂V (x, d)

∂x
)g(x, f(x, d)) = 0

(9)

exists. Further, if d = h(x) is the solution of

∂U(x)

∂x
=

∂V (x, d)

∂x
, (10)

and the solution of (9) is unique (thus equals h(x)), then d = h(x), x ∈ Rx is the optimal
control law.

Proof: For the first part of the theorem, if U(x) is the cost-to-go function, with d∗ being
the optimal solution, then from the principle of dynamic programming, d∗ and U(x) satisfy

{
d∗ = arg min

d
L(x, d)

0 = L(x, d∗),
(11)

in which
L(x, d) = r(f(x, d), x) + q(x, d∗) +

∂U

∂x
g(x, f(x, d)).

5



By the construction of the problem, d∗ is a regular solution. So

∂L(x, d)

∂d
=

[
(
∂r

∂u
+

∂U

∂x

∂g

∂u
)
∂f

∂d

]∣∣∣∣
u=f(x,d)

= 0. (12)

Because ∂f/∂d is non-singular, (12) is equivalent to

(
∂r

∂u
+

∂U

∂x

∂g

∂u
)

∣∣∣∣
u=f(x,d)

= 0. (13)

Comparing (13) and (5) gives the first equation in (9). The second equation in (9) derives
from comparing the second equation in (11) with the second equation in (4).

For the second part, we have a control law d = h(x) and cost-to-go function U(x) that
satisfy (10) and U(0) = 0. What we wish to show is that d∗ = h(x) satisfies (11). The
optimality of the control law then follows from the principle of dynamic programming.

To prove the first equation in (11), first notice that by satisfying (10), d = h(x) is guaranteed
a solution of (9). By the hypothesis in the theorem, it is the unique solution. Recalling equation
(5) and that ∂f/∂d is non-singular, the first equation in (9) is equivalent to (12). Thus d = h(x)

is the unique solution of
∂L(x, d)

∂d
= 0.

(We have followed the proof of the first part in the reverse direction.) It can also be verified
using (6) that ∂2L/∂d2 is positive definite for d = h(x). So, d = h(x) minimizes L(x, d) for
any given x. The second equation of (11) follows directly from the second equation of (9)
and the second equation of (4). The second part of the theorem is proved.
Remarks:

• A significant contribution of Theorem 1 is that it reveals how much freedom one may
have in choosing the heuristic cost-to-go function. Given a set of primitives, Theorem 1
shows that certain choices of the function U(x) may not be eligible for being the optimal
cost-to-go, namely, those that fail to satisfy (9). Thus, the set of primitives imposes some
admissibility conditions for the heuristic cost-to-go function.

• Despite the admissibility conditions, there may still be plenty of freedom in choosing the
heuristic cost-to-go. This appears to be the case in the application discussed later in this
paper. The second part of the theorem suggests a sufficient condition of admissibility that
is relatively simple to verify. The corresponding optimal control law is also provided by
the theorem. We find this sufficient condition particularly useful to the application that
we are considering, because — as will be discussed in what follows — it is satisfied by
heuristic cost-to-go functions that result in highly desirable motions.

• The trajectory design based on the primitives does not need to know the functions g, f, r,

and q. It only needs to know the cost-to-go function V of the primitive level. Thus, the
low level system behavior is encapsulated by the primitives.

6



In the next two sections, we demonstrate two approaches (among other possible ones) with
which the above theorem can be put to work. The problem considered have practical value of
its own. In Section IV, the heuristic cost-to-to function is specified directly based on human
expert intuition. The specification accommodates a few parameters, which can be tuned by
trial-and-error, either automated or by hand. We will not use the word “learning” to describe
this tuning process because the dimensionality of the parameter space is so low that little
attention is needed in choosing a learning technique. Learning, however, is the subject of
Section V, in which the heuristic function is not specified directly. Instead, the robot would
make blind attempts, recognizing failures only after they have happened. Then, based on the
list of recorded failure states, the robot would build the heuristic cost-to-go function using a
set of basis functions that are not specific to any particular task.

IV. THE CASE OF AN OMNIDIRECTIONAL VEHICLE DRIVEN BY ACCELERATION: DIRECT

SPECIFICATION OF HEURISTIC COST-TO-GO.

In what follows, superscript T indicates transpose. For a function F (x), x ∈ Rn, we may
alternate the notation between F (x) and F (x1, x2, . . . , xn).

Consider an omnidirectional robot described by

ẋ1 = x3, ẋ2 = x4, ẋ3 = u1, ẋ4 = u2, (14)

in which x1, x2 are position coordinates in the global frame and x3, x4 are velocity compo-
nents. Written in matrix form,

ẋ = g(x, u) = Ax + Bu, (15)

in which

A =

[
02×2 I2×2

02×2 02×2

]
, B =

[
02×2

I2×2

]
. (16)

Note that the actual dynamics of an omnidirectional robot is usually more complicated
than this model. In our lab, we use a custom designed four-wheel omnidirectional robot.
The drive system (including the motors, gears, tires, etc.) has its own dynamic states; the
weight distribution of the robot may also shift during motion, causing certain wheels to lose
traction. There is an additional lower hierarchy (an inner loop) of control, which incorporates
wheel encoder and gyroscope feedback, that compensates for the aforementioned effects. It is
because of this encapsulated control loop that the robot model appears to be the simple one
described by (14). (See [10], [22], and [25].) This hierarchical approach is natural and essential
for the design process. The design of the inner loop preserves almost the full capacity provided
by the hardware. In addition to showing how this inner loop helps to reduce the dynamics of
an omnidirectional robot to the simple linearized form, [10] and [22] respectively have created
very high performing trajectory generation results using this inner loop in contexts that are

7



different from the present paper. Without the separation of hierarchies, those problems would
have been hardly tractable.

Suppose the primitives based on the model (14) are LQR control laws for the robot to
reach different destinations with zero terminal velocity. Let the parameter of the primitive be
the destination, d = [d1, d2]

T . Denote [d1, d2, 0, 0]T by d̄. The cost-to-go for each primitive
is

V (x(0), d)

= min
u

∫ ∞

0

1

2
[uT Ru + (x− d̄)T Q(x− d̄)]dt

=
1

2
(x(0)− d̄)T P (x(0)− d̄),

(17)

in which R, Q, and P are symmetric matrices. R and P are positive definite and Q is positive
semidefinite. P is determined by the algebraic Riccati equation

Q + PA + AT P − PBR−1BT P = 0.

The corresponding optimal control law is

u = f(x, d) = −R−1BT P (x− d̄).

Next, consider the higher-level trajectory design. Following the formulation introduced in
the last section, the question is to find a function h(x) such that d = h(x) is the optimal
solution of (denoting [hT (x) 01×2]

T by h̄(x))

U(x(0)) = min
d

∫ ∞

0

1

2
[fT (x, d)Rf(x, d)

+(x− h̄(x))T Q(x− h̄(x))]dt,
(18)

and U(x) turns out to equal a heuristic function partially specified beforehand. We will solve
this problem using Theorem 1.

First, it is straightforward to verify for this case that equation (9) in Theorem 1 has a
unique solution of d given an arbitrary choice of the function U(x). So, the second part of
Theorem 1 can be applied and we will consider the pairs of functions U(x) and h(x) that
satisfies (10). Here, equation (10) has become

∂U(x)

∂x
=

∂V (x, d)

∂x
= (x− d̄)T P. (19)

Let Û = U − 1
2
xT Px, then

∂Û

∂x
= −d̄T P ⇐⇒ −P−1(

∂Û

∂x
)T = d̄. (20)

Write P in block form,

P =

[
PA PB

PC PD

]
,

8



in which PA, PB, PC , and PD are 2× 2 matrices, and PB = P T
C . Then

P−1 =

[
(PA − PBP−1

D PC)−1[I2×2 −PBP−1
D ]

(PD − PCP−1
A PB)−1[−PCP−1

A I2×2]

]
.

Equation (20) becomes



(PA − PBP−1
D PC)−1[−I2×2 PBP−1

D ](
∂Û

∂x
)T = d

(PD − PCP−1
A PB)−1[−PCP−1

A I2×2](
∂Û

∂x
)T = 0

(21)

Next, we introduce the artificial portion of the specification of U . Let

U(x1, x2, 0, 0) = U0(x1, x2). (22)

That is, U(x) is specified for all zero-velocity states. From (21) and (22), Û must satisfy




Û(x1, x2, 0, 0) = U0(x1, x2)− 1

2
[x1, x2]PA[x1, x2]

T

[−PCP−1
A I2×2](

∂Û

∂x
)T = 0.

(23)

This is a set of first-order linear PDEs in R4, with two equations and a boundary condition
specified in a R2. It has a unique solution

Û = U0([I2×2 P−1
A PB]x)

−1

2
xT

[
PA PB

PC PCP−1
A PB

]
x.

(24)

See [21] for the procedure of solving first-order quasilinear PDEs. It then follows from the
first equation in (21) with straightforward calculation that

d∗ = h(x)

= [I2×2 P−1
A PB]x− P−1

A [
∂U0(ξ1, ξ2)

∂(ξ1, ξ2)
]T

(25)

evaluated at [
ξ1

ξ2

]
= [I2×2 P−1

A PB]x.

This is the optimal trajectory design based on the LQR primitives. The corresponding cost-
to-go is

U(x) = U0([I2×2 P−1
A PB]x)

+
1

2
[x3, x4](PD − PCP−1

A PB)[x3, x4]
T .

(26)

By specifying the function U0(x1, x2) differently, the above result can be applied to achieve
a wide range of tasks. It is worth noting that there has been a considerable body of literature
on motion planning of autonomous vehicles based on artificial potential field, which is

9



usually specified as a function of vehicle position. See for example [26]. Although some
authors considered generalized potential field, which also depends on vehicle velocity, such
dependency has been somewhat arbitrary. Combining with the result, the existing techniques
on designing position-dependent artificial potential field may suggest good candidates for
U0, and the velocity dependency of the heuristic cost-to-go will be generated automatically.
Moreover, the corresponding vehicle trajectories are optimal in a sense that accounts for both
heuristic knowledge and the lower-level vehicle dynamics1. Thus, the solution to this example
problem is itself a nice complement to existing techniques.

A. An Omnidirectional robot retrieving an object

100 200 300 400 500 600 700

100

200

300

400

500

600

700Fig. 1. An omnidirectional robot with a ball.

The task treated in this section is the following: Consider the omnidirectional mobile robot
whose motion dynamics are described by (14). In addition, suppose the footprint of the robot
is a circular disk of radius r0, with (x1, x2) denoting the center of the robot in the global frame.
Without loss of generality, suppose a point object is placed at (r1, 0), r1 > r0, and the task of
the robot is to start from arbitrary initial position and reach the point (0, 0) without touching
the object — then the robot can push the object along the x1-axis, which we assume leads to
where the object is needed. Note that this task involves both going around the object (obstacle

1Although only second-order omnidirectional dynamics is considered here, extensions to other types of vehicle dynamics
including nonholonomic cases also look promising.

10



−0.31

−0.11

0.09

0.29

−0.39

−0.19

0.01

0.21

0.41
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a)

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) (c)

Fig. 2. (a) The function U0. The peak is located at where the object is. (b) The designed robot trajectory from one initial
position. (c) The designed robot trajectory from another initial position.

avoidance) and approaching it in a prescribed direction. We have applied our trajectory design
technique to this problem in both simulation and a physical setting. Figure 1 shows one of
our actual robots.

The set of LQR primitives has been designed in advance. All we need to know is the
matrix P from the primitive design and the function U0(x1, x2), which specifies the artificial
portion of the heuristic cost-to-go. We chose U0 as the following:

U0(x1, x2) =



k(1− γ(x1, x2)

σ(x1, x2)
)3 +

1

2
[x1, x2]PA[x1, x2]

T

if γ(x1, x2) < σ(x1, x2)
1

2
[x1, x2]PA[x1, x2]

T : otherwise,

(27)

11



in which
γ(x1, x2) =

√
(x1 − r1)2 + x2

2,

and
σ(x1, x2) = (1 +

x1 − r1

γ(x1, x2)
)
r2

2
+ r0.

The matrix PA is the first 2×2 block in P . Recalling that r0 and r1 are given in the description
of the task, the two additional scalars r2 > r1 (with unit of length) and k > 0 (without unit)
are tunable parameters. See Figure 2, (a) for the shape of the function U0(x1, x2). The function
U0 picked here has a singular point at (r1, 0), where the object itself is located. But since the
pair (ξ1, ξ2) in equation (25) never reaches that point, this does not cause any real problem.
U0(x1, x2) is continuously differentiable elsewhere, including when γ(x1, x2) = σ(x1, x2).
Because the task involves both avoiding the object and approaching it in a prescribed direction,
U0 is set such that given the same distance to the object, the heuristic cost-to-go varies with
the direction from the robot to the object. The function γ(x1, x2) is the scaling factor for this
purpose.

In our actual experiment, the matrices used in the LQR design of primitives are

Q = diag{1.0, 1.0, 0.4 0.4}, R = I2×2.

Consequently,

P =




1.55 0 1.0 0

0 1.55 0 1.0

1.0 0 1.55 0

0 1.0 0 1.55


 .

All lengths are in meters. The effective radius2 of the robot is r0 = 0.09, and r1 is set to 0.1.
The tunable parameters are set to k = 0.4 and r2 = 0.8.

Since both P and U0(x1, x2) are available, the primitive-based trajectory design can then be
computed from (25). (The heuristic cost-to-go U(x) does not need to be computed explicitly.)
See Figure 2, (b) and (c) for this result in action. Video clips of the simulation and the
demonstration with an actual robot have been posted on the web [1]. In what the videos
show, the orientation of the robot is controlled by a separate loop such that the robot
always approximately face the ball. The main reason is to keep the partial heuristic cost-
to-go specification in 2D, in another word, to keep the domain of U0 in R2. Note that the
mathematical procedure described in this section can be easily extended to systems with
state spaces of higher dimensionality. However, the dimensionality of the domain of U0 rises
in proportion to the dimensionality of the full state space, which makes it harder (but not
impossible) for human intuition to handle.

2The actual shape of our robot is mostly cylindrical, with radius of 0.15, but with a flat facet 0.09 from the center. For
the experiment discussed in this section, the orientation of the robot is controlled separately such that the robot always face
the object with its flat facet.

12



V. LEARNING FROM FAILURES USING BASIS FUNCTIONS

We still consider omnidirectional robots in this section, but with the control of orientation
integrated with the control of position. Although the rotation and translation of an omnidi-
rectional robot are decoupled, the desirable trajectory of the robot position and that of the
orientation may still be coupled because of the possible anisotropical shape of the robot
combined with the presence of obstacles. The robot used in the demonstration is mostly
cylindrical but has a flat “front”. So, integrating the control of orientation does make sense.
Later in this section, we will discuss the result of integrating orientation control as compared
with the robot trajectories presented in the previous section.

The construct of the problem at hand is very similar to that of the last section, but we
iterate the formulation briefly for clarity. The system considered is

ẋ1 = x4, ẋ2 = x5, ẋ3 = x6, ẋ4 = u1, ẋ5 = u2, ẋ6 = u3, (28)

in which x1 and x2 are position coordinates and x3 is the orientation, all in the global frame.
Written in matrix form,

ẋ = Ax + Bu, (29)

in which

A =

[
03×3 I3×3

03×3 03×3

]
, B =

[
03×3

I3×3

]
. (30)

The primitives are still LQR control laws, parameterized by d = [d1, d2, d3]
T . Denote

[d1, d2, d3, 0, 0, 0]T by d̄. The cost-to-go for a primitive is

V (x(0), d)

= min
u

∫ ∞

0

1

2
[uT Ru + (x− d̄)T Q(x− d̄)]dt

=
1

2
(x(0)− d̄)T P (x(0)− d̄).

(31)

In block form,

P =

[
PA PB

PC PD

]
,

in which PA, PB, PC , and PD are 3× 3 matrices, and PB = P T
C . Again, by an application

of Theorem 1, we consider pairs of U(x) and d = h(x), x ∈ R3, that satisfies (10), which
has become

∂U(x)

∂x
= (x− d̄)T P. (32)

We seek to construct U(x) such that the robot achieves the task in a desirable manner under
the task-level control law d = h(x). In this section, U is constructed through learning with a
set of basis functions that are not specific to particular tasks.

13



A. The learning procedure

Suppose no prior knowledge as to how to achieve the task is available. Let the initial
heuristic cost-to-go be U (0)(x) = V (x,0), x ∈ Rx. The task-level control law is then d ≡ 0.
I.e., the robot will head for its terminal destination as if no task-specific constraint (such as
an obstacle) is present. Surely, the attempts are likely to fail in the beginning. Assume that
the robot can recognize a failure when it has occurred. For example, for navigating in a field
with obstacles, colliding with an obstacle would be a failure; in the object-retrieval case,
touching the object before settling into the terminal position means failure. It is important to
note that the robot may detect such failures without knowing the geometry of the obstacle or
the object involved, neither needs it to know its own shape. When colliding with an obstacle,
the force of interaction will change the course that the robot is moving; when touching an
object to be retrieved, the course of the object will change. When failure occurs, the robot
records the corresponding state value, then take a randomized step away from the failure and
start another attempt. Sometimes, the robot may reach the terminal destination simply by the
randomness of initial condition. The robot will then go to a random position and start the next
attempt. Denote the recorded failure states by η(i), i = 1, . . . , N . The heuristic cost-to-go
is then updated as a function of the failure record such that the corresponding control law
will drive the robot to achieve the task. Learning ends when the robot executes the task with
a prescribed statistical success rate. Note that successfully executing a task with absolute
certainty is almost impossible in reality because of noise and disturbance.

B. Constructing heuristic cost-to-go with basis functions

Given a list of failure states ηi, i = 1, . . . , N , consider a heuristic cost-to-go of the form

U (N)(x) =
K(N)

N

N∑
i=1

ψ(x, ηi) + V (x,0), (33)

in which K(N) is a scaling factor that increases with N but remains bounded for N →∞;
ψ(·, η) ≥ 0 is the basis function corresponding to the failure state η. The reason why K(N)

must be bounded is practical. Due to noise and disturbance in reality, rarely can any control
law completely avoid failure. If K(N) does not remain bounded, U (N) may explode even
after a good control law has been found.

Recalling that x = 0 is assumed to be the desired terminal state, U (N)(0) = V (0,0) = 0

must always hold. So, the basis function must satisfy

ψ(0, η) ≡ 0, η ∈ Rx. (34)

In addition, the basis function must be chosen such that the equation (32) has solution of d.
With these in mind, we propose the following basis function. Let

W = diag{I3×3, 03×3},
c(η) =

√
ηT PWPη, η ∈ Rx,

14



and
σ(η) =

2σ̂

π
arctan [

π

2σ̂
c(η)], η ∈ Rx,

in which σ̂ is a tunable constant. We then let

ψ(x, η) =





1

2
[cos [

π

ση)
c(x− η)] + 1] : c(x− η) < σ(η)

0 : otherwise.
(35)

In addition, we choose
K(N) =

2Ka

π
arctan [

Kbπ

2Ka

N ],

in which the constant Ka determines the asymptotic value of K(N), N → ∞, and Kb

determines the slope of K(N) at N = 0.
The functions σ(η), ψ(x, η), and K(N) are plotted in Figure 3. Note that the first two

functions are plotted against the scalar functions c(η) and c(x − η)/σ(η) respectively. The
constant σ̂, bearing the unit of length, plays the role of adjusting the range of the state space
in which each failure state affects the heuristic cost-to-go. Increasing σ̂ enlarges the range
affected by each entry of the failure record. This consequently expedites the learning process
and produces more conservative trajectories. The value of σ̂ has little effect for the failure
entries near the desired terminal state though.

We next verify that the basis functions so constructed indeed satisfy the desired conditions.
First, for x = 0, we have c(x− η) = c(η) > σ(η), thus ψ(0, η) ≡ 0 for all possible values of
η. Thus (34) is satisfied.

Second, we verify the existence of solution of (32) by solving it. Here, we have

∂U

∂x
=

K(N)

N

N∑
i=1

∂ψ(x, ηi)

∂x
+

∂V (x,0)

∂x

=
K(N)

N

N∑

i = 1,

c(x− ηi) < σ(ηi)

−1

2
sin [

π

σ(ηi)
c(x− ηi)]

∂c(x− ηi)

∂x
+

∂V (x,0)

∂x

=
K(N)

N

N∑

i = 1,

c(x− ηi) < σ(ηi)

− sin [
π

σ(ηi)
c(x− ηi)](x− ηi)

T PWP + xT P.

(36)

The matrix P is nonsingular. Thus

d̄T = −K(N)

N

N∑

i = 1,

c(x− ηi) < σ(ηi)

sin [
π

σ(ηi)
c(x− ηi)](x− ηi)

T PM (37)

must hold. Recalling the block form representation of P ,

PM =

[
PA 03×3

PC 03×3

]
.

15



0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

σ̂

c(η), unit: cm

σ(
η)

, u
ni

t: 
cm

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c(x−η)/σ(η)

ψ
(x

)

(a) (b)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

K
a

N

K
(N

)

K
b

(c)

Fig. 3. (a) The function σ(η) plotted against c(η). (b) The basis function ψ(x, η) plotted against c(x−η)
σ(η)

. (c) The gain
K(N), a function of the length of the failure record.

So,

(x− ηi)
T PM =

[
(x− ηi)

T

[
PA

PC

]
, 06×3

]
.

The solution of (32) is thus

d = −K(N)

N

N∑

i = 1,

c(x− ηi) < σ(ηi)

sin [
π

σ(ηi)
c(x− ηi)][PA, PB](x− ηi). (38)

Of course, the construction of the basis function is not unique. However, the prototype that we
propose is almost the simplest possible. It is also effective, as demonstrated by the experiment
described next.

16



C. Experiment results

Again, we use the object retrieval task as an example. Video clips of the physical experiment
as well simulation result are posted on the web [2]. Also see Figure 4. Note that in Figure 4,
(a), the cross section of the learned heuristic cost-to-go function is taken at x3, x4, x5, x6

all set to zero; and the initial conditions in Figure 4, (b) and (c) are the same as those in
Figure 2.

0.41

0.21

0.01

−0.19

−0.39 −0.31

−0.11

0.09

0.29

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a)

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) (c)

Fig. 4. (a) A cross section of the learned heuristic cost-to-go function at x3, x4, x5, x6 all set to zero.(b) One learned
trajectory in simulation. (c) Another learned trajectory in simulation. The initial conditions in (b) and (c) are the same as
those in Figure 2.

The matrices used in the LQR design of primitives, with the control of orientation inte-
grated, are

Q = diag{1.0, 1.0, 0.6, 0.4 0.4, 0.4}, R = I3×3.

17



Consequently,

P =




1.55 0 0 1.0 0 0

0 1.55 0 0 1.0 0

0 0 1.08 0 0 0.77

1.0 0 0 1.55 0 0

0 1.0 0 0 1.55 0

0 0 0.77 0 0 1.40




.

Again, all lengths are in meters. The radius of the robot is 0.15, the distance from the center
of the robot to its flat facet is 0.09. Different from the previous section, we do not assume,
neither do we prefer a priori, that the robot always face the object with its flat facet. The
parameters of the basis function are set to σ̂ = 0.4, Ka =0.8, Kb =0.005. In the simulation,
we terminate the learning process when the robot successfully reach the desired pose for
500 consecutive times. In the physical experiment, we consider the learning completed when
failures seem to have stopped happening. Note that it is impractical to observe as many trials
in the physical experiment as one can in the simulation. With these criteria, it takes about 60
to 100 failures for the robot to learn the task in both simulation and physical experiment.

From a comparison between Figure 4 and Figure 2, there are differences as well as
similarities. First, recall that the direct design in the previous section use a separate loop
to control the robot orientation such that the robot is always approximately facing the object,
whereas the learning approach in this section integrates orientation control with position
control. Indeed, on the learned trajectories, the robot does not insist on facing the object.
The difference is especially clear between Figure 2, (b) and Figure 4, (b). In the latter,
the robot undergoes much less rotation than in the former. The learned trajectory is thus
superior in this aspect. On the other hand, by a visual examination of the cross section of the
learned heuristic cost-to-go function, one may notice that it is a little “bumpy”. This is due
to the fact that this cost-to-go function is the sum of a finite number of basis functions. An
analogous phenomenon is seen in a signal reconstructed by a finite number of its frequency
components. The bumpiness of learned heuristic cost-to-go can be reduced at the expense of
slower learning. For instance, one can make the gain K(N) increase slower with N , allowing
the robot to accumulate more experience from failures before applying the experience to
actions in a significant way. When the “bumps” and “dimples” are mild enough, they are
dominated by the desired slope of the cost-to-go function and does not cause problems at
most places. However, if the cost-to-go function is supposed to have an unstable equilibrium,
then a dimple may turn that equilibrium into a stable one. It was shown in [11] that a
potential field in a 2D space with M obstacles must have M saddle points. In our case,
the cross section of the heuristic cost-to-go function shown in Figure 4, (a) has the same
property. There is supposed to be a saddle point near the object but on the opposing side
of the desired terminal position. Sometimes in our experiments, this supposed saddle point

18



turns into a stable local equilibrium in the learned heuristic cost-to-go. Consequently, the
robot may get stuck in that area. Although only affecting a small area, this is certainly a
disadvantage. One possible remedy is to postprocess the learned cost-to-go function (by hand
or by algorithm) and eliminate the undesired stable local equilibria.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a scheme for integrating the lower level plant-dynamics-
oriented control design and the higher level task-oriented motion design. The distinctive
feature of our scheme is that the optimality of the lower level design is extended to the
higher level motion design in a rigorous fashion. At the same time, we identify a good tuning
knob of the task-level design — the heuristic cost-to-go function, from which the control law
can be produced for evaluation with little computation. The admissibility condition of such
heuristic cost-to-go function is stated by the main theorem of this paper. Further, both a direct
design approach and a learning approach resulted from the proposed scheme are discussed.
The trajectory design problem of an omnidirectional robot is considered. On one hand, it
illustrates the application of the proposed techniques. On the other hand, the problem itself
is of importance, and our solution of the problem complement existing techniques nicely.

Applying our approach to the trajectory design of an omnidirectional robot, we have shown
that the optimal trajectory design can be determined by the conditions for preserving optimality
together with a task-oriented heuristic cost-to-go specified only in robot positions (whereas the
robot state includes both position and velocity). In fact, the optimal design is solved in closed
form. Further, the existing results on motion planning based on artificial potential fields may
suggest good choices for the heuristic cost-to-go. Thus, our result connects optimal control
design, which concentrates on dealing with the vehicle dynamics, and artificial potential-based
motion planning techniques, which is computationally efficient but usually does not take into
account of the vehicle dynamics rigorously.

There appear to be many directions in which our results can be extended. These include
trajectory design for a wider range of tasks and autonomous systems, including nonholonomic
vehicles, vehicles in 3-D, and non-vehicle robotics systems, etc. On the other hand, we have
assumed that the primitives are regular solutions of an optimal control problem. However,
in some cases the primitive are singular optimal solutions (e.g., [22]). We will also consider
such scenarios in our future work.

VII. REFERENCES

[1] Trajectory Design Based on Motion Primitives: Direct Design. Cornell University.
[Online] http://www.mae.cornell.edu/keyong li/TDMP.htm

[2] Trajectory Design Based on Motion Primitives: Learning. Cornell University. [Online]
http://www.mae.cornell.edu/Keyong li/TDMP Learning.htm

19



[3] J. Baillieul & A. Suri. Information patterns and hedging Brockett’s theorem in controlling
vehicle formation, in Proceedings of the 42nd IEEE Conference on Decision and Control,
Dec. 2003.

[4] J. Barraquand, B. Langlois, & J.-C. Latombe. Nonholonomic multibody mobile robots:
Controllability and motion planning in the presence of obstacles, in Algorithmica,
10:121-155, 1993.

[5] F. Bullo. Series expansions for the evolution of mechanical control systems. SIAM J.
Control and Optimization, 40(1):166-190, 2001.

[6] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Bel-
mont, Massachusetts, 2000.

[7] P. Cheng & S. M. LaValle. Resolution complete rapidly-exploring random trees, in Proc.
IEEE Int’l Conf. Robotics and Automation, pp. 267-272, 2002.

[8] E. Frazzoli. Quasi-random algorithms for real-time spacecraft motion planning and
coordination, Acta Astronautica, 53(4–10), pp. 485-489, 2003.

[9] E. Frazzoli, M. A. Dahleh, & E. Feron. Real-time motion planning for agile autonomous
vehicles. AIAA Journal on Guidance, Control and Dynamics, 25(1):116-129, 2002.

[10] T. Kalmar-Nagy, R. D’Andrea, & P. Gauguly. Near-optimal dynamic trajectory gen-
eration and control of an omnidirectional vehicle, Robotics and Autonomous Systems,
46:47-64, 2004.

[11] D. Koditschek. Exact robot navigation by means of potential functions: Some topological
considerations, in IEEE Int. Conf. Robotics and Automation, Raleigh, NC, Mar. 1987,
pp. 1-6.

[12] B. Krogh. A generalized potential field approach to obstacle avoidance control, in
Robotics Research: The Next Five Years and Beyond, Bethlehem, PA, USA, Aug. 14C16,
1984, pp. 1C15.

[13] F. Lamiraux, D. Bonnafous, & C. V. Geem. Nonholonomic Path Optimization, in Control
Problems in Robotics, A. Bicchi, H.I. Christensen, D. Prattichizzo (Eds.), Springer-Verlag
Berlin Heidelberg, STAR 4, pp. 1-18, 2003.

[14] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA,
1991.

[15] J. P. Laumond, S. Sekhavat, & F. Lamiraux. Guidelines in nonholonomic motion planning
for mobile robots, in Robot Motion Planning and Control, J. P. Laumond, editor, pp.
1-53. Springer-Verlag, Berlin, 1998.

[16] S. M. LaValle. From dynamic programming to RRTs: algorithmic design of feasible
trajectories, in Control Problems in Robotics, A. Bicchi, H.I. Christensen, D. Prattichizzo
(Eds.), Springer-Verlag Berlin Heidelberg, STAR 4, pp. 19-37, 2003.

[17] S.A. Masoud & A.A. Masoud. Constrained Motion Control Using Vector Potential

20



Fields. IEEE Transactions on systems, man, and cybernetics – Part A: Systems and
Humans, 30(3):251-272, May, 2000.

[18] A. M. Meystel & J. S. Albus. Intelligent Systems, Wiley-Interscience Publication, 2002.
[19] K. L. Moore, & N. S. Flann. A six-wheeled omnidirectional autonomous mobile robot,

Control Systems Magazine, IEEE, 20(6):53-66, Dec. 2000.
[20] R. M. Murray & S. Sastry. Nonholonomic motion planning: Steering using sinusoids.

IEEE Trans. Automatic Control, 38(5):700-716, 1993.
[21] Y. Pinchover & J. Rubinstein. An Introduction to Partial Differential Equations.

Cambridge University Press, UK, 2005.
[22] O. Purwin & R. D’Andrea. Trajectory generation and control for four wheeled omnidi-

rectional vehicles, Robotics and Autonomous Systems, 54(1):13-22, Jan 31, 2006.
[23] A. Richards, T. Schouwenaars, J. P. How, & E. Feron. Spacecraft trajectory planning

with avoidance constraints using mixed-integer linear programming, AIAA Journal on
Guidance, Control and Dynamics, 25(4), 2002.

[24] E. Rimon & D. Koditschek. Exact robot navigation using artificial potential functions,
IEEE Trans. Robot. Automat., 8:501C518, Oct. 1992.

[25] M. Sherback, O. Purwin, & R. D’Andrea. Real-time motion planning and control in the
2005 Cornell RoboCup system. In Lecture Notes in Control and Information Sciences.
Springer Verlag. To appear.

[26] R. Volpe, Techniques for collision prevention, impact stability, and force control by
space manipulators, in Teleoperation and Robotics in Space, S. Skaar and C. Ruoff,
Eds. Washington, DC: AAAI, 1994, pp. 175C208.

[27] K. Watanabe, Y. Shiraishi, S.G. Tzafestas, J. Tang, & T. Fukuda. Feedback control of an
omnidirectional autonomous platform for mobile service robots, Journal of Intelligent
and Robotics Systems, v.22, pp. 315-330, 1998.

[28] S. Waydo & R.M. Murray. Vehicle motion planning using stream functions, in 2003
IEEE Int. Conf. Robotics Automation, Sep. 2003.

21


