
End-to-end congestion control protocols for remote programming of robots,
using heterogeneous networks: A comparative analysis
Raul Wirz , Raul Marin Jose M. Claver , Manuel Ferre , Rafael Aracil Josep Fernandez
Computer Engineering and Science, University Jaume I (UJI), 12071 Castellan, Spain
Dept. de Informatica, Universitat de Valencia, 46100-Burjassot, Spain
Automatics, Electronics Engineering, and Industrial Computers Department, Universidad Poiitecnica de Madrid, E-28006 Madrid, Spain
Computer Science Department, Universidad Poiitecnica de Cataluna, Spain

A B S T R A C T

Keywords:
Networked robots
Internet congestion control protocol
Telerobotics
E-learning
Industrial robotics telelaboratory

There are many interesting aspects of Internet Telerobotics within the network robotics context, such
as variable bandwidth and time-delays. Some of these aspects have been treated in the literature from
the control point of view. Moreover, only a little work is related to the way Internet protocols can
help to minimize the effect of delay and bandwidth fluctuation on network robotics. In this paper, we
present the capabilities of TCP, UDP, TCP Las Vegas, TEAR, and Trinomial protocols, when performing a
remote experiment within a network robotics application, the UJI Industrial Telelaboratory. Comparative
analysis is presented through simulations within the NS2 platform. Results show how these protocols
perform in two significant situations within the network robotics context, using heterogeneous wired
networks: (1) an asymmetric network when controlling the system through a ADSL connection, and (2) a
symmetric network using the system on Campus. Conclusions show a set of characteristics the authors of
this paper consider very important when designing an End-to-End Congestion Control transport protocol
for Internet Telerobotics.

1. Introduction

One of the multiple applications of Networked Robotics is
enabling Internet access to expensive devices (e.g. industrial
robots, FPGA systems, conveyor belts, etc.) organized as a
telelaboratory for education. Thus, students and researchers can
program their own robotic experiments via Internet, and then
obtain the results through, for example, a simple webpage

One essential part of a Telelaboratory is the interconnection of
sensors, cameras, and robots via a networked system In the
scientific literature, much work can be found that propose different
ways and architectures to organize task-oriented applications of
multiple network robots Some of these architectures are
focused on Internet software frameworks (e.g. Web Services at the
application OSI layer), and have been extended from previous work
in single-robot telerobotics.

Other work focuses not only on application protocols, but also
on other levels of the OSI layers, like transport and network, which
enable real-time control and teleoperation of network robots over
IP. In fact, solutions can be found to cope

with the problems associated with the Internet, in order to control
networked robots: (1) time-varying transmission delay, and (2)
non-guaranteed bandwidth.

First of all, in this paper we present the IP-based network ar­
chitecture of the UJI Industrial Telelaboratory (see Figs. 1 and 2).
After that, some of the most recent approaches of Network Robot
Control under time delays are presented, which offer some inter­
esting solutions designed to guarantee telerobotic system stability,
when the Internet is used as the medium of communication. Then,
we will focus on the transport protocols that enable end-to-end
congestion control in a TCP-Friendly manner for teleoperation,
and tele-programming of robot arms. Simulations using TCP, UDP,
trinomial TEAR (TCP Emulation at Receivers), and TCP Las
Vegas protocols are presented within the UJI Industrial Tele­
laboratory. In fact, two different situations are studied: (1) using
an asymmetric network (i.e. user controlling the devices through a
ADSL connection), and (2) a symmetric network (i.e. on campus).
Then, from these results, a set of conclusions are obtained which
are important in order to design an end-to-end congestion control
transport protocol for Internet teleoperation.

2. The UJI industrial telelaboratory network architecture

In Fig. 2, we can see the Network connectivity of the UJI
Industrial Telelaboratory. In fact, in this system we consider that

Fig. 1. The UJI Industrial Telelab devices: (1) Motoman industrial manipulator, (2)
FPGA based vision system, (3) Conveyorbelt and monitoring camera, (4,5) On-hand
mounted camera.

every device (i.e. industrial robot, conveyor belt, FPGA, etc.), is
connected to the same Ethernet network, and they act as single
Network Robots that communicate with each other through the
SNRP application level protocol (A new application level protocol
designed by our team,). This architecture offers many
advantages, like scalability and maintainability, and it introduces
interesting issues, like device synchronization.

In order to make the SNRP simple to use and implement, it uses
HTTP protocol as a basis, which give it more interoperability and
flexibility. However, for this kind of situation, HTTP does not pro­
vide the following features: (1) Event Notification, and (2) Support
for structured information. These two characteristics are very im­
portant to design the SNRP framework in industrial robotics. To
accomplish this, we have incorporated the REST model into
the SNRP protocol, which permits the implementation of state-
oriented applications and a simple scenario to design event notifi­
cation, and structured information features.

Simplicity is maybe the most important challenge of network
robotics architecture, due to the fact that it must be possible for a
very broad range of devices to be part of it. In fact, as explained
in [11], thanks to this simplicity, we were able to implement a
prototype of SNRP Network Camera using a FPGA.

First of all, as we want to enable the devices to be accessed
through the Internet, they should be able to manage IP protocol.
On top of that, the SNRP framework enables the device to accept
TCP, and UDP connections. As explained in Section 4, UDP and TCP
are not the best solutions to perform remote control through the
Internet, so the SNRP framework is being designed to provide the
possibility of transporting Internet packets through other transport
protocols, like Trinomial, TCP Las Vegas, TCP Reno, or TEAR (see
Fig. 3).

3. Network robot control under time delays

The Internet is a suitable way for developing the communica­
tion channel of a remotely controlled robot. However, some points

Fig. 2. The UJI Industrial Telelab networking configuration.

Trinomial TCP/Las Vegas TCP T
IP

FPGA vision Manipulator

V-'- V

rsa

Conveyor Belt

Fig. 3. The SNRP framework.

must be taken into account from the control point of view, such as
reliability, time delay and bandwidth. Therefore, a communication
protocol has to be selected according to these parameters.

Two kinds of commands have to be considered to control a
remote robot: high level commands and low level commands. High
level commands are used when user is sending commands related
to the task, such as 'get a part', 'move to home position', 'close the
grip', etc. Transmission of these commands must be guaranteed in
order to properly execute remote tasks.

Commands are generated according to the task execution
procedure; therefore low frequencies are required. In this case, TCP
is used, since it is a reliable protocol, and packets are retransmitted
when they are lost or corrupted

-" w u

•TCP

•UDP

Robots Movements

lb —

£ 4 0~~ — 1 — — ! —

20
15
10
5
o

'TCP

' UDP

Robot Movements

Fig. 4. Delay response when controlling an industrial Motoman robot via internet using UDP and TCP.

On the other hand, low level commands have different
requirements. This kind of command is related to robot movement.
It implies a stronger connection between user and robot, such
as guiding a manipulator or a mobile platform. In this case,
higher bandwidth is required, but reliability is not a critical factor.
UDP protocol is usually used for these tasks, since packets are
minimized and delays are reduced If some packets are lost,
then the remote robot can continue working, but with poorer
performance.

An interesting example for the use of low level commands,
is master-slave teleoperation with force feedback. In this case,
two data flows run continuously. First, the user handles a device
called master that generates movement references for the robot
(slave device); second, interaction forces between robot and
environment are retransmitted to the user via force reflection
in the master device. These systems are called bilateral, and are
very sensitive to communication time delays Passive control
techniques and scattering variable transformation are applied in
order to guarantee stability of bilateral systems, in the presence of
significant communication time delays

Control problems increase when a master-slave system is
linked via the Internet, since some data can be lost, and commu­
nication time delay is variable. Discrete scattering techniques are
used to implement a switching packet transmission line that is also
passive when communication delay is variable, and some packets
are lost Several passivity based strategies have been pro­
posed to passively control master and slave sides. A generic frame­
work for geometric telemanipulation of port-Hamiltonian systems
has been proposed in

4. Transport protocols for remote control of network robots

The basic transport protocols available in the Internet for
implementing remote control applications are the following:

1. UDP (User Datagram Protocol) This is based on the idea
of sending a datagram from a device to another as fast as
possible (i.e. best effort). This protocol does not guarantee that
the information will reach the destination, and besides this, it
does not manage any network congestion situation.

2. TCP (Transmission Control Protocol) This guarantees the
application level that the information will reach the destination
performing the necessary retransmissions. Moreover, TCP takes
care of network congestion and adjusts the transmission
accordingly.

UDP is a protocol that does not maintain a connection with
the Server side, and it does not retransmit lost packets, it
does not control network congestion, and neither manages any
confirmation of packets that have reached their destination.
The advantage of UDP, for remote control of devices via the
Internet, is that having good network conditions, communication
is accomplished without significant delay and without important
fluctuations (i.e. delay jitter). Moreover, UDP does not assure that

the packets have reached the destination in the proper order
that they were sent; if fact, UDP does not inform if packets have
even been received, or not. Besides this, UDP does not perform
any congestion control mechanism, which means the sending
rate is not adapted according to the real bandwidth available.
This situation implies that we need another protocol for remotely
controlling devices via the Internet.

On the other hand, TCP is a very sophisticated protocol that
establishes a virtual connection between the sender and the
receiver. Moreover, as TCP manages the confirmation of packets
received properly, we can assure that communication will be
reliable. However, when TCP was designed they had in mind
reliable communication for applications such as e-mails and files
(ftp), and not controlling devices such as robots. The congestion
control mechanism and connection establishment imply having
high delayjitter (fluctuation), a situation that is not appropriate for
applications such as Internet teleoperation of a robot manipulator
using a haptic device. In the Fig. 4 we can see the results obtained
when controlling a real robot using both, TCP and UDP.

The majority of current telerobotic applications using the
Internet (e.g. telelaboratories) use TCP or UDP. For this, the variable
time-delay and bandwidth effect is resolved in the application
level, by using intelligent sensors, predictive displays, and high
level commands. On the other hand, if we really need to perform
a teleoperation, we need to find applications that are closer to real
time In this situation we need more specific communication
protocols

As this is a very emergent research field, in the scientific liter­
ature we cannot find many articles describing specific protocols
to teleoperate networked devices (i.e. like robots) via Internet. On
the other hand, we can find many protocols to design networked
applications that require the transmissions of Multimedia content
via Internet: (1) TFRC (TCP-Friendly Rate Control Protocol)
RAP (Rate Based Adaptation Protocol) LDA (Loss-Delay Ad­
justment Protocol) SIMD (Square-Increase/Multiplicative-
Decrease Protocol) and RTP (Real Time Protocol) These
protocols are not very convenient for telerobotics due to the fact
that they use an intermediate buffer to compensate the delayjitter
when receiving video and audio. In telerobotics using buffers im­
plies obtaining an overall higher delay that seriously reduces the
smoothness with which the robot can be controlled.

Some of the few works that specifically design communication
protocols for Internet teleoperation are the following:

(1) Trinomial method : It is a rated-based protocol, which
means it manages the network congestion by adjusting the inter-
packet gap (IPG) instead of the window size schema that uses TCP.
Thus, the protocol controls the number of datagrams per second
depending on the available bandwidth. The Trinomial method uses
UDP as basis. It means that the Trinomial is able to adapt to the
network congestion and available bandwidth without affecting
very much the way the user teleoperates the robot. As observed
in [5], the Trinomial protocol provides a sending curve that is quite
smooth and makes better use of the available bandwidth, thus

obtaining a very good efficiency compared to the UDP and TCP
protocols. In the following section we will study some parts of the
Trinomial that we consider can be improved in order to be applied
in the telelaboratories field.

(2) Real-Time Network Protocol (RTNP) : is specially designed
for bilateral teleoperation using mater/slave manipulators and
force feedback. In such a system, the time-delay can be produced
by the performance of network devices (i.e. routers, switches,
etc.), the end-to-end congestion control algorithms, or the
implementation of the network stack in the hosts. This is a protocol
that uses an identification in the UPD/TCP headers to inform the
Linux-based real-time operating system that the received packet
has the category of "real time", in order to give it the maximum
priority when passing the packet to the application level. The
RTNP shows that the overall time-delay between the client and
the server depends not only on the network but also on the
software provided by the operating system. The RTNP focuses on
the network stack implementation on the hosts instead of studying
end-to-end congestion control techniques, which is the subject of
this paper. This is why this protocol is not included in the network
experiments.

(3) Interactive Real-Time Protocol (IRTP) : is an IP-based
protocol that takes the advantages of both, TCP and UDP, to
improve the response in teleoperation systems. It is a connection-
oriented protocol that implements congestion control and error
control. To enhance the efficiency, the IRTP protocol simplifies the
packet header as much as possible, so that a major relationship
between the data that is sent by the application level and the
protocol control information is obtained. Moreover, the IRTP
reconfigures itself in order to transmit the two basic kinds of data
that are transmitted in a network control system, which are: (1)
the crucial data (i.e. information that must reach the destination
even if it has some time delay), and (2) the real-time data (i.e.
information that must reach the destination as soon as possible).
The IRTP protocol uses the same control congestion algorithm as
the Trinomial method. As we already have the Trinomial protocol
included in the results, we have not performed the experiments
with the IRTP protocol.

Moreover, in the telelaboratories context there are situations
where the student/researcher is performing an experiment
from home using an ordinary ADSL connection. This kind of
asymmetric communication normally gives a poor upload link and
a good download bandwidth. The TEAR protocol (TCP Emulation
at Receivers) [7] is specifically designed for the transmission
of multimedia streams on asymmetric connections. The TEAR
protocol does not perform retransmission of lost and corrupted
packets. Moreover, it does not use an ACK for every packet that has
been sent. So that, when we speak of RTT in TEAR we are referring
to the last packet received in addition to the ACK used by the
TEAR after sending that packet. The following sections will provide
some simulations to compare the performance of the trinomial,
TCP, TCP Las Vegas, and TEAR protocols when performing an
experiment within the telelaboratory. The experiments present
two situations: (1) using symmetric network on campus, and (2)
using an asymmetric network including a user connection to the
network robots from home via an ADSL connection.

5. Experiment description

In this section we are going to study the behaviour of the
TCP, TEAR, Trinomial, and "TCP Las Vegas" protocols for a remote
visual servoing experiment performed by a student with both, at
home using an asymmetric ADSL connection to the telelaboratory
(i.e. 320 Kbps-Upload and IMbps-Download bandwidth), and on
campus using the symmetric Ethernet structure at 100 Mbps.
For this, the student asks the telelaboratory to provide as much

FPGA VISION
SYSTEM

INDUSTRIAL ROBOT MONITORING
CAMERA

Activates H

• Activates •

A Frame every 20 ms (TCP)

Object
^ - Geometrical •

Properties

^ — ^ — Move to the next position •

^ Robot State

Fig. 5. Experiment data flow.

information from the FGPA-Vision System as possible, and he/she
performs the control algorithm to provide the next position of the
robot. The control Law is calculated by the student in his own
computer. Moreover, in these simulations the student is provided
with a packet from the monitoring camera every 20 ms, using a TCP
Reno flow.

As we can see in Figs. 5 and 6, the user (i.e. Node 10 at home
and Node 3 on Campus) performs a visual servoing experiment
over the industrial telelaboratory. These students use the following
communication flows:

1. The user activates the FPGA Vision System.
2. The user activates the Industrial Robot.
3. The user activates the Monitoring Camera.
4. The user receives a frame from the monitoring camera every 20

ms, using the TCP protocol.
5. The FPGA Vision System sends the Object Geometrical proper­

ties to the user.
6. The User calculates the control Law and sends the next robot

position. The robot needs the commands to reach its controller
with a minimum gap of two milliseconds. Otherwise the robot
would indicate that an error has occurred within its controller.
The robot returns its state to the user.

In the simulation, the student gets the object geometrical
properties in camera coordinates from the FPGA (e.g. grasping
line). From this, the student applies a control law following the on-
hand visual servoing control until the grasping line is centered at
the middle of the gripper.

6. Results using an asymmetric network (at home)

In this section we are going to observe the RTT behaviour
and the bandwidth of Trinomial, TCP, TCP Las Vegas, and TEAR
protocols for the industrial telelaboratory using an asymmetric
network.

As seen in Fig. 6, we have Node 4 that represents the industrial
robot of the telelaboratory. Node 7, represents the router that gives
access to every device in the telelaboratory. Node 3 represents
a student that is connected to the telelaboratory and he is
monitoring the experiment performed by node 10. Node 10
represents a student that is performing a teleoperation (or visual
servoing) experiment on the industrial robot (i.e. node 4). In the
simulation, traffic to Node 3 is TCP based and it does not generate
congestion to the intermediate network routers, because they use
a 100 Mb/s network, and the available bandwidth is enough for
the whole experiment. Moreover, traffic to Node 3 does not affect
the one that goes to Node 10. The traffic from Node 10 (i.e. the

-*• 100 Mbps (delay 1 ms)

Q Q Upload: 320 Kbps (delay 30 ms)
Download: 1 Mbps (delay 20 rns)

TCP/Vegas

160

140

120

•» 100
E

r 80

cr 60

40

20

Fig. 6. Nodes configuration for the NS-2 simulations.

TRINOMIAL

iTmHTTmmiTTiTTm.
• ROBOT

FPGA

• CAMERA

O - M W O i a ^ J O l K)
O - ' W W f r l S ' J B I O

Time (s)

Fig. 7. Results of the RTT behaviour NS-2 simulation when Node 10 uses the
Trinomial protocol.

experiment) will vary from Trinomial, TCP Reno, TCP Las Vegas, and
TEAR.

As we can observe from Figs. 7-10 and Tables 1 and 2,
the Trinomial protocol almost consumes the entire available
bandwidth (see Fig. 12) at the router, obtaining an average RTT
of 58.45 ms. Moreover, there are packets that almost reach 90
ms of RTT. The Trinomial protocol sets the router buffers to the
maximum load, which implies increasing the RTT average between
the student and the robot. On the other hand, the Trinomial
protocol sends more packets per second than TCP, increasing the
information that comes from the student to the robot, and vice
versa. Moreover, the trinomial loses almost the 20% of the packets
that are sent, which is one of the most significant problems we
found with this protocol.

As shown in Figs. 9 and 10, the TEAR protocol is smoother than
the TCP, which is very appropriate for the transmission of control
information (i.e. robot and FPGA). Moreover, it allows the user to
send more control packets to the robot in less RTT. The TCP Las

cc eo

«

0

tfutifiritttlfciattMfibmQ —

ROBOT

FPGA

CAMERA

l\J * . o i a -si CO <o

Time (s)

Fig. 8. Results of the RTT behaviour NS-2 simulation when Node 10 uses the TCP
Las Vegas protocol.

TCP

• ROBOT

FPGA

CAMERA

Fig. 9. Results of the RTT behaviour NS-2 simulation when Node 10 uses the TCP
protocol.

250

200

150

100

50

TEAR

... .-.*.. A. L i . ,....M.

-TO ROBOT

FROM ROBOT

- FROM FPGA

-TO FPGA

• CAMERA

O 4* Ol --J CO «5
o - * r o c o * > c n - v i c o u o
Time (s)

Fig. 10. Results of the RTT behaviour NS-2 simulation when Node 4 uses the TEAR
protocol.

TCP

•FPGA
TCP RECEIVER

ROBOT
TCP SENDER

• CAMERA
TCP RECEIVER

Fig. 11. Telelaboratory experiment using TCP for the Robot, the FPGA, and the
Camera.

Vegas also presents many interesting features like the RTT stability,
but it does not perform as the TEAR protocol using asymmetric
networks.

From the bandwidth point of view, the TCP protocol consumes
80% of the available bandwidth (see Fig. 11), at an, with an
average RTT of 66.95 ms. On the other hand, as TCP performs
retransmissions, the number of received packets at Node 0 is not
as significant as using the Trinomial protocol.

The TEAR protocol is the one that sends more packets to the
robot, taking advantage of the asymmetric network configuration.

Table 1
Number of packets sent/received/dropped per flow and protocol in asymmetric simulation

FROM

USER
USER
ROBOT
FPGA

DROPPED

USER
CAMERA

TO

ROBOT
FPGA
USER
USER

CAMERA
USER

TCP

5352
6182
5335
6182

47

1023
1023

TCP/Vegas

7647
7642
7641
7642

0

1033
1033

TEAR

12 666
395
393

17 462

35

1027
1030

Trinomial

8780
8276
8020
8285

1773

1027
1029

Table 2
RTT behaviour per flow and protocol

ROBOT
FPGA
CAMERA

TCP

Average (ms)

66.95
64.13
64.87

Deviation (ms)

10.09
6.85
6.15

TCP/Vegas

Average (ms)

51.58
51.6
53.23

Deviation (ms)

3.16
3.00
2.24

TEAR

Average (ms)

25.93 / 25.68
24.82 / 24.56
54.89

Deviation (ms)

4.25 / 4.62
2.78/3.88
9.27

Trinomial

Average (ms)

58.45
58.5
60.2

Deviation (ms)

8.53
8.23
8.15

TRINOMIAL Download

FPGA TRINOMIAL
RECEIVER

ROBOT
TRINOMIAL SENDER

CAMERA
TCP RECEIVER

0.8

0.7

yun
5 0.5

f 0.4
| 0.3
m 0.2

0.1

0

Time (s)

Fig. 12. Telelaboratory experiment using Trinomial for the Robot, and the FPGA.
The monitoring camera uses TCP.

TEAR

• FPGA
TEAR RECEIVER

ROBOT
TEAR SENDER

• CAMERA
TCP RECEIVER

Fig. 13. Telelaboratory experiment using TEAR for the Robot, and the FPGA. The
monitoring camera uses TCP.

TCP/Vegas

•FPGA
TCP/Vegas RECEIVER

ROBOT
TCP/Vegas SENDER

• CAMERA
TCP RECEIVER

• — T C P

TCP/Vegas

TEAR

• — TRINOMIAL

Fig. 15. Comparative analysis of TCP, TCP Las Vegas, TEAR and Trinomial protocols
for the visual servoing experiment on the link from the Telelaboratory to the user
(i.e. download link). Every flow represents only the packets that have information
(i.e. non ACK packets are shown).

Upload

• — TCP

— TCP/Vegas

TEAR

• — TRINOMIAL

Fig. 14. Telelaboratory experiment using TCP Las Vegas forthe Robot, and the FPGA.
The monitoring camera uses TCP.

Fig. 16. Comparative analysis of TCP, TCP Las Vegas, TEAR and Trinomial protocols
for the visual servoing experiment on the link from the user to the telalaboratory
(i.e. upload link).

The RTT goes on an average of 51.61 ms (25.93 + 25.68). In some
situations the RTT of the TCP Reno protocol is twice that of the
TEAR one. Moreover, the Tear protocol has a slow start (see Fig. 13),
which is not convenient for teleoperation.

For the TCP Las Vegas, the RTT deviation is the most interesting
for the master/slave teleoperation. In fact, it sets the router buffers
to a minimum RTT average. From the bandwidth point of view
(see Fig. 14), it offers almost 2000 more packets to the robot,
than the same simulation using the TCP Reno, which represents an
excellent improvement. Besides this, TCP Las Vegas does not drop
any packets for the whole simulation.

In summary, for this asymmetric experiment (see Figs. 15 and
16), the TEAR protocol is the one that has a more stable and shorter
RTT, using less bandwidth and sends more packets between the

8.25

8.20

TCP

L_«.»

I 8.10 I i.

8.05

8.00

7.95

7.90

II
l ROBOT

FPGA

CAMERA

O - ^ r O ^ U l C i - J C O
M U t Ul O) m «3

Time (s)

Fig. 17. Results of the RTT behaviour NS-2 simulation when Node 3 uses the TCP
protocol.

8.25

8.2

8.15

| 8.1

K 8.05

8

7.95

7.9

TRINOMIAL

• ROBOT

FPGA

• CAMERA

O J W * W O) 4 C D

Time (s)

Fig. 20. Results of the RTT behaviour NS-2 simulation when Node 3 uses the
Trinomial protocol.

9.00

8.00

7.00

6 00

5,00

4.00

3.00

TEAR

- TO ROBOT

FROM ROBOT

• TO FPGA

- FROM FPGA

CAMERA

o 03 *. at -J m to

Time (s)

Fig. 18. Results of the RTT behaviour NS-2 simulation when Node 3 uses the TEAR
protocol.

B.15

1 - 8-10

l= 8.05

7.90

ib

It > I III I

TCP/Vec as

llllfll irik',i , i , i
— ROBOT

— FPGA

--CAMERA

o - w t w o i s c o
O ^ r 0 C J £ . C J l t 7 3 C 0 (D

Time (s)

Fig. 19. Results of the RTT behaviour NS-2 simulation when Node 3 uses the
TCP/Vegas protocol.

student and the robot. The trinomial has one of the biggest RTT,
and loses more packets than any other. The TCP Las Vegas loses
less packets than any other, presents a very stable RTT, but does
not send so many packets as the TEAR protocol.

7. Results using a symmetric network (on campus)

In this section we are going to observe the RTT and bandwidth
behaviour of Trinomial, TCP Reno, TCP Las Vegas, and TEAR
protocols for the industrial telelaboratory, using a symmetric
network. Congestion is not presented in this experiment because
the available bandwidth in the network is bigger than that required
by the experiment.

The requirement for the industrial manipulator is getting one
packed every two milliseconds in order to fit the robot controller's
requirements, for these experiments, the Trinomial and the TEAR
protocols have been improved, in order to limit their sending ratio.

As seen in Fig. 6, we have the Node 3 that represents a student
that is performing a teleoperation (or visual servoing) experiment
on the industrial robot (i.e. node 4). In the simulation, the traffic
from the node 3 will vary from Trinomial, TCP Reno, TCP Las Vegas,
and TEAR.

0.45-

^o"

0 -

TCP

Yv-V-vV'^H-
r ' ' t • »w* , * - , / '

\/\ JvwlJ,.j
y,,r-^'\ \f \J ^ • v \

f

[,'

• ROBOT

FPGA

• CAMERA

ro OJ u\ u> m CD

Time (s)

Fig. 21. Telelaboratory experiment using TCP for the Robot, the FPGA, and the
camera.

For this experiment, as the RTTs are so small (see Figs. 17-20),
and the robot is not able to perform a command that is less than
2 ms after its predecessor, the four protocols presented are good
enough to get a smooth movement of the robot in the experiment.
In fact, it has been necessary to modify the Trinomial and the TEAR
protocols in order to assure the requirement that the robot will not
get two packets that are closer than 2 ms. In summary, as in this
experiment there is no congestion in the network, the router has
an optimum performance and the RTT sets itself to its minimum.

Moreover, as we can see in the figures, the trinomial protocol
presented for this experiment a better delay stability, due to the
fact that this protocol has a ratio-based performance, instead of the
window-based design of TCP Reno, TCP Las Vegas and TEAR. This is
very good for Internet Teleoperation.

In summary, the modified version of the Trinomial protocol
makes better use of the available bandwidth, because its perfor­
mance is almost constant and it reaches the maximum bandwidth
that the robot requires. The TCP and TCP Las Vegas work in a sim­
ilar way when there is no congestion in the network, which has
a certain variance of the bandwidth used, because of its window-
based design. On the other hand, the TEAR protocol gets the
available bandwidth in a very slow manner, which is particularly
unsatisfactory in situations where there is no congestion. How­
ever, the stability of the bandwidth, once the protocol has reached
the robot bandwidth requirement, is as good as the Trinomial, (see
Figs. 21-24).

S. Conclusions

Within the network robotics context via the Internet, and
particularly the teleoperation case, UDP and TCP protocols can be
improved, in order to acquire better performance and smoothness.

The TCP Reno uses a congestion control mechanism, and a
connection establishment that imply having high delay jitter
(fluctuations), a situation that is not appropriate for applications
such as Internet teleoperation.

Table 3
Summary of protocol Recommendations versus control robots commands

Data/ Network

High level commands/
Symmetric
High level commands/
Asymmetric
Low level commands/
Symmetric

Low level commands/
Asymmetric

TCP Reno

Good (First
recommended)
Good (First
recommended)
No good (High jitter)

No good (High jitter)

UDP

No good(No
retransmission)
No good(No
retransmission)
No good(No
congestion control)

No good(No
congestion control)

TCP/Vegas

Good (Second recommended.
Conservative flow)
Good (Second recommended.
Conservative flow)
Good (Second recommended.
Conservative flow)

Good (Second recommended.
Conservative flow)

Trinomial

No good (No
retransmission)
No good (No
retransmission)
Good (First
recommended)

No good (RTT
Problems)

Tear

No good (No retransmission)

No good (No retransmission)

No good (Slow start and
Problems with bidirectional
flows)
Good (First recommended)

0.4

0.35

i» 0.3

I 0.25

i °-2

| 0,15

a! o.i
0,05

o

TCP/Vegas

^ ^ ' ft

i
ROBOT

FPGA

CAMERA

ro w ui Cfi Oo t£>
-* to

Time (s)

Fig. 22. Telelaboratory experiment using TCP/Vegas for the Robot, and the FPGA.
The monitoring camera uses TCP.

TRINOMIAL

• ROBOT

FPGA

• CAMERA

M CO Ol 0> CO CO

Time (s)

Fig. 23. Telelaboratory experiment using Trinomial for the Robot, and the FPGA.
The monitoring camera uses TCP.

TEAR

• ROBOT

FPGA

• CAMERA

Fig. 24. Telelaboratory experiment using TEAR for the Robot, and the FPGA. The
monitoring camera uses TCP.

The TCP Las Vegas improves the TCP Reno performance
in congestion situations, such as the one presented for the
asymmetric network. The RTT is maintained at a constant level
in the presence of congestion, and works the same way as TCP
Reno when there is no congestion. However, the TCP Las Vegas is
very conservative when there are competing flows, which implies
having an extra reduction of the send ratio.

The Trinomial protocol is a nice solution, which uses as much
bandwidth as possible, providing smoothness for a bilateral teleop­

eration via the Internet. However, it introduces extra time-delays
due to the fact that it sets the router buffers to the maximum load,
and it is not designed for asymmetric networks. As well, as seen in
the RTT results, depending on the parameter configurations, may
not be as TCP-Friendly as other protocols. RTT behaviour is very
important for some experiments, like remote visual servoing and
teleoperation. Please note these conclusions about the Trinomial
are extracted from the simulations implemented by the authors of
this article, as they were not available via other alternatives.

The TEAR protocol is the one that sends more control informa­
tion to the robot on an asymmetric configuration, in a very smooth
way. However, for the Internet telerobotics context this is not suf­
ficient, due to the fact that it needs priorities to be set for every data
flow. For example, for the remote visual servoing experiment, the
FPGA and robot flows must have a minimum RTT and maximum
priority, and the monitoring Camera flow does not need to have
such a configuration. Moreover, the TEAR protocol has a slow start,
which prevents the systems from getting the available bandwidth
in a fast manner.

As a summary, Table 3 presents the recommendations of the
authors of this paper when having teleoperation data flows of
high and low level commands through both, a symmetric and an
asymmetric network.

When sending high-level commands, the recommendation is
using the TCP Reno protocol, since it guarantees the single packet
will reach the destination even if it needs to be retransmitted.

When having an Internet teleoperation with low-level com­
mands within a symmetric network, as retransmission is not ap­
propriate and a fast start is necessary; the Trinomial protocol offers
the best performance.

On the other hand, for an Internet teleoperation with low-
level commands within an asymmetric network, the TEAR protocol
presents the best results.

As conclusion, the requirements we wish for a specific End-To-
End Congestion Transport Protocol for Internet Teleoperation are
the following:

1. Smooth Congestion Avoidance: It will study the smooth equilib­
rium between bandwidth and time delay for master/slave tele-
operations. This equilibrium depends on the robot configura­
tion and the specific application.

2. Differentiated Services: Including priorities in the flows will
allow the bandwidth allocation of cameras, robot control, and
sensor information in a differentiated manner.

3. RTT feedback to the application layer (i.e. control loop): As
explained in Section 3, the control techniques for teleoperation
under time-delays need to know the current RTT between
master and slave in order to adjust some parameters as for
example the "Friction" one. It is important to provide the
current and next estimated RTT information to the application
layer from the transport protocol at each iteration.

PC Control

Graphical Graphical
Station A Station B

—. * Laboratory * f~. 4 / " _4 • •
Master Finger A Master Finger B

Fig. 25. The 'thumb wrestling' demonstrator scenario.

9. Future applications

New interactive applications, where some users interact
continuously are being developed. The goal is that users can send
and receive information in real time, according to the task they
are executing. It represents an extension of the master-slave
systems to a network where many devices can act as masters
at the same time. The Internet Transport protocol should inform
to the application layer about communication bandwidth. This
information will be used by bilateral controllers in order to
guarantee stability of the distributed system. Techniques based on
passivity require information related to RTT or similar to avoid that
communication delays make the system unstable.

An example of these applications is shown in Fig. 25. It
represents a virtual 'thumb wrestling' game. It is a demonstration
which focuses on transmitting haptic interactions between two
users. A user attempts to capture his opponent's thumb while
avoiding being wrestled out. During the match, the wrist and the
rest of fingers are kept still. Each user is handling a haptic device
(called MasterFinger) and a computer display:

- The haptic device registers the user movements and transmits
interaction forces.

- The computer runs a graphic simulation for showing the users'
movements.

All haptic information is managed by a computer server that
receives, processes and sends the information back via Ethernet.
The whole system is composed of five networked devices:

- PC-Control. It is the application server that managed all the
information. It is running under the vxWorks real-time platform.

- 2 graphical stations. They provide the user with a graphical
simulation showing the movement of both hands.

- 2 haptic controllers. They send the user movements and reflect
forces according to thumb collisions.

References

R. Marin, P.J. Sanz, P. Nebot, R. Wirz, A multimodal interface to control a robot
arm via the web: A case study on remote programming, IEEE Transactions on
Industrial Electronics 52 (December) (2005) 1506-1520.
R. Wirz, R. Marin, P.J. Sanz, Remote programming over multiple heterogeneous
robots: A case study on distributed multirobot architecture, Industrial Robot
33 (2006).
R. Marin, P.J. Sanz, A.P. Del Pobil, The UJI online robot: An education and
training experience, Autonomous Robots 15 (November) (2003) 283-297.
P.X. Liu, M.Q.H. Meng, S.X. Yang, Data communications for internet robots,
Autonomous Robots 15 (2003).
P.X. Liu, M.Q.H. Meng, P.R. Liu, S.X. Yang, An end-to-end transmission
architecture for the remote control of robots over ip networks, IEEE
Transactions on Mechatronics 10 (2005).
S. Floyd, K. Fall, Promoting the use of end-to-end congestion control in the
internet, IEEE/ACM Transactions on Networking 7 (1999) 14.
I. Rhee, V. Ozdemir, Y. Yi, TEAR: TCP Emulation at receivers: Flow control for
multimedia streaming, Department of Computer Science, NCSU 2000.
S.H. Low, L. Peterson, L. Wang, Understanding Vegas: A duality model, Journal
ofACM49(2002)18.
J. Mo, J. Walrand, Fair end-to-end window-based congestion control,
IEEE/ACM Transactions on Networkings (2000) 11.
R.T. Fielding, R.N. Taylor, Principled design of the modern web architecture, in:
ICSE 2000, 2000, pp. 407-415.
R. Marin, G. Leon, R. Wirz, J. Sales, J.M. Claver, P.J. Sanz, Remote control within
the UJI robotics manufacturing cell using FPGA-based vision, in: ECC2007
European Control Conference, 2007.
P.X. Liu, M. Meng, Y. Xiufen, J. Gu, An UDP-based protocol for internet robots,
in: World Congress on Intelligent Control and Automation, 2002, pp. 59-65.
S. Hirche, M. Ferre, J. Barrio, C. Melchiorri, M. Buss, Bilateral control
architectures for telerobotics, in: Advances in Telerobotics, in: STAR Series,
Springer Verlag, 2007.
R. Anderson, M. Spong, Bilateral control of teleoperators with time delay, IEEE
Transactions on Automatic Control 34 (1989) 13.
G. Niemeyer, J. Slotine, Stable adaptive teleoperation, IEEE Journal of Oceanic
Engineering 16 (1991) 10.
P. Arcara, C. Melchiorri, Control schemes for teleope ration with time delay: A
comparative study, Robotics and Autonomous Systems 38 (2002).
C. Secchi, S. Stramigioli, C. Fantuzzi, Digital passive geometric telemanipula-
tion, in: IEEE International Conference on Robotics and Automation, Taipei
(Taiwan), 2003.
S. Stramigioli, C. Secchi, A. van der Schaft, C. Fantuzzi, Sampled data
systems passivity and sampled port-hamiltonian systems, IEEE Transactions
of Robotics and Automation 21 (4) (2005).
Arjan van der Schaft, L2-gain and passivity techniques in nonlinear control,
Communication and Control Engineering (2000).
J. Postel, RFC 768: User Datagram Protocol, 1980.
J. Postel, RFC 793: Transmision Control Protocol, DARPA Internet Program
Protocol Specification, 1981.
J. Park, O. Khatib, Robust haptic teleoperation of a mobile manipulation
platform, in: Experimental Robotics IX, in: Star, Springer Tracts in Advanced
Robotics, 2005.
S.E. Butner, M. Ghodoussi, A real-time system for tele-surgery, in: 21st
International Conference on Distributed Computing Systems, 2001.
J. Padhye, J. Kurose, D. Towsley, R. Koodli, A model based TCPfriendly rate
control protocol, in: NOOSDAV1999,1999, pp. 137-151.
R. Rejaie, M. Handley, D. Estrin, RAP: An end-to-end rate-based congestion
control mechanism for realtime streams in the Internet, in: IEEE Infocom,
1999, pp. 1337-1345.
D. Sisalem, H. Schulzrinne, The loss-delay adjustment algorithm: A TCP-
friendly adaptation scheme, in: Int. Workshop Network and Operating System
Support for Digital Audio and Video, NOSSDAV, 1998, pp. 215-226.
S. Jin, L. Guo, I. Matta, A. Bestavros, TCP-friendly SIMD congestion control and
its convergence behaviour, in: 9th IEEE Int. Conf. Network Protocols, Riverside,
CA, 2001, pp. 156-164.
H. Schulzrinne, S. Casner, R. Fredrick, V. Jacobson, RFC 1889: RTP: A transport
protocol for real-time applications, 1996.
Y. Uchimura, T. Yakoh, Bilateral robot system on the real-time network
structure, IEEE Transactions on Industrial Electronics 51 (2004).
L. Ping, L. Wenjuan, S. Zengqi, Transport layer protocol reconfiguration for
network-based robot control system, in: IEEE Networking, Sensingand Control
2005, 2005.

	INVE_MEM_2008_56060b.pdf

