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There are many interesting aspects of Internet Telerobotics within the network robotics context, such 
as variable bandwidth and time-delays. Some of these aspects have been treated in the literature from 
the control point of view. Moreover, only a little work is related to the way Internet protocols can 
help to minimize the effect of delay and bandwidth fluctuation on network robotics. In this paper, we 
present the capabilities of TCP, UDP, TCP Las Vegas, TEAR, and Trinomial protocols, when performing a 
remote experiment within a network robotics application, the UJI Industrial Telelaboratory. Comparative 
analysis is presented through simulations within the NS2 platform. Results show how these protocols 
perform in two significant situations within the network robotics context, using heterogeneous wired 
networks: (1) an asymmetric network when controlling the system through a ADSL connection, and (2) a 
symmetric network using the system on Campus. Conclusions show a set of characteristics the authors of 
this paper consider very important when designing an End-to-End Congestion Control transport protocol 
for Internet Telerobotics. 

1. Introduction 

One of the multiple applications of Networked Robotics is 
enabling Internet access to expensive devices (e.g. industrial 
robots, FPGA systems, conveyor belts, etc.) organized as a 
telelaboratory for education. Thus, students and researchers can 
program their own robotic experiments via Internet, and then 
obtain the results through, for example, a simple webpage 

One essential part of a Telelaboratory is the interconnection of 
sensors, cameras, and robots via a networked system In the 
scientific literature, much work can be found that propose different 
ways and architectures to organize task-oriented applications of 
multiple network robots Some of these architectures are 
focused on Internet software frameworks (e.g. Web Services at the 
application OSI layer), and have been extended from previous work 
in single-robot telerobotics. 

Other work focuses not only on application protocols, but also 
on other levels of the OSI layers, like transport and network, which 
enable real-time control and teleoperation of network robots over 
IP. In fact, solutions can be found to cope 

with the problems associated with the Internet, in order to control 
networked robots: (1) time-varying transmission delay, and (2) 
non-guaranteed bandwidth. 

First of all, in this paper we present the IP-based network ar­
chitecture of the UJI Industrial Telelaboratory (see Figs. 1 and 2). 
After that, some of the most recent approaches of Network Robot 
Control under time delays are presented, which offer some inter­
esting solutions designed to guarantee telerobotic system stability, 
when the Internet is used as the medium of communication. Then, 
we will focus on the transport protocols that enable end-to-end 
congestion control in a TCP-Friendly manner for teleoperation, 
and tele-programming of robot arms. Simulations using TCP, UDP, 
trinomial TEAR (TCP Emulation at Receivers), and TCP Las 
Vegas protocols are presented within the UJI Industrial Tele­
laboratory. In fact, two different situations are studied: (1) using 
an asymmetric network (i.e. user controlling the devices through a 
ADSL connection), and (2) a symmetric network (i.e. on campus). 
Then, from these results, a set of conclusions are obtained which 
are important in order to design an end-to-end congestion control 
transport protocol for Internet teleoperation. 

2. The UJI industrial telelaboratory network architecture 

In Fig. 2, we can see the Network connectivity of the UJI 
Industrial Telelaboratory. In fact, in this system we consider that 



Fig. 1. The UJI Industrial Telelab devices: (1) Motoman industrial manipulator, (2) 
FPGA based vision system, (3) Conveyorbelt and monitoring camera, (4,5) On-hand 
mounted camera. 

every device (i.e. industrial robot, conveyor belt, FPGA, etc.), is 
connected to the same Ethernet network, and they act as single 
Network Robots that communicate with each other through the 
SNRP application level protocol (A new application level protocol 
designed by our team, ). This architecture offers many 
advantages, like scalability and maintainability, and it introduces 
interesting issues, like device synchronization. 

In order to make the SNRP simple to use and implement, it uses 
HTTP protocol as a basis, which give it more interoperability and 
flexibility. However, for this kind of situation, HTTP does not pro­
vide the following features: (1) Event Notification, and (2) Support 
for structured information. These two characteristics are very im­
portant to design the SNRP framework in industrial robotics. To 
accomplish this, we have incorporated the REST model into 
the SNRP protocol, which permits the implementation of state-
oriented applications and a simple scenario to design event notifi­
cation, and structured information features. 

Simplicity is maybe the most important challenge of network 
robotics architecture, due to the fact that it must be possible for a 
very broad range of devices to be part of it. In fact, as explained 
in [11], thanks to this simplicity, we were able to implement a 
prototype of SNRP Network Camera using a FPGA. 

First of all, as we want to enable the devices to be accessed 
through the Internet, they should be able to manage IP protocol. 
On top of that, the SNRP framework enables the device to accept 
TCP, and UDP connections. As explained in Section 4, UDP and TCP 
are not the best solutions to perform remote control through the 
Internet, so the SNRP framework is being designed to provide the 
possibility of transporting Internet packets through other transport 
protocols, like Trinomial, TCP Las Vegas, TCP Reno, or TEAR (see 
Fig. 3). 

3. Network robot control under time delays 

The Internet is a suitable way for developing the communica­
tion channel of a remotely controlled robot. However, some points 

Fig. 2. The UJI Industrial Telelab networking configuration. 
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Fig. 3. The SNRP framework. 

must be taken into account from the control point of view, such as 
reliability, time delay and bandwidth. Therefore, a communication 
protocol has to be selected according to these parameters. 

Two kinds of commands have to be considered to control a 
remote robot: high level commands and low level commands. High 
level commands are used when user is sending commands related 
to the task, such as 'get a part', 'move to home position', 'close the 
grip', etc. Transmission of these commands must be guaranteed in 
order to properly execute remote tasks. 

Commands are generated according to the task execution 
procedure; therefore low frequencies are required. In this case, TCP 
is used, since it is a reliable protocol, and packets are retransmitted 
when they are lost or corrupted 
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Fig. 4. Delay response when controlling an industrial Motoman robot via internet using UDP and TCP. 

On the other hand, low level commands have different 
requirements. This kind of command is related to robot movement. 
It implies a stronger connection between user and robot, such 
as guiding a manipulator or a mobile platform. In this case, 
higher bandwidth is required, but reliability is not a critical factor. 
UDP protocol is usually used for these tasks, since packets are 
minimized and delays are reduced If some packets are lost, 
then the remote robot can continue working, but with poorer 
performance. 

An interesting example for the use of low level commands, 
is master-slave teleoperation with force feedback. In this case, 
two data flows run continuously. First, the user handles a device 
called master that generates movement references for the robot 
(slave device); second, interaction forces between robot and 
environment are retransmitted to the user via force reflection 
in the master device. These systems are called bilateral, and are 
very sensitive to communication time delays Passive control 
techniques and scattering variable transformation are applied in 
order to guarantee stability of bilateral systems, in the presence of 
significant communication time delays 

Control problems increase when a master-slave system is 
linked via the Internet, since some data can be lost, and commu­
nication time delay is variable. Discrete scattering techniques are 
used to implement a switching packet transmission line that is also 
passive when communication delay is variable, and some packets 
are lost Several passivity based strategies have been pro­
posed to passively control master and slave sides. A generic frame­
work for geometric telemanipulation of port-Hamiltonian systems 
has been proposed in 

4. Transport protocols for remote control of network robots 

The basic transport protocols available in the Internet for 
implementing remote control applications are the following: 

1. UDP (User Datagram Protocol) This is based on the idea 
of sending a datagram from a device to another as fast as 
possible (i.e. best effort). This protocol does not guarantee that 
the information will reach the destination, and besides this, it 
does not manage any network congestion situation. 

2. TCP (Transmission Control Protocol) This guarantees the 
application level that the information will reach the destination 
performing the necessary retransmissions. Moreover, TCP takes 
care of network congestion and adjusts the transmission 
accordingly. 

UDP is a protocol that does not maintain a connection with 
the Server side, and it does not retransmit lost packets, it 
does not control network congestion, and neither manages any 
confirmation of packets that have reached their destination. 
The advantage of UDP, for remote control of devices via the 
Internet, is that having good network conditions, communication 
is accomplished without significant delay and without important 
fluctuations (i.e. delay jitter). Moreover, UDP does not assure that 

the packets have reached the destination in the proper order 
that they were sent; if fact, UDP does not inform if packets have 
even been received, or not. Besides this, UDP does not perform 
any congestion control mechanism, which means the sending 
rate is not adapted according to the real bandwidth available. 
This situation implies that we need another protocol for remotely 
controlling devices via the Internet. 

On the other hand, TCP is a very sophisticated protocol that 
establishes a virtual connection between the sender and the 
receiver. Moreover, as TCP manages the confirmation of packets 
received properly, we can assure that communication will be 
reliable. However, when TCP was designed they had in mind 
reliable communication for applications such as e-mails and files 
(ftp), and not controlling devices such as robots. The congestion 
control mechanism and connection establishment imply having 
high delayjitter (fluctuation), a situation that is not appropriate for 
applications such as Internet teleoperation of a robot manipulator 
using a haptic device. In the Fig. 4 we can see the results obtained 
when controlling a real robot using both, TCP and UDP. 

The majority of current telerobotic applications using the 
Internet (e.g. telelaboratories) use TCP or UDP. For this, the variable 
time-delay and bandwidth effect is resolved in the application 
level, by using intelligent sensors, predictive displays, and high 
level commands. On the other hand, if we really need to perform 
a teleoperation, we need to find applications that are closer to real 
time In this situation we need more specific communication 
protocols 

As this is a very emergent research field, in the scientific liter­
ature we cannot find many articles describing specific protocols 
to teleoperate networked devices (i.e. like robots) via Internet. On 
the other hand, we can find many protocols to design networked 
applications that require the transmissions of Multimedia content 
via Internet: (1) TFRC (TCP-Friendly Rate Control Protocol) 
RAP (Rate Based Adaptation Protocol) LDA (Loss-Delay Ad­
justment Protocol) SIMD (Square-Increase/Multiplicative-
Decrease Protocol) and RTP (Real Time Protocol) These 
protocols are not very convenient for telerobotics due to the fact 
that they use an intermediate buffer to compensate the delayjitter 
when receiving video and audio. In telerobotics using buffers im­
plies obtaining an overall higher delay that seriously reduces the 
smoothness with which the robot can be controlled. 

Some of the few works that specifically design communication 
protocols for Internet teleoperation are the following: 

(1) Trinomial method : It is a rated-based protocol, which 
means it manages the network congestion by adjusting the inter-
packet gap (IPG) instead of the window size schema that uses TCP. 
Thus, the protocol controls the number of datagrams per second 
depending on the available bandwidth. The Trinomial method uses 
UDP as basis. It means that the Trinomial is able to adapt to the 
network congestion and available bandwidth without affecting 
very much the way the user teleoperates the robot. As observed 
in [5], the Trinomial protocol provides a sending curve that is quite 
smooth and makes better use of the available bandwidth, thus 



obtaining a very good efficiency compared to the UDP and TCP 
protocols. In the following section we will study some parts of the 
Trinomial that we consider can be improved in order to be applied 
in the telelaboratories field. 

(2) Real-Time Network Protocol (RTNP) : is specially designed 
for bilateral teleoperation using mater/slave manipulators and 
force feedback. In such a system, the time-delay can be produced 
by the performance of network devices (i.e. routers, switches, 
etc.), the end-to-end congestion control algorithms, or the 
implementation of the network stack in the hosts. This is a protocol 
that uses an identification in the UPD/TCP headers to inform the 
Linux-based real-time operating system that the received packet 
has the category of "real time", in order to give it the maximum 
priority when passing the packet to the application level. The 
RTNP shows that the overall time-delay between the client and 
the server depends not only on the network but also on the 
software provided by the operating system. The RTNP focuses on 
the network stack implementation on the hosts instead of studying 
end-to-end congestion control techniques, which is the subject of 
this paper. This is why this protocol is not included in the network 
experiments. 

(3) Interactive Real-Time Protocol (IRTP) : is an IP-based 
protocol that takes the advantages of both, TCP and UDP, to 
improve the response in teleoperation systems. It is a connection-
oriented protocol that implements congestion control and error 
control. To enhance the efficiency, the IRTP protocol simplifies the 
packet header as much as possible, so that a major relationship 
between the data that is sent by the application level and the 
protocol control information is obtained. Moreover, the IRTP 
reconfigures itself in order to transmit the two basic kinds of data 
that are transmitted in a network control system, which are: (1) 
the crucial data (i.e. information that must reach the destination 
even if it has some time delay), and (2) the real-time data (i.e. 
information that must reach the destination as soon as possible). 
The IRTP protocol uses the same control congestion algorithm as 
the Trinomial method. As we already have the Trinomial protocol 
included in the results, we have not performed the experiments 
with the IRTP protocol. 

Moreover, in the telelaboratories context there are situations 
where the student/researcher is performing an experiment 
from home using an ordinary ADSL connection. This kind of 
asymmetric communication normally gives a poor upload link and 
a good download bandwidth. The TEAR protocol (TCP Emulation 
at Receivers) [7] is specifically designed for the transmission 
of multimedia streams on asymmetric connections. The TEAR 
protocol does not perform retransmission of lost and corrupted 
packets. Moreover, it does not use an ACK for every packet that has 
been sent. So that, when we speak of RTT in TEAR we are referring 
to the last packet received in addition to the ACK used by the 
TEAR after sending that packet. The following sections will provide 
some simulations to compare the performance of the trinomial, 
TCP, TCP Las Vegas, and TEAR protocols when performing an 
experiment within the telelaboratory. The experiments present 
two situations: (1) using symmetric network on campus, and (2) 
using an asymmetric network including a user connection to the 
network robots from home via an ADSL connection. 

5. Experiment description 

In this section we are going to study the behaviour of the 
TCP, TEAR, Trinomial, and "TCP Las Vegas" protocols for a remote 
visual servoing experiment performed by a student with both, at 
home using an asymmetric ADSL connection to the telelaboratory 
(i.e. 320 Kbps-Upload and IMbps-Download bandwidth), and on 
campus using the symmetric Ethernet structure at 100 Mbps. 
For this, the student asks the telelaboratory to provide as much 
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information from the FGPA-Vision System as possible, and he/she 
performs the control algorithm to provide the next position of the 
robot. The control Law is calculated by the student in his own 
computer. Moreover, in these simulations the student is provided 
with a packet from the monitoring camera every 20 ms, using a TCP 
Reno flow. 

As we can see in Figs. 5 and 6, the user (i.e. Node 10 at home 
and Node 3 on Campus) performs a visual servoing experiment 
over the industrial telelaboratory. These students use the following 
communication flows: 

1. The user activates the FPGA Vision System. 
2. The user activates the Industrial Robot. 
3. The user activates the Monitoring Camera. 
4. The user receives a frame from the monitoring camera every 20 

ms, using the TCP protocol. 
5. The FPGA Vision System sends the Object Geometrical proper­

ties to the user. 
6. The User calculates the control Law and sends the next robot 

position. The robot needs the commands to reach its controller 
with a minimum gap of two milliseconds. Otherwise the robot 
would indicate that an error has occurred within its controller. 
The robot returns its state to the user. 

In the simulation, the student gets the object geometrical 
properties in camera coordinates from the FPGA (e.g. grasping 
line). From this, the student applies a control law following the on-
hand visual servoing control until the grasping line is centered at 
the middle of the gripper. 

6. Results using an asymmetric network (at home) 

In this section we are going to observe the RTT behaviour 
and the bandwidth of Trinomial, TCP, TCP Las Vegas, and TEAR 
protocols for the industrial telelaboratory using an asymmetric 
network. 

As seen in Fig. 6, we have Node 4 that represents the industrial 
robot of the telelaboratory. Node 7, represents the router that gives 
access to every device in the telelaboratory. Node 3 represents 
a student that is connected to the telelaboratory and he is 
monitoring the experiment performed by node 10. Node 10 
represents a student that is performing a teleoperation (or visual 
servoing) experiment on the industrial robot (i.e. node 4). In the 
simulation, traffic to Node 3 is TCP based and it does not generate 
congestion to the intermediate network routers, because they use 
a 100 Mb/s network, and the available bandwidth is enough for 
the whole experiment. Moreover, traffic to Node 3 does not affect 
the one that goes to Node 10. The traffic from Node 10 (i.e. the 
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experiment) will vary from Trinomial, TCP Reno, TCP Las Vegas, and 
TEAR. 

As we can observe from Figs. 7-10 and Tables 1 and 2, 
the Trinomial protocol almost consumes the entire available 
bandwidth (see Fig. 12) at the router, obtaining an average RTT 
of 58.45 ms. Moreover, there are packets that almost reach 90 
ms of RTT. The Trinomial protocol sets the router buffers to the 
maximum load, which implies increasing the RTT average between 
the student and the robot. On the other hand, the Trinomial 
protocol sends more packets per second than TCP, increasing the 
information that comes from the student to the robot, and vice 
versa. Moreover, the trinomial loses almost the 20% of the packets 
that are sent, which is one of the most significant problems we 
found with this protocol. 

As shown in Figs. 9 and 10, the TEAR protocol is smoother than 
the TCP, which is very appropriate for the transmission of control 
information (i.e. robot and FPGA). Moreover, it allows the user to 
send more control packets to the robot in less RTT. The TCP Las 
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Vegas also presents many interesting features like the RTT stability, 
but it does not perform as the TEAR protocol using asymmetric 
networks. 

From the bandwidth point of view, the TCP protocol consumes 
80% of the available bandwidth (see Fig. 11), at an, with an 
average RTT of 66.95 ms. On the other hand, as TCP performs 
retransmissions, the number of received packets at Node 0 is not 
as significant as using the Trinomial protocol. 

The TEAR protocol is the one that sends more packets to the 
robot, taking advantage of the asymmetric network configuration. 



Table 1 
Number of packets sent/received/dropped per flow and protocol in asymmetric simulation 

FROM 

USER 
USER 
ROBOT 
FPGA 

DROPPED 

USER 
CAMERA 

TO 

ROBOT 
FPGA 
USER 
USER 

CAMERA 
USER 

TCP 

5352 
6182 
5335 
6182 

47 

1023 
1023 

TCP/Vegas 

7647 
7642 
7641 
7642 

0 

1033 
1033 

TEAR 

12 666 
395 
393 

17 462 

35 

1027 
1030 

Trinomial 

8780 
8276 
8020 
8285 

1773 

1027 
1029 

Table 2 
RTT behaviour per flow and protocol 

ROBOT 
FPGA 
CAMERA 

TCP 

Average (ms) 

66.95 
64.13 
64.87 

Deviation (ms) 

10.09 
6.85 
6.15 

TCP/Vegas 

Average (ms) 

51.58 
51.6 
53.23 

Deviation (ms) 

3.16 
3.00 
2.24 

TEAR 

Average (ms) 

25.93 / 25.68 
24.82 / 24.56 
54.89 

Deviation (ms) 

4.25 / 4.62 
2.78/3.88 
9.27 

Trinomial 

Average (ms) 

58.45 
58.5 
60.2 

Deviation (ms) 

8.53 
8.23 
8.15 
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Fig. 12. Telelaboratory experiment using Trinomial for the Robot, and the FPGA. 
The monitoring camera uses TCP. 
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Fig. 16. Comparative analysis of TCP, TCP Las Vegas, TEAR and Trinomial protocols 
for the visual servoing experiment on the link from the user to the telalaboratory 
(i.e. upload link). 

The RTT goes on an average of 51.61 ms (25.93 + 25.68). In some 
situations the RTT of the TCP Reno protocol is twice that of the 
TEAR one. Moreover, the Tear protocol has a slow start (see Fig. 13), 
which is not convenient for teleoperation. 

For the TCP Las Vegas, the RTT deviation is the most interesting 
for the master/slave teleoperation. In fact, it sets the router buffers 
to a minimum RTT average. From the bandwidth point of view 
(see Fig. 14), it offers almost 2000 more packets to the robot, 
than the same simulation using the TCP Reno, which represents an 
excellent improvement. Besides this, TCP Las Vegas does not drop 
any packets for the whole simulation. 

In summary, for this asymmetric experiment (see Figs. 15 and 
16), the TEAR protocol is the one that has a more stable and shorter 
RTT, using less bandwidth and sends more packets between the 
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student and the robot. The trinomial has one of the biggest RTT, 
and loses more packets than any other. The TCP Las Vegas loses 
less packets than any other, presents a very stable RTT, but does 
not send so many packets as the TEAR protocol. 

7. Results using a symmetric network (on campus) 

In this section we are going to observe the RTT and bandwidth 
behaviour of Trinomial, TCP Reno, TCP Las Vegas, and TEAR 
protocols for the industrial telelaboratory, using a symmetric 
network. Congestion is not presented in this experiment because 
the available bandwidth in the network is bigger than that required 
by the experiment. 

The requirement for the industrial manipulator is getting one 
packed every two milliseconds in order to fit the robot controller's 
requirements, for these experiments, the Trinomial and the TEAR 
protocols have been improved, in order to limit their sending ratio. 

As seen in Fig. 6, we have the Node 3 that represents a student 
that is performing a teleoperation (or visual servoing) experiment 
on the industrial robot (i.e. node 4). In the simulation, the traffic 
from the node 3 will vary from Trinomial, TCP Reno, TCP Las Vegas, 
and TEAR. 
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For this experiment, as the RTTs are so small (see Figs. 17-20), 
and the robot is not able to perform a command that is less than 
2 ms after its predecessor, the four protocols presented are good 
enough to get a smooth movement of the robot in the experiment. 
In fact, it has been necessary to modify the Trinomial and the TEAR 
protocols in order to assure the requirement that the robot will not 
get two packets that are closer than 2 ms. In summary, as in this 
experiment there is no congestion in the network, the router has 
an optimum performance and the RTT sets itself to its minimum. 

Moreover, as we can see in the figures, the trinomial protocol 
presented for this experiment a better delay stability, due to the 
fact that this protocol has a ratio-based performance, instead of the 
window-based design of TCP Reno, TCP Las Vegas and TEAR. This is 
very good for Internet Teleoperation. 

In summary, the modified version of the Trinomial protocol 
makes better use of the available bandwidth, because its perfor­
mance is almost constant and it reaches the maximum bandwidth 
that the robot requires. The TCP and TCP Las Vegas work in a sim­
ilar way when there is no congestion in the network, which has 
a certain variance of the bandwidth used, because of its window-
based design. On the other hand, the TEAR protocol gets the 
available bandwidth in a very slow manner, which is particularly 
unsatisfactory in situations where there is no congestion. How­
ever, the stability of the bandwidth, once the protocol has reached 
the robot bandwidth requirement, is as good as the Trinomial, (see 
Figs. 21-24). 

S. Conclusions 

Within the network robotics context via the Internet, and 
particularly the teleoperation case, UDP and TCP protocols can be 
improved, in order to acquire better performance and smoothness. 

The TCP Reno uses a congestion control mechanism, and a 
connection establishment that imply having high delay jitter 
(fluctuations), a situation that is not appropriate for applications 
such as Internet teleoperation. 



Table 3 
Summary of protocol Recommendations versus control robots commands 

Data/ Network 

High level commands/ 
Symmetric 
High level commands/ 
Asymmetric 
Low level commands/ 
Symmetric 

Low level commands/ 
Asymmetric 

TCP Reno 

Good (First 
recommended) 
Good (First 
recommended) 
No good (High jitter) 

No good (High jitter) 

UDP 

No good(No 
retransmission) 
No good(No 
retransmission) 
No good(No 
congestion control) 

No good(No 
congestion control) 

TCP/Vegas 

Good (Second recommended. 
Conservative flow) 
Good (Second recommended. 
Conservative flow) 
Good (Second recommended. 
Conservative flow) 

Good (Second recommended. 
Conservative flow) 

Trinomial 

No good (No 
retransmission) 
No good (No 
retransmission) 
Good (First 
recommended) 

No good (RTT 
Problems) 

Tear 

No good (No retransmission) 

No good (No retransmission) 

No good (Slow start and 
Problems with bidirectional 
flows) 
Good (First recommended) 
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Fig. 22. Telelaboratory experiment using TCP/Vegas for the Robot, and the FPGA. 
The monitoring camera uses TCP. 
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Fig. 23. Telelaboratory experiment using Trinomial for the Robot, and the FPGA. 
The monitoring camera uses TCP. 
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Fig. 24. Telelaboratory experiment using TEAR for the Robot, and the FPGA. The 
monitoring camera uses TCP. 

The TCP Las Vegas improves the TCP Reno performance 
in congestion situations, such as the one presented for the 
asymmetric network. The RTT is maintained at a constant level 
in the presence of congestion, and works the same way as TCP 
Reno when there is no congestion. However, the TCP Las Vegas is 
very conservative when there are competing flows, which implies 
having an extra reduction of the send ratio. 

The Trinomial protocol is a nice solution, which uses as much 
bandwidth as possible, providing smoothness for a bilateral teleop­

eration via the Internet. However, it introduces extra time-delays 
due to the fact that it sets the router buffers to the maximum load, 
and it is not designed for asymmetric networks. As well, as seen in 
the RTT results, depending on the parameter configurations, may 
not be as TCP-Friendly as other protocols. RTT behaviour is very 
important for some experiments, like remote visual servoing and 
teleoperation. Please note these conclusions about the Trinomial 
are extracted from the simulations implemented by the authors of 
this article, as they were not available via other alternatives. 

The TEAR protocol is the one that sends more control informa­
tion to the robot on an asymmetric configuration, in a very smooth 
way. However, for the Internet telerobotics context this is not suf­
ficient, due to the fact that it needs priorities to be set for every data 
flow. For example, for the remote visual servoing experiment, the 
FPGA and robot flows must have a minimum RTT and maximum 
priority, and the monitoring Camera flow does not need to have 
such a configuration. Moreover, the TEAR protocol has a slow start, 
which prevents the systems from getting the available bandwidth 
in a fast manner. 

As a summary, Table 3 presents the recommendations of the 
authors of this paper when having teleoperation data flows of 
high and low level commands through both, a symmetric and an 
asymmetric network. 

When sending high-level commands, the recommendation is 
using the TCP Reno protocol, since it guarantees the single packet 
will reach the destination even if it needs to be retransmitted. 

When having an Internet teleoperation with low-level com­
mands within a symmetric network, as retransmission is not ap­
propriate and a fast start is necessary; the Trinomial protocol offers 
the best performance. 

On the other hand, for an Internet teleoperation with low-
level commands within an asymmetric network, the TEAR protocol 
presents the best results. 

As conclusion, the requirements we wish for a specific End-To-
End Congestion Transport Protocol for Internet Teleoperation are 
the following: 

1. Smooth Congestion Avoidance: It will study the smooth equilib­
rium between bandwidth and time delay for master/slave tele-
operations. This equilibrium depends on the robot configura­
tion and the specific application. 

2. Differentiated Services: Including priorities in the flows will 
allow the bandwidth allocation of cameras, robot control, and 
sensor information in a differentiated manner. 

3. RTT feedback to the application layer (i.e. control loop): As 
explained in Section 3, the control techniques for teleoperation 
under time-delays need to know the current RTT between 
master and slave in order to adjust some parameters as for 
example the "Friction" one. It is important to provide the 
current and next estimated RTT information to the application 
layer from the transport protocol at each iteration. 
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Fig. 25. The 'thumb wrestling' demonstrator scenario. 

9. Future applications 

New interactive applications, where some users interact 
continuously are being developed. The goal is that users can send 
and receive information in real time, according to the task they 
are executing. It represents an extension of the master-slave 
systems to a network where many devices can act as masters 
at the same time. The Internet Transport protocol should inform 
to the application layer about communication bandwidth. This 
information will be used by bilateral controllers in order to 
guarantee stability of the distributed system. Techniques based on 
passivity require information related to RTT or similar to avoid that 
communication delays make the system unstable. 

An example of these applications is shown in Fig. 25. It 
represents a virtual 'thumb wrestling' game. It is a demonstration 
which focuses on transmitting haptic interactions between two 
users. A user attempts to capture his opponent's thumb while 
avoiding being wrestled out. During the match, the wrist and the 
rest of fingers are kept still. Each user is handling a haptic device 
(called MasterFinger) and a computer display: 

- The haptic device registers the user movements and transmits 
interaction forces. 

- The computer runs a graphic simulation for showing the users' 
movements. 

All haptic information is managed by a computer server that 
receives, processes and sends the information back via Ethernet. 
The whole system is composed of five networked devices: 

- PC-Control. It is the application server that managed all the 
information. It is running under the vxWorks real-time platform. 

- 2 graphical stations. They provide the user with a graphical 
simulation showing the movement of both hands. 

- 2 haptic controllers. They send the user movements and reflect 
forces according to thumb collisions. 
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