An experimental study of
distributed robot coordination

Stefano Carpin'! Enrico Pagello?
LSchool of Engineering
University of California, Merced — USA

2 Department of Information Engineering
University of Padova — Italy

Abstract

Coordinating the path of multiple robots along assigned paths is a computationally
hard problem with great potential for applications. We here provide a detailed
experimental study of a randomized algorithm for scheduling priorities we have
developed, also comparing it with exact and approximated solutions. It turns out
that for problems of reasonable size our algorithm exhibits an appealing compromise
between speed and quality.

Key words: Multi-robot systems, intelligent mobility, randomized algorithms,
motion planning

1 Introduction

Planning the motion of multiple robot systems has been a task investigated
since the early days of mobile robotics. While the problem is interesting in
itself, because of the inherent computational complexity it exhibits, it has
to be acknowledged that few applications have been presented up to now
in the context of autonomous mobile robots. This is partly due to the fact
that systems with a remarkable number of robots have not been deployed
yet. Moreover, when multiple robots are to operate in a shared unstructured
environment, one of the holy grails of multi-robot research, their motion is
commonly governed by reactive navigation modules rather than by precisely
planned paths. That said, it is not implied that the problem in itself lost
interest from the applicative point of view. The demand for systems capable
of governing the motion of multiple objects in shared environments is instead
ever increasing. Applications include for example luggage handling systems

Preprint submitted to Elsevier 26 November 2007

at airports, storage systems in factories, moving containers in harbors, and
more. The theme of intelligent mobility is envisioned to play a major role in
the foreseeable future. Possibly, one of the major differences that will be seen
will be a decrease of individual robots’ motion freedom. Sticking to the storage
systems in factories example, mobile carts are not free to wander wherever they
want, but are rather constrained to proceed along predefined paths, usually
hard wired in hardware. Given a set of predefined paths, coordinating the
motion of vehicles along these routes will be asked more and more often. And,
of course, it will be asked to find solutions that optimize certain performance
indices, like for example, consumed energy, time needed to complete the task,
and the alike. From a computational point of view these problems have been
studied since quite some time, and their inherent complexity has soon been
detected. Approximated and heuristic based solutions are therefore a must
when one is required to deal with multiple moving objects. In this paper we
offer an experimental assessment of a simple randomized approach to solve the
coordination problem we have proposed in the past. Section 2 discusses related
literature, while the problem is formalized in section 3. The solving algorithm
is illustrated in section 4, and the experimental framework and results are
shown in section 5. Conclusions are finally provided in section 6.

2 Related work

The problem of multi-robot motion planning has been continuously studied in
the past. The first major distinction concerns centralized versus decentralized
approaches. When a centralized motion planner is used, one process has to
plan the motion for the whole set of robots. The obvious drawback is in the
high dimensionality of the composite configuration space to be searched. In
a decentralized approach every robot plans its own motions, and then has to
undergo a stage of negotiations to solve possible collisions with other robots.
Decentralized approaches are inherently incomplete, but much faster. Sinchez
and Latombe [1] speculated that decentralized approaches are likely to show
their incompleteness often when used in industrial production plants. In the
case of mobile robot systems, however, the environment is likely to be less
cluttered and hence these problems are less likely to occur. Efficient methods
to solve the single robot motion planning are available [2][3][4] and will not
be further discussed here (recent books on motion planning like [5] and [6]
provide extensive and up to date coverage of the topic). A common approach
to solve the multi-robot motion planning problem consists in assigning pri-
orities to robots and planning their motion according to them [7]. Paths for
robots are computed one after the other, according to their priority. When
planning the motion of a robot with priority p;, it is necessary to take into
consideration the already planned motions for robots with priority p;, where

pi < p;. Finding a good priority schema is a hard problem in itself [8]. A re-
lated problem that we address in this paper consists in coordinating the path
of a set of robots along given specified paths. As the paths may intersect with
each other, it might be necessary to stop certain robots when approaching an
intersection point in order to give way to other robots and avoid collisions. In
this context one is generally interested to minimize certain parameters, like,
for example, the time needed by all robots to reach their final destination. This
rules out certain trivial coordination schemas, like for example the one where
just one robot moves and all the others remain stationary, since the overall
time would be too high. LaValle and Hutchinson solved the problem using
a game-theoretic approach based on multi-objective optimization [9][10]. The
approach allows to tune the algorithm behavior between centralized planning
and complete decentralized planning. The authors show that optimal results
can be found, but a significant amount of time is needed. Simeon et al. [11]
solved the path coordination problem using a resolution complete algorithm.
They show how it is possible to split a given path in segments where the robot
will not collide with any other robot, and segments where paths intersect. The
authors illustrate results involving up to 150 robots, but where no more than
10 robots are intersecting each other’s path. Computation time is in the order
of minutes. Akella and Hutchinson [12] solve the problem of robot coordina-
tion along predefined routes by simply varying the start time of each robot.
Once a robot starts to move, it never stops until it reaches its target position.
Peng and Akella recently extended these ideas addressing the case of robots
with kinodynamic constraints [13].

3 Problem formulation

The problem we aim to study is the following: given n robots, assume that n
paths, one for each robot, are provided. We suppose that each path has been
subdivided into free and occupied segments. Given a path, an occupied segment
is a part of the path such that the robot can collide with other robots while it
is moving along that part of the path. Occupied segments arise when different
paths intersect each other, or are very close (see figure 1 for an example). Any
segment that is not occupied is declared free. In light of results presented in
[11] and [13], free and occupied segments can be efficiently determined. Hence,
a path p; can be seen as a sequence p; . .. pf(i), where each pg is either a free
or an occupied segment, and s(i) is the number of segments composing path
p;. The task is to find a coordination schema, i.e. a mapping:

C:[0,T] = {1...s(1)} x {1...5(2)} x ... x {1...s(n)}. (1)

R2

R1 =

Fig. 1. The simplest case of robot coordination, involving two robots only. R1’s
path can be divided into three segments, free, occupied and free respectively. R2’s
segment can be divided into two segments. If R2 is given a priority higher than R1,
and both robots travel at the same speed, R1 will not be able to reach its final
destination, because of R2 stopping on its path.

such that for each time 0 < ¢ < 7' no two or more robots are moving along path
segments that collide with each other. In the beginning, robot i is positioned
at segment p!, and in the end it has to reach pi”. While moving through
the different segments, a certain amount of time will be spent to traverse
each of them. Let ¢(p!) be the time spent by robot i to traverse segment
p! (1 < j < s(i)). Throughout the paper we assume that robots only move
forward along their path, though they can stop at certain points to give way
to other robots. However, they never backtrack along their route. The goal is
to find a coordination schema that minimizes the time needed by all robots to

complete their motion. Formally we aim to minimize the following quantity

)
2= gg%j;t(p?)- (2)

It can be shown that this problem is equivalent to the Job Shop Scheduling
(JSS) Problem, which is known to be NP-hard [14]. The JSS problem asks how
to schedule n jobs that have to be processed through m machines in a way that
the overall required time is minimized. The constraints are that no machine
can process more than one job at the same time, and that each job has to be
processed by the machines in a given order. In the path coordination problem,
each robot is a job, and each free or occupied segment is a machine. The
reader should note that while reducing the robot motion planning coordination
problem to an instance of the JSS, not every job needs to be processed by every
machine (i.e. not every robot has to travel through all the possible segments).
Under the assumption that P # N P, the search for a coordination schema
that minimizes the time needed to complete the motion task is doomed to
take exponential time. This motivates the great number of approximated and
heuristic approaches that have been proposed along the years.

4 Random rearrangements

In our former work [15] we proposed a simple distributed schema to solve the
multi-robot motion planning problem. Similar ideas were later used in [16].
The idea is slightly modified here to describe how the various robots can op-
erate to find a valid coordination schema, and is depicted in algorithm 1. The
algorithm assumes that a data structure SpaceTime is available. SpaceTime
records which part of the space is occupied or free at a given time. The Space-
Time data structure can be accessed by providing two indices, one for the
space and one for the time. The algorithm picks a random priority schema
(line 1), and then schedules the robot motions according to the selected pri-
ority schema. The first considered robot will be scheduled to move straight
along its path with no stops, and SpaceTime will be accordingly updated.
When scheduling successive robot motions, it is necessary to check whether
the robot can move to its next path segment or if it is already occupied (line
6). If this is possible, the robot moves to its next segment (line 7), or a delay
is inserted (line 11). In both cases SpaceTime is updated to record robots’
position (line 12) while time evolves (lines 8 and 11).

Algorithm 1 Coordination of n robots
1: pick a random permutation of the set {1...n}
2: forv+—1ton do
3: Time «—0

4: 7«1

5: while j < s(i) do

6: if SpaceTime(Time,p!) is free then

7 Advance robot i through the segment p’
8: Time — Time + t(p})

9: je—j+1
10: else

11: Time «— Time + Delay

12: update SpaceTime

We here stick to the hypothesis formulated in [15], i.e. that each robot will
apply this procedure to compute a coordination schema, and that in the end
the one leading the best value for the variable z formerly defined will be used
to execute the real motion. So, when n robots are involved, n independently
chosen random priority schemas are tried.

The coordination schema does not compute any path and does not alter any of
the paths it starts with. Hence there are cases when certain priority schemas
do not lead to any solution. For example, if robot i’s goal position is on
the path p; assigned to robot j, and ¢ has a higher priority than j, robot 7
may reach its goal position before j passes through the intersection. At that
point robot j will not be able to reach its target position. This could be
avoided if robots would be allowed to move backwards along their path, but

this extension is not considered here. From a practical point of view, it has to
be mentioned that even a naive implementation of the above algorithm can
solve a coordination task in a fraction of a second. The reader should not be
misled by this statement. The algorithm just computes a random permutation
and tries to schedule robots one after the other according to this schema. No
paths are computed and no optimization is tried, hence the small time required
to find a solution. The twist of our study is indeed to show that with such a
simplified approach one still gets good results in practice.

5 Experimental results

The conceptual equivalence between the path coordination problem and the
JSS problem has been outlined since long time, but to the best of our knowl-
edge there have been no attempts to set up an experimental framework to
compare the exact approach and heuristic solutions proposed along the years.
While one can easily guess that solving the JSS problem will take long time, it
is interesting to assess by how much the best solution found by an heuristic al-
gorithm differs from the optimal one. With respect to the algorithm presented
in section 4, it is also interesting to measure how likely it is to select a random
priority schema that leads to a deadlock situation. We have then developed
three experimental scenarios. The first one is based on the formerly described
algorithm, while the second is based on a freely available implementation of
Mixed Integer Linear Programming algorithms [17] and is used to get exact
solutions to the associated JSS problem instances. In addition, we have also
implemented the approximated algorithm described in [18]. The algorithm
described by Shmoys et al. therein is the first approximation algorithm that
gives a guaranteed approximation ratio with high probability. It is instructive
to compare three algorithms that span the whole range of possibilities, namely
an exact solution, an approximated solution that has a guaranteed bound with
high probability, and a heuristic algorithm with no guaranteed performance.

The operating scenario has been simplified to a square grid, with robots start-
ing and ending at random positions and moving along randomly generated
paths. Generated paths are not straight, but rather present various turns and
are of variable length. Figure 2 shows an extremely simple scenario with two
robots moving on a 6x6 grid. The first two panels illustrate the path of the
two robots. On the right, the two paths are superimposed and the grey cells
show possible collisions to be resolved. In this example, however, the algorithm
determines that if the robots move at full speed no collision occurs in space
time and produces a schedule with no stops at all. It is worth observing that
these hypothesis do not oversimplify the problem. We anticipated in section
2 that there exist efficient algorithms to both compute paths and decompose
them into free and occupied segments. Here we are only interested in the suc-

Fig. 2. A simple case of coordination: two robots moving in the same grid.

20x20 environment

50

S
(=)
T
I

W
(=]
T

N
[=]
T

Percentage of failures

—_
=
T

6 8 10 12 14 16

Number of robots
Fig. 3. Percentage of failures (y axis) versus number of robots (x axis) on a 20x20
grid.

30x%30 environment

100
[T e—— [T d
80r

40F

Percentage of failures

201

5 10 15 20 25
Number of robots

Fig. 4. Percentage of failures (y axis) versus number of robots (x axis) on a 30x30
grid

cessive step, i.e. the coordination along these provided paths. The first set of
tests analyzes the possibility of not finding a valid priority schema. Figures 3,
4 and 5 illustrate the results. Fixing three different environment sizes, we have
solved 20 randomly generated problems involving a varying number of robots,
ranging from 6 to 35. The figures illustrate the percentage of generated prior-
ity schemas that are not valid. A sort of saturation effect can be observed, i.e.

40x%40 environment

100

80r

601

40F

Percentage of failures

201

L L 1 L i
5 10 15 20 25 30 35
Number of robots

Fig. 5. Percentage of failures (y axis) versus number of robots (x axis) on a 40x40
grid

when the number of robots increases, so does the fraction of invalid priority
schemas. The reader should however observe that this effect manifests itself
when the number of robots is high and the environment is big. The bigger the
environment, the longer the paths travelled by each robot and the number of
collisions. Moreover, also the chance that a robot will terminate its run on
some other path is higher. This was decided on purpose, to test the algorithm
under extreme conditions. It is also worth noting that when trying to coor-
dinate n robots the algorithm always tries only n of the possible n! priority
schemas. In the most extreme case with 35 robots, only 35 out of the 35! possi-
ble priority schemas were tried. This is clearly a negligible fraction that could
be easily increased in order to give the algorithm more chances to find valid
schedules. Next, we have compared the performance of our algorithm with the
algorithm illustrated in [18]. In particular, we have compared the length of the
schedules produced by the two algorithms. Results are provided in figures 6,
7 and 8. The figures show the ratio between the schedule length produced by
ours and Shmoys’ algorithms. For a fixed number of robots multiple compar-
isons are displayed because multiple randomly generated test cases are solved
and compared. In all considered cases the ratio is below 500%, i.e. solutions
produced by our algorithm are at most 5 times longer. Interestingly, the trend
shows that this gap reduces when the problem becomes more challenging, i.e.
when the number of robots increases. For the most hard problems the solution
found by our algorithm is usually twice as long.

The last point would be comparing the solution found with the proposed al-
gorithm with the one found by the exact JSS solution. Doing this comparison
is however computationally hard. Solving a single instance of the coordination
problem with environments bigger than 20 x 20 or more than 10 robots takes a
remarkable number of hours of intensive computation. For the scenario involv-
ing a 20 x 20 grid and a number of robots ranging from 6 to 9, no significant

20x%20 environment

450 : w
400F i
350t !]
° .
=] N N :
] : .
S 300F T G]
8 i * L] " = *
o % s M
o z x H ¥ H M
] N S S S A S i
T T T
R x x]] 4 H »
200+ Fy A S]
* * : % M H M i
. P i
150r b1
p :
100 i 1 L L L i
6 8 10 12 14 16

Number of robots

Fig. 6. Relative performance on a 20x20 grid

30x30 environment
450 T T T T

400/ : : : ‘ .

350

sk mn
[T R

[&]

(=

o
T

Percentage
n
(4
(=]
T
IR
-
[P T
wx xoxoraxoas m xx x
-

o x

S -
B L S
S AR K
* m—E
ook mx x X XXX
[OF -

100 Il 1 I Il Il Il 1
6 8 10 12 14 16 18 20 22 24 26

Number of robots

Fig. 7. Relative performance on a 30x30 grid

differences were observed. In 97% of the cases the produced schedules had the
same length. When differences were noticed, the schedules differed by 1 unit
of time (versus a schedule length always higher than 50 time units, i.e. the
observed mismatch was less than 2%).

6 Conclusions

In this paper we have experimentally analyzed a randomized algorithm for the
coordination of multiple robots along predetermined paths. The algorithm se-
lects some random priority schemas and then tries to schedule the robots’
motions according to them, inserting suitable delays when collisions in space

40x40 environment

500
4501 : B
4007 57 - = i

gy *
350 &y ke E e f H ; 1

Percentage
(=]
(=]
(=]
T
L

R R P it
' . i : ; : ;
) M o R iopox : z x
2001 [AR A B R A R B N =
" s % * oo 1y h :
R ; R
150 R R
100 1 1 1 1 1 1
5 10 15 20 25 30 35

Number of robots

Fig. 8. Relative performance a 40x40 grid

and time are detected. The simple randomized procedure for finding priority
schemas appears to be competitive under rather general conditions. Most of
the benchmark problems can be solved using only a very limited number of
priority rearrangements. This result is intriguing, if one considers the number
of priority schemas tried versus the number of possibilities. We have also ob-
served that the quality of the solution, intended as the time to bring all the
robots to their final destination, is often not far from the optimal one. For the
proposed algorithm we cannot provide analytical bounds specifying by how
much the determined solution differs from the optimal one. However, experi-
mental comparisons with an algorithm well characterized from the thoeretical
point of view show that our algorithm compares favorably. The proposed ap-
proach shows that in many practical situations, suboptimal approaches can
be quickly found and are still satisfactory, whereas the need of guaranteed op-
timal solutions offers very often an unbalanced ratio between quality increase
and required time.

References

[1] G. Séanchez, J. Latombe, Using a prm planner to compare centralized and
decoupled planning for multi-robot systems, in: Proceedings of the IEEE
International Conference on Robotics and Automation, 2002.

[2] S. Carpin, G. Pillonetto, Motion planning using adaptive random walks, IEEE
Transactions on Robotics 21 (1) (2005) 129-136.

[3] L. Kavraki, P. Svestka, J. Latombe, M. Overmars, Probabilistic roadmaps for
path planning in high-dimensional configuration spaces, IEEE Transactions on

10

Robotics and Automation 12 (4) (1996) 566-580.

[4] S.LaValle, J. Kufner, Randomized kinodynamic planning, International Journal
of Robotics Research 20 (5) (2001) 378-400.

[5] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki,
S. Thrun, Principles of robot motion, MIT Press, 2005.

[6] S. LaValle, Planning algorithms, Cambridge academic press, 2006.

[7] M. Erdman, T. Lozano-Pérez, On multiple moving objects, Algorithmica 2 (1)
(1987) 477-521.

[8] M. Bennewitz, W. Burgard, S. Thrun, Finding and optimizing solvable priority
schemes for decoupled path planning techniques for teams of mobile robots,
Robotics and Autonomous Systems 41 (2-3) (2002) 89-99.

[9] S. LaValle, Robot motion planning: A game-theoretic approach, Algorithmica
26 (3-4) (2000) 430-465.

[10] S. LaValle, S. Hutchinson, Optimal motion planning for multiple robots having
independent goals, IEEE Transactions on Robotics and Automation 14 (6)
(1998) 912-925.

[11] T. Siméon, S. Leroy, J. Laumond, Path coordination for multiple mobile
robots: A resolution-complete algorithm, IEEE Transactions on Robotics and
Automation 18 (1) (2002) 42-49.

[12] S. Akella, S. Hutchinson, Coordinating the motions of multiple robots with
specified trajectories, in: Proceedings of the IEEE International Conference on
Robotics and Automation, 2002, pp. 624—632.

[13] J. Peng, S. Akella, Coordinating multple robots with kinodynamic constraints
along specified paths, International journal of robotics research 24 (4) (2005)
295-310.

[14] M. Garey, D. Johnson, Computers and Intractability. A guide to the theory of
NP-Completeness, W.H. Freeman and Company, 1979.

[15] S. Carpin, E. Pagello, A distributed algorithm for multi-robot motion planning,
in: Proceedings of the fourth Eurpoean Conference on Advanced Mobile Robots,
Lund (Sweden), 2001, pp. 207-214.

[16] Y. Guo, L. Parker, A distributed and optimal motion planning approach for
multiple mobile robots, in: Proceedings of the IEEE Conference on Robotics
and Automation, 2002, pp. 2612-2619.

[17] G. project, The gnu linear programming toolkit,
www.gnu.org/software/glpk /glpk.html (2005).

[18] D. Shmoys, C. Stein, J. Wein, Improved approximation algorithns for shop
scheduling problems, STAM Journal of Computing 23 (3) (1994) 617-632.

11

