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Abstract

This paper presents a model of ocular-motor developmesgired by ideas and data from developmental psychologyl€graing
problem concerns the growth of the transform between impaessand motor space necessary for the control of visusddascAn
implementation is used to produce experimental resultslask are presented and discussed. The algorithm is siexplemely
fast, self calibrating, adaptive to change, and exhibitergient stages of behaviour as learning progresses.
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1. Introduction (i) it is not pre-wired but learns how to saccade, (ii) it lesr
very rapidly — much faster than current neural network based

Current research in robotics frequently draws inspirationapproaches, (iii) it continuously adapts to correct eram ac-
from biology. By taking account of human and animal be-commodate any changes in the ocular-motor system, (iveisdo
haviour there is much to be learned about agents, autononiybt use or require any calibration process or prior knowéedg
and embedded cognition, and robotics has benefitted cansideand (iv) the generated behaviour displays distinct andiigual
ably by exploring new mechanisms and approaches. tively different stages which emerge during learning.

There are three main sources of biological inspiratiorucstr It is important to state that although our work is biologigal
tural biology, which deals with the anatomy and functioniig  inspired, the aim is to create new mechanisms for contgpllin
biological systems (e.g. neuroscience and endocrinojegg)  robots, not to directly contribute to the understanding of h
lution, which concerns growth and change across a popalatio man behaviour. Hence, our models of biological systemsiofte
and development, which addresses growth and change withigbntain approximations ayar abstractions, and any similarity
the individual. in behaviour does not necessarily signify that the sameriate

Of these three branches of biology both the structural aad thmechanisms are being used.
evolutionary aspects have been intensively studied, asfeee This paper is structured as follows: Section 2 presents an
example in robot controllers based on computational maafels overview of the human ocular-motor system; Section 3 de-
brain systems [30] and advances in evolutionary robotié} [3 scribes our visuo-motor coordination mapping model and the
but only in recent years has developmental robotics blossom associated developmental learning algorithm; Section 4 ex
as a research field; for a review see [28]. plains an experimental implementation; Section 5 dessnibe

The aim of developmental robotics is to recognise processesults from experiments; Section 6 discusses the findings and
of growth and change in human behaviour and build models thamplications of this work, which is related to other resdairc
exhibit growth of competence and skill similar to that olveer  Section 7; and finally, Section 8 gives a summary.
and reported by psychologists. It is notable that currebot®
_stiII lack much of the adaptation, flexibilij[y and learninges 2. Human Visual Sensing and the Ocular-Motor System
in humans, and development may provide the key to further
advances. The human visual system is not a passive receptor but must

This paper describes a study inspired by the ability of the hube actively directed at objects or features to be examined- D
man eye to locate and rapidly move to targets to be examineéhg such examinations the eye is held onto the target; this is
These eye movements are called saccades. We explore this alaialled fixation or foveation and the angular direction ofélye-
ity in terms of a sensory-motor coordination context [37§an ball is known as the gaze.
focus on very early infancy to produce developmental legyni
algorithms. 2.1. The Human Eyeball

There have been many structural and computational models Each human eyeball is moved by six muscles; operating in
of rapid eye movements, e.g. [41, 19, 45, 13] for a review se@airs, they rotate the globe along orthogonal axes in theee d
[15], but we believe that our developmental approach [26] iggrees of freedom. Two of the axes cover horizontal and ver-
able to produce a method with a unique set of features, nameltical eye movements. The third muscle pair (rotation of the
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retina) is used to correct thefects of torsion that can oc- motor layers [34]. Vision is suppressed during a saccad#, an
cur because rotations about intersecting spherical agasoar-  saccades and fixations are mutually inhibited by the bramst
commutative [50]. The eyes obey certain compensation lawsircuits [47].
and so do not display suclftects; the reasons for this are still  Studies of human infants’ saccades have shown that there are
unknown but may be due to either special corrective neural ci stereotyped age related changes in the way that their dgebal
cuits or the recently discovered muscle pulley structud@$.[ move and that the more advanced movements coexist with ear-
In any case, this means torsional rotations can be ignomed fdier movements [42].
our purposes. Saccades can move at speeds of up t6 pedsecond; which
The dynamics of the eyeball are very well behaved, primarilyraises the question of how the brain knows when the eyeball
because there is almost no external loading (unlike all thero  has reached the target position. A feedback system candux rul
body parts) and the viscous and elastic properties arestensi  out because of the two candidate feedback signals, refmal s
over wide operating parameters. This allows control motiels nals would not be processed in time [48] and proprioceptam h
assume high repeatability of motor actions [48]. been shown to be not necessary for accurate saccades [E6]. Th
The ocular muscles are rich in spindle receptors that giveate of firing of motor neurons that drive the eye muscles are
high quality information about the stretch of the musclescvh  linearly related to eye position [48] and this has formedithe
corresponds to the position of the eyeballs relative to¢iseaf  sis of a feedforward mechanism for eye position control.sThi
the head. The stretch signals afBeetively linearly related to  widely accepted idea is known as the “corollary discharge” o
angular rotation [23] and so high quality proprioceptioforn  “efferent copy” model [16] in which motor values are taken

mation on the direction of gaze is available. as reliable indicators of eye position. However a feedfodva
model is subject to local errors or drift and proprioceptige
2.2. The Retina ceptors and optokinetic functions are assumed to have amajo

Unlike cameras, which have uniform sensor arrays with conroIe in stabilisation and holding the gaze during fixatiogs [
’ Thus the visual location of the target for a saccade and the

tiguous pixels usually arranged in a regular grid, the human )
retina is not uniform but consists of fErent sensor charac- MOtor values that bring the target to the centre must be corre
teristics across its extent [L1]. The periphery of the eefim lated and this means there must be a close coordination eetwe

a region containing low accuracy, monochrome sensing rodf‘e image space of the retina and the motor space of the ocu-

which are very sensitive to change or movement. The centr r m(l;SCIeS' ,SUCh slensory-motc;r coqrdma#og must Ee ”.“:]"”'
region contains colour sensing cones and consists of the maj@ined as lan mtzrnle; pr(:]gram or un_ct|onv|v Ic T;JSI e_ende
ula or perifovea, which covers about 10 degrees of the visugf'nate or learned. For this to occur innately would requee
field and the fovea, a region of densely packed cones whicﬁilled prior I§nowledge of thg muscular system _and the optica
covers about two degrees and provides the greatest acuity aﬁharactgrlst|cs of eaph particular eye_ball, and it seems)ai
colour sensitivity. inconceivable that this would happen in the newborn infant.

There have been attempts to reproduce the sensing structyre! N€ iSsue of innate versus learned behaviour has been de-
of the retina by transforming or mapping a retinal structuto bated between psychological empiricists and nativistsr ove

the uniform pixel arrays used in video cameras, but these hayMany decades. Because nevv_b(_)rn mfants can produce saccades
not been very successful. If a radial density function igduse itis generally assumed that this ISan |nr_1atg compet(_entyve)u
increasingly space out the sensors towards the periphery th demonstrate here that very rapid learning is a feasiblenate

the fovea is not evenly spaced and a singularity can occur &t/€ Possibility.

the centre. Alternatively, if the fovea is evenly spacedthet

penphe_ry is not t_hen a discontinuity is seen at the boundar_)é_ A Model of Ocular-Motor Coordination L earning
Balasuriya and Siebert argue that no analytical approatth wi
produce a tessellation that gives uniform density coverage

the f land . ing in th ioh hil Our robot system has only one eye and the head is fixed
€ fovealand a space varying mapping in the peripheryavhil, space. This simplifies the system compared to the human,
maintaining a consistent local structure [3]. They have pro

: o and we note that infants do not integrate head movements unti
duced tessellations that are good approximations to tHe-cel

: ) - - around two months after birth [41].
lar layout of the retina by using self-organising methodtwi . : .
. The main control issue for the ocular-motor system is a
random perturbations [3].

sensory-motor coordination problem: what are the necgssar
motor variables to drive the eye to move the foveal area to a
specific sensed peripheral region? This actually contaos t
Newborn infants are unable to track objects (smooth pyrsuitcoordination problems, first the retinotopic image spacstmu
or to discriminate motion direction, but they are able tdpen  be related to the eyeball gaze space, and then the targetleyeb
saccadic eye movements. Saccades are very fast movementdafation must be translated into motor commands. However,
the eyes that bring a stimulus from the periphery to the eentraccepting that saccade action must involve feedforwarchmec
of the retina. Saccadic movements are generated by nenral canisms as described in section 2.3 and given that gaze angle i
cuits in the brainstem and targets are selected by the superilinearly related to motor firing rates [48] we can assume that
colliculus which is a layered structure that includes visrad  the gazgmotor relationship is direct and linear (i.e. an element

2.3. Eye Movement



transform). This means we do not need to model the/gaater  means, the sensory-motor relations for accurate saccades a

relation and can rely on the motor plant to perform ballisticdiscovered and learned.

movements from a given current gaze location to a desired tar Following the human retinal structure, we designed the field

get position [31]. Thus, a gaze value is always equivalent talensity to be higher in the central area than the periphédrig T

a motor command and in the following we will refer to either was achieved by generation rules that allow field spacing and

gaze points or motor data according to context. Furthermoreadius to vary with distance from the centre. Fields aregassl

this target-driven control also means that the dynamigadets  on a grid consisting of two sets of 20 radial lines at 3&0 =

of saccades, that is, parameters such as velocity, gainurad d 18 separation, with the two setsfset by 9. The distance of

tion which have been extensively examined [12], are not releeach field centre from the origin is calculated accordindto t

vant to our model. Should the ggaetor relation not be trivial  rule: di = 1333¢' — 1) fori = 1...20, wherea = 1.015 is

then it could be learned and we note that the motor systems ef spacing factor, and each consecutive ring of fields is dlace

the eye are exercised in the womb [4] and hence motor activasn alternating sets of radial lines. This gives a close pagki

tion signals could be correlated prenatally with eyebadiifjon  similar to the hexagonal grid used tfiieiently pack circles into

via the proprioceptive signals from the muscle spindle pece rectangular areas. Figure 2 shows this structure in défhik

tors. radius of each field was related to distance from the centre by
To summarise, the problem we address here is the growth &f rule that gives significant field overlapadius = nBd;, for

the transform between image space and eye gaze space. Qur1...20,8 = 0.06.

assumptions are that (a) this may not be a simple or linear re-

lationship and (b) the position of the eyeball can not beteela

to image data until after birth (as vision is ifective in the

womb [44]), and therefore learning should start from zeiorpr 7{\4}‘%’. ""“"“
knowledge. ’6}‘\?&%@? O VY
In our work we have used a mapping technique to model €_“-'/‘

=

sensory-motor relationships [25] and we adopt this method
here. Each channel of either sensory or motor information is
provided with a two-dimensional map consisting of many ever

D\

lapping elements. These elements, known as fields, refiresen 'o‘:‘z
patches of receptive area on which stimuli fall. In our mod- 'e’
els we use sheets of fields that are circular and overlapping. o i

VA

All stimuli that land within a field are represented by the co-
ordinates of the field centre; thus, fields can be thought of as
a tolerance or resolution limit. Our system has image data as

+ +
i +++++%+ :
- j & i *, Figure 2: The grid of fields for the image map
<+ ++ e +F i
+ b o L .
+ + . It is important to note that the grid in Figure 2 is not an ex-

ample of a visual sensory map but only illustrates the paknt
locations of where field centres may be placed. Fields ang onl
Figure 1: The Ocular-Motor Map Layers created on the visual map when a stimulus lands in an area that
is not covered by any fields. To produce a complete covering
the sensory input and a two-degree motor system for movingeduires less fields than in the grid and so we expect only-a pro
the image_ Thus, two map |ayers are needed and these are mortion of fields seen in this grld structure will be used ie th
lustrated in figure 1. The left layer is a visual sensory magmage map.
which uses polar coordinates because a polar mapping is the This design means that longer saccades may be more inac-
natural relation between central and peripheral regionthen curate than shorter ones. However, there is some evideate th
retina [46]. The layer on the right in figure 1 is the assodiate the more extreme peripheral saccades are more inaccurate in
motor drive layer; this is a motor map in two degrees of freedo studies on infants [22] and adults [27]. The motor coordinat
and encodes the horizontal (left-right), and vertical flgavn)  System is Cartesian, as in Figure 1, because the eye mueeles a
eye movements. As correspondences between fieldsfian-di independent and orthogonal,
ent layers are discovered by experience so they becomélgirec These two mapping layers are initially empty and are not pre-
linked. That is, when a movement causes an accurate shift afired or pre-structured for any specific spatial systemlIdBie
the fovea to a periphery stimulus, then the sensory field{giv are created when new sensory-motor values are to be recorded
the stimulus location) is explicitly coupled to the motorddie and the maps become populated according to the pattern of ex-
(giving the motor variables that produce the change). By thi periential events.
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3.1. The Developmental Learning Algorithm target field ), this tolerance is thus defined:+ 6;. Then, a

Previous research shows that two week-old infants scan geflistance tolerance is set to select the fields nearest (sgd@
metric figures rather randomly, while fourteen week-oldirté the target field from amongst_the c_and|date flelo_is in the above
direct their saccades to stimulus contours more consigtgit ~ Set. The distance tolerance is defined st 6, pixels. The
It seems that saccadic eye movements are refined over a perigdigular parameter is given precedence over distance k&gaus
However, Butko and colleagues proposed a rapid learning hyRolar coordinates, the angular coordinate alone ficent to
pothesis which argues that very fast learning might occsir ju determine the trajectory to the origin. From this we can ibta
after birth [8]. We suggest such fast learning for eye sagsad @ _set of fields which fall \_N|th|n the (broad) neighborhoodlod t
might be obtained by the following process: when an infan$timulus, and the following formula
senses an object appearing in her field of vision, the irdant’
brain is stimuI{ated to try to move her eyeballs to fixate the ob MINCVG =707 + (0~ 6:%)
ject. However, because all visual data is novel to a newboris used to choose the nearest field from this collection, &her
infant we assume there is no prior coordination of retinalge v, andé,, for x = 1...n are the fields in the collection. This is
space with motor acts. Hence, the appropriate motor valges asummarised as pseudo code in Figure 4.
not known and so the infant's brain may generate spontaneous
(random) motor values in an attempt to move towards the ob- If no fields exist for locatio, y:
ject. When, eventually, the infant’s eyes fixate on the abjec a. For each field,f, € Fields
then the brain can record the parameters of the succesgfed ex If0—61 < fx(0) <0+ 61
rience (initial peripheral location, final angle of gaze)fiature Candidates= Candidates) {fy}
reference. b. For each field,fx € Candidates

An autonomous learning algorithm can be developed to re- Ify— 62> fy(y) or fx(y) >y +62
flect the above learning process and this is summarised as Candidates= Candidates- { fy}
pseudo code in Figure 3. c. Apply the MIN formula toCandidates
to find the nearest field t@ .

For each session
If stimulus in peripheral vision & y
Access the ocular-motor map
If a covering field exists:

Figure 4: The Nearest-Field Selection Algorithm

Note that although the variables in the MIN calculation use

Use motor values for this field
Else
Record the stimulus position,
make a spontaneous motor move
If the stimulus is within the fovea:
Generate a new field,
enter the stimulus location and
the associated motor values
Else
Repeat
End If
End If
Else
Do not move
End If
Iterate a new session

Figure 3: An Elementary Algorithm

This simple baseline algorithm is dramatically improved by
the addition of the following two modifications.

different units their ranges are compatible for our purposes (be
ing 0-360 degrees and 0-300 pixels). In the experiments (see
Section 5) 4 is set to 18 andé; is set to 10 pixels.

3.1.2. Vector Field Generation

In the basic algorithm given in Figure 3, a new field cannot be
generated until the camera has fixated an object at the target
cation, and this process typically takes a long time becanoss
spontaneous moves will not result in a target fixation. Hawev
we note that there is a change in the location of the stimulus i
the image afteeachmovement. A vector can be produced from
this change by:

V= Positiony,g - Positiomew

wherePosition,y denotes the object position before movement
andPosition,ey the object position afterwards. This vector rep-
resents a movement shift of the image produced by the related
motor action. Consequently, the vector can be used to aecess
field in the image layer together with its corresponding moto
values on the motor layer. In so doing, a new field can be gen-
erated after each spontaneous movement. This idea isdétate
the Hebbian learning model [33].

3.1.1. Nearest Field Selection During very early learning many spontaneous movements
Suppose that the ocular-motor map has not yet generated Il be needed until a fixation is achieved and by using the

fields that cover the current periphery stimulus locatientlis .0 ment vector idea each fixation can generate many vectors
be @, v). Thenearest fieldo the stimulus can then be selected At any time, the current vector will be a sum of the previous
as an approximation to the target. For this, the followingrest vectors. thus:

selection procedure was designed: first, an angular tateran
is set to select the fields which have a similar angle with the Vo=, V.
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and the corresponding motor values, being linear, can aso kobjects. This setup was arranged to simplify the image p®ce

produced by summation: ing task, especially object detection.
MS. = ST Moo MS. = S M The camera captgre rat_e is one frame per s_econd._A cir<_:u|ar
® = Zi=1 Mi, Mgy = Zizy Migy area, of radius 20 pixels, in the centre of the image is defined
wherep andt are the independent eye movement axes. as the foveal region. If the centroid of an object is in thisce

This is an incremental and cumulative system, in that the relfal area, it is considered that the object is fixated andastes
sultant vectors can be built up over a series of actions byna si are inhibited; otherwise the system is not fixated. Eachatbje

ple recurrence relation: is represented by a group of green pixels clustering togéthe
. . . the captured image. The position of the centroid of the pixel
Vsun{t + 1) = Vaun(t) + Vi(t + 1) is used as the location of the object. The image processing pr
gram compares the currently captured image against thedstor
4. System Implementation previous image and, if the number or the position of any cen-

tral pixels within these two imagesttkrs markedly, the object
is considered to have changed and the new location of the cen-
troid is encoded in polar coordinates.

Note that an object “change” here signals one of the follow-
ing three situations, (i) an object is moved to a new locaition
the workspace; (ii) an object is removed from the workspace;
and (iii) a new object is placed in the workspace. Of course,
moving the camera would also cause a change in an object
on the retina but, as for the human eye, image processing is
only performed during fixations, not saccades. When one ob-
ject disappears and another reappears, young infantsfteilt o
approach the new stimulus with a series of saccades ratier th
only one [2]. However, the current version of the algorithm
merely uses single object appearance as the stimulus. Asane
perimental technigue we did not manually move the object but
simply moved the camera to a random location when a “new”
object at a dierent location was required at the start of a run.

Figure 5: The Pan and Tilt “Eye” System

Our laboratory robot incorporates a motorised cameramyste
that acts as an “eye”. Figure 5 shows the hardware components
consisting of a video camera mounted on a pan-and-tilt head.

4.1. The Motor Subsystem

The motor system is implemented by a motorised pan-and-
tilt device which provides two degrees of freedom. The pan
motor can drive the video camera to rotate about an axis that
translates the image in one direction, and the tilt motordrase
rotation about an orthogonal axis, giving image transtatib
90 degrees. Combined movements of pan and tilt motors cause
motion along an oblique axis. The péltdevice can &ectively
execute saccade type actions based on supplied motor values
from the learning algorithm. Each motor is independent and
has a value N, for pan andM; for tilt) which represents the Figure 6: A View of the Workspace
relative distance to be moved in each degree-of-freedom.

4.2. The Sensor Subsystem 5. Experimental Results

The camera captures workspace images and image process-
ing software is used to implement two sensors: a periphery se  The experiments are designed to investigate the model de-
sor and a centre or foveal sensor. The periphery sensortsletescribed in section 3 The experimental procedure is ordesed a
new objects or object changes in the visual periphery arda arfollows: an object is placed within the camera’s field of vjew
also the positions of any such changes (encoded in poladicoor then the developmental learning algorithm drives the camer
nates). The centre sensor detects whether any objectslrc  until the object is fixated; after fixation, the object is mdve
blobs) are in the central (foveal) region of the visual fi¢tlg-  a new position (still within the camera’s view) and this pres
ure 6 shows the workspace which is a white table, with greeiiterates. During this procedure, no people or other ageets a
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involved except for moving the object’s position. Through r *
peated experiments, it is hoped that all or most of the looati 600
in visual space will have been covered so that most possible o0
fields in the ocular-motor map will have been created. P
_E 400 LY T

5.1. Observations § = Z N

From a large number of experiments carried out, we observed 2
that this system’s behavior can be described as fallingthree 100
stages: (1) at the beginning of a new ocular-motor map, (&) af
a few fields have been generated, and (3) after most fields have % 100 e 500 a0

been created.
Figure 9: Third Stage Traces

700

w 2@%\/A camera movement is much simpler, usually consisting of one
v N movement and fixating the object directly. Figure 9, conipgds
f;" oo six experimental results in one plot, shows the traces dalrad
; 500 movements, from periphery to centre; note that one of thesplo
>

required two saccades to reach the target, indicating tlagt m
learning was not yet fully complete.

1”” Figure 10 illustrates the outcome of the set of experiments:
o e the upper figure presents the sensory layer and the loweefigur
Horizontal Pixels the motor layer. It can be seen that much of the image map has

been covered with fields, in this run a total of 94 fields were
produced. The fields in the sensory layer are plotted in polar
goordinates and marked by numeric labels, which give corre-

Figure 7: First Stage Traces, (image centre at 300, 350).

Figure 7 shows the traces of movement on the visual image )
the beginning of a new ocular-motor map. Actually the obigct spondence with the motor (gaze) values.
static during the experiment, but the camera is moving; égnc
in the image, the object appears motile. During this eadgest
because the new ocular-motor map is blank or extremelyspars
there is no experience available (in terms of nearby fieldd) a
thus most movements are simply spontaneous. In the example
in figure 7 there are fifteen traces before fixation is achieved

70

o
2

N
]

Vertical Pixels

han
\

~ 300

10
1000 T T T 90

©82
0 089 07288 °
’ * 2I(iioorizontalsli’oixels * * ” 500 - O%E& 045 850 0305,;174 N
Figure 8: Second Stage Traces 79 59003436 °ojlz§1éeogi4;53miszo“om -
| W
070 1Bt 038 o064
When a moderate number of fields have been generated, it is 088 °5§s%e“33°029%2:3;’;?:6@8% @gi%
still difficult to find an exact corresponding field for the stimu- =1 T o o
lus, but the nearest-field algorithm usually finds a nearhg.fie o8
Figure 8 illustrates the process of this second stage: &rge- et o
taneous movements do not happen any more, and the movement

traces tend towards the image centre. e T o w0 w1

Atthe t_hlrd Stag_e' be_cause mos_t fields have been generate@gure 10: The Ocular-Motor Map at 94 fields. In the sensogpedaadial
the learning algorithm is able to find the correct correspondcontours are drawn at 100, 200 and 300 pixels. The motor valegresent
ing field (and thus the associated motor values) each tinee, threlative displacements.
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During the experiments each movement was recorded and Another illustration of the learning process is seen in Fig-
flagged as one of three types: spontaneous, (no suitable fielde 13, taken from another,ftérent run of experiments. This
exists); using a neighbouring field; or direct saccade (gtis1 data covers 88 movements in total, separated out into sascad
covering field found). Figure 11 is a cumulative plot thatwho per individual fixation. This shows how the number of sacsade
the mix of movement types over time; three runs for each typer fixation falls away very rapidly, the reason being thatres
are shown to illustrate the variation in the process: sparse covering of fields aids convergence because a nghr nei

e The number of spontaneous movements (type A) dominatdsour can usually be found.

100 7, 16

80 -

(2]
o
i
Movements

Movements

40 -

0 5 10 15 20 25

20+ Fixation Times

Figure 13: The Decline in Saccades per Fixation.

i I I I I I I
0 20 40 60 80 100 120 140 160 180

Total Movements It is important to note that the emergence of the observed
Figure 11: The Three Types of Movement. Three experimegtallts are plot- behavioural stages are hot initiated by any switching arshy .
ted in this figure, each line-style stands for a type of moveme olds. Indeed, at any point the system might revert to anezarli

behaviour type, as at any time a new field might need to be in-
during the first thirty movements, however, this type of move troduced. Eventually the early behaviours will be extirsteid
ment occurs very little from then on. but as this is an asymptotic process there is always a fingte po
« Movements using nearest neighbour fields (type B) do no$ibility of regression.
exist at the beginning, but this type of movement increases
sharply after that, and then after a period of growth, around
90, the use of nearest fields becomes less frequent. 6. Discussion
e Direct, accurate movements using the correct correspond-
ing fields (type C) do not occur at all during the first eighteen |t has been suggested that the preference of newborns to ori-
movements, however at the end of the experiments these hag@t towards faces is not innate, as generally believed,duitic
the fastest rate of increase, until finally only these sirsgle-  be learned very rapidly, even in the first six minutes of 1B [
cades exist. Our robot model has demonstrated that the fundamental pro-
In order to illustrate where the fast learning occurs, Figl2  cess of visual saccading to a peripheral stimulus couldtaso
shows the rate of new field generation over an entire experiearned rather than innate. If such rapid learning doesrdtcu
ment. As can be seen, the field generation rate produced by théuld be quite diicult to detect but it could be very significant
developmental learning algorithm is very fast for the firét 8 evidence for the empiricist stance [49].
movements (at the rate of one field for every 1.27 mOVGS), then From a robotics design Viewpoint is is alsdfdiult to see
the rate decreases, and finally, field creation becomes &eey r how accurate saccades could be built as an innate function. |
order to coordinate points on a camera image plane with ob-
jects in the 3D world it is necessary to analyse the coordinat
© geometry of the imaging process and provide some form of cal-
- ibration procedure. It seems very unlikely that such cowcre
7 and specific information could be transmitted by innate mean
- Itis important to note that our model does not need any such in
formation and is self-calibrating; indeed the learning elad
® essentially performing a kind of continuous calibratioarle
© ing.
2 There is a large literature on eye movements and saccades but
10 very little is relevant to the first few hours and days aftettbi
Com W w  w aw w0 w0 1 i However, we find considerable support for our model which
Number of Movements . . .
seems entirely compatible with current knowledge. For exam
Figure 12: The Rate of New Field Generation. ple, it is known that infants execute smaller steps thantadul
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with reports of “sometimes making as many as four or five conanother stimulus occurring at exactly the same pdétnhgn the
secutive saccades to reach the peripheral target” [2], langer  image will drive the system tG3. This means the gaze space
step sizes were used to localize more distant targets” [2]. must be linear — an image shift must always produce the same
As in the robot, the average number of saccades an inchangein gaze for all gaze locations. As mentioned before, if
fant uses to fixate an object onto its fovea reduces with timethis was not the case then a gametor mapping could be used
Roucoux et al. found that infants fixed targets onto the fove#o hold the corrections necessary to linearise the gazeespac
with successive small saccades even though they were eapal®dn the other hand, there is no requirement for the image space
of larger saccades [42]. They also found that the more ecceite be linear and the systenffectively learns image distortions.
tric the target the higher the average number of saccadds, aithis means that although the summation of motor values dur-
for targets at all angles the average number of saccadeaselkcl ing multiple movement learning will produce a correct résul
with age. This is similar to the robot model, in which the num-the summation of vectors on the image is likely to produce er-
ber of saccades decreases over time. rors. Nevertheless, the fields represent a “zone of tolefanc
Roucoux et al. describe two patterns of movement that resulind small errors will often be accommodated within fields. In
in the image falling on the fovea, one with predominant headur experiments we have found that these were indeed accom-
movements and small saccades and the other being the maredated in maps for typical cam@ens combinations, as the
adult pattern of larger saccades predominating [42]. Thawd intermediate vector generation method was successfutiedsp
a parallel with two types of vertebrates, those with a fougd a ing learning. In the case of morefiicult mappings there are
those without and designate the head dominant movements 880 options: either field generation for intermediate vexie
“afoveate” and the more saccadic as “foveate”. They describswitched df, notice that this will only slow down learning; or it
how, as infants mature, the proportion of “foveate” movetaen may be more #ective to continue creating fields wherever pos-
increases and the range of angles from the fovea that are cosible and allow later corrections to be made. This questfon o
ered by “foveate” moves or saccades increases. For objectapid population and correction or slower more accurate/tiro
nearer the centre of vision the adult-like pattern was redch requires more investigation asfiirent conditions may apply
earlier than for more eccentric targets. At five weeks targét for different tasks. We also notice that the total gaze space will
45 degrees were not fixated at all, by 8 weeks they took 3 sade larger than the image and so it is possible for the sponta-
cades on average and by adulthood this was almost one. Theseous movements to shift the target out of vief (image), as
observations are consistent with staged learning behasitly  happens occasionally in our experiments. This does notcaus
allowing for the complications caused by head movemengy, th any problems as the motor values continue to be accumulated
are similar to the pattern seen in our robot model. and the final motor summation is still the appropriate vabre f
Hainline and colleagues examined saccade peak velocityhe stimulus target field. During such events the interntedia
amplitude and duration in infants and compared them toectors can not be utilised but when the stimulus returnieo t
adults [17]. Their sample of 64 infants of ages 14 to 151 daysmage the process continues as before.
produced a significant proportion of mature saccades thag we Regarding plasticity, consider how the algorithm would-per
comparable to adults. This was confirmed by [14] who alsdorm with a fully populated mapping and then the image is sub-
showed that infant saccades may even be faster than adioéis. Tjected to some fixed distortion through optical or physidai d
mix of infant and adult movement types reported by such auturbance. A peripheral stimulus will still be covered by ddie
thors can be interpreted as part of a learning process amtthe but the motor movement will be incorrect (by an amount de-
cline of the early patterns with age reflects the increasomgid  pending on the degree of distortion) and the foveal region is
nance of the moreficient saccades. This pattern is seen in thdikely to be missed. A second, corrective saccade will then b
robot model, where mature and immature movement patterrisiggered by the new field location and this is likely to resoh
(from the 3 stages) coexist until the system has fully ledrat fovea as it will be much nearer. Thus, we would expect a small
relationship between its motor and visual maps. number of corrective saccades to be generated and the firal mo
An interesting hypothesis [18] is that the commonly ob-tor values,M¢, andM¢g,, can be inserted to replace the previ-
served undershoot in saccades may be an optimum strategy das values, éﬁected by a trivial adjustment to the algorithm in
minimise the total flight-time, because the total flight¢iis  Figure 3). Thus the system will adapt to changes as they are ex
less with corrective saccades that undershoot as compétted wperienced. If only part of the image is distorted then onlgt pa
those that overshoot. Thisfect also occurs in our method — of the mapping will be relearned, but even in the worst cédme, t
fields near the foveal are predominantamong the first to dpvel time taken will be no longer than learning the original map] a
because most moves end in such a field, and so when a neigtitis can be done on-line and during use. Of course, if the dis-
bour is selected it is more likely to be on the near side than thtortion is of a warping nature then corrections will be logat
far side of the target. We analysed the data for a run of firatio the process will be well behaved. On the other hand, a gross
and found that undershoot occurred in 75% of the cases. change, such as a total inversion in a reflecting mirror would
Regarding the robustness of the method, we notice that thequire a completely new map to be learned, while a change of
motor values are, in fact, not absolute gaze positions Hirtele lens focal length (zooming), would be an intermediate clkang
shifts in gaze relative to the current position. This meaps-a with the center unaltered and the periphery notably shifted
riphery stimulus at poinP on the image might cause a saccade Considering the accuracy of the system, the model can easily
from the current gaze locatid®; to new locationG, but then  match reported infant accuracy [22, 20]. In the mapping, the
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average error in saccading to a given image location35®0  the true map. But even with this prior knowledge, each loca-
for a field of radiusR, for double overlapping fields — this is tion required 20 trials, thus giving 2000 learning trial8]4In
always within the tolerance provided by the foveal regioB@@f comparison our method produces a nearly complete mapping
pixels. But note that using a simple linear field functiorg(e. by 200 trials. Also, before learning, a calibration routimas
stimulus distance from field centre) a multilateration egien  used, which gave undefined prior information to the system. A
performed on a small number of local fields will deliver much handeye mapping was also learned by this system but all the
higher accuracy if needed. Full details of noise analysié anmappings described had to be learned as separate funations i
the dfects of overlapping fields on accuracy requires a furtheeach direction (i.e. each map and its inverse), whereagke |

paper. in our mappings are bidirectional — the img@g&ze map can be
read in reverse to find the expected location on the retina tha
7 Related Work corresponds to a planned gaze shift.

The use of random movements or “motor babbling” has been

Many robotics projects have involved ocular-motor coordi-valued by a number of researchers. Harris argues strongty th
nation problems, and indeed most robots with hand and eysophisticated control theory is inappropriate for modelsac-
systems need to deal with tasks such as visually directeel gazade control because this is an un-referenced control @mobl
control, visually guided reaching, and other human ingbire (i.e. no error reference is available) [18]. This means ex-
sensory-motor behaviour. However, the ability to saccade tploration of the problem space is necessary and “randomness
visual stimuli of interest has often been programmed intayna (variability) of activity reflects an active process for é&xp
systems rather than learned. Maybe the injgaee relation ing...rather than being simply neural noise” [18]. It is ionp
has often been considered innate and therefore can be enggnt to recognise that “random” action can be much more than
neered as a fixed function [10]. Even when saccades have be#inal and error” learning, which is a form of blind searchpA
learned they have often not been very closely aligned with expropriate spontaneous action is an information gatheritig-a
isting psychological data and knowledge. For example, [24]ty and can be arich source of data for learning forward madel
addressed the problem of driving moveable visual sensdéosto  Although this work has no direct link with neuroscience data
cate static objects. The emphasis was on on topographic mapr models, the resulting system is not incompatible with @ ne
pings and artificial neural networks, but the neural cotgrol ral interpretation and it would be feasible to implementahe
needed 100,000 trials during training. [21] produced a vengorithm as a version based only on artificial neural network
novel artificial evolutionary method that simulated gened a techniques. Such a version could take advantage of pasailel
regulators to create a neural network that learns to trajdcth  in nearest field selection for example, to provide even faste
on an image. This required 30,000 training iterations amd threal-time operation.
resulting image tracking function was more of a retinal flow
field th.atproduced somewhatd[storted pqths to the fovbarat 8. Conclusions
than direct saccades from any image point. A strong develop-
mental approach to visually guided reaching has been destri  The experimental implementation described here demon-
by [32]. Motor synergies or primitives were used to provide astrates that our developmental approach is able to produce a
motormotor correlation learning system for the hand and eyanethod that: learns very rapidly — much faster than current
components. A very similar approach to our own is seen in [Lheural network based approaches; does not use or require any
where visual tracking needs to be learned as part of a sensorgalibration process or prior knowledge; continuously dslap
motor approach to imitation research. The visual image wa$o correct errors and accommodate any changes in the ocular-
mapped onto a robot hand map but small, local neural network®otor system; and displays distinct and qualitativelffedent
were incorporated inteveryfield point. The system learned stages in its behaviour which emerge during learning.
to coordinate a 2 degree-of-freedom image with a 3 degree-of Our model draws on the relevant literature and our result-
freedom robot arm but required 8,000 random movements. ing experimental system is extremely fast, incrementaland

In many such robotic models of saccading and ocular-motomulative in its learning; all desirable characteristics feal-
coordination, we find that the learning times reported are us time autonomous agents. This relates to human infant learn-
ally orders of magnitude greater than for our system. Coning and adaptation which has often been observed to be very
nectionist methods have been widely employed, and althougtast [40]. The simplicity of the method is important in this
techniques such as radial basis functions have similanitith ~ regard, as the requirement for fast performancedyadth sac-
our mappings, it seems that the extensive training regimes r cading and learning, rules out complex computations and the
quired are not very compatible with experience of human despeed of neural processes limits the number of steps thditecan
velopment. Also the number of neurons involved with thesenvolved [35, 5].
methods can scale up exponentially [38]. The system of 29]i Developmental psychology recognises a key characteoiftic
also similar in motivation to our own but uses engineering soanimal development: the sequencing of development phases
lutions where psychological methods would produce more efwhere some competencies always precede others. These reg-
ficient and flexible results. For example, saccade maps wendarities are known as stages and are believed to be thedfasis
learned but these were primed with a linear grid of 10x10 gazelevelopment processes that underpin the gradual consofida
locations, and then learning was used to adjust the errors tof control, coordination and competence [39]. The chakkeng
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from this viewpoint is in finding fective algorithms that sup-  [9]
port progressive and qualitative growth in behavioural pem
tence without requiring significant structural change. @air [10]

sults show three distinct stages of behaviour emerging fiom
single process; this shows how qualitative change in belavi
may occur without structural change, but by the consolitati [11]
of experience. This concept of staged growth under comssrai
may provides a valuable method for use in many sensory-motgi2)
learning applications [26].

Regarding potential applications, our algorithm provides
tomatic fixation of stimuli points in a visual field and thusuld
be valuable in moving camera applications such as surmeia
monitoring, undersea, and rescue situations, partiguelien
the system is mobile, temporary or vehicle mounted. Thedavoi
ance of any calibration, set-up, or training periods is agre 16]
advantage. Many existing methods deem it necessary to-esta
lish exact correspondences between video images and the 3D
sensed environment and this requires elaborate commﬂ;atio[”]
of intrinsic and extrinsic camera geometry, often with tise u
of calibration objects [51]. These methods can take up to 3Qg]
minutes for the calibration process [9]. Our simpler applhoa
does not need any camera parameters and yet can handle n&il
linear image distortions. A patent application is currgril
progress.

Further work can build on this model for the growth of fur-
ther behaviours, including corrective saccades, smoatsugy
head integration and gaze analysis. There exists a ricltsour
of psychological data that can provide guidance for bugdin
effective learning algorithms that advance robotic applicei
and there remains much to be done in implementing Workinézzl
developmental algorithms in autonomous agents. [23]
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