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Abstract

This paper presents a model of ocular-motor development, inspired by ideas and data from developmental psychology. Thelearning
problem concerns the growth of the transform between image space and motor space necessary for the control of visual saccades. An
implementation is used to produce experimental results andthese are presented and discussed. The algorithm is simple,extremely
fast, self calibrating, adaptive to change, and exhibits emergent stages of behaviour as learning progresses.
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1. Introduction

Current research in robotics frequently draws inspiration
from biology. By taking account of human and animal be-
haviour there is much to be learned about agents, autonomy
and embedded cognition, and robotics has benefitted consider-
ably by exploring new mechanisms and approaches.

There are three main sources of biological inspiration: struc-
tural biology, which deals with the anatomy and functioningof
biological systems (e.g. neuroscience and endocrinology); evo-
lution, which concerns growth and change across a population;
and development, which addresses growth and change within
the individual.

Of these three branches of biology both the structural and the
evolutionary aspects have been intensively studied, as seen for
example in robot controllers based on computational modelsof
brain systems [30] and advances in evolutionary robotics [36],
but only in recent years has developmental robotics blossomed
as a research field; for a review see [28].

The aim of developmental robotics is to recognise processes
of growth and change in human behaviour and build models that
exhibit growth of competence and skill similar to that observed
and reported by psychologists. It is notable that current robots
still lack much of the adaptation, flexibility and learning seen
in humans, and development may provide the key to further
advances.

This paper describes a study inspired by the ability of the hu-
man eye to locate and rapidly move to targets to be examined.
These eye movements are called saccades. We explore this abil-
ity in terms of a sensory-motor coordination context [37] and
focus on very early infancy to produce developmental learning
algorithms.

There have been many structural and computational models
of rapid eye movements, e.g. [41, 19, 45, 13] for a review see
[15], but we believe that our developmental approach [26] is
able to produce a method with a unique set of features, namely:

(i) it is not pre-wired but learns how to saccade, (ii) it learns
very rapidly — much faster than current neural network based
approaches, (iii) it continuously adapts to correct errorsand ac-
commodate any changes in the ocular-motor system, (iv) it does
not use or require any calibration process or prior knowledge,
and (iv) the generated behaviour displays distinct and qualita-
tively different stages which emerge during learning.

It is important to state that although our work is biologically-
inspired, the aim is to create new mechanisms for controlling
robots, not to directly contribute to the understanding of hu-
man behaviour. Hence, our models of biological systems often
contain approximations and/or abstractions, and any similarity
in behaviour does not necessarily signify that the same internal
mechanisms are being used.

This paper is structured as follows: Section 2 presents an
overview of the human ocular-motor system; Section 3 de-
scribes our visuo-motor coordination mapping model and the
associated developmental learning algorithm; Section 4 ex-
plains an experimental implementation; Section 5 describes re-
sults from experiments; Section 6 discusses the findings and
implications of this work, which is related to other research in
Section 7; and finally, Section 8 gives a summary.

2. Human Visual Sensing and the Ocular-Motor System

The human visual system is not a passive receptor but must
be actively directed at objects or features to be examined. Dur-
ing such examinations the eye is held onto the target; this is
called fixation or foveation and the angular direction of theeye-
ball is known as the gaze.

2.1. The Human Eyeball
Each human eyeball is moved by six muscles; operating in

pairs, they rotate the globe along orthogonal axes in three de-
grees of freedom. Two of the axes cover horizontal and ver-
tical eye movements. The third muscle pair (rotation of the
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retina) is used to correct the effects of torsion that can oc-
cur because rotations about intersecting spherical axes are non-
commutative [50]. The eyes obey certain compensation laws
and so do not display such effects; the reasons for this are still
unknown but may be due to either special corrective neural cir-
cuits or the recently discovered muscle pulley structures [47].
In any case, this means torsional rotations can be ignored for
our purposes.

The dynamics of the eyeball are very well behaved, primarily
because there is almost no external loading (unlike all the other
body parts) and the viscous and elastic properties are consistent
over wide operating parameters. This allows control modelsto
assume high repeatability of motor actions [48].

The ocular muscles are rich in spindle receptors that give
high quality information about the stretch of the muscles which
corresponds to the position of the eyeballs relative to the rest of
the head. The stretch signals are effectively linearly related to
angular rotation [23] and so high quality proprioception infor-
mation on the direction of gaze is available.

2.2. The Retina

Unlike cameras, which have uniform sensor arrays with con-
tiguous pixels usually arranged in a regular grid, the human
retina is not uniform but consists of different sensor charac-
teristics across its extent [11]. The periphery of the retina is
a region containing low accuracy, monochrome sensing rods,
which are very sensitive to change or movement. The central
region contains colour sensing cones and consists of the mac-
ula or perifovea, which covers about 10 degrees of the visual
field and the fovea, a region of densely packed cones which
covers about two degrees and provides the greatest acuity and
colour sensitivity.

There have been attempts to reproduce the sensing structure
of the retina by transforming or mapping a retinal structureonto
the uniform pixel arrays used in video cameras, but these have
not been very successful. If a radial density function is used to
increasingly space out the sensors towards the periphery then
the fovea is not evenly spaced and a singularity can occur at
the centre. Alternatively, if the fovea is evenly spaced butthe
periphery is not then a discontinuity is seen at the boundary.
Balasuriya and Siebert argue that no analytical approach will
produce a tessellation that gives uniform density coveragein
the foveal and a space varying mapping in the periphery, while
maintaining a consistent local structure [3]. They have pro-
duced tessellations that are good approximations to the cellu-
lar layout of the retina by using self-organising methods with
random perturbations [3].

2.3. Eye Movement

Newborn infants are unable to track objects (smooth pursuit)
or to discriminate motion direction, but they are able to perform
saccadic eye movements. Saccades are very fast movements of
the eyes that bring a stimulus from the periphery to the centre
of the retina. Saccadic movements are generated by neural cir-
cuits in the brainstem and targets are selected by the superior
colliculus which is a layered structure that includes visual and

motor layers [34]. Vision is suppressed during a saccade, and
saccades and fixations are mutually inhibited by the brainstem
circuits [47].

Studies of human infants’ saccades have shown that there are
stereotyped age related changes in the way that their eyeballs
move and that the more advanced movements coexist with ear-
lier movements [42].

Saccades can move at speeds of up to 900◦ per second; which
raises the question of how the brain knows when the eyeball
has reached the target position. A feedback system can be ruled
out because of the two candidate feedback signals, retinal sig-
nals would not be processed in time [48] and proprioception has
been shown to be not necessary for accurate saccades [16]. The
rate of firing of motor neurons that drive the eye muscles are
linearly related to eye position [48] and this has formed theba-
sis of a feedforward mechanism for eye position control. This
widely accepted idea is known as the “corollary discharge” or
“efferent copy” model [16] in which motor values are taken
as reliable indicators of eye position. However a feedforward
model is subject to local errors or drift and proprioceptivere-
ceptors and optokinetic functions are assumed to have a major
role in stabilisation and holding the gaze during fixations [6].

Thus the visual location of the target for a saccade and the
motor values that bring the target to the centre must be corre-
lated and this means there must be a close coordination between
the image space of the retina and the motor space of the ocu-
lar muscles. Such sensory-motor coordination must be main-
tained as an internal program or function which must be either
innate or learned. For this to occur innately would require de-
tailed prior knowledge of the muscular system and the optical
characteristics of each particular eyeball, and it seems almost
inconceivable that this would happen in the newborn infant.

The issue of innate versus learned behaviour has been de-
bated between psychological empiricists and nativists over
many decades. Because newborn infants can produce saccades
it is generally assumed that this is an innate competency, but we
demonstrate here that very rapid learning is a feasible alterna-
tive possibility.

3. A Model of Ocular-Motor Coordination Learning

Our robot system has only one eye and the head is fixed
in space. This simplifies the system compared to the human,
and we note that infants do not integrate head movements until
around two months after birth [41].

The main control issue for the ocular-motor system is a
sensory-motor coordination problem: what are the necessary
motor variables to drive the eye to move the foveal area to a
specific sensed peripheral region? This actually contains two
coordination problems, first the retinotopic image space must
be related to the eyeball gaze space, and then the target eyeball
location must be translated into motor commands. However,
accepting that saccade action must involve feedforward mech-
anisms as described in section 2.3 and given that gaze angle is
linearly related to motor firing rates [48] we can assume that
the gaze/motor relationship is direct and linear (i.e. an element
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transform). This means we do not need to model the gaze/motor
relation and can rely on the motor plant to perform ballistic
movements from a given current gaze location to a desired tar-
get position [31]. Thus, a gaze value is always equivalent to
a motor command and in the following we will refer to either
gaze points or motor data according to context. Furthermore,
this target-driven control also means that the dynamical aspects
of saccades, that is, parameters such as velocity, gain and dura-
tion which have been extensively examined [12], are not rele-
vant to our model. Should the gaze/motor relation not be trivial
then it could be learned and we note that the motor systems of
the eye are exercised in the womb [4] and hence motor activa-
tion signals could be correlated prenatally with eyeball position
via the proprioceptive signals from the muscle spindle recep-
tors.

To summarise, the problem we address here is the growth of
the transform between image space and eye gaze space. Our
assumptions are that (a) this may not be a simple or linear re-
lationship and (b) the position of the eyeball can not be related
to image data until after birth (as vision is ineffective in the
womb [44]), and therefore learning should start from zero prior
knowledge.

In our work we have used a mapping technique to model
sensory-motor relationships [25] and we adopt this method
here. Each channel of either sensory or motor information is
provided with a two-dimensional map consisting of many over-
lapping elements. These elements, known as fields, represent
patches of receptive area on which stimuli fall. In our mod-
els we use sheets of fields that are circular and overlapping.
All stimuli that land within a field are represented by the co-
ordinates of the field centre; thus, fields can be thought of as
a tolerance or resolution limit. Our system has image data as

Figure 1: The Ocular-Motor Map Layers

the sensory input and a two-degree motor system for moving
the image. Thus, two map layers are needed and these are il-
lustrated in figure 1. The left layer is a visual sensory map
which uses polar coordinates because a polar mapping is the
natural relation between central and peripheral regions onthe
retina [46]. The layer on the right in figure 1 is the associated
motor drive layer; this is a motor map in two degrees of freedom
and encodes the horizontal (left-right), and vertical (up-down)
eye movements. As correspondences between fields on differ-
ent layers are discovered by experience so they become directly
linked. That is, when a movement causes an accurate shift of
the fovea to a periphery stimulus, then the sensory field (giving
the stimulus location) is explicitly coupled to the motor field
(giving the motor variables that produce the change). By this

means, the sensory-motor relations for accurate saccades are
discovered and learned.

Following the human retinal structure, we designed the field
density to be higher in the central area than the periphery. This
was achieved by generation rules that allow field spacing and
radius to vary with distance from the centre. Fields are assigned
on a grid consisting of two sets of 20 radial lines at 360◦/20 =
18◦ separation, with the two sets offset by 9◦. The distance of
each field centre from the origin is calculated according to the
rule: di = 1333(αi − 1) for i = 1 . . .20, whereα = 1.015 is
a spacing factor, and each consecutive ring of fields is placed
on alternating sets of radial lines. This gives a close packing
similar to the hexagonal grid used to efficiently pack circles into
rectangular areas. Figure 2 shows this structure in detail.The
radius of each field was related to distance from the centre by
a rule that gives significant field overlap:radiusi = πβdi, for
i = 1 . . .20,β = 0.06.

Figure 2: The grid of fields for the image map

It is important to note that the grid in Figure 2 is not an ex-
ample of a visual sensory map but only illustrates the potential
locations of where field centres may be placed. Fields are only
created on the visual map when a stimulus lands in an area that
is not covered by any fields. To produce a complete covering
requires less fields than in the grid and so we expect only a pro-
portion of fields seen in this grid structure will be used in the
image map.

This design means that longer saccades may be more inac-
curate than shorter ones. However, there is some evidence that
the more extreme peripheral saccades are more inaccurate in
studies on infants [22] and adults [27]. The motor coordinate
system is Cartesian, as in Figure 1, because the eye muscles are
independent and orthogonal,

These two mapping layers are initially empty and are not pre-
wired or pre-structured for any specific spatial system. Fields
are created when new sensory-motor values are to be recorded
and the maps become populated according to the pattern of ex-
periential events.
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3.1. The Developmental Learning Algorithm

Previous research shows that two week-old infants scan geo-
metric figures rather randomly, while fourteen week-old infants
direct their saccades to stimulus contours more consistently [7].
It seems that saccadic eye movements are refined over a period.
However, Butko and colleagues proposed a rapid learning hy-
pothesis which argues that very fast learning might occur just
after birth [8]. We suggest such fast learning for eye saccades
might be obtained by the following process: when an infant
senses an object appearing in her field of vision, the infant’s
brain is stimulated to try to move her eyeballs to fixate the ob-
ject. However, because all visual data is novel to a newborn
infant we assume there is no prior coordination of retinal image
space with motor acts. Hence, the appropriate motor values are
not known and so the infant’s brain may generate spontaneous
(random) motor values in an attempt to move towards the ob-
ject. When, eventually, the infant’s eyes fixate on the object,
then the brain can record the parameters of the successful expe-
rience (initial peripheral location, final angle of gaze) for future
reference.

An autonomous learning algorithm can be developed to re-
flect the above learning process and this is summarised as
pseudo code in Figure 3.

For each session
If stimulus in peripheral vision atθ, γ

Access the ocular-motor map
If a covering field exists:

Use motor values for this field
Else

Record the stimulus position,
make a spontaneous motor move
If the stimulus is within the fovea:

Generate a new field,
enter the stimulus location and
the associated motor values

Else
Repeat

End If
End If

Else
Do not move

End If
Iterate a new session

Figure 3: An Elementary Algorithm

This simple baseline algorithm is dramatically improved by
the addition of the following two modifications.

3.1.1. Nearest Field Selection
Suppose that the ocular-motor map has not yet generated any

fields that cover the current periphery stimulus location, let this
be (θ, γ). Thenearest fieldto the stimulus can then be selected
as an approximation to the target. For this, the following nearest
selection procedure was designed: first, an angular tolerance
is set to select the fields which have a similar angle with the

target field (θ), this tolerance is thus defined:θ ± δ1. Then, a
distance tolerance is set to select the fields nearest (radially) to
the target field from amongst the candidate fields in the above
set. The distance tolerance is defined as:γ ± δ2 pixels. The
angular parameter is given precedence over distance because, in
polar coordinates, the angular coordinate alone is sufficient to
determine the trajectory to the origin. From this we can obtain
a set of fields which fall within the (broad) neighborhood of the
stimulus, and the following formula

MIN(
√

(γ − γx)2 + (θ − θx)2)

is used to choose the nearest field from this collection, where
γx andθx, for x = 1 . . .n are the fields in the collection. This is
summarised as pseudo code in Figure 4.

If no fields exist for locationθ, γ:
a. For each field,fx ∈ Fields

If θ − δ1 < fx(θ) < θ + δ1
Candidates= Candidates∪ { fx}

b. For each field,fx ∈ Candidates
If γ − δ2 > fx(γ) or fx(γ) > γ + δ2

Candidates= Candidates− { fx}

c. Apply the MIN formula toCandidates
to find the nearest field toθ, γ.

Figure 4: The Nearest-Field Selection Algorithm

Note that although the variables in the MIN calculation use
different units their ranges are compatible for our purposes (be-
ing 0-360 degrees and 0-300 pixels). In the experiments (see
Section 5),δ1 is set to 15◦ andδ2 is set to 10 pixels.

3.1.2. Vector Field Generation
In the basic algorithm given in Figure 3, a new field cannot be

generated until the camera has fixated an object at the targetlo-
cation, and this process typically takes a long time becausemost
spontaneous moves will not result in a target fixation. However,
we note that there is a change in the location of the stimulus in
the image aftereachmovement. A vector can be produced from
this change by:

~V = Positionold - Positionnew

wherePositionold denotes the object position before movement
andPositionnew the object position afterwards. This vector rep-
resents a movement shift of the image produced by the related
motor action. Consequently, the vector can be used to accessa
field in the image layer together with its corresponding motor
values on the motor layer. In so doing, a new field can be gen-
erated after each spontaneous movement. This idea is related to
the Hebbian learning model [33].

During very early learning many spontaneous movements
will be needed until a fixation is achieved and by using the
movement vector idea each fixation can generate many vectors.
At any time, the current vector will be a sum of the previous
vectors, thus:

~Vs =
∑n

i=1
~Vi

4



and the corresponding motor values, being linear, can also be
produced by summation:

Ms
(p) =

∑n
i=1 Mi(p), Ms

(t) =
∑n

i=1 Mi(t)

wherep andt are the independent eye movement axes.
This is an incremental and cumulative system, in that the re-

sultant vectors can be built up over a series of actions by a sim-
ple recurrence relation:

~Vsum(t + 1) = ~Vsum(t) + ~Vi(t + 1)

4. System Implementation

Figure 5: The Pan and Tilt “Eye” System

Our laboratory robot incorporates a motorised camera system
that acts as an “eye”. Figure 5 shows the hardware components
consisting of a video camera mounted on a pan-and-tilt head.

4.1. The Motor Subsystem

The motor system is implemented by a motorised pan-and-
tilt device which provides two degrees of freedom. The pan
motor can drive the video camera to rotate about an axis that
translates the image in one direction, and the tilt motor candrive
rotation about an orthogonal axis, giving image translation at
90 degrees. Combined movements of pan and tilt motors cause
motion along an oblique axis. The pan/tilt device can effectively
execute saccade type actions based on supplied motor values
from the learning algorithm. Each motor is independent and
has a value (Mp for pan andMt for tilt) which represents the
relative distance to be moved in each degree-of-freedom.

4.2. The Sensor Subsystem

The camera captures workspace images and image process-
ing software is used to implement two sensors: a periphery sen-
sor and a centre or foveal sensor. The periphery sensor detects
new objects or object changes in the visual periphery area and
also the positions of any such changes (encoded in polar coordi-
nates). The centre sensor detects whether any objects (i.e colour
blobs) are in the central (foveal) region of the visual field.Fig-
ure 6 shows the workspace which is a white table, with green

objects. This setup was arranged to simplify the image process-
ing task, especially object detection.

The camera capture rate is one frame per second. A circular
area, of radius 20 pixels, in the centre of the image is defined
as the foveal region. If the centroid of an object is in this cen-
tral area, it is considered that the object is fixated and saccades
are inhibited; otherwise the system is not fixated. Each object
is represented by a group of green pixels clustering together in
the captured image. The position of the centroid of the pixels
is used as the location of the object. The image processing pro-
gram compares the currently captured image against the stored
previous image and, if the number or the position of any cen-
tral pixels within these two images differs markedly, the object
is considered to have changed and the new location of the cen-
troid is encoded in polar coordinates.

Note that an object “change” here signals one of the follow-
ing three situations, (i) an object is moved to a new locationin
the workspace; (ii) an object is removed from the workspace;
and (iii) a new object is placed in the workspace. Of course,
moving the camera would also cause a change in an object
on the retina but, as for the human eye, image processing is
only performed during fixations, not saccades. When one ob-
ject disappears and another reappears, young infants will often
approach the new stimulus with a series of saccades rather than
only one [2]. However, the current version of the algorithm
merely uses single object appearance as the stimulus. As an ex-
perimental technique we did not manually move the object but
simply moved the camera to a random location when a “new”
object at a different location was required at the start of a run.

Figure 6: A View of the Workspace

5. Experimental Results

The experiments are designed to investigate the model de-
scribed in section 3 The experimental procedure is ordered as
follows: an object is placed within the camera’s field of view,
then the developmental learning algorithm drives the camera
until the object is fixated; after fixation, the object is moved to
a new position (still within the camera’s view) and this process
iterates. During this procedure, no people or other agents are
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involved except for moving the object’s position. Through re-
peated experiments, it is hoped that all or most of the locations
in visual space will have been covered so that most possible
fields in the ocular-motor map will have been created.

5.1. Observations

From a large number of experiments carried out, we observed
that this system’s behavior can be described as falling intothree
stages: (1) at the beginning of a new ocular-motor map, (2) after
a few fields have been generated, and (3) after most fields have
been created.
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Figure 7: First Stage Traces, (image centre at 300, 350).

Figure 7 shows the traces of movement on the visual image at
the beginning of a new ocular-motor map. Actually the objectis
static during the experiment, but the camera is moving; hence,
in the image, the object appears motile. During this early stage,
because the new ocular-motor map is blank or extremely sparse,
there is no experience available (in terms of nearby fields) and
thus most movements are simply spontaneous. In the example
in figure 7 there are fifteen traces before fixation is achieved.
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Figure 8: Second Stage Traces

When a moderate number of fields have been generated, it is
still difficult to find an exact corresponding field for the stimu-
lus, but the nearest-field algorithm usually finds a nearby field.
Figure 8 illustrates the process of this second stage: largespon-
taneous movements do not happen any more, and the movement
traces tend towards the image centre.

At the third stage, because most fields have been generated,
the learning algorithm is able to find the correct correspond-
ing field (and thus the associated motor values) each time, the
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Figure 9: Third Stage Traces

camera movement is much simpler, usually consisting of one
movement and fixating the object directly. Figure 9, comprising
six experimental results in one plot, shows the traces as radial
movements, from periphery to centre; note that one of the plots
required two saccades to reach the target, indicating that map
learning was not yet fully complete.

Figure 10 illustrates the outcome of the set of experiments:
the upper figure presents the sensory layer and the lower figure
the motor layer. It can be seen that much of the image map has
been covered with fields, in this run a total of 94 fields were
produced. The fields in the sensory layer are plotted in polar
coordinates and marked by numeric labels, which give corre-
spondence with the motor (gaze) values.
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Figure 10: The Ocular-Motor Map at 94 fields. In the sensory layer radial
contours are drawn at 100, 200 and 300 pixels. The motor values represent
relative displacements.
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During the experiments each movement was recorded and
flagged as one of three types: spontaneous, (no suitable field
exists); using a neighbouring field; or direct saccade (stimulus
covering field found). Figure 11 is a cumulative plot that shows
the mix of movement types over time; three runs for each type
are shown to illustrate the variation in the process:
• The number of spontaneous movements (type A) dominates
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Figure 11: The Three Types of Movement. Three experimental results are plot-
ted in this figure, each line-style stands for a type of movements.

during the first thirty movements, however, this type of move-
ment occurs very little from then on.
• Movements using nearest neighbour fields (type B) do not

exist at the beginning, but this type of movement increases
sharply after that, and then after a period of growth, around
90, the use of nearest fields becomes less frequent.
• Direct, accurate movements using the correct correspond-

ing fields (type C) do not occur at all during the first eighteen
movements, however at the end of the experiments these have
the fastest rate of increase, until finally only these singlesac-
cades exist.

In order to illustrate where the fast learning occurs, Figure 12
shows the rate of new field generation over an entire experi-
ment. As can be seen, the field generation rate produced by the
developmental learning algorithm is very fast for the first 80
movements (at the rate of one field for every 1.27 moves), then
the rate decreases, and finally, field creation becomes very rare.
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Figure 12: The Rate of New Field Generation.

Another illustration of the learning process is seen in Fig-
ure 13, taken from another, different run of experiments. This
data covers 88 movements in total, separated out into saccades
per individual fixation. This shows how the number of saccades
per fixation falls away very rapidly, the reason being that even a
sparse covering of fields aids convergence because a near neigh-
bour can usually be found.
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Figure 13: The Decline in Saccades per Fixation.

It is important to note that the emergence of the observed
behavioural stages are not initiated by any switching or thresh-
olds. Indeed, at any point the system might revert to an earlier
behaviour type, as at any time a new field might need to be in-
troduced. Eventually the early behaviours will be extinguished
but as this is an asymptotic process there is always a finite pos-
sibility of regression.

6. Discussion

It has been suggested that the preference of newborns to ori-
ent towards faces is not innate, as generally believed, but could
be learned very rapidly, even in the first six minutes of life [8].
Our robot model has demonstrated that the fundamental pro-
cess of visual saccading to a peripheral stimulus could alsobe
learned rather than innate. If such rapid learning does occur it
would be quite difficult to detect but it could be very significant
evidence for the empiricist stance [49].

From a robotics design viewpoint is is also difficult to see
how accurate saccades could be built as an innate function. In
order to coordinate points on a camera image plane with ob-
jects in the 3D world it is necessary to analyse the coordinate
geometry of the imaging process and provide some form of cal-
ibration procedure. It seems very unlikely that such concrete
and specific information could be transmitted by innate means.
It is important to note that our model does not need any such in-
formation and is self-calibrating; indeed the learning model is
essentially performing a kind of continuous calibration learn-
ing.

There is a large literature on eye movements and saccades but
very little is relevant to the first few hours and days after birth.
However, we find considerable support for our model which
seems entirely compatible with current knowledge. For exam-
ple, it is known that infants execute smaller steps than adults
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with reports of “sometimes making as many as four or five con-
secutive saccades to reach the peripheral target” [2], and “larger
step sizes were used to localize more distant targets” [2].

As in the robot, the average number of saccades an in-
fant uses to fixate an object onto its fovea reduces with time.
Roucoux et al. found that infants fixed targets onto the fovea
with successive small saccades even though they were capable
of larger saccades [42]. They also found that the more eccen-
tric the target the higher the average number of saccades, and
for targets at all angles the average number of saccades declined
with age. This is similar to the robot model, in which the num-
ber of saccades decreases over time.

Roucoux et al. describe two patterns of movement that result
in the image falling on the fovea, one with predominant head
movements and small saccades and the other being the more
adult pattern of larger saccades predominating [42]. They draw
a parallel with two types of vertebrates, those with a fovea and
those without and designate the head dominant movements as
“afoveate” and the more saccadic as “foveate”. They describe
how, as infants mature, the proportion of “foveate” movements
increases and the range of angles from the fovea that are cov-
ered by “foveate” moves or saccades increases. For objects
nearer the centre of vision the adult-like pattern was reached
earlier than for more eccentric targets. At five weeks targets of
45 degrees were not fixated at all, by 8 weeks they took 3 sac-
cades on average and by adulthood this was almost one. These
observations are consistent with staged learning behaviour and,
allowing for the complications caused by head movements, they
are similar to the pattern seen in our robot model.

Hainline and colleagues examined saccade peak velocity,
amplitude and duration in infants and compared them to
adults [17]. Their sample of 64 infants of ages 14 to 151 days
produced a significant proportion of mature saccades that were
comparable to adults. This was confirmed by [14] who also
showed that infant saccades may even be faster than adults. The
mix of infant and adult movement types reported by such au-
thors can be interpreted as part of a learning process and thede-
cline of the early patterns with age reflects the increasing domi-
nance of the more efficient saccades. This pattern is seen in the
robot model, where mature and immature movement patterns
(from the 3 stages) coexist until the system has fully learntthe
relationship between its motor and visual maps.

An interesting hypothesis [18] is that the commonly ob-
served undershoot in saccades may be an optimum strategy to
minimise the total flight-time, because the total flight-time is
less with corrective saccades that undershoot as compared with
those that overshoot. This effect also occurs in our method —
fields near the foveal are predominant among the first to develop
because most moves end in such a field, and so when a neigh-
bour is selected it is more likely to be on the near side than the
far side of the target. We analysed the data for a run of fixations
and found that undershoot occurred in 75% of the cases.

Regarding the robustness of the method, we notice that the
motor values are, in fact, not absolute gaze positions but define
shifts in gaze relative to the current position. This means ape-
riphery stimulus at pointP on the image might cause a saccade
from the current gaze locationG1 to new locationG2 but then

another stimulus occurring at exactly the same point,P, on the
image will drive the system toG3. This means the gaze space
must be linear — an image shift must always produce the same
changein gaze for all gaze locations. As mentioned before, if
this was not the case then a gaze/motor mapping could be used
to hold the corrections necessary to linearise the gaze space.
On the other hand, there is no requirement for the image space
to be linear and the system effectively learns image distortions.
This means that although the summation of motor values dur-
ing multiple movement learning will produce a correct result,
the summation of vectors on the image is likely to produce er-
rors. Nevertheless, the fields represent a “zone of tolerance”
and small errors will often be accommodated within fields. In
our experiments we have found that these were indeed accom-
modated in maps for typical camera/lens combinations, as the
intermediate vector generation method was successful in speed-
ing learning. In the case of more difficult mappings there are
two options: either field generation for intermediate vectors is
switched off, notice that this will only slow down learning; or it
may be more effective to continue creating fields wherever pos-
sible and allow later corrections to be made. This question of
rapid population and correction or slower more accurate growth
requires more investigation as different conditions may apply
for different tasks. We also notice that the total gaze space will
be larger than the image and so it is possible for the sponta-
neous movements to shift the target out of view (off image), as
happens occasionally in our experiments. This does not cause
any problems as the motor values continue to be accumulated
and the final motor summation is still the appropriate value for
the stimulus target field. During such events the intermediate
vectors can not be utilised but when the stimulus returns to the
image the process continues as before.

Regarding plasticity, consider how the algorithm would per-
form with a fully populated mapping and then the image is sub-
jected to some fixed distortion through optical or physical dis-
turbance. A peripheral stimulus will still be covered by a field
but the motor movement will be incorrect (by an amount de-
pending on the degree of distortion) and the foveal region is
likely to be missed. A second, corrective saccade will then be
triggered by the new field location and this is likely to reachthe
fovea as it will be much nearer. Thus, we would expect a small
number of corrective saccades to be generated and the final mo-
tor values,Ms

(p) andMs
(t), can be inserted to replace the previ-

ous values, (effected by a trivial adjustment to the algorithm in
Figure 3). Thus the system will adapt to changes as they are ex-
perienced. If only part of the image is distorted then only part
of the mapping will be relearned, but even in the worst case, the
time taken will be no longer than learning the original map, and
this can be done on-line and during use. Of course, if the dis-
tortion is of a warping nature then corrections will be localand
the process will be well behaved. On the other hand, a gross
change, such as a total inversion in a reflecting mirror would
require a completely new map to be learned, while a change of
lens focal length (zooming), would be an intermediate change
with the center unaltered and the periphery notably shifted.

Considering the accuracy of the system, the model can easily
match reported infant accuracy [22, 20]. In the mapping, the
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average error in saccading to a given image location is 0.35R
for a field of radiusR, for double overlapping fields — this is
always within the tolerance provided by the foveal region of20
pixels. But note that using a simple linear field function (e.g.
stimulus distance from field centre) a multilateration operation
performed on a small number of local fields will deliver much
higher accuracy if needed. Full details of noise analysis and
the effects of overlapping fields on accuracy requires a further
paper.

7. Related Work

Many robotics projects have involved ocular-motor coordi-
nation problems, and indeed most robots with hand and eye
systems need to deal with tasks such as visually directed gaze
control, visually guided reaching, and other human inspired
sensory-motor behaviour. However, the ability to saccade to
visual stimuli of interest has often been programmed into many
systems rather than learned. Maybe the image/gaze relation
has often been considered innate and therefore can be engi-
neered as a fixed function [10]. Even when saccades have been
learned they have often not been very closely aligned with ex-
isting psychological data and knowledge. For example, [24]
addressed the problem of driving moveable visual sensors tolo-
cate static objects. The emphasis was on on topographic map-
pings and artificial neural networks, but the neural controller
needed 100,000 trials during training. [21] produced a very
novel artificial evolutionary method that simulated genes and
regulators to create a neural network that learns to track objects
on an image. This required 30,000 training iterations and the
resulting image tracking function was more of a retinal flow
field that produced somewhat distorted paths to the fovea rather
than direct saccades from any image point. A strong develop-
mental approach to visually guided reaching has been described
by [32]. Motor synergies or primitives were used to provide a
motor/motor correlation learning system for the hand and eye
components. A very similar approach to our own is seen in [1]
where visual tracking needs to be learned as part of a sensory-
motor approach to imitation research. The visual image was
mapped onto a robot hand map but small, local neural networks
were incorporated intoeveryfield point. The system learned
to coordinate a 2 degree-of-freedom image with a 3 degree-of-
freedom robot arm but required 8,000 random movements.

In many such robotic models of saccading and ocular-motor
coordination, we find that the learning times reported are usu-
ally orders of magnitude greater than for our system. Con-
nectionist methods have been widely employed, and although
techniques such as radial basis functions have similarities with
our mappings, it seems that the extensive training regimes re-
quired are not very compatible with experience of human de-
velopment. Also the number of neurons involved with these
methods can scale up exponentially [38]. The system of [29] is
also similar in motivation to our own but uses engineering so-
lutions where psychological methods would produce more ef-
ficient and flexible results. For example, saccade maps were
learned but these were primed with a linear grid of 10x10 gaze
locations, and then learning was used to adjust the errors to

the true map. But even with this prior knowledge, each loca-
tion required 20 trials, thus giving 2000 learning trials [43]. In
comparison our method produces a nearly complete mapping
by 200 trials. Also, before learning, a calibration routinewas
used, which gave undefined prior information to the system. A
hand/eye mapping was also learned by this system but all the
mappings described had to be learned as separate functions in
each direction (i.e. each map and its inverse), whereas the links
in our mappings are bidirectional — the image/gaze map can be
read in reverse to find the expected location on the retina that
corresponds to a planned gaze shift.

The use of random movements or “motor babbling” has been
valued by a number of researchers. Harris argues strongly that
sophisticated control theory is inappropriate for modelling sac-
cade control because this is an un-referenced control problem
(i.e. no error reference is available) [18]. This means ex-
ploration of the problem space is necessary and “randomness
(variability) of activity reflects an active process for explor-
ing. . . rather than being simply neural noise” [18]. It is impor-
tant to recognise that “random” action can be much more than
“trial and error” learning, which is a form of blind search. Ap-
propriate spontaneous action is an information gathering activ-
ity and can be a rich source of data for learning forward models.

Although this work has no direct link with neuroscience data
or models, the resulting system is not incompatible with a neu-
ral interpretation and it would be feasible to implement theal-
gorithm as a version based only on artificial neural network
techniques. Such a version could take advantage of parallelism,
in nearest field selection for example, to provide even faster
real-time operation.

8. Conclusions

The experimental implementation described here demon-
strates that our developmental approach is able to produce a
method that: learns very rapidly — much faster than current
neural network based approaches; does not use or require any
calibration process or prior knowledge; continuously adapts
to correct errors and accommodate any changes in the ocular-
motor system; and displays distinct and qualitatively different
stages in its behaviour which emerge during learning.

Our model draws on the relevant literature and our result-
ing experimental system is extremely fast, incremental andcu-
mulative in its learning; all desirable characteristics for real-
time autonomous agents. This relates to human infant learn-
ing and adaptation which has often been observed to be very
fast [40]. The simplicity of the method is important in this
regard, as the requirement for fast performance, inboth sac-
cading and learning, rules out complex computations and the
speed of neural processes limits the number of steps that canbe
involved [35, 5].

Developmental psychology recognises a key characteristicof
animal development: the sequencing of development phases
where some competencies always precede others. These reg-
ularities are known as stages and are believed to be the basisof
development processes that underpin the gradual consolidation
of control, coordination and competence [39]. The challenge
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from this viewpoint is in finding effective algorithms that sup-
port progressive and qualitative growth in behavioural compe-
tence without requiring significant structural change. Ourre-
sults show three distinct stages of behaviour emerging froma
single process; this shows how qualitative change in behaviour
may occur without structural change, but by the consolidation
of experience. This concept of staged growth under constraints
may provides a valuable method for use in many sensory-motor
learning applications [26].

Regarding potential applications, our algorithm providesau-
tomatic fixation of stimuli points in a visual field and thus would
be valuable in moving camera applications such as surveillance,
monitoring, undersea, and rescue situations, particularly when
the system is mobile, temporary or vehicle mounted. The avoid-
ance of any calibration, set-up, or training periods is a great
advantage. Many existing methods deem it necessary to estab-
lish exact correspondences between video images and the 3D
sensed environment and this requires elaborate computations
of intrinsic and extrinsic camera geometry, often with the use
of calibration objects [51]. These methods can take up to 30
minutes for the calibration process [9]. Our simpler approach
does not need any camera parameters and yet can handle non-
linear image distortions. A patent application is currently in
progress.

Further work can build on this model for the growth of fur-
ther behaviours, including corrective saccades, smooth pursuit,
head integration and gaze analysis. There exists a rich source
of psychological data that can provide guidance for building
effective learning algorithms that advance robotic applications
and there remains much to be done in implementing working
developmental algorithms in autonomous agents.
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