
Probabilistic Policy Reuse for Inter-Task

Transfer Learning

Fernando Fernández a Javier Garćıa a Manuela Veloso b

aUniversidad Carlos III de Madrid

bCarnegie Mellon University

Abstract

Policy Reuse is a reinforcement learning technique that efficiently learns a new
policy by using past similar learned policies. The Policy Reuse learner improves
its exploration by probabilistically including the exploitation of those past policies.
Policy Reuse was introduced and previously demonstrated its effectiveness in prob-
lems with different reward functions in the same state and action spaces. In this
article, we contribute Policy Reuse as transfer learning among different domains. We
introduce extended MDPs to include domains and tasks, where domains have differ-
ent state and action spaces, and task are problems with different rewards within a
domain. We show how Policy Reuse can be applied among domains by defining and
using a mapping between their state and action spaces. We use several domains, as
versions of a simulated RoboCup Keepaway problem, where we show that Policy
Reuse can be used as a mechanism of transfer learning significantly outperforming
a basic policy learner.

Key words: Reinforcement Learning, Transfer Learning, Policy Reuse

1 Introduction

Reinforcement Learning (RL) [1] is a powerful control learning technique based
on a trial and error process guided by reward signals received from the environ-
ment. Classical RL algorithms as Q-Learning [2] rely on an intense exploration
of the action and state spaces. In the presence of large spaces in complex do-
mains, learning an optimal policy typically requires an extensive interaction
of the learning agent with the environment.

Email addresses: ffernand@inf.uc3m.es (Fernando Fernández),
fjaviergp@gmail.com (Javier Garćıa), veloso@cs.cmu.edu (Manuela Veloso).

Preprint submitted to Elsevier 15 July 2009

Although the cost (time, resources, etc.) of the learning process may be very
high, successful results have been reached to solve complex tasks [3,4]. But
many different efforts continue to investigate how to address the potential
complexity of reinforcement learning. Several such efforts rely on the appealing
idea of reusing the knowledge acquired in one learning process to solve other
problems, including the transfer of value functions [5], the reuse of options [6],
or the learning of hierarchical modules [7]. The cost of the guided learning is
consistently reduced.

Policy Reuse is a technique where the learner is guided by past policies balanc-
ing among its search for the optimal policy among three choices: the exploita-
tion of the ongoing learned policy, the exploration of new random actions,
and the exploitation of past policies [8]. Policy Reuse builds upon two main
contributions: (i) an exploration strategy able to probabilistically bias the ex-
ploration of the domain with a predefined past policy; (ii) a similarity metric
that allows the estimation of the similarity of past policies with respect to
a new one. Policy Reuse has been demonstrated in a series of complex grid-
based learning tasks where the efficiency of the learner significantly improves
when reusing past policies [8]. Although the grid-based tasks have been ex-
tensively used in the evaluation of reinforcement learning for robot control,
there remained the question of how Policy Reuse could be applied to domains
potentially more complex, such as the Keepaway domain [4]. The challenge
is to transfer learned knowledge from a simple to a larger state and action
spaces, e.g., from a keepaway problem with some number of teammates and
opponents to a new one with larger number of agents. Our work is motivated
by this domain and contributes a method to apply Policy Reuse to transfer
learning.

Policy Reuse needs that the past policies and the policy to be learned be de-
fined in the same state and action spaces. That constraint is required to allow
the agent to execute policies previously learned in the current task. In this
paper, we introduce an extension of Policy Reuse that allows to reuse past
policies even when they are defined in different state and action spaces. The
method is based on a mapping among policies. Such mappings between state
and action spaces are required in other approaches for transfer learning [9,10].
Given that we only need to transfer policies for policy reuse, interestingly and
as shown in this paper, the amount of knowledge required by our mapping is
much smaller than in methods based on the transfer of the value function. In
our case, the mapping is assumed to be given. Some methods try to solve this
problem through a study of actions correlations [11], through state abstrac-
tion [12], or by defining the relationships between the state variables of the
source and target MDP’s [13].

We demonstrate empirically that Policy Reuse, combined with the action and
state space mapping, is able to improve the learning performance if compared

2

with learning with no reuse. We apply the transfer learning using Policy Reuse
to the Keepaway framework [4], which favorably compares with other trans-
fer learning methods that have been recently applied [14,10,15] to this same
domain.

2 Policy Reuse

We summarize Policy Reuse. Firstly, we describe the concepts of task, domain,
and gain. Then, we define how the reuse of a past policy is used as a proba-
bilistic bias in a new exploratory process. We also briefly introduce a similarity
concept between policies. Lastly, we review the PRQ-Learning algorithm [8].

2.1 Domains, Tasks and MDPs

A Markov Decision Process is a tuple < S,A, T ,R >, where S is the set
of all possible states, A is the set of all possible actions, T is a stochastic
state transition function, T : S × A × S → ℜ, and R is a stochastic reward
function, R : S × A → ℜ [1]. Reinforcement learning (RL) assumes that T
and R are unknown. We focus on RL domains where different tasks can be
solved. We introduce a task as a specific reward function, while S, A, and T
stay constant for all the tasks. Thus, we extend the concept of an MDP by
introducing two new concepts: domain and task. We characterize a domain,
D, as a tuple < S,A, T >. We define a task, Ω, as a tuple < D,RΩ >, where
D is a domain as defined before, and RΩ is the stochastic and unknown reward
function.

Learning proceeds in multiple episodes. Each episode positions the learning
agent in an initial state of the environment and terminates when an end con-
dition is satisfied, for instance, when a maximum number of steps, say H, is
achieved. Thus, the learning objective is to maximize the expected average
reinforcement per episode, say W , defined as W = 1

K

∑K
k=0

∑H
h=0 γ

hrk,h, where
K is the total number of episodes, rk,h is the immediate reward obtained in
the step h of the episode k, and γ (0 ≤ γ ≤ 1) discounts future rewards. An
action policy, Π : S → A, defines for each state, the action to execute. The
action policy Π∗ is optimal if it maximizes the gain W in the task Ω, W ∗

Ω.

Policy Reuse aims at speeding up the learning process of a new task by using
past policies that solve different similar tasks to bias the exploration process.
Then, Policy Reuse with the objective of solving a task Ω, i.e., to learn Π∗Ω faces
two main steps: (i) to previously solve a set of tasks {Ω1, . . . ,Ωn} resulting
in a set of policies, {Π∗1, . . . ,Π

∗
n}; (ii) to use the policies, Π∗i to learn the new

3

policy Π∗Ω.

An efficient solution to Policy Reuse is the PRQ-Learning algorithm [8], which
automatically answers two questions: (i) which policy, from the set {Π∗1, . . . ,Π

∗
n},

should be used to bias the new learning process, and (ii) once a policy Πi is
selected, how is it integrated in the learning process. PRQ-Learning is based
on an exploration strategy, π-reuse, that is able to bias the learning of a new
policy with one past policy. Such strategy enables the identification of a simi-
larity metric between policies, providing a method to select the most accurate
policy to reuse. Both the π-reuse strategy and the similarity metric, defined
in [8], are now summarized.

2.2 A Similarity Metric Between Policies

The goal of the π-reuse strategy is to balance random exploration, exploita-
tion of the past policy, and exploitation of the new policy being learned. The
π-reuse strategy follows the past policy, Πpast and the new policy with a prob-
ability ψ and 1 − ψ, respectively. As random exploration is always required,
when exploiting the new policy, π-reuse follows an ǫ-greedy strategy, as defined
in Table 1. The υ parameter decays the value of ψ in each episode.

π-reuse (Πpast,K,H, ψ, υ).

Initialize QΠnew (s, a) = 0, ∀s ∈ S, a ∈ A
For k = 1 to K

Set the initial state, s, randomly.
Set ψ1 ← ψ

for h = 1 to H
With a probability of ψh, a = Πpast(s)
With a probability of 1− ψh, a = ǫ-greedy(Πnew(s))
Receive current state s′, and reward, rk,h

Update QΠnew (s, a), and therefore, Πnew:

QΠnew (s, a)← (1− α)Q(s, a)Πnew + α[r + γmaxa′ QΠnew (s′, a′)]

Set ψh+1 ← ψhυ

Set s← s′

W = 1

K

∑K

k=0

∑H

h=0
γhrk,h

Return W , QΠnew (s, a) and Πnew

Table 1
π-reuse Exploration Strategy.

Interestingly, the π-reuse strategy also contributes a similarity metric between
policies, based on the gain obtained when reusing each policy. Let Wi be the
gain obtained while executing the π-reuse exploration strategy, reusing the
past policy Πi.

Wi is used as an estimation of how similar the policy Πi is to the one we
are currently learning. The set of Wi values, for i = 1, . . . , n, is unknown a
priori, but it can be estimated on-line while the new policy is computed in the

4

different episodes. This idea is formalized in the PRQ-Learning algorithm.

2.3 PRQ-Learning Algorithm

Table 2 presents the PRQ-Learning algorithm (Policy Reuse in Q-Learning) [8].
The learning algorithm used is Q-Learning [2]. The goal is to solve a task Ω,
i.e., to learn an action policy ΠΩ. We have a Policy Library L = {Π1, . . . ,Πn}
composed of n past policies. Then, Wi is the expected average reward that
is received when reusing the policy Πi with the π-reuse exploration strategy,
and WΩ is the average reward that is received when following the policy ΠΩ

greedily. The algorithm uses the W values in a softmax way to choose between
reusing a past policy with the π-reuse exploration strategy, or following the
ongoing learned policy greedily.

PRQ-Learning(Ω, L,K,H)

• Given:

(1) A new task Ω we want to solve
(2) A Policy Library L = {Π1, . . . ,Πn}
(3) A maximum number of episodes to execute, K
(4) A maximum number of steps per episode, H

• Initialize:

(1) QΩ(s, a) = 0, ∀s ∈ S, a ∈ A
(2) WΩ = Wi = 0, for i = 1, . . . , n

• For k = 1 to K do

· Choose an action policy, Πk, assigning to each policy the probability of being selected
computed by the following equation:

P (Πj) =
eτWj

∑n

p=0
eτWp

where W0 is set to WΩ

· Execute the learning episode k
If Πk = ΠΩ, execute a Q-Learning episode following a fully greedy strategy
Otherwise, call π-reuse(Πk, 1, H, ψ, υ)
In any case, receive the reward obtained in that episode, say R, and the updated
Q function, QΩ(s, a)

· Recompute Wk using R

• Return the policy derived from QΩ(s, a)

Table 2
PRQ-Learning.

The PRQ-algorithm has demonstrated to successfully and effectively reuse a
predefined set of policies. In addition, algorithms to build the Policy Library
have been contributed [8].

Up to this point, Policy Reuse has shown to require that the action and state
spaces of the different policies, and therefore, the transition function, are ho-
mogeneous. However, a core contribution of this work consists on demonstrat-

5

ing that Policy Reuse can also be applied among policies learned in different
state and action spaces, by creating a mapping between them.

2.4 Policy Reuse Across Tasks with Different State and Action Spaces

We assume a past policy, Πpast that solves the task Ωpast =< Dpast,Rpast >,
where Dpast =< Spast,Apast, Tpast >. We want to learn a new policy Πnew to
solve a new task Ωnew =< Dnew,Rnew >, where Dnew =< Snew,Anew >. As
a transfer learning goal, we want to reuse the past policy, Πpast to learn the
new problem Πnew. Interestingly, given that our policy reuse method relies
on policies, we only need to map states and actions, and we do not need to
make any mapping between tasks, rewards nor transition functions. Thus, we
need to find a mapping ρ that, given the policy Πpast in the domain Dpast,

outputs a new policy Π̂past that is executable in the domain Dnew. Following
the ideas introduced in [9] Equation 1 defines the mapping ρ =< ρS , ρA >,
where ρA : Apast → Anew is a function that maps the actions in the space
Apast to the actions in the space Anew, and ρS : Snew → Spast maps states in
the space Snew to the space Spast.

Π̂past(s) = ρA(Πpast(ρS(s))) (1)

The way to make this mapping, i.e., to define ρS and ρA, depends on the source
and the target tasks. For instance, this mapping can be done by an expert who
decides the correspondence among states and actions [14,10]. That mapping
can also be learned by observing a mentor [16]. The advantage of Policy Reuse
over value function based transfers is that Policy Reuse only requires the
mapping between the different state and action spaces, while value function
based transfer requires also the mapping among such value function, which
must be defined ad-hoc depending on the function approximator used [14].
Next section describes the application of Policy Reuse for transfer learning
in Keepaway. The mapping among the different state and action spaces is
based on knowledge inserted by the expert, and independent of the function
approximator used.

3 The Keepaway

Keepaway is a research framework defined in the robot soccer simulation [4].
It consists of two teams, the keepers and the takers. The behavior of the takers
is fixed and defined a priori and consists of several low level skills as “Go to
Ball” or “Block a Pass,” that are combined following some predefined rules.

6

There are also some low level skills defined for the keepers, as “Go to Ball”
or “Hold the Ball.” A task consists of learning a high level control function of
those skills for each of the keepers. The goal is to maximize the time that the
keepers maintain the possesion of the ball. The end condition for each episode
is that the keepers lose the ball or that the ball goes out of a fixed sub-area
of the field. Both conditions are also predefined.

We follow the framework defined in [14]. Thus, each keeper learns its own
behavior, so we assume that each of them is implemented as a reinforcement
learning agent, as explained next.

The state features and available actions use information derived from distances
and angles between the keepers, the takers, and the center of the play area.
Depending on the number of keepers and takers, the features used are different.
Table 3 shows some features of the state space when 3 keepers play against 2
takers (3vs2-keepaway), when 4 keepers play against 3 takers (4vs3-keepaway),
and when 5 keepers play against 4 takers (5vs4-keepaway) [9]. Keepers and
takers are ordered taking into account their respective distance to the ball, so
the assignment of numbers to the keepers and the takers may change at each
step [4].

3vs2-keepaway 4vs3-keepaway 5vs4-keepaway

dist(k1, C) dist(k1, C) dist(k1, C)

dist(k2, C) dist(k2, C) dist(k2, C)

dist(k3, C) dist(k3, C) dist(k3, C)

dist(k4, C) dist(k4, C)

dist(k5, C)

.

min(dist(k3, t1),

dist(k3, t2))

min(dist(k3, t1),

dist(k3, t2),

dist(k3, t3))

min(dist(k3, t1),

dist(k3, t2),

dist(k3, t3),

dist(k3, t4))

min(dist(k4, t1),

dist(k4, t2),

dist(k4, t3))

min(dist(k4, t1),

dist(k4, t2),

dist(k4, t3),

dist(k4, t3))

min(dist(k5, t1),

dist(k5, t2),

dist(k5, t3),

dist(k5, t3))

13 features 19 features 25 features

Table 3
State spaces of the different keepaway versions.

The number of continuous features for the different versions of Keepaway
are 13, 19 and 25 respectively. Thus, a method for state space generalization
is required in order to improve the learning capabilities. Some methods for

7

3vs2-keepaway 4vs3-keepaway 5vs4-keepaway

Hold Hold Hold

Pass(k2) Pass(k2) Pass(k2)

Pass(k3) Pass(k3) Pass(k3)

Pass(k4) Pass(k4)

Pass(k5)

Table 4
Action spaces of the different keepaway versions.

function approximation, as CMAC or VQQL, have been applied to the Keep-
away [5,19]. In this work, we use CMAC. Specifically, we have followed the
approximation used in [4]. The only difference of our CMAC implementation
in the Keepaway is that we use a separate value function approximator for each
discrete action, following the ideas introduced in [17]. The complete details of
the implementation can be found at [18].

The action space is limited to the execution of two different behaviors,HoldBall()
and PassBall(ki). PassBall receives a parameter, which is the player who will
receive the pass. Table 4 defines the complete set of actions for the different
number of keepers and takers.

The number of actions also grows with the number of keepers. The keeper that
is holding the ball is the only one that makes a decision among the actions
shown in Table 4. If the player does not hold the ball, it executes a predefined
behavior as well as the takers do.

Last, the reward is the time that the team holds the ball since the agent
executed the last action until the ball returns to it. Therefore, the reward
does not depend only on the executed action, but also on the actions executed
by the other agents.

4 Evaluation

This section describes the evaluation of the Policy Reuse approach for trans-
fer learning in Keepaway. Additional evaluation of Policy Reuse in a robot
navigation domain can be found in [8].

4.1 Tasks in the Keepaway Framework

We differentiate three different tasks, each of them defined in a different do-
main (different state and action spaces): (i) the 3vs2-keepaway, where 3 keepers
play against two players; (ii) the 4vs3-keepaway; and (iii) the 5vs4-keepaway,

8

where 5 keepers play against 4 takers. The three tasks are learned in the order
that have been defined. We consider two learning scenarios. In the first one,
the three tasks are learned from scratch, so the knowledge acquired in one of
them is never used to improve the learning process of the others. In the sec-
ond case, we first learn the 3vs2-keepaway. Then, the agents that participated
in 3vs2-keepaway, reuse the acquired policy to solve the 4vs3-keepaway. The
agent that did not participate in the 3vs2-keepaway learns from scratch. Last,
when learning the 5vs4-keepaway, each agent reuses the previously learned
polices (2 policies for keepers 1, 2, and 3; 1 for keeper 4, and none for keeper
5), as defined in Table 5.

3vs2-keepaway 4vs3-keepaway 5vs4-keepaway

Keeper 1 Learn Πk1
3vs2 from

scratch
Learn Πk1

4vs3 by reusing
Lk1 = {Πk1

3vs2}
Learn Πk1

5vs4 by reusing
Lk1 = {Πk1

3vs2, Π
k1
4vs3}

Keeper 2 Learn Πk2
3vs2 from

scratch
Learn Πk2

4vs3 by reusing
Lk2 = {Πk2

3vs2}
Learn Πk2

5vs4 by reusing
Lk2 = {Πk2

3vs2, Π
k2
4vs3}

Keeper 3 Learn Πk3
3vs2 from

scratch
Learn Πk3

4vs3 by reusing
Lk3 = {Πk3

3vs2}
Learn Πk3

5vs4 by reusing
Lk3 = {Πk3

3vs2, Π
k3
4vs3}

Keeper 4 Not Playing Learn Πk4
4vs3 from

scratch
Learn Πk4

5vs4 by reusing
Lk4 = {Πk4

4vs3}

Keeper 5 Not Playing Not Playing Learn Πk5
5vs4 from

scratch

Table 5
Description of the tasks solved.

The next section formalizes Policy Reuse in this scope. It also describes how
each agent performs the mapping between the 3vs2-keepaway and the 4vs3-
keepaway. Mappings from 3vs2-keepaway to 5vs-4 keepaway or from 4vs3-
keepaway to 5vs-4 keepaway are equivalent, and easily instantiated from this
case.

4.2 Policy Reuse in the Keepaway

The 3vs2-keepaway is a task, Ω3vs2 =< D3vs2,R >, defined in the domain
D3vs2, with a reward function R. The domain is defined as a tuple, D3vs2 =<
S3vs2,A3vs2, T 3vs2 >. S3vs2 and A3vs2 were defined in tables 3 and 4 respec-
tively. Both the transition function T 3vs2 and the reward function are unknown
for the agent. The goal is to learn an action policy ΠΩ3vs2 : S3vs2 → A3vs2

that outputs actions, given any state of the discretized state space. In a
similar way, the 4vs3-keepaway task is formalized as following: D4vs3 =<
S4vs3,A4vs3, T 4vs3 >; Ω4vs3 =< D4vs3,R >; and ΠΩ4vs3 : S4vs3 → A4vs3.

9

Following the notation introduced in Section 2.4, the mapping from a policy in
the 3vs2-keepaway to the 4vs3-keepaway is performed as defined in equation 2:

Π̂Ω4vs3(s) = ρA(ΠΩ3vs2(ρS(s))) (2)

where ρS is a function ρS : S4vs3 → S3vs2 that, given a state in the 4vs3-
keepaway state space, S4vs3, projects it on the 3vs2-keepaway state space,
S3vs2; and ρA is a function ρA : A3vs2 → A4vs3 that, given an action in the
3vs2-keepaway action space, A3vs2, maps it on the 4vs3-keepaway action space.

In Keepaway, these projections are derived from the semantic of the fea-
tures and actions [9]. In the case of the action spaces, ρA(a) = a, i.e. is
the identity function, given that the action space in 3vs2-Keepaway is a
subspace of the 4vs3-keepaway one. In the case of ρS , the mapping is a
projection of the 4vs3-keepaway state space into the 3vs2-keepaway state
space. This projection is derived from Table 3. Each feature in 4vs3-keepaway
maps to the feature of 3vs2-keepaway in the same row. For instance, feature
min(dist(k2, t1), dist(k2, t2), dist(k2, t3)) in 4vs3-keepaway maps to the feature
min(dist(k2, t1), dist(k2, t2)) in 3vs2-keepaway. The features in 4vs3-keepaway
that does not have equivalent in the 3vs2-keepaway are eliminated, as it is
the case of the feature min(dist(k4, t1), dist(k4, t2), dist(k4, t3)). The reason is
that it only involves information about the keeper k4, that does not play in
3vs2-keepaway.

4.3 Parameter Setting

In the experiments, we have used the Keepaway layer Framework 0.6 1 . We
used the same settings as a previous transfer learning paper that uses this
domain as a testbed [14], namely the field size is 25 × 25, vision capabilities
are set to full, and the synchronous mode is set on to speed up the simulator.

In order to have some baseline results, in all the cases we introduce the perfor-
mance of a policy where the agents always passes to the second keeper (which
outperforms the policy where the agents always hold the ball and the random
policy, used for comparisons in other papers [4]).

In our case, we use Sarsa(λ) for approximating the optimal Q-function. The
goal of using this algorithm is to show that Policy Reuse can be applied directly
with other Reinforcement Learning algorithms, including on-policy methods:
generalize the PRQ-Learning algorithm defined in Section 2.3 only requires

1 The software is available in the Keepaway Player Framework web page:
http://www.cs.utexas.edu/users/AustinVilla/sim/keepaway/

10

to change the Q update equations and the way such updates are performed.
A second objective is that the results can be compared directly with previ-
ous transfer learning approaches applied in the Keepaway domain that used
Sarsa. Additional evaluations of Policy Reuse in the Keepaway with differ-
ent TD methods (Q-Learning or Q(λ)) and different function approximation
approaches (CMAC and VQQL) can be found in previous works [19,18].

The parameter setting is the following: In the Sarsa(λ), α = 0.125, γ = 1 and
λ = 0.5, as defined in other previous works [14]; in the π-reuse exploration
strategy, ψ = 1, υ = 0.95 and ǫ = 1 − ψh; and in the PRQ-Learning algo-
rithm, τ is initialized to 0, and incremented by 0.05 in each episode. All these
parameters have taken the same values that in the previous experimentation
in a navigation domain [8], which demonstrated to be accurate for that task.
Thus, they may not be optimal for Keepaway, but provide us with results that
are accurate enough for our study on Policy Reuse.

When learning from scratch, an ǫ-greedy strategy is followed, increasing the
value of ǫ from 0 (random behavior) to 1 (greedy behavior) by 0.0001 in each
episode. As before, this strategy demonstrated to provide good results in this
domain, but no extensive parameter tuning was performed.

4.4 Results

4.4.1 3vs2-keepaway

Firstly, we have learned the 3vs2-keepaway. The results are summarized in
Figure 1. The x axis of the figure describes the training time, while the y axis
shows the episode duration, which is the value to maximize. In this task, the
random behavior obtains a performance of 7.25 seconds, while the policy “Pass
K2” obtains an average value of 8.17. When learning, the average values raises
from 7.25 up to around 25 seconds in the two different executions performed.

4.4.2 4vs3-keepaway

After learning the 3vs2-keepaway, the agents are given the 4vs3-keepaway task.
In this case, we followed two different approaches for learning: learning from
scratch, and Policy Reuse, following the scheme introduced in Table 5. The
results are summarized in Figure 2. In this task, the random behavior obtains
a performance of 5.56 seconds, while the policy “Pass K2” obtains an average
value of 5.83. These results are lower than the ones obtained in the 3vs2-
keepaway, demonstrating that this task is considerably harder. Again, each
learning process was performed twice to show that there are not significant
differences between different executions.

11

 10

 15

 20

 25

 0 10 20 30 40 50

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

random
Pass k2

learning execution 1
learning execution 2

Fig. 1. Results of learning in the 3vs2-keepaway

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 10 20 30 40 50

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

4vs3 Random
Pass k2

Learning from Scratch

Learning from Scratch
Policy Reuse
Policy Reuse

Fig. 2. Results of learning in the 4vs3-keepaway

When learning, we can differentiate two phases. The first one ranges from
training time 0 until training time 20. In that phase, when learning from
scratch, the performance grows from the same result than random behavior
(around 5.5) up to almost 9 seconds. Policy Reuse, however, achieves the seven
seconds almost from the early beginning, demonstrating the reusing the past
policies allows to generate better behavior from the very first steps. During
the initial hours, policy reuse outperforms leaning from scratch in around one
second. After the 20 training hours, Policy Reuse has achieved also the 9
seconds. From the 20 training hours, learning from scratch seems to behave
slightly better. After 50 training hours, both methods obtain results between
11 and 12 seconds.

This result is qualitatively different from the one reported on value function
based behavior transfer [14]. In that work, both learning from scratch and
behavior transfer obtain similar results in the initial steps of learning. The
contribution of behavior transfer is that the accurate behaviors are achieved
faster than when learning from scratch. However, in our case, the performance

12

of the task is much better from the early episodes of the learning. Another
difference between our work and that one is that, given that they transfer the
Q function, for instance, from 3vs2-keepaway to 4vs3-keepaway, they need to
initialize some values of the Q-function by hand. For instance, the Q values of
the action “Pass k3” in the 3vs2-keepaway are transfered both to the action
“Pass k3” and to the action “Pass k4” of 4vs3-keepaway. This initialization
of the Q values is required to make the transfered Q table more homogeneous
than if some values are set to 0. Policy Reuse utilizes past policies only as a
bias in the exploration, so we do not suffer that problem, and the amount of
knowledge required for the transfer is lower.

Quantitatively, the results provided in [14] are similar, since the authors report
that, after 20 training hours, they obtain values of 9 seconds for the perfor-
mance, both when learning from scratch and when transferring behaviors.
Those values are similar to the ones obtained in our work after 20 seconds.
Similar conclusions can be obtained if we compare the results of Policy Reuse
with the results reported in [13].

4.4.3 5vs4-keepaway

After learning the 3vs2 and 4vs3-keepaway, the situation of the agents, as
defined in Table 5 is the following: the first three agents, that participated
also in the 3vs2 and the 4vs3-keepaway, can reuse two action policies, learned
in each task respectively; the fourth agent can reuse only the policy of the
4vs3-keepaway task, given that it did not participate in the 3vs2-keepaway;
the fifth keeper never played before, so it needs to learn from scratch. The
results are shown in Figure 3.

 5

 6

 7

 8

 9

 10

 11

 0 10 20 30 40 50

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Random
Pass k2

Learning from Scratch

Learning from Scratch
Policy Reuse
Policy Reuse

Fig. 3. Results of learning in the 5vs4-keepaway

When learning from scratch, the values raise from around 5.5 to almost 8 in 20
training hours. When reusing the past policies, the initial values are already
close to 7, improving the performance of the initial steps of the learning. After

13

20 hours of learning, the differences between learning from scratch and by
reuse are not significant, and are between 9 and 10 in both cases. Therefore,
qualitatively, the results are similar to the 4vs3-keepaway. Some additional
evaluations of Policy Results with different TD methods and functiona ap-
proximation methods does not show significant differences with the results
reported here [18].

5 Conclusions

Policy Reuse is a powerful technique to improve learning performance in new
robotic tasks by reusing policies learned in previous tasks. Policy Reuse does
not assume that the previour knowledge is useful, but it reuses the past knowl-
edge depending on whether it contributes to the exploration process or not.
That utility, called reuse gain, is also discovered during the learning process.

A main contribution of Policy Reuse is that the learning robot executes good
behaviors from the early episodes of learning. In the experiments shown in
Keepaway, we demonstrate that Policy Reuse obtains episode durations of
more than one second that learning from scratch in initial episodes, and that
learning from scratch is only able to obtain similar results when it has being
learning for more than 20 hours.

In this paper, we demonstrate two main issues. Firstly, that Policy Reuse,
together with a function approximation method, is applicable in domains with
a large state space. And second, that policies that solve tasks in different state
and action spaces can be succesfully reused to learn policies in a different
state/action space: it only requires a mapping between the different spaces,
so past policies can be executed in the new spaces.

Acknowledgements

This research was conducted while the first author was visiting Carnegie Mel-
lon from the Universidad Carlos III de Madrid, supported by a generous grant
from the Spanish Ministry of Education and Fullbright. The authors have been
partially sponsored also by the spanish Ministerio de Ciencia en Innovacin

project number TIN2008-06701-C03-03 and by Comunidad de Madrid-UC3M
project number CCG08-UC3M/TIC-4141.

14

References

[1] L. P. Kaelbling, M. L. Littman, A. W. Moore, Reinforcement learning: A survey,
International Journal of Artificial Intelligence Research 4 (1996) 237–285.

[2] C. Watkins, Learning from delayed rewards, Ph.D. thesis, Cambridge
University, Cambridge, England (1989).

[3] G. Tesauro, Practical issues in temporal difference learning, Machine Learning
8 (1992) 257–277.

[4] P. Stone, R. S. Sutton, G. Kuhlmann, Reinforcement learning for RoboCup-
soccer keepaway, Adaptive Behavior 13 (3).

[5] M. E. Taylor, P. Stone, Y. Liu, Value functions for RL-based behavior transfer:
A comparative study, in: Proceedings of the Twentieth National Conference on
Artificial Intelligence, 2005.

[6] R. S. Sutton, D. Precup, S. Singh, Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning, Artificial Intelligence 112
(1999) 181–211.

[7] T. G. Dietterich, Hierarchical reinforcement learning with the MAXQ value
function decomposition, Journal of Artificial Intelligence Research 13 (2000)
227–303.

[8] F. Fernández, M. Veloso, Probabilistic policy reuse in a reinforcement
learning agent, in: Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’06), 2006.

[9] M. Taylor, P. Stone, Y. Liu, Transfer learning via inter-task mappings for
temporal difference learning, Journal of Machine Learning Research 8 (1) (2007)
2125–2167.

[10] L. Torrey, T. Walker, J. Shavlik, R. Maclin, Using advice to transfer knowledge
acquired in one reinforcement learning task to another, in: Proceedings of the
European Conference on Machine Learning (ECML’05), 2005.

[11] M. E. Taylor, P. Stone, Inter-task action correlation for reinforcement learning
tasks, in: Proceedings of the Twenty-first National Conference on Artificial
Intelligence (AAAI’06), 2006.

[12] T. J. Walsh, L. Li, M. Littman, Transferring state abstractions between mdps,
in: Proceedings of the ICML’06 Workshop on Structural Knowledge Tranfer for
Machine Learning, 2006.

[13] V. Soni, S. Singh, Using homomorphisms to transfer options across continuous
reinforcement learning domains, in: Proceedings of AAAI’06, 2006.

[14] M. E. Taylor, P. Stone, Behavior transfer for value-function-based reinforcement
learning, in: The Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems, 2005.

15

[15] W. H. Hsu, S. J. Harmon, E. Rodŕıguez, C. Zhong, Empirical comparison
of incremental reuse strategies in genetic programming for keepaway soccer,
in: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’04), 2004.

[16] B. Price, C. Boutilier, Imitation and reinforcement learning in agents with
heterogeneous actions, in: AI ’01: Proceedings of the 14th Biennial Conference
of the Canadian Society on Computational Studies of Intelligence, Springer-
Verlag, London, UK, 2001, pp. 111–120.

[17] F. Fernández, D. Borrajo, Two steps reinforcement learning, International
Journal of Intelligent Systems 23 (2) (2008) 213–245.

[18] F. J. Garćıa, M. Veloso, F. Fernández, Reinforcement learning in the robocup-
soccer keepaway, in: Proceedings of the 12th Conference of the Spanish
Association for Artificial Intelligence (CAEPIA’07+TTIA), 2007.

[19] F. Fernández, M. Veloso, Policy reuse for transfer learning across tasks
with differentstate and action spaces, in: ICML’06 Workshop on Structural
Knowledge Transfer for Machine Learning, 2006.

16

