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1. IntrodutionRobots possess great potential for being employed in domesti environments, where they ouldperform various tasks suh as tidying up rooms, taking out the garbage, or serving dinner. Althoughthese hores are variations of a basi pik-and-plae task, robots still struggle with them.One of the key hallenges for robotiists is the large variability inherent in the tasks and en-vironments that a robot may enounter. Preparing a robot ompletely beforehand for all possiblesituations is probably impossible as it is prohibitively di�ult to foresee all senarios. Suh a prepa-ration is also ine�ient, as only a few of the situations will be required by the robot. Due to theselimitations, it is important to design robots that an adapt and learn from their own experienes.Grasping an unknown objet is an example of a task that is made partiularly di�ult by thelarge variety of objets (see Figure 2). Many approahes have been proposed for robot grasping.Early work [6, 24℄ found analytial solutions to the problem, but these approahes require preiseinformation about the environment (e.g., external fores, surfae properties) that may not be aes-sible. Supervised learning an be used to train robots how to reognize good grasping points [36℄,but requires a onsiderable initial input from a human supervisor. Ative and reinforement learn-ing methods have foused on exploring the objet to aquire omplete a�ordane model [35, 27℄,but not on optimizing grasps. However, �nding good grasp loations is only a part of the problem.The robot grasping task an be deomposed into two problems: (i) deiding where to grasp theobjet, and (ii) determining how to perform the grasping movement. These two sub-problems arelosely related and must be addressed together in order to perform a suessful grasp. The hoie ofwhere to grasp an objet sets the ontext for determining how to grasp it. However, the exeutionof the grasp ultimately determines whether the grasp loation was well-hosen.In this paper, we propose a hierarhial ontroller that re�ets the struture of these two taskomponents, as shown in Figure 1. The upper level deides where to grasp the objet, and thelower level determines how to perform the grasping movements given the ontext of these graspparameters and the sene. The upper level subsequently reeives a reward based on the graspexeution, and takes this into onsideration when seleting future grasps.
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3Ative and Reative Controller Arhiteture

Figure 1: The ontroller arhiteture onsists of a upper level based on reinforement learning and a bottom levelbased on reative ontrol. Both levels are supported by supervised/imitation learning. The World and Supervisorare external elements of the system.The system employs a hybrid arhiteture that uses reinforement learning, imitation learning,and reative ontrol. The ore of the upper level is a reinforement learning approah that usesthe suessfulness of evaluated grasps to determine future grasps. It is ruial that its state-ationspae is low dimensional for faster onvergene [42, 4℄, and that information from other soures (e.g.,demonstrated grasps) an easily be inorporated. To redue the ation spae, the reinforementlearner spei�es a grasp as a six dimensional hand pose in the objet's referene frame, and allremaining variables inherent to the grasping movements are handled by a lower level ontroller.The lower level ontroller is responsible for ation exeution. A straightforward method ofaquiring an arbitrary motion poliy is by imitation learning. One approah to imitation learningis to transform a demonstrated trajetory into a standard dynamial systems motor primitive(DMP) [14, 37℄. This poliy is adapted, in a task spei� manner, to the grasp parameters spei�edby the reinforement learner. The resulting DMP is augmented by a reative ontroller that takesthe geometry of the objet and sene into onsideration. The resulting ation is exeuted by therobot, whih returns a orresponding reward to the upper level of the ontroller.The omplete hybrid ontroller is illustrated in Figure 1. It uses its own experienes to quiklyonverge on good grasping loations. The grasping motions are taught by demonstration andadapted to di�erent grasp loations and the surrounding geometry. A key feature of this hybridapproah is that the reative ontroller is inorporated in the reinforement learner's ation-rewardfeedbak loop. Thus, the hybrid system will learn an appropriate grasping ation together with aorresponding grasp loation, and solve both of the sub-problems.In the following setions, we disuss the proposed ontroller in a top-down manner. The ativelearner and the reative bottom level of the ontroller are detailed in Setions 2 and 3 respetively.In Setion 4, the system is evaluated both in simulation and on the robot platform shown in Figure 2.2. High Level Ative LearnerThe high level ontroller hooses where on the objet to apply the next grasp, and improvesthe grasp loations using the aquired data. The reinforement learning approah is inspired bythe grasp learning exhibited by infants [28, 29, 33℄, requiring relatively little prior knowledge andmaking few assumptions. Young infants have a grasp re�ex that allows them to rudely grasp



4objets [28℄. They learn to improve their grasps through trial and error, allowing them to later beable to perform preision grips. The reative ontroller of the hybrid system represents a vision-based grasp re�ex. The initial grasps may be rude, but the learning system will adapt to theobjet and an learn to perform preision grasps.To keep the number of assumptions low, we de�ne the state as the objet being grasped, andlearn a model for eah objet. The robot's grasps are learned in the objet's referene frame,allowing the objet to be repositioned in the workspae. Similar to a young infant [28℄, learningto grasp an objet is treated as ontext independent and only based on the task onstraints it hasenountered. Thus, if an objet has always been presented as hanging on a string, both the robotand infant would initially not know that grasping it from below does not work when the objet ison a table [28℄. The robot will assign an expeted reward to the grasp that re�ets both situationsand how often it has enountered eah.

Figure 2: The robot used in our experiments and an ex-ample of a grasping task in a luttered environment.
Another infant-like feature is that the robothas no vision-grasp mapping. Infants undernine months do not orientate their hands to theorientation of objet parts [33℄. The robot alsodoes not assume that the geometry of a up'shandle will imply a ertain orientation of thehand as appropriate. Instead, it will try di�er-ent orientations and �nd one that is well-suitedfor it. Hene, several objet properties do notneed to be modeled expliitly, e.g., frition. Ul-timately, the reinforement learning approahis highly adaptive and is appliable to a widerange of situations.In ontrast, supervised learning of graspshas foused on methods using internal models of the world [26, 20℄, or mappings between vi-sual features of objets and grasps [36℄. These approahes are more harateristi of adult humangrasping, and thus require large amounts of prior information.To onverge quikly to high rewarding grasp loations, the system must balane the exploitationof good grasping points and the exploration of new, possibly better, ones. From a mahine learningperspetive, this seleting of grasps an be interpreted as a ontinuum-armed bandits problem [1℄.The ontinuum-armed bandit problem is a generalization of the traditional n-armed banditproblem [42℄ where the agent must hoose from a ontinuous range of loally dependent ations,instead of a �nite number. Under this interpretation, the ation is given by the grasp applied andthe reward is a measure of the suess of this grasp.To date, most methods [3, 18℄ that solve the ontinuum-armed bandit problem are basedon disretizing the spae. For high-dimensional domains, suh as robot grasping, any disretesegmenting will sale badly due to the �urse of dimensionality� [4℄. The hard segmentation willresult in unnatural borders and make the use of prior knowledge ompliated. We propose a sample-based reinforement learner that models the distribution of expeted rewards over the ontinuousspae of ations using Gaussian proess regression (GPR) [32℄. The proposed learner then searhesfor the most promising grasp to evaluate next, using a method inspired by Mean-shift [9℄. Theresulting poliy is alled Continuum Gaussian Bandits (CGB), and is outlined in Algorithm 1.The following four setions detail the ative learner and present the employed poliy (Se-tion 2.1), the modeling of the expeted rewards (Setion 2.2), how the learner selets the next



2.1 Upper Con�dene Bound Poliy 5grasp (Setions 2.3), and then the method for implementing this seletion on the reward model(Setions 2.4 and 2.5). Finally, Setion 2.6 explains how supervised data an be inorporated intothe ative learner as prior knowledge.2.1. Upper Con�dene Bound PoliyChoosing where to grasp a novel objet su�ers from an exploration-exploitation problem. Thetraditional mahine learning framework for studying this dilemma is the n-armed bandits problem,wherein an agent must repeatedly hoose from a �nite set of n possible ations to maximize theaumulated reward.Among the more suessful strategies [42℄ are upper on�dene bound (UCB) poliies. Whilethere are di�erent versions of UCB poliies [42, 2℄, the priniple idea is to assign eah ation twovariables, i.e., the expeted reward µ for taking that ation, and a on�dene bound ±σ indiatingthe range in whih the atual mean reward is. Both µ and σ indiate how desirable exeuting theation is. A high expeted reward µ is valuable in the sense of exploitation and reeiving rewards,while a large on�dene bound σ indiates an informative ation that is good for exploration. Usingthe exploration variable σ leads to a more strutured exploration than regular randomized poliies(e.g., ǫ-greedy [42℄). UCB poliies also provide performane guarantees, and have an upperboundon the expeted regret that sales only logarithmially with the number of trials [2℄.The sum of the expeted reward µ and the standard deviation σ indiates how desirable exeutingthe ation is overall. We all the value µ+ σ the merit of an ation. A UCB poliy always seletsthe ation for whih this merit value is the greatest [2℄. Intuitively, a UCB poliy optimistiallyhooses the ation whih ould be the best, and will thus only onverge to an ation when it knowsthat no other ation ould be better.Adapting a UCB poliy to the ontinuum-armed bandits requires a new approah that sales tothe high dimensional spaes of grasping tasks. The �rst step towards realizing this approah is toreate a sample-based model of the exploration σ and exploitation µ variables.2.2. Expeted Reward and Con�dene Modeling with Gaussian Proess RegressionModeling the upper on�dene bound for ontinuous ations requires the expeted reward fun-tion and its standard deviation to be approximated. A well-suited approah that satis�es theserequirements is Gaussian proess regression (GPR) [32℄.Rather than mapping inputs to spei� output values, GPR returns a Gaussian distribution ofthe expeted rewards. This Gaussian distribution is haraterized by its mean µ(x) and standarddeviation σ(x), where the standard deviation is a on�dene bound on the expeted reward. Thistehnique is non-parametri, whih implies that µ(x) and σ(x) are funtions that diretly inorpo-rate all previous samples. Non-parametri methods are very adaptable, and apply few onstraintson the model. The GPR approah inorporates a prior that keeps the mean and variane boundedin regions without data. Unexplored regions will thus have a large on�dene bound σ(x) and smallexpeted rewards µ(x). Sampling from these regions will shift µ(x) towards the atual expetedreward at x, but derease the on�dene bound σ(x).We employ the standard Gaussian kernels k (x,y) = σ2
a exp(−0.5(x− y)T W(x − y)) where Wis a diagonal matrix of kernel widths. The parameter σa a�ets the onvergene rate of the poliy,as explained in Setion 2.6.For grasping, the vetors x ∈ R6 and y ∈ R6 eah ontain three position and three orientationparameters of grasps, whih desribe the �nal position of the hand in the objet's referene frame.Working in the objet's referene frame allows the objet to be repositioned and reorientated in



2.3 UCB Poliy for GPR Model 6the workspae without altering the grasp parameters. Additional grasp parameters are exludedto keep the number of parameters minimal, and thus allow for rapid learning. All of the othermotion parameters are handled by the reative low level ontroller, whih modi�es these parametersdepending on the objet and the sene, as well as the parameters in x.The proposed UCB poliy will base its deisions on the merit funtion M (x) = µ(x) + σ(x),where µ (x) and σ (x) are the expeted reward and standard deviation at grasp x respetively. Thestandard GPR model [32℄ for the mean µ, variane σ2, and standard deviation σ, are
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σ have been used in UCB poliies [44℄, and an be used by modeling them with a seond GPR [7℄.The previous rewards t our in the exploitation term µ (x), but not in the standard deviation
σ (x) as it represents the exploration, whih is independent of the rewards. A similar merit funtionhas previously been employed for multi-armed bandits in metri spaes, wherein GPR was used toshare knowledge between disrete bandits [40℄.Having hosen a UCB poliy framework and a GPR merit model, the implementation of thepoliy has to be adapted to the merit funtion.2.3. UCB Poliy for GPR ModelGiven a model of the UCB merit funtion, the system requires a suitable method for deter-mining the ation with the highest merit. Exeuting this grasping ation will aquire the greatestombination of reward and information.The merit funtion will most likely not be onave and will ontain an unknown number ofmaxima with varying magnitudes [32℄. Determining the global maximum of the merit funtionanalytially is therefore usually intratable [32℄. However, numerially, we an determine a setof loally optimal grasps. Suh sets of grasps will ontain many maxima of the merit funtion,espeially near the previous data points. Given a set of loal maxima, the merit of eah andidategrasp is evaluated and the robot exeutes the grasp with the highest merit.The method for �nding the loal maxima was inspired by mean-shift [9℄, whih is ommonlyused for both mode detetion of kernel densities and lustering. Mean-shift onverges onto the loalmaxima of a given point by iteratively applying
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2.4 Loal Maxima Detetion for GPR 7where k(xn,yj) is the kernel funtion, and yj are the N previously tested maxima andidates asbefore. The monotoni onvergene via a smooth trajetory an be proven for mean-shift [9℄. To�nd all of the loal maxima, mean-shift initializes the update sequene with all previous data point.The global maximum is then determined from the set of loal maxima, whih is guaranteed toinlude the global maximum [23℄. Algorithm 1:Continuum Gaussian Bandits (CGB)Initialize:Store N initial points in Y and tLoop:Calulate α and γ
Mbest = 0for j = 1 to N

xo = yjwhile not onvergedCalulate update step s

xn+1 = s + xnendif M(x) > Mbest
xbest = xn

Mbest = M(xbest)endendAttempt and evaluate xbestStore results in yN+1 and tN+1

N = N + 1Figure 3: The algorithm models the meritfuntion with GPR, and �nds a set of loalmaxima using a parallel searh. The andidateation with the greatest merit is evaluated andthe results are stored.

The intuition behind this approah for grasping is thatall of the previous grasp attempts are loally re-optimizedbased on the urrent empirial knowledge, as modeled bythe merit funtion. Subsequently, we hoose the best ofthese optimized grasps to exeute and evaluate.Mean-shift is however limited to kernel densities anddoes not work diretly in ases of regression, beause the
αj and γi,j weights are not always positive [9℄. In partiu-lar, the standard update rule (1) an not be used, nor anwe guarantee that the global maximum will be one of thedeteted maxima. However, the global maximum is onlyexluded from the set of found maxima if it is isolatedfrom all previous samples by regions of low merit.As Equation (1) is not appliable in our regressionframework, a new update step had to be developed, whihmonotonially onverges upon the loal maximum of ourmerit funtion.2.4. Loal Maxima Detetion for GPRGiven the model in Setion 2.2, the merit fun-tion takes the form M (x) =
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.The funtion q(·) returns a loal upper bound on the absolute seond derivative of the input withinthe xn to xn+1 range. Similarly, p(·) returns a loal lower bound on the absolute value of the input.This form of update rule displays the desired onvergene qualities, as explained in Setion 2.5.The rule is only appliable beause the Gaussian kernels have bounded derivatives resulting in �nite
q (µ) and q (v), and any real system will have a positive variane giving a real non-zero √p (v).



2.5 Mode Detetion Convergene Analysis 8To alulate the loal upper and lower bounds, we �rst de�ne a region of possible xn+1 values toonsider. Therefore, we introdue a maximum step size m > 0, where steps with larger magnitudesmust be trunated; i.e., ‖xn+1 − xn‖ ≤ m. Having de�ned a loal neighborhood, q (µ), q (v), and
p (v) need to be evaluated.In Setion 2.2, µ and v were represented as the linear weighted sums of Gaussians. Given alinear sum, the rules of superposition an be applied to evaluate q (µ), q (v), and p (v). Thus, theupper bound of a funtion in the region is given by the sum of the loal upper bounds of eahGaussian, i.e.,

qm

(

∑

N
j=1k

(

x,yj

)

αj

)

≤
∑

N
j=1qm

(

k
(

x,yj

)

αj

)

.As Gaussians monotonially tend to zero with inreasing distane from their mean, determining anupper bound value for them individually is trivial. In the ases of q (µ) and q (v), the magnitudesof the seond derivatives an be bounded by a Gaussian; i.e.,
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,whih an then be used to determine the loal upper bound.We have thus de�ned an update step and its implementation, whih an be used to detet themodes of a Gaussian proess in a regression framework. The �nal algorithm has a time omplexityof O(N3), similar to all other exat GPR methods [7℄. However, this omplexity sales linearly withthe number of dimensions, while disretization methods sale exponentially, making the proposedGPR method advantageous when the problem dimensionality is greater than three. The modedetetion algorithm an be easily parallelized for e�ient implementations on multiple omputersor GPUs as an anytime algorithm.This setion onludes the details of the proposed reinforement learner, whih is outlined inAlgorithm 1. As shown, the �nal algorithm is quite ompat and straightforward. It onsists ofmodeling the expeted rewards using GPR, and applying a parallel searh to determine a maximumto evaluate next. The mode detetion behavior is analyzed in the next setion. Inorporatingsupervised data from other data soures is desribed in Setion 2.6 whih ompletes the upper levelof the ontroller design.2.5. Mode Detetion Convergene AnalysisHaving spei�ed the method for determining maxima of a GPR in Setion 2.4, Lyapunov'sdiret method an be used to show that the method onverges monotonially to stationary points.The underlying priniple is that an inreased lower bound on the merit redues the set of possiblesystem states and, therefore, a ontinually inreasing merit leads to onvergene. The following onedimensional analysis will show that only an upper bound on the magnitude of the seond derivativeis required for a onverging update rule.The inrease in merit is given by M(xn+1) −M(xn). Given an upper bound u of the seondderivative between xn and xn+1, and the gradient g = ∂xM (xn), the gradient in the region an belinearly bounded as
g − ‖x− xn‖ u ≤ ∂xM (x) ≤ g + ‖x− xn‖u.Considering the ase g ≥ 0 and therefore xn+1 ≥ xn, the hange in merit is lower bounded by
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2.6 Inorporating Supervised data 9This term is maximal when the linear integrand reahes zero; i.e, g − (xn+1 − xn)u = 0. This limitresults in a shift of the form s = xn+1 − xn = u−1g, as was proposed in Equation (2). The sameupdate rule an be found by using a negative gradient and updating x in the negative diretion.The merit thus always inreases, unless the loal gradient is zero or u is in�nite. A zero gradientindiates that the loal stationary point has been found, and variable u is �nite for any pratialGaussian proess. In some ases, the initial point may be within the region of attration of a pointat in�nity, whih an be tested for by determining the distane from the previous data points.The intuition underlying the results of the analysis is that at eah step, the system assumes thegradient will shift towards zero at the maximum possible rate within the region. The estimate ofthe maximum is then moved to the �rst point where a zero gradient is possible. This onept aneasily be generalized to higher dimensional problems. The update rule guarantees that the gradientannot shift sign within the update step, and thus ensures that the system will not overshoot norosillate about the stationary point. The update rule xn+1 = u−1g + xn therefore guarantees thatthe algorithm monotonially onverges on the loal stationary point.2.6. Inorporating Supervised dataHaving fully designed the entral reinforement learner, the upper level ontroller still requiresa method for allowing prior task information to be inorporated into the merit funtion to helpredue the searh spae.Similar to how a hild learns a new task by observing a parent before trying it themselves [28℄,a robot an use human demonstrations of good grasps to de�ne its starting searh region. However,whether these grasps are suitable for the robot is initially unknown.GPR makes inorporating prior information fairly straightforward. If the supervised data hasa reward assoiated to it, the data an be diretly added to the data set. If the region suggestedby the demonstration returns only low rewards, the system will begin searhing neighboring areaswhere the merit is still high due to unertainty. Thus, it de�nes an initial searh region with softboundaries that an move during the learning proess.The parameter σa of the merit funtion spei�es how onservative the poliy is in expandingthese boundaries; i.e., a higher value will enourage more exploration, while a lower value willonverge faster. Hene, it an be seen as a learning rate. With the rewards in the grasping task setto be within the range 0 to 1, the parameter is set to 0.75 to enourage exploration but also allowfor a reasonable rate of onvergene.The robot experiment was initialized with searh regions de�ned by 7, 10, and 25 demonstratedgrasps for the box, watering an, and paddle respetively. The width parameters W of the Gaussiankernel were also optimized on these initial parameters.This setion onludes the disussion of the upper level ontroller. It takes the rewards of grasps,the pose of the objet, and, optionally, demonstrated data as inputs, and returns the next grasploation to attempt. This grasp loation is passed to the robot via a lower level ontroller, whihgenerates the omplete grasping motions based on these parameters.3. Low Level Reative Imitation ControllerWhile the upper level of the ontroller seleted grasp loations, the lower level is responsible forthe exeution of the grasp, inluding the reahing and �ngers' motions. It is important that thesystem is adaptive at this level, as the suess of the grasps depend on the exeution. The �ngermotions should partiularly adapt to the geometry of the objet, a proess known as preshaping. The



10robot's motions are learned from human demonstrations, and subsequently modi�ed to inorporatethe grasp information from the ative learner and the sene geometry from the vision system.A ommon approah to the grasp exeution problem is to rely on speially designed sensors(e.g., laser sanner, ERFID) to get aurate and omplete representations of the objet and envi-ronment [26, 45℄, followed by lengthy planning phases in simulation [5℄. We restrit the robot toonly using stereo ameras, and a fast reative sensor-based ontroller [39℄.Although densely sampling sensors suh as time-of-�ight ameras and laser range �nders arefavored for reative obstale avoidane [17℄, the sparser information of stereo vision systems hasalso been used for these purposes [34, 22℄. Robot grasping researh has foused on oarse objetrepresentations of novel objets [43, 25, 30, 8℄, and using additional sensor arrays when in loseproximity to the objet [12, 41℄. Learning to grasp objets is also often done in simulation [43,20℄ whih allows for many virtual grasp attempts on a model of the objet. In ontrast, theproposed hybrid system relies on relatively few real-world grasps and does not rely on havingaurate dynamis and ontat models.For the lower level system, we propose a sensor-based robot ontroller that an perform humaninspired motions, inluding preshaping of the hand, smooth and adaptive motion trajetories, andobstale avoidane, using only stereo vision to detet the environment. Unlike previous approahes,we work with a sparse visual representation of objets, whih maintains a high level of geometridetails. The ontroller uses potential �eld methods [39℄, whih treat the robot's state as a partilein a fore �eld; i.e. the robot is attrated to a goal state, and repelled from obstales.The attrator �eld needs to be apable of enoding omplex trajetories and adapting to di�erentgrasp loations. We therefore use the dynamial system motor primitive (DMP) [13, 37℄ framework.The DMPs are implemented as passive dynamial systems superimposed with external fores; i.e.,
ÿ = αz(βzτ

−2(g − y) − τ−1ẏ) + aτ−2f(x), (3)where αz and βz are onstants, τ ontrols the duration of the primitive, a is an amplitude, f(x) isa nonlinear funtion, and g is the goal for the state variable y. The variable x ∈ [0, 1] is the state ofa anonial system ẋ = −τx, whih ats as a shared lok amongst di�erent DMPs; i.e. it ensuresthat the �nger and arm motions are synhronized. The funtion f(x) enodes the trajetory forreahing the goal state, and takes the form
f (x) =

∑M

j=1 ψj (x)wjx
∑M

i=1 ψi (x)
,where ψ(x) are M Gaussian basis funtions, and w are weights. The weights w are aquired byimitation learning, using loally weighted regression [13, 14℄. The DMPs treat the goal state gas an adjustable variable and ensure that this state is always reahed. However, their apabilityto generalize an be further improved by using a task-spei� referene frame based on the ativelearner's grasp parameters, as detailed in Setion 3.2. This adaptation of the ation to di�erentgoals allows the objet to be repositioned and reorientated in the robot's workspae.More important is the hoie of the sene's visual representation, whih is used to augmentthe attrator �eld and forms the basis of the detrator �eld. The sene desription needs to bein 3D, work at a �ne sale to maintain geometri details, and represent the senes sparsely toredue the number of alulations required per time step. The Early Cognitive Vision system ofPugeault et al. [31, 11℄ (see Figure 4) ful�lls these requirements by extrating edge features fromthe observed sene. The system subsequently loalizes and orientates these edges in 3D spae [21℄,



3.1 Attrator Fields based on Dynamial Systems Motor Primitives (DMPs) 11ECVD Representation of Sene

ECV Desriptors Sene and HandFigure 4: The left image shows the ECVD representation of the sene on the right. The paddle is the objet to begrasped, while the surrounding objets lutter. The oordinate frame of the third �nger of the lower �nger in theimage and the variables used in Setion 3 are shown. The x-y-z oordinate system is loated at the base of the �nger,with z orthogonal to the palm, and y in the diretion of the �nger. The marked ECVD on the left signi�es the jthdesriptor, with its position at vj = (vjx, vjy , vjz)T , and edge diretion ej = (ejx, ejy , ejz)T of unit length. Theposition of the �nger tip is given by p = (px, py, pz)T .with the resulting features known as early ognitive vision desriptors (ECVD) [31℄. By using alarge amount of small ECVDs, any arbitrary objet/sene an be represented. Given an ECVDmodel of an objet, the objet's position and orientation an be determined [10℄ and the ECVDs ofthe objet model an be superimposed into the sene representation.As a hybrid system, the lower level ontroller supplies a omplex adaptive ation poliy thatthe upperlevel an indiretly modify. The top level ontroller only needs to modify the ation for agiven objet, whih an be done more e�iently than having to learn the entire ation. To allow forquik learning, the ations given by the reative ontroller should be repeatable, while still adaptive.By making the rewards for grasps depend on the reative ontroller, the reinforement learner �ndsboth good grasp loations as well as mathing grasp exeutions.In Setions 3.1 and 3.2, we desribe the DMPs for grasping, followed by their augmentationusing the ECVD based detrator �eld in Setion 3.3.3.1. Attrator Fields based on Dynamial Systems Motor Primitives (DMPs)Generating the grasp exeution begins with de�ning an attrator �eld as a DMP, whih enodesthe desired movements given no obstales. The priniple features that need to be de�ned for theseDMPs are the goal positions, and the generi shape of the trajetories.The high level grasp ontroller gives the goal loation and orientation of the hand, but not the�ngers. Using the ECVDs, the goal position of eah �nger is approximated by �rst estimating aloally linearized ontat plane for the objet in the �nger oordinate system (see Figure 4). Thepurpose of this step is to get the �ngers lose to the objet's surfae during preshaping to allow formore ontrol of the objet during grasping. It is not intended to infer exat surfae properties orwhether the grasp is suitable. If the seleted surfae is unsuitable for grasping, a low reward willbe reeived and the upper level ontroller will adapt its poliy aordingly.A ontat plane is approximated for eah �nger to allow for a range of objet shapes. Thein�uene of the ith ECVD is weighted by wi = exp(−σ−2
x v2

ix − σ−2
y v2

iy − σ−2
z v2

iz), where σx, σy,and σz are length onstants that re�et the �nger's length and width, and vi is the position of the
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Figure 5: The diagram shows the the hangein oordinate systems for the reahing DMPs.The axes Xw-Yw-Zw are the world oordinatesystem, and Xp-Yp-Zp is oordinate system inwhih the DMP is spei�ed. The trajetory ofthe DMP is shown by the urved line, startingat point s, and ending at point g. Xp isparallel to the approah diretion of the hand,the arrow a. The axis Yp is perpendiular to
Xp, and pointing from s towards g.

ECVD in the �nger referene frame. The hand orien-tation is suh that the Z diretion of the �nger shouldbe approximately parallel to the ontat plane, whih re-dues the problem to desribing the plane as a line in the2D X-Y spae. The X-Y gradient of the plane is ap-proximated by φ = (
∑N

i=1 wi)
−1
∑N

i=1 wi arctan(eiy/eix),where N is the number of vision desriptors, and ei is thediretion of the ith edge. The desired Y position of the�ngertip is then given by
p̃y =

∑N

i=1(wiviy − tan(φ)wivix)
∑N

i=1 wi

,whih an be onverted to joint angles using the inversekinematis of the hand. The proposed method selets thegoal postures of the �ngers in a deterministi manner,whih depends on the objet's geometry as well as thegrasp parameters spei�ed by the ative learner. Thus,the hybrid system's ative learner indiretly selets theposture of the �ngers through a reative mehanism basedon the visual model of the objet.The next step de�nes the reahing and grasping trajetories. Many bene�ial traits of humanmovements, inluding smooth motions and small overshoots for obstale avoidane [16, 15, 29℄, anbe transferred to the robot through imitation learning. To demonstrate grasping motions, we useda VICON motion traking system to reord human movements during a grasping task. The graspedobjet an be di�erent to the robot's. VICON markers were only required at the hand and �ngertips. The traking system samples the human's motions, generating position q, veloity q̇, andaeleration q̈ data, as well as the samples' time stamps. The weights wi of the DMP are thengiven by
wi =

(

T
∑

k=1

ψi (xk)x2
k

)−1
T
∑

j=1

ψi (xj)xj

(

τ2q̈j − αz(βz(g − qj) − τ1q̇j)
)

a−1,where xj is the state of the anonial system orresponding to the jth time stamp. The solution islosed form and easily alulated. Further information on imitation learning of DMPs an be foundin Ijspeert's paper [14℄. As the reahing trajetories are enoded in task spae the orrespondeneproblem of the arm was not a problem.The DMPs are provably stable [37℄ and the goal state, as spei�ed by the upper level ontroller,will always be ahieved. Alterations added by the reative ontrollers must stay within the boundsof the framework to ensure that this stability is maintained.3.2. Transformed Dynamial Motor Primitives for GraspingWhile DMPs generalize to arbitrary goal positions, the grasps' approah diretion an not bearbitrarily de�ned, and the amplitude of the trajetory is unneessarily sensitive to hanges inthe start position y0 and the goal position g if y0 ≈ g during training. These limitations an beoverome by inluding a preproessor that modi�es the DMPs' hyperparameters.
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Figure 6: This is a demonstration of the e�ets of trans-forming the amplitude variable a of DMPs. The hashedblak lines represent boundaries. The dotted blak lineshows the trained trajetory of the DMP going to 0.05. Ifgoal is then plaed at 0.1 and the workspae is limited to
±0.075 (top boundary), the dashed blak line is the stan-dard generalization to a larger goal, while the solid plotuses the new amplitude. If the goal is −0.05, and needsto be reahed from above (lower right boundary), then thedashed grey line is the standard generalization to a neg-ative goal, and the solid grey trajetory uses the newamplitude. Both of the new trajetories were generatedwith η = 0.25.

The system an maintain the orret ap-proah diretion by using a task-spei� oor-dinate system. Due to the translation invari-ane of DMPs, only a rotation R ∈ SO(3) be-tween the two oordinate systems needs to bedetermined. The majority of the reahing mo-tions will lie in a plane de�ned by the start andgoal loations, and the �nal approah diretion.These omponents of the plane are supplied bythe high level ontroller, with the approah di-retion de�ned by the �nal hand orientation.The �rst new in-plane axis xp is set tobe along the approah diretion of the grasp;i.e., xp = −a as shown in Figure 5. Theapproah diretion is thus easily de�ned andonly requires that the Yp and Zp DMPs reahtheir goal before the Xp primitive. The seondaxis, yp, must be orthogonal to xp and also inthe plane, as shown in Figure 5. It is set to
yp = b−1((g− s)− xp(g− s)Txp), where b−1 isa normalization term, and s and g are the mo-tion's 3D start and goal positions respetively.The third axis vetor is given by zp = xp × yp.The DMPs an thus be spei�ed by the pre-proessor in the Xp-Yp-Zp oordinate system,and mapped to the Xw-Yw-Zw world refereneframe by multiplying by RT = [xp,yp, zp]

T .The hange of oordinate system is a fundamental step for the hybrid system. It plaes thereative ontroller, together with all of its modi�ations, within the reinforement learner's ation-reward feedbak loop. Therefore, the system learns pairings of grasp loations and grasp exeutionsthat lead to high rewards.The seond problem relates to the saling of motions with ranges greater than ‖y0 − g‖, whihare required to move around the outside of objets. In the standard form a = g − y0 [13℄, whihleads to motions that are overly sensitive to hanges in g and y0 if g ≈ y0 during training. Thepreproessor an redue the sensitivity by using a more robust saling term, for whih we proposethe amplitude
a = ‖η(g − y0) + (1 − η)(gT − y0T )‖ ,where gT and y0T are the goal and start positions of the training data respetively, and η ∈ [0, 1]is a weighting hyperparameter. This amplitude is always between the training amplitude and thestandard generalization value a = g − y0, and η ontrols how onservative the generalization is tonew goals (see Figure 6). By taking the absolute value of the amplitude, the approah diretion isnever reversed (see Figure 6). The amplitude previously proposed by Park et al. [30℄ orresponds tothe speial ase of η = 0. Example generalizations of a reahing trajetory are shown in Figure 7.The desribed transformations allow a single DMP to perform a larger range of grasps, whihimplies that fewer DMPs ares required in total. Using di�erent DMPs for di�erent setions ofthe objet or workspae should be avoided as it reates unneessary disontinuities in the rewards,



3.3 Detrator Fields based on ECVDs 14whih an slow down the hybrid system's learning proess. Only one grasp had to be learned forthe entire robot experiment, whih was then adapted to the various situations.3.3. Detrator Fields based on ECVDsDetrator �elds re�ne the motions generated by the DMPs to avoid obstales during the reahingmotion and ensure that the �nger tips do not ollide with the objet during the hand's approah.

Figure 7: Workspae trajetorieswhere the x and y values are governedby two synhronized DMPs. The semi-irle indiates the goal positions, withdesired approah diretions indiatedby the light gray straight lines. Theapproah diretion DMP was trainedon an amplitude of one, and η = 0.25.

The detrator �eld is based on ECVDs, whih represent smallline segments of an objet's edges loalized in 3D, as shown inFigure 4. The detrative fores of multiple ECVDs desribinga single line should not superimpose, nor should the �eld stopDMPs from reahing their ultimate goals. The system thereforeuses a Nadaraya-Watson model [7℄ of the form
ua = −v(x)

∑N

i=1 ricai
∑N

j=1 rj
,to generate a suitable detrator �eld, where ri is a weight as-signed to the ith ECVD, s is the strength of the overall �eld, xis the state of the DMPs' anonial system, cai is the detratingfore for a single desriptor, and subsript a spei�es if the de-trator �eld is for the �nger motions or the reahing movements.The weight of an ECVD for ollision avoidane is given by

ri = exp(−(vi−p)Th(vi−p)), where vi is the position of the ithECVD in the loal oordinate system, h is a vetor of positivelength sale hyperparameters, and p is the �nger tip position,as shown in Figure 4. The detrator puts more importane onECVDs in the viinity of the �nger.The reahing and �nger movements reat di�erently to edgesand employ di�erent types of basis funtions ci for their re-spetive potential �elds. For the �ngers, the individual po-tential �elds are logisti sigmoid funtions about the edge ofeah ECVD of the form ρ(1 + exp(diσ
−2
c ))−1, where di =

∥

∥(p − vi) − ei(p − vi)
Tei

∥

∥ is the distane from the �nger to theedge, ρ ≥ 0 is a saling parameter, and σc ≥ 0 is a length pa-rameter. Di�erentiating the potential �eld results in a fore of
cfi = ρ

(

1 + exp
(

diσ
−2
c

))

−2 exp
(

diσ
−2
c

)

.As the sigmoid is monotonially inreasing, the detrator always fores the �ngers open further tomove their tips around the ECVDs and ensure that they approah the objet from the outside. Asimilar potential funtion an be employed to fore the hand losed when near ECVDs pertainingto the sene rather than the objet.The reahing motion uses the Gaussian basis funtions of the form ̺ exp(−0.5dT
i diσ

−2
d ), where

di = (q − vi) − ei(q − vi)
Tei is the distane from the end e�etor position, q, to the edge, and

̺ ≥ 0 and σd ≥ 0 are sale and length parameters respetively. Di�erentiating the potential withrespet to di gives a fore term in the Y diretion of
chi = ̺(di.Y)σ−2

d exp(−0.5dT
i diσ

−2
d ),



15whih thus apply a radial fore from the edge with an exponentially deaying magnitude.The strength fator s(x) ontrols the preision of the movements, ensuring that the detratorfores tend to zero at the end of a movement and do not obstrut the DMPs from ahieving its goalstate. Therefore, the strength of the detrators is oupled to the anonial system of the DMP.Hene, v(x) = (
∑M

j=1 ψj)
−1
∑M

i=1 ψiwix, where x is the value of the anonial system, ψ are itsbasis funtions, and w speify the varying strength of the �eld during the trajetory.Modelling the human tendeny towards more preise movements during the last 30% of a mo-tion [16℄, the strength funtion, v(x), was set to give the highest strengths during the �rst 70% ofthe motion for the reahing trajetories, and the last 30% for the �nger movements. Setting thestrength in this manner is also bene�ial to the reinforement learner. The reward of the learnerdepends mainly on the �nal position of the hand, and the losing of the �ngers. If these parts ofthe motion are more repeatable, then it is easier for the upper level ontroller to learn.The detrator �elds of both the grasping and reahing omponents have been de�ned, and aresuperimposed into the DMP framework as
ÿ =

(

αz(βzτ
−2(g − y) − τ−1ẏ) + aτ−2f(x)

)

− τ−2ua,whih represents the entire ECVD and DMP based potential �eld.Combining the ECVD based DMPs with the new oordinate system for reahing and motionamplitude, we have fully de�ned the low level ontroller. Its main ontribution is to learn a graspingmovement by imitation and then to reatively adapt these motions to new situations in a mannersuited to the task and spei�ed by the upper level ontroller.4. EvaluationsThe following setions evaluate the system both in simulation and on a real robot platform. The�rst part of the evaluation (Setion 4.1) tests the upper level ontroller against other ontinuum UCBpoliies on a simulated benhmark problem. The real world evaluation, presented in Setion 4.2,demonstrates the omplete ontroller working on a real robot grasping novel objets in lutteredenvironments.4.1. Comparative UCB AnalysisThis setion fouses on the reinforement learner and shows that the CGB algorithm (see Algo-rithm 1) performs well in pratie, and an be saled to the more omplex domain of grasp learning.The omparison is between four UCB poliies, inluding our proposed method, on a 1D benhmarkexample of the ontinuum-armed bandits problem. The poliies were tested on the same set of 100randomly generated 7th order spline reward funtions. The rewards were superimposed with uni-form noise of width 0.1, but restrited to a range of [0, 1]. The spae of bandits was also restritedto a range between 0 and 1. None of the poliies were informed of the length of the experiment inadvane, and eah poliy was tuned to ahieve high rewards.4.1.1. Compared MethodsThe tested ompeting poliies are UCBC [3℄, CAB1 [18℄, and Zooming [19℄. These algorithmsrepresent standard UCB poliy implementations for ontinuum bandits in the literature. A key issuefor any poliy that uses disretizations is seleting the number of disrete bandits to use. Employinga oarser struture will lead to faster onvergene, but the expeted rewards upon onvergene arealso further from the optimal. Balaning this trade-o� is therefore important for a poliy's suess.
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Upper Confidence Bound Continuum (UCBC)
Continuum Armed Bandits 1 (CAB1)
Zooming Algorithm
Continuum Gaussian Bandits (CGB)Figure 8: The expeted rewards over 100 experiments are shown for the four ompared methods. The results were�ltered for larity. Due to the di�erenes in experiment lengths, the x-axis uses a logarithmi sale. The dashedhorizontal line represents the maximum expeted reward given the noise.The UCBC poliy of Auer [3℄ divides the bandits spae into regular intervals and treats eahinterval as a bandit in a disrete UCB poliy. After hoosing an interval, a uniform distributionover the region selets the bandit to attempt. The number of intervals sets the oarseness of thesystem, and was tuned to 10.Instead of using entire intervals, the CAB1 poliy of Kleinberg [18℄ selets spei� grasps atuniform grid points. A disrete UCB poliy is then applied to these points, for whih we hoseUCB1 [2℄, as suggested in [18℄. The disretization trade-o� is dealt with by resetting the system at�xed intervals with larger numbers of bandits, thus ensuring that the points beomes denser as theexperiment ontinues.The zooming algorithm, of Kleinberg et al. [19℄, also uses a grid struture to disretize thebandits. In ontrast to CAB1, the grid is not uniform and additional bandits an be introdued atany time in high rewarding regions. A disrete poliy is then applied to this set of ative bandits.Similar to CAB1, the zooming algorithm works in time intervals and resets its grid after �xednumbers of trials.Our proposed Continuum Gaussian Bandits (CGB) method was initialized with 4 equispaedpoints. Demonstrated data was not used in order to test its performane without the bene�ts ofsuh data. All four methods were initially run for 55 trials, as shown in Figure 8. The CAB1,UCBC, and Zooming methods extended to 1000 trials to demonstrate their onvergene behavior.4.1.2. ResultsThe expeted rewards for the four UCB poliies during the experiment an be seen in Fig-ure 8. The omputation and run times were also aquired for the experiments for omparison, andestimated for the 6 dimensional problem, as shown in Table 1.Apart from our proposed poliy, Zooming was the most suessful over the 1000 trials at ahiev-ing high rewards, as it adapts its grid to the reward funtion. However, only CGB onsistentlydetermined the high rewarding regions and onverged on them. In several trails, the reward fun-tion had two distint peaks with near-optimal rewards, and the CGB poliy onverged onto both.The onvergene of UCB poliies is frequently desribed by the merit's perentage of exploitation

µ(x∗)/(µ(x∗) + σ(x∗)), where x∗ is the urrent ation seleted by the poliy. This value is initially



4.1 Comparative UCB Analysis 17UCBC CAB1 Zoom CGBMean Reward 0.6419 0.4987 0.6065 0.91221D omputation time 46 µs 47 µs 27 µs 2.9 se6D omputation time 4.6 se 6.7 ms 5.6ms 17.6 se1D initialization run time 10 min 12 min 24 min 4 min6D initialization run time 1.9 yrs 1.2 days 4.2 days 24 minTable 1: These results pertain to the �rst 50 grasp attempts in the benhmark problem. The shows the meanomputation times for the di�erent algorithms, and how they would sale to six dimensions, given the omputationalomplexity of the algorithms [18, 3, 19℄. Similarly, the table shows the amount of time needed to initialize the systemsby trying eah of the initial grasps one.zero and inreases as the poliy returns to previously explored ations with high rewards. The97.5% exploitation mark was reahed by the CGB poliy on average at the 33rd trial. Anothermeasure of onvergene is found by diretly omparing the di�erent maxima found by CGB. Thepoliy onverges when the expeted value µ(x∗) of the seleted ation is greater than the highestmerit value µ(x) + σ(x) of the other andidate ations. This riterion is based on the fat that themerit funtion µ(x) + σ(x) tends to µ(x) as the exploration of an ation is exhausted. Using thisriteria, the poliy onverged on average at the 37th trial.As parametri poliies, the standard methods assume that the optimal solution an be rep-resented by their �xed features and orresponding parameters. These poliies an therefore onlyonverge to an optimal solution if it is representable by these features. Both CAB1 and the Zoomingalgorithm will onverge onto the true optimum, but only as the number of samples tends to in�nity,as indiated in Figure 8.In terms of omputation times, the previous methods were faster than the proposed method,although CGB and UCBC exhibit similar orders of magnitude. One reason for CGB being sloweris that this implementation performs the parallel searh for maxima sequentially. Parallelizing thissearh would redue the expeted 6D omputation time of CGB to 0.65 seonds.Most of the system's time is however used to perform the ations (i.e., the run times). Forthis omparison we foused on the time required to initialize the systems by trying eah initialgrasp one. Not only is the proposed method the fastest in terms of run times (see Table1), italso shows that implementing the other methods for grasping is not pratial due to the urse ofdimensionality.The UCBC algorithm has both longer omputation and running times than CAB1 and theZooming algorithm. However, as CAB1 and the Zooming algorithm inrease the number of ativeations throughout the experiment, these would ultimately exhibit omputation and run timesgreater than UCBC.The memory requirements of the previous methods inreases exponentially with the dimension-ality, and CGB will only require more memory than UCBC one it has performed a million grasps.The memory requirements of CGB sale with the number of samples, and su�ient memory shouldbe made available depending on the di�ulty of the learned task.In ases where large numbers of samples have been aumulated, suitable implementations ofGPR (e.g., Sparse GP [38℄) redue the omputational omplexity. The loss of auray inurredby suh implementations is omparable to the auray limits inherent to disretization methods,making these methods suitable alternatives to standard GPR.Ultimately the experiment shows that the proposed method outperforms the other methods ina low dimensional setting, and is the only pratial method for higher dimensions due to the urse



4.2 Robot Grasping Task 18of dimensionality.4.2. Robot Grasping Task
A. Preshaping
B. Grasping
C. LiftingFigure 9: The three main phasesof a basi grasp are demonstrated.(A) Preshaping the hand poses the�ngers to math the objet's geom-etry. (B) Grasping loses the three�ngers at the same rate to seurethe objet. (C) The objet is liftedand the �ngers adjust to the addi-tional weight. The objets at thebottom of A and B are lutter.

Having shown that the proposed Gaussian Bandits algorithm isan e�ient UCB poliy, the robotis evaluation fouses on inludingthe lower level ontroller for improved ations in a robot graspingsenario. This experiment involves the omplete system being im-plemented on a real robot platform. The following setions detailthe running of the experiment (Setion 4.2.1) and the results of theexperiment (Setion 4.2.2).In this experiment, we implement only the methods proposedin this paper. The methods desribed in Setion 4.1.1 were nottested on the real system as their disretizations make them highlyimpratial.4.2.1. Grasping ExperimentThe robot is a basi hand-eye system onsisting of a 7 degreesof freedom Mitsubishi PA-10 arm, a Barrett hand, and a Viderestereo amera. The robot only uses sensors essential for the taskand forgoes additional hardware suh as tatile sensors and laserrange�nders. The robot's task was to learn several good grasps ofnovel objets through trial and error. All grasps were exeuted onthe real robot and not in simulation.Eah trial begins by estimating the objet's position and orien-tation to onvert between world and objet referene frames, andto projet the ECVD model of the objet into the sene representa-tion. The stereo amera allows the objet position and orientationto be reliably estimated using the pose estimation method of De-try et al. [10℄.The CGB algorithm then determines the parameters of the nextgrasp, whih the reative lower level ontroller uses to modify thegrasping ation. If the robot grasps the objet, the robot attemptsto lift the objet from the table, thus ensuring that the table isnot supporting to the objet. Trials are given rewards dependingon how little the �ngers moved while lifting the objet, therebyenouraging more stable grasps. The rewards are not deterministidue to errors in pose estimation and e�ets aused by the plaementof the objet.The robot task was made more di�ult by adding lutter tothe sene. After eah grasp attempt, the hand reverses along thesame approah diretion, but without employing the detrator �eldsor preshaping of the hand, to determine if ollisions would haveourred if the reative ontroller had not been used.The system was run three times on a table tennis paddle to show that it is repeatable. To showthat the system an adapt to various senarios and objets, the experiment was also run twie onboth a toy watering an and a wooden box.



4.2 Robot Grasping Task 19The experiments for learning to grasp a paddle onsisted of 55 trials, while only 40 trials wererequried for the watering an and box experiments. Overall 325 di�erent grasp attempts wereexeuted with the ombined ative and reative system.4.2.2. Results
A. Flat B. Slanted

C. Cylindrial Handle D. Arhed Handle
E. Knob F. Extreme PointFigure 10: Various preshapes are shown. A and B showthe system adjusting to di�erent plane angles. C and Ddemonstrate the preshaping for di�erent types of handles. Eshows the preshaping for a irular dis struture, suh as adoor knob, and gets its �ngers losely behind the objet. Fshows where the objet was out of the reah of two �ngers,but still hooks the objet with one �nger.

The ative learner and reative ontrollerwere suessfully integrated and the ompletesystem onverged onto high-rewarding graspregions in all of the trials. The imitationlearning was straightforward, requiring onlyone demonstration and allowing for ontinu-ous smooth motions to be implemented. Ex-amples of the estimated �nger goal loationsan be seen in Figure 10. The preshapingadapted to a range of geometries, and onsis-tently plaed the �ngers lose enough to theobjet for a ontrolled grasp to be exeuted.This preshaping gave more ontrol over theobjet when grasping, leading to higher re-wards and allowing for more advaned graspsto be performed (see Figure 11)The detrator �eld and preshaping of thehand allowed the system to work in lutteredenvironments, whih was not a trivial task.The hand ame into ontat with the lut-ter for an estimated 8.3% of the grasp at-tempts, but never more than a glaning on-tat. These ontats were usually with visu-ally oulded parts of the objets, and thusnot fully modelled by the ECVDs. Aumu-lating the sene representation from multipleviews solves this problem. During the revers-ing phases, when the reative ontroller is de-ativated, the hand ollided with one or morepiees of lutter during 85.4% of the attempts.Thus, the reative ontrol dereases the number of ontats with the lutter by a fator of ten. The�ngers always opened su�iently to aept the objet without olliding with it.The rewards during the experiment are shown in Figure 12. In all of the experiments, theproposed hybrid system found suitable grasps for the objet. The watering an and box experimentsonverged faster than the paddle experiments, due to their initial searh region being smaller. Whileall experiments aquired low rewards for the initial grasps, the soft boundaries allowed the systemto explore beyond these regions and �nd neighbouring regions of better grasps.Amongst the most important results of this experiment is that the entral loop of the hybridontroller works in pratie. The system did not just quikly learn a graspable loation on anobjet, but rather the hybrid system quikly learned an entire �uid motion for grasping the objet,inluding preshaping. The system took a single demonstrated ation and learned modi�ations that



20Demonstration of a Controlled Grasp
A. Preshaping B. GraspingFigure 11: A ontrolled grasp, made possible by the hybrid system's preshaping ability. (A) The preshaping mathsthe geometry of the objet. When grasping, the two �ngers on the left pinh the paddle. The �nger on the rightturns the paddle lokwise about the pinhed point. (B) The grasping ends when the paddle has beome alignedwith all three �nger tips.generalized the ation to three di�erent objets. The learning proess was signi�antly hastenedby the hybrid approah, as the reative ontroller allowed the dimensionality of the reinforementlearner to be kept relatively low, while simultaneously performing ompliated grasping motions.The upper and lower levels divide the grasping problem into two sub-problems: determiningwhere to grasp an objet and deiding how to orretly exeute the grasp. By inorporating thereative ontroller in the learning loop, the hybrid system learned an ation that solves both ofthese sub-problems.5. ConlusionWe have presented a hierarhial hybrid ontroller that an e�iently determine good grasps ofobjets and exeute them. The upper level ontroller is based on reinforement learning to allowthe robot to learn from its own experienes, but apable of inorporating supervised data fromother soures if available. Grasp exeution is handled by a lower level ontroller based on imitationlearning and reative ontrol. This hybrid struture allowed the system to learn both good grasploations and orresponding grasp exeutions simultaneously, while keeping the dimensionality ofthe learning problem low.We have shown that the presented algorithms and learning arhitetures work well both insimulation and on a real robot. In simulation, the ative learner outperformed several standard UCBpoliies designed for the ontinuum-armed bandits problem. The entire system was suessfullyimplemented on a real robot platform, whih onsistently found highly rewarding grasps for variousobjets.Referenes[1℄ Agrawal, R., 1995. The ontinuum-armed bandit problem. SIAM J. Control Optim. 33 (6),1926�1951.[2℄ Auer, P., Cesa-Bianhi, N., Fisher, P., 2002. Finite-time analysis of the multiarmed banditproblem. Mah. Learn. 47 (2-3), 235�256.[3℄ Auer, P., Ortner, R., Szepesvári, C., 2007. Improved rates for the stohasti ontinuum-armedbandit problem. In: Pro. of the Conferene on Learning Theory. Springer-Verlag, Berlin,Heidelberg, pp. 454�468.



21Expeted Rewards Throughout Experiment
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