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tive 
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hing motions and preshaping the hand depending on the obje
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1. Introdu
tionRobots possess great potential for being employed in domesti
 environments, where they 
ouldperform various tasks su
h as tidying up rooms, taking out the garbage, or serving dinner. Althoughthese 
hores are variations of a basi
 pi
k-and-pla
e task, robots still struggle with them.One of the key 
hallenges for roboti
ists is the large variability inherent in the tasks and en-vironments that a robot may en
ounter. Preparing a robot 
ompletely beforehand for all possiblesituations is probably impossible as it is prohibitively di�
ult to foresee all s
enarios. Su
h a prepa-ration is also ine�
ient, as only a few of the situations will be required by the robot. Due to theselimitations, it is important to design robots that 
an adapt and learn from their own experien
es.Grasping an unknown obje
t is an example of a task that is made parti
ularly di�
ult by thelarge variety of obje
ts (see Figure 2). Many approa
hes have been proposed for robot grasping.Early work [6, 24℄ found analyti
al solutions to the problem, but these approa
hes require pre
iseinformation about the environment (e.g., external for
es, surfa
e properties) that may not be a

es-sible. Supervised learning 
an be used to train robots how to re
ognize good grasping points [36℄,but requires a 
onsiderable initial input from a human supervisor. A
tive and reinfor
ement learn-ing methods have fo
used on exploring the obje
t to a
quire 
omplete a�ordan
e model [35, 27℄,but not on optimizing grasps. However, �nding good grasp lo
ations is only a part of the problem.The robot grasping task 
an be de
omposed into two problems: (i) de
iding where to grasp theobje
t, and (ii) determining how to perform the grasping movement. These two sub-problems are
losely related and must be addressed together in order to perform a su

essful grasp. The 
hoi
e ofwhere to grasp an obje
t sets the 
ontext for determining how to grasp it. However, the exe
utionof the grasp ultimately determines whether the grasp lo
ation was well-
hosen.In this paper, we propose a hierar
hi
al 
ontroller that re�e
ts the stru
ture of these two task
omponents, as shown in Figure 1. The upper level de
ides where to grasp the obje
t, and thelower level determines how to perform the grasping movements given the 
ontext of these graspparameters and the s
ene. The upper level subsequently re
eives a reward based on the graspexe
ution, and takes this into 
onsideration when sele
ting future grasps.
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3A
tive and Rea
tive Controller Ar
hite
ture

Figure 1: The 
ontroller ar
hite
ture 
onsists of a upper level based on reinfor
ement learning and a bottom levelbased on rea
tive 
ontrol. Both levels are supported by supervised/imitation learning. The World and Supervisorare external elements of the system.The system employs a hybrid ar
hite
ture that uses reinfor
ement learning, imitation learning,and rea
tive 
ontrol. The 
ore of the upper level is a reinfor
ement learning approa
h that usesthe su

essfulness of evaluated grasps to determine future grasps. It is 
ru
ial that its state-a
tionspa
e is low dimensional for faster 
onvergen
e [42, 4℄, and that information from other sour
es (e.g.,demonstrated grasps) 
an easily be in
orporated. To redu
e the a
tion spa
e, the reinfor
ementlearner spe
i�es a grasp as a six dimensional hand pose in the obje
t's referen
e frame, and allremaining variables inherent to the grasping movements are handled by a lower level 
ontroller.The lower level 
ontroller is responsible for a
tion exe
ution. A straightforward method ofa
quiring an arbitrary motion poli
y is by imitation learning. One approa
h to imitation learningis to transform a demonstrated traje
tory into a standard dynami
al systems motor primitive(DMP) [14, 37℄. This poli
y is adapted, in a task spe
i�
 manner, to the grasp parameters spe
i�edby the reinfor
ement learner. The resulting DMP is augmented by a rea
tive 
ontroller that takesthe geometry of the obje
t and s
ene into 
onsideration. The resulting a
tion is exe
uted by therobot, whi
h returns a 
orresponding reward to the upper level of the 
ontroller.The 
omplete hybrid 
ontroller is illustrated in Figure 1. It uses its own experien
es to qui
kly
onverge on good grasping lo
ations. The grasping motions are taught by demonstration andadapted to di�erent grasp lo
ations and the surrounding geometry. A key feature of this hybridapproa
h is that the rea
tive 
ontroller is in
orporated in the reinfor
ement learner's a
tion-rewardfeedba
k loop. Thus, the hybrid system will learn an appropriate grasping a
tion together with a
orresponding grasp lo
ation, and solve both of the sub-problems.In the following se
tions, we dis
uss the proposed 
ontroller in a top-down manner. The a
tivelearner and the rea
tive bottom level of the 
ontroller are detailed in Se
tions 2 and 3 respe
tively.In Se
tion 4, the system is evaluated both in simulation and on the robot platform shown in Figure 2.2. High Level A
tive LearnerThe high level 
ontroller 
hooses where on the obje
t to apply the next grasp, and improvesthe grasp lo
ations using the a
quired data. The reinfor
ement learning approa
h is inspired bythe grasp learning exhibited by infants [28, 29, 33℄, requiring relatively little prior knowledge andmaking few assumptions. Young infants have a grasp re�ex that allows them to 
rudely grasp



4obje
ts [28℄. They learn to improve their grasps through trial and error, allowing them to later beable to perform pre
ision grips. The rea
tive 
ontroller of the hybrid system represents a vision-based grasp re�ex. The initial grasps may be 
rude, but the learning system will adapt to theobje
t and 
an learn to perform pre
ision grasps.To keep the number of assumptions low, we de�ne the state as the obje
t being grasped, andlearn a model for ea
h obje
t. The robot's grasps are learned in the obje
t's referen
e frame,allowing the obje
t to be repositioned in the workspa
e. Similar to a young infant [28℄, learningto grasp an obje
t is treated as 
ontext independent and only based on the task 
onstraints it hasen
ountered. Thus, if an obje
t has always been presented as hanging on a string, both the robotand infant would initially not know that grasping it from below does not work when the obje
t ison a table [28℄. The robot will assign an expe
ted reward to the grasp that re�e
ts both situationsand how often it has en
ountered ea
h.

Figure 2: The robot used in our experiments and an ex-ample of a grasping task in a 
luttered environment.
Another infant-like feature is that the robothas no vision-grasp mapping. Infants undernine months do not orientate their hands to theorientation of obje
t parts [33℄. The robot alsodoes not assume that the geometry of a 
up'shandle will imply a 
ertain orientation of thehand as appropriate. Instead, it will try di�er-ent orientations and �nd one that is well-suitedfor it. Hen
e, several obje
t properties do notneed to be modeled expli
itly, e.g., fri
tion. Ul-timately, the reinfor
ement learning approa
his highly adaptive and is appli
able to a widerange of situations.In 
ontrast, supervised learning of graspshas fo
used on methods using internal models of the world [26, 20℄, or mappings between vi-sual features of obje
ts and grasps [36℄. These approa
hes are more 
hara
teristi
 of adult humangrasping, and thus require large amounts of prior information.To 
onverge qui
kly to high rewarding grasp lo
ations, the system must balan
e the exploitationof good grasping points and the exploration of new, possibly better, ones. From a ma
hine learningperspe
tive, this sele
ting of grasps 
an be interpreted as a 
ontinuum-armed bandits problem [1℄.The 
ontinuum-armed bandit problem is a generalization of the traditional n-armed banditproblem [42℄ where the agent must 
hoose from a 
ontinuous range of lo
ally dependent a
tions,instead of a �nite number. Under this interpretation, the a
tion is given by the grasp applied andthe reward is a measure of the su

ess of this grasp.To date, most methods [3, 18℄ that solve the 
ontinuum-armed bandit problem are basedon dis
retizing the spa
e. For high-dimensional domains, su
h as robot grasping, any dis
retesegmenting will s
ale badly due to the �
urse of dimensionality� [4℄. The hard segmentation willresult in unnatural borders and make the use of prior knowledge 
ompli
ated. We propose a sample-based reinfor
ement learner that models the distribution of expe
ted rewards over the 
ontinuousspa
e of a
tions using Gaussian pro
ess regression (GPR) [32℄. The proposed learner then sear
hesfor the most promising grasp to evaluate next, using a method inspired by Mean-shift [9℄. Theresulting poli
y is 
alled Continuum Gaussian Bandits (CGB), and is outlined in Algorithm 1.The following four se
tions detail the a
tive learner and present the employed poli
y (Se
-tion 2.1), the modeling of the expe
ted rewards (Se
tion 2.2), how the learner sele
ts the next



2.1 Upper Con�den
e Bound Poli
y 5grasp (Se
tions 2.3), and then the method for implementing this sele
tion on the reward model(Se
tions 2.4 and 2.5). Finally, Se
tion 2.6 explains how supervised data 
an be in
orporated intothe a
tive learner as prior knowledge.2.1. Upper Con�den
e Bound Poli
yChoosing where to grasp a novel obje
t su�ers from an exploration-exploitation problem. Thetraditional ma
hine learning framework for studying this dilemma is the n-armed bandits problem,wherein an agent must repeatedly 
hoose from a �nite set of n possible a
tions to maximize thea

umulated reward.Among the more su

essful strategies [42℄ are upper 
on�den
e bound (UCB) poli
ies. Whilethere are di�erent versions of UCB poli
ies [42, 2℄, the prin
iple idea is to assign ea
h a
tion twovariables, i.e., the expe
ted reward µ for taking that a
tion, and a 
on�den
e bound ±σ indi
atingthe range in whi
h the a
tual mean reward is. Both µ and σ indi
ate how desirable exe
uting thea
tion is. A high expe
ted reward µ is valuable in the sense of exploitation and re
eiving rewards,while a large 
on�den
e bound σ indi
ates an informative a
tion that is good for exploration. Usingthe exploration variable σ leads to a more stru
tured exploration than regular randomized poli
ies(e.g., ǫ-greedy [42℄). UCB poli
ies also provide performan
e guarantees, and have an upperboundon the expe
ted regret that s
ales only logarithmi
ally with the number of trials [2℄.The sum of the expe
ted reward µ and the standard deviation σ indi
ates how desirable exe
utingthe a
tion is overall. We 
all the value µ+ σ the merit of an a
tion. A UCB poli
y always sele
tsthe a
tion for whi
h this merit value is the greatest [2℄. Intuitively, a UCB poli
y optimisti
ally
hooses the a
tion whi
h 
ould be the best, and will thus only 
onverge to an a
tion when it knowsthat no other a
tion 
ould be better.Adapting a UCB poli
y to the 
ontinuum-armed bandits requires a new approa
h that s
ales tothe high dimensional spa
es of grasping tasks. The �rst step towards realizing this approa
h is to
reate a sample-based model of the exploration σ and exploitation µ variables.2.2. Expe
ted Reward and Con�den
e Modeling with Gaussian Pro
ess RegressionModeling the upper 
on�den
e bound for 
ontinuous a
tions requires the expe
ted reward fun
-tion and its standard deviation to be approximated. A well-suited approa
h that satis�es theserequirements is Gaussian pro
ess regression (GPR) [32℄.Rather than mapping inputs to spe
i�
 output values, GPR returns a Gaussian distribution ofthe expe
ted rewards. This Gaussian distribution is 
hara
terized by its mean µ(x) and standarddeviation σ(x), where the standard deviation is a 
on�den
e bound on the expe
ted reward. Thiste
hnique is non-parametri
, whi
h implies that µ(x) and σ(x) are fun
tions that dire
tly in
orpo-rate all previous samples. Non-parametri
 methods are very adaptable, and apply few 
onstraintson the model. The GPR approa
h in
orporates a prior that keeps the mean and varian
e boundedin regions without data. Unexplored regions will thus have a large 
on�den
e bound σ(x) and smallexpe
ted rewards µ(x). Sampling from these regions will shift µ(x) towards the a
tual expe
tedreward at x, but de
rease the 
on�den
e bound σ(x).We employ the standard Gaussian kernels k (x,y) = σ2
a exp(−0.5(x− y)T W(x − y)) where Wis a diagonal matrix of kernel widths. The parameter σa a�e
ts the 
onvergen
e rate of the poli
y,as explained in Se
tion 2.6.For grasping, the ve
tors x ∈ R6 and y ∈ R6 ea
h 
ontain three position and three orientationparameters of grasps, whi
h des
ribe the �nal position of the hand in the obje
t's referen
e frame.Working in the obje
t's referen
e frame allows the obje
t to be repositioned and reorientated in



2.3 UCB Poli
y for GPR Model 6the workspa
e without altering the grasp parameters. Additional grasp parameters are ex
ludedto keep the number of parameters minimal, and thus allow for rapid learning. All of the othermotion parameters are handled by the rea
tive low level 
ontroller, whi
h modi�es these parametersdepending on the obje
t and the s
ene, as well as the parameters in x.The proposed UCB poli
y will base its de
isions on the merit fun
tion M (x) = µ(x) + σ(x),where µ (x) and σ (x) are the expe
ted reward and standard deviation at grasp x respe
tively. Thestandard GPR model [32℄ for the mean µ, varian
e σ2, and standard deviation σ, are
µ (x) = k (x,Y)

T (

K + σ2
sI
)

−1
t,

σ (x) =
√

σ2 (x) =

√

k (x,x) − k (x,Y)
T

(K + σ2
sI)

−1
k (x,Y),where [K]i,j = k(yi,yj) is the Gram matrix, the kernel ve
tor k de
omposes as [k(x,Y)]j =

k(x,yj), the hyperparameter σ2
s indi
ate the noise varian
e, and the N previous data points arestored in Y = [y1, . . . ,yn] with 
orresponding rewards t = [t1, . . . , tn].Both the mean and varian
e equations 
an be rewritten as the weighted sum of Gaussians, giving

µ (x) =
∑N

j=1k
(

x,yj

)

αj ,

σ2 (x) = k (x,x) −
∑N

i=1

∑N

j=1k
′
(

x, 0.5
(

yi + yj

))

γij ,where k′ (x,y) = σ2
a exp(−(x−y)TW(x−y)), and the 
onstants are de�ned as αj = [(K+σ2

sI)
−1t]jand γij = [(K + σ2

sI)
−1]i,j exp(−0.25(yi − yj)

T W(yi − yj)). Di�erent upper 
on�den
e intervals
σ have been used in UCB poli
ies [44℄, and 
an be used by modeling them with a se
ond GPR [7℄.The previous rewards t o

ur in the exploitation term µ (x), but not in the standard deviation
σ (x) as it represents the exploration, whi
h is independent of the rewards. A similar merit fun
tionhas previously been employed for multi-armed bandits in metri
 spa
es, wherein GPR was used toshare knowledge between dis
rete bandits [40℄.Having 
hosen a UCB poli
y framework and a GPR merit model, the implementation of thepoli
y has to be adapted to the merit fun
tion.2.3. UCB Poli
y for GPR ModelGiven a model of the UCB merit fun
tion, the system requires a suitable method for deter-mining the a
tion with the highest merit. Exe
uting this grasping a
tion will a
quire the greatest
ombination of reward and information.The merit fun
tion will most likely not be 
on
ave and will 
ontain an unknown number ofmaxima with varying magnitudes [32℄. Determining the global maximum of the merit fun
tionanalyti
ally is therefore usually intra
table [32℄. However, numeri
ally, we 
an determine a setof lo
ally optimal grasps. Su
h sets of grasps will 
ontain many maxima of the merit fun
tion,espe
ially near the previous data points. Given a set of lo
al maxima, the merit of ea
h 
andidategrasp is evaluated and the robot exe
utes the grasp with the highest merit.The method for �nding the lo
al maxima was inspired by mean-shift [9℄, whi
h is 
ommonlyused for both mode dete
tion of kernel densities and 
lustering. Mean-shift 
onverges onto the lo
almaxima of a given point by iteratively applying

xn+1 =

∑N

j=1 yjk
(

xn,yj

)

∑N

j=1 k
(

xn,yj

)
, (1)



2.4 Lo
al Maxima Dete
tion for GPR 7where k(xn,yj) is the kernel fun
tion, and yj are the N previously tested maxima 
andidates asbefore. The monotoni
 
onvergen
e via a smooth traje
tory 
an be proven for mean-shift [9℄. To�nd all of the lo
al maxima, mean-shift initializes the update sequen
e with all previous data point.The global maximum is then determined from the set of lo
al maxima, whi
h is guaranteed toin
lude the global maximum [23℄. Algorithm 1:Continuum Gaussian Bandits (CGB)Initialize:Store N initial points in Y and tLoop:Cal
ulate α and γ
Mbest = 0for j = 1 to N

xo = yjwhile not 
onvergedCal
ulate update step s

xn+1 = s + xnendif M(x) > Mbest
xbest = xn

Mbest = M(xbest)endendAttempt and evaluate xbestStore results in yN+1 and tN+1

N = N + 1Figure 3: The algorithm models the meritfun
tion with GPR, and �nds a set of lo
almaxima using a parallel sear
h. The 
andidatea
tion with the greatest merit is evaluated andthe results are stored.

The intuition behind this approa
h for grasping is thatall of the previous grasp attempts are lo
ally re-optimizedbased on the 
urrent empiri
al knowledge, as modeled bythe merit fun
tion. Subsequently, we 
hoose the best ofthese optimized grasps to exe
ute and evaluate.Mean-shift is however limited to kernel densities anddoes not work dire
tly in 
ases of regression, be
ause the
αj and γi,j weights are not always positive [9℄. In parti
u-lar, the standard update rule (1) 
an not be used, nor 
anwe guarantee that the global maximum will be one of thedete
ted maxima. However, the global maximum is onlyex
luded from the set of found maxima if it is isolatedfrom all previous samples by regions of low merit.As Equation (1) is not appli
able in our regressionframework, a new update step had to be developed, whi
hmonotoni
ally 
onverges upon the lo
al maximum of ourmerit fun
tion.2.4. Lo
al Maxima Dete
tion for GPRGiven the model in Se
tion 2.2, the merit fun
-tion takes the form M (x) =

∑N

j=1k(x,yj)αj +
√

k (x,x) −∑N

i=1

∑N

j=1k
′

(

x, 0.5
(

yi + yj

))

γij . To usethe poli
y des
ribed in Se
tion 2.3 with this merit fun
-tion, a monotoni
ally 
onverging update rule is requiredthat 
an determine lo
al maxima. We propose an updaterule 
onsisting of the 
urrent gradient of the merit fun
-tion, divided by a lo
al upper bound of the merit's se
ond derivative; Spe
i�
ally, we propose
xn+1 =

∂xµ+ ∂xσ

q (µ) + q(σ2)√
p(σ2)

+ xn = s + xn, (2)where ∂xµ =
∑N

j=1 W
(

yj − xn

)

k
(

xn,yj

)

αj and
∂xσ =

N
∑

i=1

N
∑

j=1

2

σ
γijW

(

yi + yj

2
− xn

)

k′
(

x,
yi + yj

2

)

.The fun
tion q(·) returns a lo
al upper bound on the absolute se
ond derivative of the input withinthe xn to xn+1 range. Similarly, p(·) returns a lo
al lower bound on the absolute value of the input.This form of update rule displays the desired 
onvergen
e qualities, as explained in Se
tion 2.5.The rule is only appli
able be
ause the Gaussian kernels have bounded derivatives resulting in �nite
q (µ) and q (v), and any real system will have a positive varian
e giving a real non-zero √p (v).



2.5 Mode Dete
tion Convergen
e Analysis 8To 
al
ulate the lo
al upper and lower bounds, we �rst de�ne a region of possible xn+1 values to
onsider. Therefore, we introdu
e a maximum step size m > 0, where steps with larger magnitudesmust be trun
ated; i.e., ‖xn+1 − xn‖ ≤ m. Having de�ned a lo
al neighborhood, q (µ), q (v), and
p (v) need to be evaluated.In Se
tion 2.2, µ and v were represented as the linear weighted sums of Gaussians. Given alinear sum, the rules of superposition 
an be applied to evaluate q (µ), q (v), and p (v). Thus, theupper bound of a fun
tion in the region is given by the sum of the lo
al upper bounds of ea
hGaussian, i.e.,

qm

(

∑

N
j=1k

(

x,yj

)

αj

)

≤
∑

N
j=1qm

(

k
(

x,yj

)

αj

)

.As Gaussians monotoni
ally tend to zero with in
reasing distan
e from their mean, determining anupper bound value for them individually is trivial. In the 
ases of q (µ) and q (v), the magnitudesof the se
ond derivatives 
an be bounded by a Gaussian; i.e.,
‖∂2

xk
(

x,yj

)

‖ < σ2
a exp

(

−(x − yj)
TW(x − yj)/6

)

,whi
h 
an then be used to determine the lo
al upper bound.We have thus de�ned an update step and its implementation, whi
h 
an be used to dete
t themodes of a Gaussian pro
ess in a regression framework. The �nal algorithm has a time 
omplexityof O(N3), similar to all other exa
t GPR methods [7℄. However, this 
omplexity s
ales linearly withthe number of dimensions, while dis
retization methods s
ale exponentially, making the proposedGPR method advantageous when the problem dimensionality is greater than three. The modedete
tion algorithm 
an be easily parallelized for e�
ient implementations on multiple 
omputersor GPUs as an anytime algorithm.This se
tion 
on
ludes the details of the proposed reinfor
ement learner, whi
h is outlined inAlgorithm 1. As shown, the �nal algorithm is quite 
ompa
t and straightforward. It 
onsists ofmodeling the expe
ted rewards using GPR, and applying a parallel sear
h to determine a maximumto evaluate next. The mode dete
tion behavior is analyzed in the next se
tion. In
orporatingsupervised data from other data sour
es is des
ribed in Se
tion 2.6 whi
h 
ompletes the upper levelof the 
ontroller design.2.5. Mode Dete
tion Convergen
e AnalysisHaving spe
i�ed the method for determining maxima of a GPR in Se
tion 2.4, Lyapunov'sdire
t method 
an be used to show that the method 
onverges monotoni
ally to stationary points.The underlying prin
iple is that an in
reased lower bound on the merit redu
es the set of possiblesystem states and, therefore, a 
ontinually in
reasing merit leads to 
onvergen
e. The following onedimensional analysis will show that only an upper bound on the magnitude of the se
ond derivativeis required for a 
onverging update rule.The in
rease in merit is given by M(xn+1) −M(xn). Given an upper bound u of the se
ondderivative between xn and xn+1, and the gradient g = ∂xM (xn), the gradient in the region 
an belinearly bounded as
g − ‖x− xn‖ u ≤ ∂xM (x) ≤ g + ‖x− xn‖u.Considering the 
ase g ≥ 0 and therefore xn+1 ≥ xn, the 
hange in merit is lower bounded by

M (xn+1) −M (xn) =
´ xn+1

xn

∂xM (x) dx ≥
´ xn+1

xn

g − (x− xn)u dx.



2.6 In
orporating Supervised data 9This term is maximal when the linear integrand rea
hes zero; i.e, g − (xn+1 − xn)u = 0. This limitresults in a shift of the form s = xn+1 − xn = u−1g, as was proposed in Equation (2). The sameupdate rule 
an be found by using a negative gradient and updating x in the negative dire
tion.The merit thus always in
reases, unless the lo
al gradient is zero or u is in�nite. A zero gradientindi
ates that the lo
al stationary point has been found, and variable u is �nite for any pra
ti
alGaussian pro
ess. In some 
ases, the initial point may be within the region of attra
tion of a pointat in�nity, whi
h 
an be tested for by determining the distan
e from the previous data points.The intuition underlying the results of the analysis is that at ea
h step, the system assumes thegradient will shift towards zero at the maximum possible rate within the region. The estimate ofthe maximum is then moved to the �rst point where a zero gradient is possible. This 
on
ept 
aneasily be generalized to higher dimensional problems. The update rule guarantees that the gradient
annot shift sign within the update step, and thus ensures that the system will not overshoot noros
illate about the stationary point. The update rule xn+1 = u−1g + xn therefore guarantees thatthe algorithm monotoni
ally 
onverges on the lo
al stationary point.2.6. In
orporating Supervised dataHaving fully designed the 
entral reinfor
ement learner, the upper level 
ontroller still requiresa method for allowing prior task information to be in
orporated into the merit fun
tion to helpredu
e the sear
h spa
e.Similar to how a 
hild learns a new task by observing a parent before trying it themselves [28℄,a robot 
an use human demonstrations of good grasps to de�ne its starting sear
h region. However,whether these grasps are suitable for the robot is initially unknown.GPR makes in
orporating prior information fairly straightforward. If the supervised data hasa reward asso
iated to it, the data 
an be dire
tly added to the data set. If the region suggestedby the demonstration returns only low rewards, the system will begin sear
hing neighboring areaswhere the merit is still high due to un
ertainty. Thus, it de�nes an initial sear
h region with softboundaries that 
an move during the learning pro
ess.The parameter σa of the merit fun
tion spe
i�es how 
onservative the poli
y is in expandingthese boundaries; i.e., a higher value will en
ourage more exploration, while a lower value will
onverge faster. Hen
e, it 
an be seen as a learning rate. With the rewards in the grasping task setto be within the range 0 to 1, the parameter is set to 0.75 to en
ourage exploration but also allowfor a reasonable rate of 
onvergen
e.The robot experiment was initialized with sear
h regions de�ned by 7, 10, and 25 demonstratedgrasps for the box, watering 
an, and paddle respe
tively. The width parameters W of the Gaussiankernel were also optimized on these initial parameters.This se
tion 
on
ludes the dis
ussion of the upper level 
ontroller. It takes the rewards of grasps,the pose of the obje
t, and, optionally, demonstrated data as inputs, and returns the next grasplo
ation to attempt. This grasp lo
ation is passed to the robot via a lower level 
ontroller, whi
hgenerates the 
omplete grasping motions based on these parameters.3. Low Level Rea
tive Imitation ControllerWhile the upper level of the 
ontroller sele
ted grasp lo
ations, the lower level is responsible forthe exe
ution of the grasp, in
luding the rea
hing and �ngers' motions. It is important that thesystem is adaptive at this level, as the su

ess of the grasps depend on the exe
ution. The �ngermotions should parti
ularly adapt to the geometry of the obje
t, a pro
ess known as preshaping. The



10robot's motions are learned from human demonstrations, and subsequently modi�ed to in
orporatethe grasp information from the a
tive learner and the s
ene geometry from the vision system.A 
ommon approa
h to the grasp exe
ution problem is to rely on spe
ially designed sensors(e.g., laser s
anner, ERFID) to get a

urate and 
omplete representations of the obje
t and envi-ronment [26, 45℄, followed by lengthy planning phases in simulation [5℄. We restri
t the robot toonly using stereo 
ameras, and a fast rea
tive sensor-based 
ontroller [39℄.Although densely sampling sensors su
h as time-of-�ight 
ameras and laser range �nders arefavored for rea
tive obsta
le avoidan
e [17℄, the sparser information of stereo vision systems hasalso been used for these purposes [34, 22℄. Robot grasping resear
h has fo
used on 
oarse obje
trepresentations of novel obje
ts [43, 25, 30, 8℄, and using additional sensor arrays when in 
loseproximity to the obje
t [12, 41℄. Learning to grasp obje
ts is also often done in simulation [43,20℄ whi
h allows for many virtual grasp attempts on a model of the obje
t. In 
ontrast, theproposed hybrid system relies on relatively few real-world grasps and does not rely on havinga

urate dynami
s and 
onta
t models.For the lower level system, we propose a sensor-based robot 
ontroller that 
an perform humaninspired motions, in
luding preshaping of the hand, smooth and adaptive motion traje
tories, andobsta
le avoidan
e, using only stereo vision to dete
t the environment. Unlike previous approa
hes,we work with a sparse visual representation of obje
ts, whi
h maintains a high level of geometri
details. The 
ontroller uses potential �eld methods [39℄, whi
h treat the robot's state as a parti
lein a for
e �eld; i.e. the robot is attra
ted to a goal state, and repelled from obsta
les.The attra
tor �eld needs to be 
apable of en
oding 
omplex traje
tories and adapting to di�erentgrasp lo
ations. We therefore use the dynami
al system motor primitive (DMP) [13, 37℄ framework.The DMPs are implemented as passive dynami
al systems superimposed with external for
es; i.e.,
ÿ = αz(βzτ

−2(g − y) − τ−1ẏ) + aτ−2f(x), (3)where αz and βz are 
onstants, τ 
ontrols the duration of the primitive, a is an amplitude, f(x) isa nonlinear fun
tion, and g is the goal for the state variable y. The variable x ∈ [0, 1] is the state ofa 
anoni
al system ẋ = −τx, whi
h a
ts as a shared 
lo
k amongst di�erent DMPs; i.e. it ensuresthat the �nger and arm motions are syn
hronized. The fun
tion f(x) en
odes the traje
tory forrea
hing the goal state, and takes the form
f (x) =

∑M

j=1 ψj (x)wjx
∑M

i=1 ψi (x)
,where ψ(x) are M Gaussian basis fun
tions, and w are weights. The weights w are a
quired byimitation learning, using lo
ally weighted regression [13, 14℄. The DMPs treat the goal state gas an adjustable variable and ensure that this state is always rea
hed. However, their 
apabilityto generalize 
an be further improved by using a task-spe
i�
 referen
e frame based on the a
tivelearner's grasp parameters, as detailed in Se
tion 3.2. This adaptation of the a
tion to di�erentgoals allows the obje
t to be repositioned and reorientated in the robot's workspa
e.More important is the 
hoi
e of the s
ene's visual representation, whi
h is used to augmentthe attra
tor �eld and forms the basis of the detra
tor �eld. The s
ene des
ription needs to bein 3D, work at a �ne s
ale to maintain geometri
 details, and represent the s
enes sparsely toredu
e the number of 
al
ulations required per time step. The Early Cognitive Vision system ofPugeault et al. [31, 11℄ (see Figure 4) ful�lls these requirements by extra
ting edge features fromthe observed s
ene. The system subsequently lo
alizes and orientates these edges in 3D spa
e [21℄,



3.1 Attra
tor Fields based on Dynami
al Systems Motor Primitives (DMPs) 11ECVD Representation of S
ene

ECV Des
riptors S
ene and HandFigure 4: The left image shows the ECVD representation of the s
ene on the right. The paddle is the obje
t to begrasped, while the surrounding obje
ts 
lutter. The 
oordinate frame of the third �nger of the lower �nger in theimage and the variables used in Se
tion 3 are shown. The x-y-z 
oordinate system is lo
ated at the base of the �nger,with z orthogonal to the palm, and y in the dire
tion of the �nger. The marked ECVD on the left signi�es the jthdes
riptor, with its position at vj = (vjx, vjy , vjz)T , and edge dire
tion ej = (ejx, ejy , ejz)T of unit length. Theposition of the �nger tip is given by p = (px, py, pz)T .with the resulting features known as early 
ognitive vision des
riptors (ECVD) [31℄. By using alarge amount of small ECVDs, any arbitrary obje
t/s
ene 
an be represented. Given an ECVDmodel of an obje
t, the obje
t's position and orientation 
an be determined [10℄ and the ECVDs ofthe obje
t model 
an be superimposed into the s
ene representation.As a hybrid system, the lower level 
ontroller supplies a 
omplex adaptive a
tion poli
y thatthe upperlevel 
an indire
tly modify. The top level 
ontroller only needs to modify the a
tion for agiven obje
t, whi
h 
an be done more e�
iently than having to learn the entire a
tion. To allow forqui
k learning, the a
tions given by the rea
tive 
ontroller should be repeatable, while still adaptive.By making the rewards for grasps depend on the rea
tive 
ontroller, the reinfor
ement learner �ndsboth good grasp lo
ations as well as mat
hing grasp exe
utions.In Se
tions 3.1 and 3.2, we des
ribe the DMPs for grasping, followed by their augmentationusing the ECVD based detra
tor �eld in Se
tion 3.3.3.1. Attra
tor Fields based on Dynami
al Systems Motor Primitives (DMPs)Generating the grasp exe
ution begins with de�ning an attra
tor �eld as a DMP, whi
h en
odesthe desired movements given no obsta
les. The prin
iple features that need to be de�ned for theseDMPs are the goal positions, and the generi
 shape of the traje
tories.The high level grasp 
ontroller gives the goal lo
ation and orientation of the hand, but not the�ngers. Using the ECVDs, the goal position of ea
h �nger is approximated by �rst estimating alo
ally linearized 
onta
t plane for the obje
t in the �nger 
oordinate system (see Figure 4). Thepurpose of this step is to get the �ngers 
lose to the obje
t's surfa
e during preshaping to allow formore 
ontrol of the obje
t during grasping. It is not intended to infer exa
t surfa
e properties orwhether the grasp is suitable. If the sele
ted surfa
e is unsuitable for grasping, a low reward willbe re
eived and the upper level 
ontroller will adapt its poli
y a

ordingly.A 
onta
t plane is approximated for ea
h �nger to allow for a range of obje
t shapes. Thein�uen
e of the ith ECVD is weighted by wi = exp(−σ−2
x v2

ix − σ−2
y v2

iy − σ−2
z v2

iz), where σx, σy,and σz are length 
onstants that re�e
t the �nger's length and width, and vi is the position of the



3.2 Transformed Dynami
al Motor Primitives for Grasping 12

Figure 5: The diagram shows the the 
hangein 
oordinate systems for the rea
hing DMPs.The axes Xw-Yw-Zw are the world 
oordinatesystem, and Xp-Yp-Zp is 
oordinate system inwhi
h the DMP is spe
i�ed. The traje
tory ofthe DMP is shown by the 
urved line, startingat point s, and ending at point g. Xp isparallel to the approa
h dire
tion of the hand,the arrow a. The axis Yp is perpendi
ular to
Xp, and pointing from s towards g.

ECVD in the �nger referen
e frame. The hand orien-tation is su
h that the Z dire
tion of the �nger shouldbe approximately parallel to the 
onta
t plane, whi
h re-du
es the problem to des
ribing the plane as a line in the2D X-Y spa
e. The X-Y gradient of the plane is ap-proximated by φ = (
∑N

i=1 wi)
−1
∑N

i=1 wi arctan(eiy/eix),where N is the number of vision des
riptors, and ei is thedire
tion of the ith edge. The desired Y position of the�ngertip is then given by
p̃y =

∑N

i=1(wiviy − tan(φ)wivix)
∑N

i=1 wi

,whi
h 
an be 
onverted to joint angles using the inversekinemati
s of the hand. The proposed method sele
ts thegoal postures of the �ngers in a deterministi
 manner,whi
h depends on the obje
t's geometry as well as thegrasp parameters spe
i�ed by the a
tive learner. Thus,the hybrid system's a
tive learner indire
tly sele
ts theposture of the �ngers through a rea
tive me
hanism basedon the visual model of the obje
t.The next step de�nes the rea
hing and grasping traje
tories. Many bene�
ial traits of humanmovements, in
luding smooth motions and small overshoots for obsta
le avoidan
e [16, 15, 29℄, 
anbe transferred to the robot through imitation learning. To demonstrate grasping motions, we useda VICON motion tra
king system to re
ord human movements during a grasping task. The graspedobje
t 
an be di�erent to the robot's. VICON markers were only required at the hand and �ngertips. The tra
king system samples the human's motions, generating position q, velo
ity q̇, anda

eleration q̈ data, as well as the samples' time stamps. The weights wi of the DMP are thengiven by
wi =

(

T
∑

k=1

ψi (xk)x2
k

)−1
T
∑

j=1

ψi (xj)xj

(

τ2q̈j − αz(βz(g − qj) − τ1q̇j)
)

a−1,where xj is the state of the 
anoni
al system 
orresponding to the jth time stamp. The solution is
losed form and easily 
al
ulated. Further information on imitation learning of DMPs 
an be foundin Ijspeert's paper [14℄. As the rea
hing traje
tories are en
oded in task spa
e the 
orresponden
eproblem of the arm was not a problem.The DMPs are provably stable [37℄ and the goal state, as spe
i�ed by the upper level 
ontroller,will always be a
hieved. Alterations added by the rea
tive 
ontrollers must stay within the boundsof the framework to ensure that this stability is maintained.3.2. Transformed Dynami
al Motor Primitives for GraspingWhile DMPs generalize to arbitrary goal positions, the grasps' approa
h dire
tion 
an not bearbitrarily de�ned, and the amplitude of the traje
tory is unne
essarily sensitive to 
hanges inthe start position y0 and the goal position g if y0 ≈ g during training. These limitations 
an beover
ome by in
luding a prepro
essor that modi�es the DMPs' hyperparameters.
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Figure 6: This is a demonstration of the e�e
ts of trans-forming the amplitude variable a of DMPs. The hashedbla
k lines represent boundaries. The dotted bla
k lineshows the trained traje
tory of the DMP going to 0.05. Ifgoal is then pla
ed at 0.1 and the workspa
e is limited to
±0.075 (top boundary), the dashed bla
k line is the stan-dard generalization to a larger goal, while the solid plotuses the new amplitude. If the goal is −0.05, and needsto be rea
hed from above (lower right boundary), then thedashed grey line is the standard generalization to a neg-ative goal, and the solid grey traje
tory uses the newamplitude. Both of the new traje
tories were generatedwith η = 0.25.

The system 
an maintain the 
orre
t ap-proa
h dire
tion by using a task-spe
i�
 
oor-dinate system. Due to the translation invari-an
e of DMPs, only a rotation R ∈ SO(3) be-tween the two 
oordinate systems needs to bedetermined. The majority of the rea
hing mo-tions will lie in a plane de�ned by the start andgoal lo
ations, and the �nal approa
h dire
tion.These 
omponents of the plane are supplied bythe high level 
ontroller, with the approa
h di-re
tion de�ned by the �nal hand orientation.The �rst new in-plane axis xp is set tobe along the approa
h dire
tion of the grasp;i.e., xp = −a as shown in Figure 5. Theapproa
h dire
tion is thus easily de�ned andonly requires that the Yp and Zp DMPs rea
htheir goal before the Xp primitive. The se
ondaxis, yp, must be orthogonal to xp and also inthe plane, as shown in Figure 5. It is set to
yp = b−1((g− s)− xp(g− s)Txp), where b−1 isa normalization term, and s and g are the mo-tion's 3D start and goal positions respe
tively.The third axis ve
tor is given by zp = xp × yp.The DMPs 
an thus be spe
i�ed by the pre-pro
essor in the Xp-Yp-Zp 
oordinate system,and mapped to the Xw-Yw-Zw world referen
eframe by multiplying by RT = [xp,yp, zp]

T .The 
hange of 
oordinate system is a fundamental step for the hybrid system. It pla
es therea
tive 
ontroller, together with all of its modi�
ations, within the reinfor
ement learner's a
tion-reward feedba
k loop. Therefore, the system learns pairings of grasp lo
ations and grasp exe
utionsthat lead to high rewards.The se
ond problem relates to the s
aling of motions with ranges greater than ‖y0 − g‖, whi
hare required to move around the outside of obje
ts. In the standard form a = g − y0 [13℄, whi
hleads to motions that are overly sensitive to 
hanges in g and y0 if g ≈ y0 during training. Theprepro
essor 
an redu
e the sensitivity by using a more robust s
aling term, for whi
h we proposethe amplitude
a = ‖η(g − y0) + (1 − η)(gT − y0T )‖ ,where gT and y0T are the goal and start positions of the training data respe
tively, and η ∈ [0, 1]is a weighting hyperparameter. This amplitude is always between the training amplitude and thestandard generalization value a = g − y0, and η 
ontrols how 
onservative the generalization is tonew goals (see Figure 6). By taking the absolute value of the amplitude, the approa
h dire
tion isnever reversed (see Figure 6). The amplitude previously proposed by Park et al. [30℄ 
orresponds tothe spe
ial 
ase of η = 0. Example generalizations of a rea
hing traje
tory are shown in Figure 7.The des
ribed transformations allow a single DMP to perform a larger range of grasps, whi
himplies that fewer DMPs ares required in total. Using di�erent DMPs for di�erent se
tions ofthe obje
t or workspa
e should be avoided as it 
reates unne
essary dis
ontinuities in the rewards,



3.3 Detra
tor Fields based on ECVDs 14whi
h 
an slow down the hybrid system's learning pro
ess. Only one grasp had to be learned forthe entire robot experiment, whi
h was then adapted to the various situations.3.3. Detra
tor Fields based on ECVDsDetra
tor �elds re�ne the motions generated by the DMPs to avoid obsta
les during the rea
hingmotion and ensure that the �nger tips do not 
ollide with the obje
t during the hand's approa
h.

Figure 7: Workspa
e traje
torieswhere the x and y values are governedby two syn
hronized DMPs. The semi-
ir
le indi
ates the goal positions, withdesired approa
h dire
tions indi
atedby the light gray straight lines. Theapproa
h dire
tion DMP was trainedon an amplitude of one, and η = 0.25.

The detra
tor �eld is based on ECVDs, whi
h represent smallline segments of an obje
t's edges lo
alized in 3D, as shown inFigure 4. The detra
tive for
es of multiple ECVDs des
ribinga single line should not superimpose, nor should the �eld stopDMPs from rea
hing their ultimate goals. The system thereforeuses a Nadaraya-Watson model [7℄ of the form
ua = −v(x)

∑N

i=1 ricai
∑N

j=1 rj
,to generate a suitable detra
tor �eld, where ri is a weight as-signed to the ith ECVD, s is the strength of the overall �eld, xis the state of the DMPs' 
anoni
al system, cai is the detra
tingfor
e for a single des
riptor, and subs
ript a spe
i�es if the de-tra
tor �eld is for the �nger motions or the rea
hing movements.The weight of an ECVD for 
ollision avoidan
e is given by

ri = exp(−(vi−p)Th(vi−p)), where vi is the position of the ithECVD in the lo
al 
oordinate system, h is a ve
tor of positivelength s
ale hyperparameters, and p is the �nger tip position,as shown in Figure 4. The detra
tor puts more importan
e onECVDs in the vi
inity of the �nger.The rea
hing and �nger movements rea
t di�erently to edgesand employ di�erent types of basis fun
tions ci for their re-spe
tive potential �elds. For the �ngers, the individual po-tential �elds are logisti
 sigmoid fun
tions about the edge ofea
h ECVD of the form ρ(1 + exp(diσ
−2
c ))−1, where di =

∥

∥(p − vi) − ei(p − vi)
Tei

∥

∥ is the distan
e from the �nger to theedge, ρ ≥ 0 is a s
aling parameter, and σc ≥ 0 is a length pa-rameter. Di�erentiating the potential �eld results in a for
e of
cfi = ρ

(

1 + exp
(

diσ
−2
c

))

−2 exp
(

diσ
−2
c

)

.As the sigmoid is monotoni
ally in
reasing, the detra
tor always for
es the �ngers open further tomove their tips around the ECVDs and ensure that they approa
h the obje
t from the outside. Asimilar potential fun
tion 
an be employed to for
e the hand 
losed when near ECVDs pertainingto the s
ene rather than the obje
t.The rea
hing motion uses the Gaussian basis fun
tions of the form ̺ exp(−0.5dT
i diσ

−2
d ), where

di = (q − vi) − ei(q − vi)
Tei is the distan
e from the end e�e
tor position, q, to the edge, and

̺ ≥ 0 and σd ≥ 0 are s
ale and length parameters respe
tively. Di�erentiating the potential withrespe
t to di gives a for
e term in the Y dire
tion of
chi = ̺(di.Y)σ−2

d exp(−0.5dT
i diσ

−2
d ),



15whi
h thus apply a radial for
e from the edge with an exponentially de
aying magnitude.The strength fa
tor s(x) 
ontrols the pre
ision of the movements, ensuring that the detra
torfor
es tend to zero at the end of a movement and do not obstru
t the DMPs from a
hieving its goalstate. Therefore, the strength of the detra
tors is 
oupled to the 
anoni
al system of the DMP.Hen
e, v(x) = (
∑M

j=1 ψj)
−1
∑M

i=1 ψiwix, where x is the value of the 
anoni
al system, ψ are itsbasis fun
tions, and w spe
ify the varying strength of the �eld during the traje
tory.Modelling the human tenden
y towards more pre
ise movements during the last 30% of a mo-tion [16℄, the strength fun
tion, v(x), was set to give the highest strengths during the �rst 70% ofthe motion for the rea
hing traje
tories, and the last 30% for the �nger movements. Setting thestrength in this manner is also bene�
ial to the reinfor
ement learner. The reward of the learnerdepends mainly on the �nal position of the hand, and the 
losing of the �ngers. If these parts ofthe motion are more repeatable, then it is easier for the upper level 
ontroller to learn.The detra
tor �elds of both the grasping and rea
hing 
omponents have been de�ned, and aresuperimposed into the DMP framework as
ÿ =

(

αz(βzτ
−2(g − y) − τ−1ẏ) + aτ−2f(x)

)

− τ−2ua,whi
h represents the entire ECVD and DMP based potential �eld.Combining the ECVD based DMPs with the new 
oordinate system for rea
hing and motionamplitude, we have fully de�ned the low level 
ontroller. Its main 
ontribution is to learn a graspingmovement by imitation and then to rea
tively adapt these motions to new situations in a mannersuited to the task and spe
i�ed by the upper level 
ontroller.4. EvaluationsThe following se
tions evaluate the system both in simulation and on a real robot platform. The�rst part of the evaluation (Se
tion 4.1) tests the upper level 
ontroller against other 
ontinuum UCBpoli
ies on a simulated ben
hmark problem. The real world evaluation, presented in Se
tion 4.2,demonstrates the 
omplete 
ontroller working on a real robot grasping novel obje
ts in 
lutteredenvironments.4.1. Comparative UCB AnalysisThis se
tion fo
uses on the reinfor
ement learner and shows that the CGB algorithm (see Algo-rithm 1) performs well in pra
ti
e, and 
an be s
aled to the more 
omplex domain of grasp learning.The 
omparison is between four UCB poli
ies, in
luding our proposed method, on a 1D ben
hmarkexample of the 
ontinuum-armed bandits problem. The poli
ies were tested on the same set of 100randomly generated 7th order spline reward fun
tions. The rewards were superimposed with uni-form noise of width 0.1, but restri
ted to a range of [0, 1]. The spa
e of bandits was also restri
tedto a range between 0 and 1. None of the poli
ies were informed of the length of the experiment inadvan
e, and ea
h poli
y was tuned to a
hieve high rewards.4.1.1. Compared MethodsThe tested 
ompeting poli
ies are UCBC [3℄, CAB1 [18℄, and Zooming [19℄. These algorithmsrepresent standard UCB poli
y implementations for 
ontinuum bandits in the literature. A key issuefor any poli
y that uses dis
retizations is sele
ting the number of dis
rete bandits to use. Employinga 
oarser stru
ture will lead to faster 
onvergen
e, but the expe
ted rewards upon 
onvergen
e arealso further from the optimal. Balan
ing this trade-o� is therefore important for a poli
y's su

ess.
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Upper Confidence Bound Continuum (UCBC)
Continuum Armed Bandits 1 (CAB1)
Zooming Algorithm
Continuum Gaussian Bandits (CGB)Figure 8: The expe
ted rewards over 100 experiments are shown for the four 
ompared methods. The results were�ltered for 
larity. Due to the di�eren
es in experiment lengths, the x-axis uses a logarithmi
 s
ale. The dashedhorizontal line represents the maximum expe
ted reward given the noise.The UCBC poli
y of Auer [3℄ divides the bandits spa
e into regular intervals and treats ea
hinterval as a bandit in a dis
rete UCB poli
y. After 
hoosing an interval, a uniform distributionover the region sele
ts the bandit to attempt. The number of intervals sets the 
oarseness of thesystem, and was tuned to 10.Instead of using entire intervals, the CAB1 poli
y of Kleinberg [18℄ sele
ts spe
i�
 grasps atuniform grid points. A dis
rete UCB poli
y is then applied to these points, for whi
h we 
hoseUCB1 [2℄, as suggested in [18℄. The dis
retization trade-o� is dealt with by resetting the system at�xed intervals with larger numbers of bandits, thus ensuring that the points be
omes denser as theexperiment 
ontinues.The zooming algorithm, of Kleinberg et al. [19℄, also uses a grid stru
ture to dis
retize thebandits. In 
ontrast to CAB1, the grid is not uniform and additional bandits 
an be introdu
ed atany time in high rewarding regions. A dis
rete poli
y is then applied to this set of a
tive bandits.Similar to CAB1, the zooming algorithm works in time intervals and resets its grid after �xednumbers of trials.Our proposed Continuum Gaussian Bandits (CGB) method was initialized with 4 equispa
edpoints. Demonstrated data was not used in order to test its performan
e without the bene�ts ofsu
h data. All four methods were initially run for 55 trials, as shown in Figure 8. The CAB1,UCBC, and Zooming methods extended to 1000 trials to demonstrate their 
onvergen
e behavior.4.1.2. ResultsThe expe
ted rewards for the four UCB poli
ies during the experiment 
an be seen in Fig-ure 8. The 
omputation and run times were also a
quired for the experiments for 
omparison, andestimated for the 6 dimensional problem, as shown in Table 1.Apart from our proposed poli
y, Zooming was the most su

essful over the 1000 trials at a
hiev-ing high rewards, as it adapts its grid to the reward fun
tion. However, only CGB 
onsistentlydetermined the high rewarding regions and 
onverged on them. In several trails, the reward fun
-tion had two distin
t peaks with near-optimal rewards, and the CGB poli
y 
onverged onto both.The 
onvergen
e of UCB poli
ies is frequently des
ribed by the merit's per
entage of exploitation

µ(x∗)/(µ(x∗) + σ(x∗)), where x∗ is the 
urrent a
tion sele
ted by the poli
y. This value is initially



4.1 Comparative UCB Analysis 17UCBC CAB1 Zoom CGBMean Reward 0.6419 0.4987 0.6065 0.91221D 
omputation time 46 µs 47 µs 27 µs 2.9 se
6D 
omputation time 4.6 se
 6.7 ms 5.6ms 17.6 se
1D initialization run time 10 min 12 min 24 min 4 min6D initialization run time 1.9 yrs 1.2 days 4.2 days 24 minTable 1: These results pertain to the �rst 50 grasp attempts in the ben
hmark problem. The shows the mean
omputation times for the di�erent algorithms, and how they would s
ale to six dimensions, given the 
omputational
omplexity of the algorithms [18, 3, 19℄. Similarly, the table shows the amount of time needed to initialize the systemsby trying ea
h of the initial grasps on
e.zero and in
reases as the poli
y returns to previously explored a
tions with high rewards. The97.5% exploitation mark was rea
hed by the CGB poli
y on average at the 33rd trial. Anothermeasure of 
onvergen
e is found by dire
tly 
omparing the di�erent maxima found by CGB. Thepoli
y 
onverges when the expe
ted value µ(x∗) of the sele
ted a
tion is greater than the highestmerit value µ(x) + σ(x) of the other 
andidate a
tions. This 
riterion is based on the fa
t that themerit fun
tion µ(x) + σ(x) tends to µ(x) as the exploration of an a
tion is exhausted. Using this
riteria, the poli
y 
onverged on average at the 37th trial.As parametri
 poli
ies, the standard methods assume that the optimal solution 
an be rep-resented by their �xed features and 
orresponding parameters. These poli
ies 
an therefore only
onverge to an optimal solution if it is representable by these features. Both CAB1 and the Zoomingalgorithm will 
onverge onto the true optimum, but only as the number of samples tends to in�nity,as indi
ated in Figure 8.In terms of 
omputation times, the previous methods were faster than the proposed method,although CGB and UCBC exhibit similar orders of magnitude. One reason for CGB being sloweris that this implementation performs the parallel sear
h for maxima sequentially. Parallelizing thissear
h would redu
e the expe
ted 6D 
omputation time of CGB to 0.65 se
onds.Most of the system's time is however used to perform the a
tions (i.e., the run times). Forthis 
omparison we fo
used on the time required to initialize the systems by trying ea
h initialgrasp on
e. Not only is the proposed method the fastest in terms of run times (see Table1), italso shows that implementing the other methods for grasping is not pra
ti
al due to the 
urse ofdimensionality.The UCBC algorithm has both longer 
omputation and running times than CAB1 and theZooming algorithm. However, as CAB1 and the Zooming algorithm in
rease the number of a
tivea
tions throughout the experiment, these would ultimately exhibit 
omputation and run timesgreater than UCBC.The memory requirements of the previous methods in
reases exponentially with the dimension-ality, and CGB will only require more memory than UCBC on
e it has performed a million grasps.The memory requirements of CGB s
ale with the number of samples, and su�
ient memory shouldbe made available depending on the di�
ulty of the learned task.In 
ases where large numbers of samples have been a

umulated, suitable implementations ofGPR (e.g., Sparse GP [38℄) redu
e the 
omputational 
omplexity. The loss of a

ura
y in
urredby su
h implementations is 
omparable to the a

ura
y limits inherent to dis
retization methods,making these methods suitable alternatives to standard GPR.Ultimately the experiment shows that the proposed method outperforms the other methods ina low dimensional setting, and is the only pra
ti
al method for higher dimensions due to the 
urse



4.2 Robot Grasping Task 18of dimensionality.4.2. Robot Grasping Task
A. Preshaping
B. Grasping
C. LiftingFigure 9: The three main phasesof a basi
 grasp are demonstrated.(A) Preshaping the hand poses the�ngers to mat
h the obje
t's geom-etry. (B) Grasping 
loses the three�ngers at the same rate to se
urethe obje
t. (C) The obje
t is liftedand the �ngers adjust to the addi-tional weight. The obje
ts at thebottom of A and B are 
lutter.

Having shown that the proposed Gaussian Bandits algorithm isan e�
ient UCB poli
y, the roboti
s evaluation fo
uses on in
ludingthe lower level 
ontroller for improved a
tions in a robot graspings
enario. This experiment involves the 
omplete system being im-plemented on a real robot platform. The following se
tions detailthe running of the experiment (Se
tion 4.2.1) and the results of theexperiment (Se
tion 4.2.2).In this experiment, we implement only the methods proposedin this paper. The methods des
ribed in Se
tion 4.1.1 were nottested on the real system as their dis
retizations make them highlyimpra
ti
al.4.2.1. Grasping ExperimentThe robot is a basi
 hand-eye system 
onsisting of a 7 degreesof freedom Mitsubishi PA-10 arm, a Barrett hand, and a Viderestereo 
amera. The robot only uses sensors essential for the taskand forgoes additional hardware su
h as ta
tile sensors and laserrange�nders. The robot's task was to learn several good grasps ofnovel obje
ts through trial and error. All grasps were exe
uted onthe real robot and not in simulation.Ea
h trial begins by estimating the obje
t's position and orien-tation to 
onvert between world and obje
t referen
e frames, andto proje
t the ECVD model of the obje
t into the s
ene representa-tion. The stereo 
amera allows the obje
t position and orientationto be reliably estimated using the pose estimation method of De-try et al. [10℄.The CGB algorithm then determines the parameters of the nextgrasp, whi
h the rea
tive lower level 
ontroller uses to modify thegrasping a
tion. If the robot grasps the obje
t, the robot attemptsto lift the obje
t from the table, thus ensuring that the table isnot supporting to the obje
t. Trials are given rewards dependingon how little the �ngers moved while lifting the obje
t, therebyen
ouraging more stable grasps. The rewards are not deterministi
due to errors in pose estimation and e�e
ts 
aused by the pla
ementof the obje
t.The robot task was made more di�
ult by adding 
lutter tothe s
ene. After ea
h grasp attempt, the hand reverses along thesame approa
h dire
tion, but without employing the detra
tor �eldsor preshaping of the hand, to determine if 
ollisions would haveo

urred if the rea
tive 
ontroller had not been used.The system was run three times on a table tennis paddle to show that it is repeatable. To showthat the system 
an adapt to various s
enarios and obje
ts, the experiment was also run twi
e onboth a toy watering 
an and a wooden box.



4.2 Robot Grasping Task 19The experiments for learning to grasp a paddle 
onsisted of 55 trials, while only 40 trials wererequried for the watering 
an and box experiments. Overall 325 di�erent grasp attempts wereexe
uted with the 
ombined a
tive and rea
tive system.4.2.2. Results
A. Flat B. Slanted

C. Cylindri
al Handle D. Ar
hed Handle
E. Knob F. Extreme PointFigure 10: Various preshapes are shown. A and B showthe system adjusting to di�erent plane angles. C and Ddemonstrate the preshaping for di�erent types of handles. Eshows the preshaping for a 
ir
ular dis
 stru
ture, su
h as adoor knob, and gets its �ngers 
losely behind the obje
t. Fshows where the obje
t was out of the rea
h of two �ngers,but still hooks the obje
t with one �nger.

The a
tive learner and rea
tive 
ontrollerwere su

essfully integrated and the 
ompletesystem 
onverged onto high-rewarding graspregions in all of the trials. The imitationlearning was straightforward, requiring onlyone demonstration and allowing for 
ontinu-ous smooth motions to be implemented. Ex-amples of the estimated �nger goal lo
ations
an be seen in Figure 10. The preshapingadapted to a range of geometries, and 
onsis-tently pla
ed the �ngers 
lose enough to theobje
t for a 
ontrolled grasp to be exe
uted.This preshaping gave more 
ontrol over theobje
t when grasping, leading to higher re-wards and allowing for more advan
ed graspsto be performed (see Figure 11)The detra
tor �eld and preshaping of thehand allowed the system to work in 
lutteredenvironments, whi
h was not a trivial task.The hand 
ame into 
onta
t with the 
lut-ter for an estimated 8.3% of the grasp at-tempts, but never more than a glan
ing 
on-ta
t. These 
onta
ts were usually with visu-ally o

ulded parts of the obje
ts, and thusnot fully modelled by the ECVDs. A

umu-lating the s
ene representation from multipleviews solves this problem. During the revers-ing phases, when the rea
tive 
ontroller is de-a
tivated, the hand 
ollided with one or morepie
es of 
lutter during 85.4% of the attempts.Thus, the rea
tive 
ontrol de
reases the number of 
onta
ts with the 
lutter by a fa
tor of ten. The�ngers always opened su�
iently to a

ept the obje
t without 
olliding with it.The rewards during the experiment are shown in Figure 12. In all of the experiments, theproposed hybrid system found suitable grasps for the obje
t. The watering 
an and box experiments
onverged faster than the paddle experiments, due to their initial sear
h region being smaller. Whileall experiments a
quired low rewards for the initial grasps, the soft boundaries allowed the systemto explore beyond these regions and �nd neighbouring regions of better grasps.Amongst the most important results of this experiment is that the 
entral loop of the hybrid
ontroller works in pra
ti
e. The system did not just qui
kly learn a graspable lo
ation on anobje
t, but rather the hybrid system qui
kly learned an entire �uid motion for grasping the obje
t,in
luding preshaping. The system took a single demonstrated a
tion and learned modi�
ations that



20Demonstration of a Controlled Grasp
A. Preshaping B. GraspingFigure 11: A 
ontrolled grasp, made possible by the hybrid system's preshaping ability. (A) The preshaping mat
hsthe geometry of the obje
t. When grasping, the two �ngers on the left pin
h the paddle. The �nger on the rightturns the paddle 
lo
kwise about the pin
hed point. (B) The grasping ends when the paddle has be
ome alignedwith all three �nger tips.generalized the a
tion to three di�erent obje
ts. The learning pro
ess was signi�
antly hastenedby the hybrid approa
h, as the rea
tive 
ontroller allowed the dimensionality of the reinfor
ementlearner to be kept relatively low, while simultaneously performing 
ompli
ated grasping motions.The upper and lower levels divide the grasping problem into two sub-problems: determiningwhere to grasp an obje
t and de
iding how to 
orre
tly exe
ute the grasp. By in
orporating therea
tive 
ontroller in the learning loop, the hybrid system learned an a
tion that solves both ofthese sub-problems.5. Con
lusionWe have presented a hierar
hi
al hybrid 
ontroller that 
an e�
iently determine good grasps ofobje
ts and exe
ute them. The upper level 
ontroller is based on reinfor
ement learning to allowthe robot to learn from its own experien
es, but 
apable of in
orporating supervised data fromother sour
es if available. Grasp exe
ution is handled by a lower level 
ontroller based on imitationlearning and rea
tive 
ontrol. This hybrid stru
ture allowed the system to learn both good grasplo
ations and 
orresponding grasp exe
utions simultaneously, while keeping the dimensionality ofthe learning problem low.We have shown that the presented algorithms and learning ar
hite
tures work well both insimulation and on a real robot. In simulation, the a
tive learner outperformed several standard UCBpoli
ies designed for the 
ontinuum-armed bandits problem. The entire system was su

essfullyimplemented on a real robot platform, whi
h 
onsistently found highly rewarding grasps for variousobje
ts.Referen
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21Expe
ted Rewards Throughout Experiment
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