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Abstract

With the emergence of more challenging contexts for robotics, the mechanical design of robots is becoming more and more complex.

Moreover, their missions often involve unforeseen physical interactions with the environment. To deal with these difficulties,

endowing the controllers of the robots with the capability to learn a model of their kinematics and dynamics under changing

circumstances is becoming mandatory. This emergent necessity has given rise to a significant amount of research in the Machine

Learning community, generating algorithms that address more and more sophisticated on-line modeling questions. In this paper, we

provide a survey of the corresponding literature with a focus on the methods rather than on the results. In particular, we provide a

unified view of all recent algorithms that outlines their distinctive features and provides a framework for their combination. Finally,

we give a prospective account of the evolution of the domain towards more challenging questions.

Keywords: Adaptive and learning systems, Adaptive control, Mechanical models

1. Introduction

A major trend in robotics research is a shift from industrial

applications, where everything can be planned in advance, to

service, intervention, and exploration applications where robots

must be able to address a large diversity of tasks while react-

ing to unforeseen situations [95] – in particular when they have

to interact with humans. In front of these versatility require-

ments, the robots themselves get more and more complex. Due

to the presence of humans, they must also be less dangerous,

thus lighter, which results in stiffness limitations [121]. Taking

all these constraints together, the accurate low-level control of

these systems for achieving elementary tasks is an increasingly

difficult matter, not to mention higher level decision making

problems.

In this context, efficient control methods are generally model-

based and call upon mechanical models of the robot [25]. For

instance, when the robot is redundant with respect to a task, a

forward model of its velocity kinematics is mandatory to make

profit of the redundancy. Besides, a model of the dynamics is

required when the dynamics effects can generate disturbances

that are larger than what local PID controllers with a limited

stiffness can reject instantaneously. However, the accuracy of
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model-based control directly depends on the accuracy of these

models and of the sensors used to close the control loop.

Up to a certain extent, mechanical engineering knowledge

can help to provide such models. Indeed, the kinematic equa-

tion of a rigid poly-articulated plant is easy to obtain given a

precise knowledge of its geometry. Similarly, its dynamic equa-

tion can be written as the combination of well-modeled factors

such as the inertia of the plant, Coriolis and centrifugal effects

as well as external forces (including gravity). But, for instance,

the geometry of the mechanical chain changes when the robot is

using a tool or when its structure is altered accidentally. And, at

the dynamics level, there are additional unmodeled effects such

as joint and cable frictions or backlashes [35] that are often dif-

ficult to model accurately. Furthermore, some of these effects

are inherently non-stationary.

In that context, on-line adaptation of models is a valuable

strategy because it can capture non-stationarities in the mechan-

ical properties of the plant.

Two approaches in that respect are the on-line parameter

identification step of adaptive control [94], which tunes pa-

rameters of a given model given its mechanical structure [59]

and model learning, which identifies mechanical models us-

ing supervised learning methods without any knowledge of the

structure. Whereas classical identification methods generally

assume a rigid body model and then incorporate some enhance-
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ments to take non-linear phenomena such as friction or flex-

ibilities into account, the model learning approach makes no

assumption on the structure and includes all phenomena in a

general function built out of experimental data.

This paper provides a survey of state-of-the-art methods in

the supervised learning approach. A related survey paper has

been published recently in Nguyen-Tuong & Peters [71]. That

previous publication covers many topics in that domain, from

the different control methods that make use of the learned mod-

els to the presentation of specific robotics applications that

demonstrate the feasibility of the methods. Another related

and recent survey paper is Hoffmann et al. [44]. It investigates

the notion of body schema and helps discriminating between

different kinds of representation that the controller of a robot

can have of its body. It covers the vision processing questions

related to the acquisition of such representations (e.g. Jager-

sand [47]) and more general work on the acquisition of a body

schema or a body image that directly relate visual features to

mechanical properties of the plant [43, 62, 64, 99]. It also in-

vestigates somewhat superficially the relationships to computa-

tional neurosciences issues related to model learning in animals

and humans.

Here, in the terminology of Hoffmann et al. [44], we focus

on mechanical models that are either forward or inverse mod-

els, without addressing all the other points listed above. More

precisely, we present the local and incremental regression algo-

rithms used for learning mechanical models so as to provide a

unifying view through a study of their similarities and differ-

ences. In particular, we highlight the features that make these

algorithms unique, and investigate whether they may be com-

bined into a new generation of methods.

The paper is organized as follows. In Section 2, we give some

background knowledge about the mechanical models of robots.

In Section 3, we present machine learning methods that are used

to learn these models. Each time we present a method, we give

an overview of the applications to robot model learning it has

given rise to. All these methods are discussed in Section 4.

Section 5 is devoted to a prospective presentation of the evolu-

tion of the field. Finally, we summarize our main messages in

Section 6.

2. Mechanical Models of Robots

Before presenting the methods used to learn mechanical

models in Section 3, in this section, we explain what these mod-

els are. The control methods based on such models are not cov-

ered in the paper, we refer the reader to Nguyen-Tuong & Peters

[71], Salaün et al. [86] or to other papers cited in Section 3 to

learn more about these control methods.

2.1. Joint space and task space

Rigid poly-articulated systems are defined by a finite number

of rigid bodies interconnected by ideal joints. An ideal joint is

a kinematic relationship between two rigid bodies.

The n parameters chosen to describe the configuration of a

robot along with the joint equations are sufficient to describe

the pose of each body composing it. These parameters can be

gathered to form the vector of configuration parameters q also

named generalized coordinates. The configuration of a robot

is thus defined on an n-dimensional space called joint space or

configuration space.

Though configuration parameters are often chosen so that

they can be intuitively related to the motion of the actuators of

the plant, it is very difficult to use them to describe most of the

tasks of a robot. In order to facilitate the description of these

tasks, an alternative space can be used, which is often called

task space or operational space.

A unitary task consists in positioning the coordinate frame

of a body, for instance an end-effector, relatively to a reference

coordinate frame. This task can be described with a vector of

task space parameters ξ of size m ≤ 6, since six parameters are

sufficient to locally span the space of positions and orientations.

2.2. Joint space to task space mappings

The joint space to task space mapping can be described at

three different levels. At the geometric level, the forward kine-

matics model is a non-linear function f such that ξ = f (q).

If the robot is redundant with respect to the task, there is an

infinite number of possible inverses for f . In that case, there is

no simple method to span the set of possible solutions at the ge-

ometric level and the mapping is often described at the velocity

level by the Jacobian matrix J (q) = ∂ f (q) /∂q such that

ξ̇ = J (q) q̇. (1)

J (q) is an m × n matrix and thus can be inverted using linear

algebra techniques. In the redundant and non-singular cases,

i.e. rank (J (q)) = m and m < n, there exists an infinity of possi-

ble generalized inverses of J (q) (see Ben Israel & Greville [9]).

Given the redundancy, a system can make profit of internal mo-

tions that do not induce any perturbation on the task to achieve

other tasks. The resulting trajectory of the plant depends on

the specific inverse that has been chosen. Different possible

redundancy resolution schemes can be applied, depending on

the compatibility of the tasks or constraints, which have to be

solved. We refer the reader to Salaün et al. [86] for a formal

treatment of this topic. Conversely, in the case of parallel plants,

the inverse model is unique whereas there can be an infinity of

forward models.

2.3. Forward and Inverse Dynamics

The forward dynamics mapping relates forces applied on the

plant, among which the applied m-dimensional control input

vector Γ, to the acceleration q̈. The Dynamics (D) of a plant is

described as

q̈ = A−1 (q) (Γ − Γext − b (q, q̇) − g (q) − ǫ (q, q̇)), (2)

where A (q), b (q, q̇), g (q), ǫ (q, q̇) and Γext are respectively

the n × n inertia matrix of the plant, the vector of Coriolis and

centrifugal effects, the vector of gravity effects, the vector of un-

modeled effects and the torques resulting from external forces

applied to the plant.
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At the dynamics level, the state of the plant is s =
[

qT , q̇T
]T

thus the induced dimensionality is larger than at the kinematics

level where it is q.

The Rigid Body Dynamics (rbd) of the plant corresponds to

the dynamics of the system with rigid parts and ideal joints. It is

given by (2) where the term corresponding to unmodeled effects

is removed. More generally, (2) can be written

q̈ = D
(

q, q̇,Γ,Γext
)

. (3)

Similarly, the inverse dynamics (ID) is described as

Γ = A (q) q̈ + b (q, q̇) + g (q) + ǫ (q, q̇) + Γext, (4)

or, more generally,

Γ = ID
(

q, q̇, q̈,Γext
)

. (5)

In any given state s, the joint space to joint space mapping

represented by (5) gives the torques to be applied by the actua-

tors of the robot to obtain the desired acceleration q̈ at the next

step.

2.4. Inverse Dynamics in the task space

In Khatib [51], Khatib formulated an alternative expression

of the dynamics of the plant in the task space

F = Λ (q) ξ̈ + µ (q, q̇) + p (q) + ǭ (q, q̇) + Fext (6)

Γ = J (q)T F (7)

where Λ (q), µ (q, q̇), p (q) and ǭ (q, q̇) are the projection in

the task space of the inertia matrix, the Coriolis and centrifu-

gal forces, the gravity forces and the unmodeled effects forces.

Fext is the vector of external forces applied to the plant at the

end-effector level. These equations relate the task space accel-

eration vector ξ̈, with a dimension less than or equal to 6, to the

joint torques vector, with a dimension equal to n.

In general, inverse dynamics in the task space is a mapping

from R
2n × R

m to R
n whereas inverse dynamics in joint space

is a mapping from R
3n to R

n. Poly-articulated systems have a

task space dimension which is usually smaller or equal to the

dimension of the joint space. Thus, the model of the inverse

dynamics in the task space is generally smaller than the com-

bination of the kinematics model with the standard inverse dy-

namics model.

3. Regression of Mechanical Models

In supervised learning, a class of machine learning tech-

niques, a supervisor provides input/output pairs that can be used

to learn a relationship between the corresponding training data.

When the output is discrete, the classification problem con-

sists in associating the presented input to an output value, its

class. In contrast, when the output is continuous, the regres-

sion problem consists in finding a function that approximates

as accurately as possible a latent function that describes the in-

put/output relationship.

Formally, given a set of k training samples S = {xi, yi}ki=1
,

where xi ∈ X ⊆ IRl is a vector of dimension l and yi ∈ Y ⊆ IR

the regression problem consists in approximating a latent func-

tion f : X → Y with a function f̂ taken in some predetermined

family so as to minimize some measurement of the approxima-

tion error.

For instance, the Least Square (ls) regression method con-

siders the family of linear functions f (x) = βT x where β is a

weight vector minimizing the quadratic error

min
β
||y − Xβ||2, (8)

where y = [y1, . . . , yk]T and X = [x1, . . . , xk]T is a k × l

matrix.

Learning a mechanical model of a plant is a regression prob-

lem where training samples are obtained from the state and con-

trols of the plant along time.

A global view of the regression methods presented in this pa-

per is given in Fig. 1. The next section describes early regres-

sion methods used to learn such models, from Artificial Neural

Networks (anns) to Locally Weighted Regression (lwr) meth-

ods. Then we compare several state-of-the-art methods that all

incrementally split the input space into regions and perform re-

gression on local models associated to these regions.

In order to insist on what distinguishes these methods from

their competitors and before discussing the impact of these dif-

ferences, we focus on the following questions for all algorithms.

How are the regions defined? How does the algorithm perform

local regression? How do the region boundaries evolve? How

does the algorithm add (or delete) a region? How does it com-

pute the global output?

LWR

MoE

RFWR LWPLS

LWPR LGP IMLM

SVMGMM

ILO−GMR LoSVR XCSF

XCS

iRFRLS

MLP

ANN

RBFNSOM GPR LCS

Figure 1: Historical view of several lines of research on supervised learning

algorithms giving rise to incremental and local regression methods to infer me-

chanical models

3.1. Artificial Neural Networks

This section is dedicated to anns and their evolution towards

lwr methods. anns are a wide class of non-linear function ap-

proximation tools. They are declined under different forms such

as Multi-Layer Perceptrons (mlps) [83], Self-Organizing Maps

(soms) [53] or Radial Basis Function networks (rbfns) [29].

Other forms of neural networks such as population coding are

not covered in this paper because they are less relevant to the in-

troduction of the subsequent sections, although they have been

applied to robot model learning (see e.g. Butz et al. [12]). For
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a classical survey about learning mechanical models with anns,

we refer the reader to Jordan & Rumelhart [48].

In all the sections below, α is the learning rate, nn is the num-

ber of neurons of a network and nr is the number of regions.

3.1.1. Multi-Layer Perceptrons

An mlp approximates the latent function f through a directed

graph of artificial neurons whose nodes convey a non-linear

function and edges convey a weight that is tuned by the algo-

rithm. The excitation level vi(x) of each neuron i is calculated

as

vi(x) =

nn
∑

i=1

βixi

where xi is the input of neuron i and βi is the associated weight.

The activation function yi = f (vi) uses the excitation level to

determine if neuron i fires or not and is its output. Classical

activation functions are yi = tanh(vi) or the sigmoid function

yi = (1 + e−vi )−1.

The learning process consists in computing the error of the

global network output to update all weighted connections. The

weights can be updated by back-propagating through the net-

work an error δyi between the desired value and the real output

of each neuron i

δβi j = −α
∂δyi

∂βi j

. (9)

where βi j is the weight between input xi and neuron i.

mlps are used to learn the inverse kinematics (e.g. Ahmad

& Guez [1], Barhen et al. [7], Pourboghrat [78]), the Jacobian

matrix [56] or the forward kinematics model of a robot [11,

67]. More recently, Sang & Han [87] and Sadjadian & Taghirad

[84] use ann methods to learn the forward models of parallel

robots which involves highly coupled non-linear equations that

are difficult to model analytically.

3.1.2. Self-Organizing Maps

A som is another type of ann. It is trained using unsupervised

learning to produce a low-dimensional discrete representation

of the input space. An important feature of soms is that they can

preserve the topological properties of the input space.

Barretto et al. [8] provide a good survey of the application of

soms to robot identification problems. Most authors use these

methods in the context of visuo-motor control, apart from Wal-

ter & Schulten [109] and Wang & Zilouchian [110] who respec-

tively learn the inverse kinematics of a six dofs industrial robot

Puma 562 and the forward kinematics model of a simple plant.

In this context, the evaluation is based on the accuracy of the

model itself rather than on its control capabilities.

In the visuo-motor case, Ritter et al. [81] and Martinetz et al.

[63] use soms to learn a mapping between the three-dimensional

end-effector position measured by two cameras and joint posi-

tions on a three dofs robot. More recent work in the domain can

be found in Kumar et al. [55].

Furthermore, specific soms called Growing Neural Gas are

capable of expanding in the relevant dimensions of a domain.

They have been combined with locally weighted learning meth-

ods presented hereafter [36]. The resulting algorithm is en-

dowed with interesting properties for incremental function ap-

proximation in a large domain, but to our knowledge it has not

been applied to the identification of mechanical models. Thus,

we do not investigate the topic in more detail.

3.1.3. Radial Basis Function Networks

Radial Basis Function Networks (rbfns), illustrated in Fig. 2,

can be seen as a simplification over mlps, retaining only one

layer and using a Radial Basis Function (rbf) as activation func-

tion.

An rbf φ is a function whose output value ŷ depends only on

the distance ri from its center ci to the input value x. A standard

rbf is a Gaussian function defined as

φ(ri) =
1

√

2πσi
2

e
− r2

i

2σi
2 (10)

where σi
2 is the variance of the Gaussian function i which de-

termines its size and shape. The values of all σi are often set to

a unique value σ. To perform regression with rbfns, the output

of all functions are weighted and summed together to get the

global network output

ŷ =

nn
∑

i=1

βiφ(ri) (11)

where the βi are weights.

In rbfns, the weights are updated incrementally with differ-

ent methods such as gradient descent based on the error be-

tween the output of the network and the desired value. As it

can be considered as a one layer ann, the back-propagation can

be written as

δβi = −α(yi − ŷi)φ(ri). (12)

−5 0 5 10 15
−1

0

1

2

3

4

Figure 2: Approximation (doted) of a sinus function (top in black) with an rbfn

(bottom in cyan).

In Sun & Scassellati [100, 101], an rbfn is used to learn the

forward kinematics of a robot. Each basis function is derived

to obtain a Jacobian matrix, using the Resolved Motion Rate

Control (rmrc) [111] framework to generate trajectories. In Lin

& Goldenberg [58], an rbfn is used to learn an inverse dynamics

model of a 4 dofs manipulator in three dimensions.
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3.1.4. Locally Weighted Regression

Locally Weighted Regression (lwr) methods [4] use Gaus-

sian features like rbfns, but the weights are approximated with

the ls method (see Fig. 3).

The main difference between rbfns and lwr methods lies in

the introduction of a linear model associated to each rbf and

used to perform ls regression. Each rbf defines a region of

validity for the corresponding linear model.

More precisely, around each point x, the contribution of each

receptive field to the global output is computed with a Gaus-

sian function (10). Thus lwr globally approximates non-linear

functions by combining local linear models.

Figure 3: In lwr, x is the input of a latent function. A Gaussian, centered on x,

weights stored point with respect to their proximity to x. A regression is then

computed using the weighted points [26].

Compared to anns or rbfns, lwr benefits from the power of

linear estimation methods. But lwr needs to retain all training

data to perform the ls approximation, which may be infeasible

in large spaces given memory limitations. However, the linear

models β can also be computed incrementally, using the Recur-

sive Least Square (rls) algorithm. This extension to lwr gave

rise to rfwr [89], that is an incremental local regression method

avoiding storage of data. In parallel, lwr was improved in an-

other direction by lwpls [91], that uses the Partial Least Square

(pls) [33, 117] projection mechanisms to neglect irrelevant di-

mensions in the input space.

3.2. Locally Weighted Projection Regression

Locally Weighted Projection Regression (lwpr) [108] is

probably the most popular learning method for learning me-

chanical models of robots. As described in Schaal et al. [90],

it can be seen as combining the properties of lwpls and rfwr.

Indeed, it performs simultaneously incremental regression of

local linear models like rfwr and input projection like lwpls.

Furthermore, the shape of the region corresponding to each lin-

ear model is also tuned incrementally. lwpr provides a fast,

incremental and reasonably accurate approximation, thus it is a

good reference for comparisons.

Definition of regions. In lwpls, rfwr and lwpr, a region is

called a receptive field. Like its ancestors, lwpr uses Gaussian

functions φi(x)

φi(x) = e
−1

2
(x − ci)

T Wi(x − ci)
(13)

where the positive distance metric Wi of the Gaussian delimits

a region which is updated during learning to match the training

data.

Local regression mechanism. As in lwr, each region has a cor-

responding local linear model βi which is used to predict a local

scalar output yi relative to an input vector x

ŷi(x) = βix. (14)

lwpr inherits from the capacity of lwpls to reduce the input

dimensionality using pls. Some projection is made on the input

vector to model high dimensional functions only on their most

relevant directions. Moreover, like rfwr, the linear model ap-

proximation is performed efficiently using an incremental ver-

sion of pls called nipals [117]. Several other ways to perform

dimensionality reduction in the context of local linear regres-

sion are discussed in Vijayakumar et al. [106].

Evolution of regions. The distance metric W is adapted when

new data are received to improve the coverage of the input

space. It is computed as W = MT M where M is an upper-

triangular matrix to ensure W is symmetric and positive defi-

nite. M is modified recursively and individually to regulate the

size of the regions with the update law

M = M − α ∂C
∂M

(15)

where C is a minimized cost function. This cost function is

more complex than the weighted mean square error criterion in

lwr. It is computed by a leave one out cross-validation method

and includes a penalty term that prevents the population of mod-

els from collapsing. The reader can refer to Schaal et al. [90] or

Vijayakumar & Schaal [108] for a detailed presentation of the

incremental version of the algorithm.

Note that, in contrast with the distance metrics, the centers ci

of the regions are not adapted. Their position depends on the

mechanism used to add a new region.

Adding new regions. The rule for adding a new region is the

following. For a given input x, the Gaussian function φi(x)

defining each region can be seen as a level of activation of the

local model corresponding to this region. So, if, for the current

x, the level of activation of no region is above a threshold wgen,

a new region is created with x as center and an initial Dinit as

distance metrics. The value of wgen plays a major role in the

number of regions created for a given approximation problem.

Global model approximation. The approximation performed

by lwpr is the sum of local linear models weighted by their

respective Gaussian weights

ŷ(x) =
1

Φ (x)

nr
∑

i=1

φi (x) ŷi (x) (16)

where Φ (x) =

nr
∑

i=1

φi (x).
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Furthermore, the gradient of the latent function, differenti-

ated with respect to the input (and not with respect to time) and

the confidence bounds on the predicted output are also provided

through an incremental algorithm [52].

Applications to robot model learning. lwpr is certainly the

most used algorithm in the context of learning mechanical mod-

els of a plant. As a result, it is used as a basis for comparisons in

most if not all the papers presented in the next sections. Here-

after, we list a few of the most impressive applications of lwpr

to learning mechanical models of robots.

In D’Souza et al. [32], an inverse kinematics model is learned

with lwpr. The plant is an atr humanoid robot [50] with 26

actuated joints among which only 4 are relevant for the learn-

ing algorithm. An end-effector is controlled in Cartesian space.

Even though 22 of these dimensions are irrelevant, the dimen-

sion of the input (ξ, q) is 29 and the dimension of the output q̇

is 26. The model is learned along a task space trajectory, which

is much easier than learning in the whole space. The method

solves redundancy by minimizing a cost function that depends

on the configuration. Doing so, no inversion is involved and

singularity problems are avoided.

In Schaal et al. [90], Vijayakumar & Schaal [107, 108], the

authors use lwpr to learn the inverse dynamics model of a seven

dofs anthropomorphic Sarcos robotic arm, again along a task

space trajectory. The trajectory is followed with a task space

PD controller. Some noise is added, making the plant explore

and learn an envelope of possible configurations around the tra-

jectory. The input of the learning algorithm is (q,q̇,q̈) of di-

mension 21 and the output is the torque Γ of dimension 7. The

number of training data points is 5 104 and the model contains

260 regions.

In Vijayakumar et al. [106], the same approach is used to

learn the inverse dynamics model of the atr humanoid robot.

The input dimension is 90 and the output dimension is 30. Here,

7.5 106 samples and 2200 regions are required to obtain an ac-

curate model. To our knowledge, this is the largest space in

which a function has been learned with lwpr, but once again

the function is learned along a trajectory in a small sub-part of

the input space. Moreover, the number of joints used to con-

trol the arm is much smaller than the number of joints taken as

input of the learning algorithm. Besides, since learning 30 par-

allel lwpr models would be computationally too expensive, the

authors choose to learn one single model with 30 dimensional

outputs projected, thanks to the pls algorithm, onto the input

data. Indeed, as a consequence of using the pls regression, it is

possible to learn one single model with a vector output instead

of a scalar one.

More recently, lwprwas used in Peters & Schaal [75] to learn

the inverse dynamics in the task space of an anthropomorphic

Sarcos arm and a Mitsubishi PA-10 robot. For both plants, the

input dimension is 17 and the output dimension is 7. As un-

derlined in Section 2.4, those dimensions have to be compared

to the size of two separate models which can be learned inde-

pendently: an inverse velocity kinematics model which links a

3 dimensional space to a 7 dimensional space and an inverse

dynamic model which links a 21 dimensional space to a 7 di-

mensional space. The inverse dynamics in the task space is

also learned with lwpr in Sun de la Cruz et al. [27], where the

system deals with redundancy by choosing a solution that min-

imizes the torque output used to control the plant.

Finally, in Mitrovic et al. [66], the inverse dynamics model

of a two dofs planar arm actuated with three artificial agonist-

antagonist pairs of muscles is learned with lwpr in the whole

planar space. The input is (q,q̇,u) where u is the activation

of muscles and the output is (q̇,q̈). The input dimension is

dim(q,q̇,u) = 10 and the output dimension is dim(q̇,q̈) = 4.

The authors use an optimal feedback control loop based on

the ilqg algorithm [57] to find the muscular activations that

minimize the muscular input while performing some reaching

movements. After a learning period generating 1.2 106 training

points, the model is composed of 852 regions and reaches three

different targets.

3.3. Extended classifier system for function approximation

The xcsf algorithm is a regression method that shares many

similarities with lwpr but comes from Learning Classifier Sys-

tems (lcss), a family of adaptive rule-based systems first pro-

posed by Holland [45] that combines reinforcement learning

mechanisms [102] and genetic algorithms [40].

The immediate ancestor of xcsf is xcs [114], an efficient

accuracy-based lcs designed to solve discrete classification

problems and sequential decision problems. xcs finds accurate

solutions to a wide range of problems with high probability in

polynomial time [15]. xcsf [115, 116] is an evolution of xcs

towards function approximation.

As any lcs, xcsfmanages a population P of rules, called clas-

sifiers. These classifiers contain a condition part and a predic-

tion part. The condition part defines the region of validity of

a local model whereas the prediction part contains the local

model itself. xcsf is a generic framework that can use differ-

ent kinds of prediction models (linear, quadratic, etc.) and can

pave the input space with different families of regions (Gaus-

sian, hyper-rectangular, etc.). In this paper, we only consider

the case of linear prediction models and Gaussian regions. In

this case, the structure of the function approximation built by

xcsf is similar to the one built by lwpr.

Definition of regions. An important specificity of xcsf is that

it distinguishes a prediction input space and a condition space.

The prediction input space, noted X, corresponds to the input

used to compute the linear models with regression. The condi-

tion space, noted Z, is paved with Gaussian classifiers, corre-

sponding to the regions of lwpr. A classifier defines a domain

φi(z) in the following way

φi(z) = e
−1

2
(z − ci)

T Wi(z − ci)
(17)

where ci is the center of the Gaussian i and Wi is a positive dis-

tance metric, inverse of the squared variance of Gaussian i. The

input of the condition space, z ∈ Z, defines the space where the

Gaussian influences the global prediction.
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The match set M is the subset of all reliable classifiers in the

population P for which φi(z) is above a threshold φ0
1.

Local regression mechanism. Each classifier has a correspond-

ing linear model βi which is used to predict a local output vec-

tor yi relative to an input vector x, provided an augmented state

xaug =
[

xT 1
]T

to deal with the presence of an offset β0.

The linear model is updated using the rls algorithm, the in-

cremental version of the ls method. If a classifier i makes an

error δyi = y − ŷi, it is updated with δβi = δyix
T
i
α.

Evolution of regions. A specificity of xcsf is that it uses a ge-

netic algorithm (ga) instead of a gradient-based method to up-

date its population P. As a result, there is no evolution of a

region per se, but the ga rather uses a fitness function to add

new regions similar to the old ones after applying mutation op-

erators and deleting some regions. Here we explain how the

fitness is obtained.

The prediction error of a classifier i approximates the mean

absolute deviation of its prediction using the Widrow-Hoff delta

rule [112]

δǫ i = α
(|δyi| − ǫ i

)

where ǫ i is the mean absolute error of the classifier i at the previ-

ous time step. Then the classifier accuracy is determined by the

scaled inverse of ǫ i. Classifiers with an ǫ i below a threshold ǫ0

are considered trustworthy. Finally, the fitness value is derived

from the classifier accuracy relative to all others in the match

set M (see Butz & Herbort [17], Butz et al. [18] for algorithmic

details).

Adding and deleting regions. In xcsf, a classifier is created

when there is no classifier in the match set corresponding to an

input. This mechanism is called covering, it creates a match-

ing condition which corresponds to that input with a randomly

generated condition space.

But classifiers can also be created by an evolutionary com-

ponent based on a niched steady-state ga [116] improved with

a set-size-relative tournament selection [16]. This favors the re-

combination of efficient classifiers by crossover and mutations.

A ga is run if the time since the last ga invocation exceeds a

threshold θGA to balance non-uniform problem-space sampling.

The reproduction of classifiers is performed within the match

set M, whereas the deletion of inaccurate classifiers is per-

formed over the whole population P. This combination of

mechanisms ensures a good generalization capability [18, 114].

In particular, general classifiers are reproduced more often as

they match the input data more often than the others.

In more detail, the ga selects in the current match set M two

classifiers based on their relative predictive accuracy with re-

spect to the other classifiers. The centers cnew
i

of their offspring

are moved within an interval ‖ci − cnew
i
‖ ≤
√

−2Wi ln φ0 where

φ0 is the threshold used to generate the match set M. The shape

of the ellipsoids, defined by σi which is the square-root of Wi, is

also randomly increased or decreased within a limited interval.

1This threshold is named θm in Butz & Herbort [17]

Deletion takes place in the population when the number of

classifiers in P reaches the maximum nmax
P

. Supernumerary

classifiers are deleted from P with a probability proportional

to an estimate of the size of the match sets that they occur in.

If a classifier is sufficiently experienced and its fitness F is sig-

nificantly lower than the average fitness of classifiers in P, its

deletion probability is further increased [54].

Finally, two additional processes that further optimize the

population, namely subsumption and compaction, are described

in Butz & Herbort [17].

Global model approximation. The global population P parti-

tions the input space into a set of overlapping prediction mod-

els. xcsf generates the global approximation based on the cur-

rent match set M. The learning output ŷ is given for a (x, z) pair

as the weighted sum of the linear models of each classifier i in

M

ŷ (x, z) =
1

Φ (z)

nM
∑

i=1

φi (z) ŷi (x) (18)

where Φ (z) =

nM
∑

i=1

φi (z) and nM is the number of classifiers in

the match set M.

In sum, the evolutionary mechanism is designed to evolve

partitions in which linear approximations are maximally accu-

rate. Indeed, xcsf strives to evolve complete, maximally accu-

rate, and maximally general population of local approximations

[14]. A more complete description of xcsf can be found in Butz

et al. [18] or in Butz & Herbort [17].

Applications to robot model learning. In Butz et al. [13], Butz

& Herbort [17], Stalph et al. [97], the authors use xcsf to learn

the forward kinematics model of a four dofs simulated arm in

order to model motor adaptation in arm reaching experiments.

They invert the model with classical analytical methods in order

to control an end-effector in three dimensions while controlling

the redundancy. They choose three different secondary tasks in

the joint space which consist in minimizing angular velocities,

avoiding joint limits or specifying a global posture.

3.4. Support Vector Regression

In Support Vector Regression (svr), the regression exten-

sion of Support Vector Machines (svms), it is assumed that the

latent function f (x) can be parametrized as f (x) = φ(x)T w,

where φ is a feature vector mapping the input x into some high

dimensional space and w is the corresponding weight vector

[31, 69, 96]. The weight vector w can be represented as a lin-

ear combination of the input vectors in the feature space with

coefficients βi, i.e. w =
∑n f

i=1
βiφ(xi), where n f is the number of

features.

Given this representation, the prediction ŷ of an input x is

ŷ = f̂ (x) =

n f
∑

i=1

βi < φ(xi),φ(x) >,

=

n f
∑

i=1

βik(xi, x) (19)
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where <, > denotes the dot product between two vectors and

k(x, x′) is a kernel function. A standard kernel is the Gaussian

function

k(x, x′) = σ2e
−1

2
(x − x′)T W(x − x′)

, (20)

where W denotes the kernel width.

By comparing (19) with (16) and (18), one can see that the

global structure of the approximation in svms is different from

the one used in lwpr and xcsf. Whereas the former is a linear

combination of kernel functions, the latter is a kernel-weighted

combination of linear models.

The standard way to obtain the parameters βi of the models

in svms if through a quadratic programming optimization pro-

cess based on all training samples [96]. There also exists a ls

formulation called ls-svm [103, 104]. In Fumagalli et al. [37],

the authors are interested in obtaining an accurate estimation of

internal forces in the arm of the humanoid robot James. The

arm of the robot is equipped with a force/torque sensor that es-

timates a total force from which the internal and external forces

have to be determined. This in turn requires the estimation of

a dynamics model, for which the authors compare ls-svm and

a batch neural network approach to the analytical derivation of

the model from cad parameters. The results show that ls-svm

converges faster than the neural network approach, even though

the final performance is similar.

An important parameter for computational complexity is the

number of support vectors, hence algorithms like ν-svr use a

specific meta-parameter to control this number [92]. Given its

availability in the libsvm library [23], this method has been used

as a baseline for performance comparisons in the context of

comparisons for model learning methods [21, 72].

3.4.1. LoSVR

The focus of this survey being incremental and local ap-

proaches, we must mention that an svm approach endowed with

these properties and called losvr is presented in Choi et al.

[24]. losvr is built on a previous incremental svm algorithm

presented in Ma et al. [61]. It is used to learn the inverse dy-

namics model of a simulated 2 dofs arm and then a real robot.

However, the addressed problem is rather small and the authors

are expecting poor generalization capabilities from their sys-

tem, so we do not discuss it further in this paper.

3.4.2. Random Features Regularized Least Squares

An important concern in locally weighted regression meth-

ods is the model complexity, expressed in terms of the number

of regions. A standard way to deal with this concern is called

regularization. It consists in adding a term related to model

complexity in the cost function that is optimized by the approx-

imation method.

For instance, in Regularized Least Squares2 (rgls), the ls

cost function (8) becomes

2Not to be confused with Recursive Least Squares

min
β

λ

2
||β||2 + ||y − Xβ||2, (21)

where λ > 0 is a regularization parameter that balances the

trade-off between complexity and accuracy.

The optimal β can be obtained by setting the gradient of (21)

to 0, which gives

β = (λI + XT X)−1XT y. (22)

Kernel Regularized Least-Squares (krgls)3 is the extension

of rgls to non-linear functions using the same kernel trick as in

svms [80]. Like gpr, the problem of krgls is its cubic cost in

the number of samples.

In Rahimi & Recht [79], the authors propose to approximate

the kernel matrix with a set of random features, giving rise to

Random Features Regularized Least Squares (rfrls), an algo-

rithm that converges to krgls inO
(

1√
D

)

, where D is the number

of features on which the kernel is projected.

Finally, in Gijsberts & Metta [39], the authors present an in-

cremental version of rfrls (named irfrls hereafter) that intro-

duces the incremental estimation method of rls in rfrls. The

complexity of this method is in O
(

D2
)

, thus it is independent of

the number of samples. Furthermore, the accuracy versus time

complexity trade-off can be easily tuned by changing the num-

ber of features D. Experiments on several databases confirm

that krgls is competitive with respect to gpr and that rfrls and

irfrls can be set close to krgls with a small enough processing

time.

3.5. Gaussian Processes Regression

In svr (Section 3.4), one is looking for a unique vector of

weights β such that the approximation

f̂ (x) =

n f
∑

i=1

βiφi(x)

is as close as possible to the latent function f . Bayesian lin-

ear regression methods provide an alternative basis to this prob-

lem. Instead of just looking for a specific vector β, they look

for the posterior distribution over β given all the approximation

samples and some prior. Given the resulting distribution, the

best model can be determined either by averaging over the dis-

tributions of models or by selecting the Maximum A Posteriori

(MAP) element of the distribution. As a result, such methods

provide a more accurate but also more expensive way of finding

an appropriate model.

As clearly explained in Williams [113], Gaussian Processes

Regression (gpr) methods are mathematically equivalent to

Bayesian linear regression. The main assumption in gpr is that

the data presented to the learning process is corrupted by Gaus-

sian noise with zero mean and variance σ2
n.

An important property of Gaussian vectors is the following.

If n ≥ 1 and X = [X1, . . . , Xn, Xn+1] is a Gaussian vector of

3Again, not to be confused with krls
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average µ = 0 and whose variance
∑

can be decomposed in the

following way:

∑

=

[

K k

kT k∗

]

,

where K is a covariance matrix, k is a vector and k∗ is a scalar,

then

E( f̂ (xn+1)|Y1 = y1, . . . ,Yn = yn) = kT K−1y and

Var( f̂ (xn+1)|Y1 = y1, . . . ,Yn = yn) = k∗ − kT K−1 k where

yT = (y1, . . . , yn), E(.) denotes the expectancy and Var(.) de-

notes the variance.

If the latent function f is assumed to be a Gaussian process,

a function C : (x, x′) → E( f̂ (x), f̂ (x′)) must be chosen to esti-

mate the covariance matrix K out of data. Once this function

is chosen and K is estimated, the approximation is obtained by

just generating a Gaussian random variable of average kT K−1y,

and of variance k∗ − kT K−1k (see Williams [113] for details).

The advantage of gpr methods over Bayesian linear regres-

sion is that one does not need to define a set of feature func-

tions over the input space. But, given the necessity to compute

K−1, standard gpr has O(n3) computation and O(n2) storage

cost, where n is the number of samples used for approxima-

tion. Thus, as Williams [113] points out, gpr methods can be

preferred only if n is not too big with respect to the number of

feature functions that would be required to perform Bayesian

linear regression.

3.5.1. Practical approaches to GPR

Given the cubic cost in the number of samples, there are two

practical approaches to gpr. The sparse approach consists in

limiting n by choosing adequately the points to remember and

forgetting the rest. A good overview of this approach can be

found in Quiñonero Candela & Rasmussen [20]. For instance,

it has been used recently in Sparse On-line Gaussian Processes

(sogp), in the context of learning control policies from demon-

strations [41]. The mixture of experts (moe) approach rather

consists in splitting the global domain of the latent function

into smaller regions. In moe methods, the regions are called

experts. Indeed, if one splits the function domain into k re-

gions, the standard gpr complexities are k.O(n3
i
) and k.O(n2

i
)

respectively, where ni is the number of samples that fall in re-

gion i ∈ {1, ..., k}.
This approach is also used to learn a policy from demonstra-

tion in Woods et al. [118], that describes an incremental ver-

sion of Infinite Mixture of Gaussian Process Experts (imgpe)

[65] and compares it to lwpr. From the analysis of the authors

themselves, even if their algorithm benefits from the Bayesian

linear regression properties in contrast with lwpr and provides

more accurate results is some contexts, it is still too slow to

be used in an on-line robotics set-up. To our knowledge, this

system has not been applied to learning mechanical models of

a robot. The system presented below can be seen as a better

compromise following this line of research.

3.5.2. LGP

Local Gaussian Processes (lgp) is a system that combines the

accuracy of gprmethods on one region with the good capability

of lwpr to split the latent function domain into regions [68, 72–

74]. Many mechanisms being identical to those of lwpr, we

only give a brief presentation, insisting on the points where both

systems differ.

In lgp, regions are defined as in lwpr. Furthermore, the

mechanism for adding a new region in lgp is identical to the

one used in lwpr: a region is added if the distance of the cur-

rent point to all activated region is more than a threshold wgen.

By contrast, the mechanisms for the evolution of regions dif-

fer. In lwpr, the parameters W determining the shape of the

regions evolve whereas the centers of all regions are fixed. In

lgp, the parameters W are fixed whereas the centers are moving

each time a region receives a new point, the center being the

barycenter of all the points associated to the region.

The linear approximation provided in each region is based

on a local gpr method. In that context, the covariance function

used is the standard Gaussian kernel function (20).

In order to compute the global model output, instead of using

the models of all regions as done in lwpr, lgp uses only the M

regions whose center is closest to the current point.

In order to prevent the k.O(n3
i
) computation cost to get too

expensive, once a threshold is reached, the algorithm removes

the points that bring the least information. In [69], lgp is aug-

mented with an on-line sparsification algorithm inspired from

what is used in Kernel Recursive Least-Squares (krls) [34].

This additional process addresses the same issue as sogp, i.e.

the incremental selection of samples that are used to train the

local Gaussian processes.

In terms of application to robot model learning, in Nguyen-

Tuong et al. [72], the authors compare the performance of lgp

with lwpr, standard gpr and ν-svr (see Section 3.4). The com-

parison is performed on learning the inverse dynamics in the

task space of a seven dofs Sarcos arm. It shows that lgp is

competitive and provides a good trade-off between lwpr and

gpr.

Finally, in Nguyen-Tuong et al. [74], the authors also show

that using lgp could give rise to better results than just using

the parametric model provided by the robot manufacturer of a

torque controlled manipulator.

3.6. Gaussian Mixture Models

A mixture model is a probabilistic model for representing the

presence of sub-populations within an overall population, with-

out requiring that an observed data-set should identify the sub-

population to which an individual observation belongs. In that

context, the Expectation-Maximization (EM) algorithm [30]

can be used to make statistical inferences about the properties

of the sub-populations given only observations on the global

population.

The EM algorithm is an iterative method for finding maxi-

mum likelihood or MAP estimates of parameters in statistical

models, where the model depends on unobserved latent vari-

ables. EM alternates between performing an expectation (E)

step and a maximization (M) step. The E step computes the ex-

pectation of the log-likelihood evaluated using the current esti-

mate for the latent variables. The M step computes parameters
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maximizing the expected log-likelihood found on the E step.

These estimates are then used to determine the distribution of

the latent variables in the next E step, up to convergence. In

the mixture model context, the latent variable in the EM algo-

rithm is the identity of the sub-population to which a specific

data point should be attributed.

The specific computation of the E step and the M step de-

pends on the underlying model. In Gaussian Mixture Models

(gmms), the population is a predetermined collection of Gaus-

sian regions, thus the function approximation is built as in rbfns

[38].

3.6.1. ILO-GMR

In the context of machine learning methods for robotics,

gmms are used mostly as an alternative to gprmethods for learn-

ing policies by demonstration (see Calinon [19] for a review).

The corresponding methods are called Gaussian Mixture Re-

gression (gmr), they are cubic in the number of samples, like

gpr.

ilo-gmr, presented in Cederborg et al. [21], is one such

method. However, one section of the paper is devoted to the

comparison of ilo-gmr with lwpr, gpr, ν-svr, gmr, and lgp, to

the problem of approximating the inverse velocity kinematics

model of a Sarcos robot arm using the database provided by

the authors of Nguyen-Tuong et al. [72]. The results show that

ilo-gmr performs close to gpr and slightly better than lgp and

standard gmr.

With respect to standard gmr, the main advantage of ilo-gmr

lies in an efficient partitioning of the set of samples into regions

based on an algorithm similar to kd-trees described in Angeli

et al. [2]. This allows one to break the cubic complexity of gmr

and to quickly access the output for a given input.

In all other respects, ilo-gmr is identical to standard gmr, thus

the model is defined as a fixed collection of Gaussian regions

whose weights are trained with an EM algorithm.

3.6.2. Incremental Mixture of Linear Models

All the methods presented so far are approximating mechan-

ical models as a mapping between an input space and an output

space. This mapping is a function that returns a unique out-

put for a given input. It can represent a forward model or an

inverse model depending on which variables are used as input

and which are used as output. Moreover, two functions may

represent the inverse of each other if part of the input and the

output are exchanged in the learning process.

In contrast with this standard approach, the method presented

in Lopes & Damas [60] approximates a manifold in the space

spanned by all input and output variables. This manifold can

represent both a forward and an inverse model at the same time.

It corresponds to a subspace that is compatible with the con-

straints generated by the considered model. Formally, if we call

ν a [xT yT ]T point in the global space, the manifold can be rep-

resented by a constraint H(ν) = 0 that imposes the restriction

that the point ν must comply with the model.

For instance, let us consider the kinematics model. The con-

catenation of any q vector and the corresponding ξ vector of

task space position defines a point in a q × ξ space. All such

points are lying on the manifold that characterizes the kinemat-

ics of the corresponding plant.

In practice, the authors are trying to approximate this mani-

fold using a gmm approach. They try to estimate the probability

of a point ν belonging to the manifold, i.e.,

p(H(ν) = 0|ν1, ν2, · · · , νN).

Definition of regions. More precisely, the manifold verifying

H(ν) = 0 is approximated with a collection of regions that are

defined as Gaussian functions with a center cm and a local co-

variance matrix Cm. The probability of a data point νi belonging

to a region m is noted as p(νi|m).

Evolution of regions. The evolution of the parameters cm and

Cm of these regions is driven by an incremental implementation

of the EM algorithm (see Lopes & Damas [60] for the equations

realizing this incremental implementation).

Adding and deleting regions. The system starts with only one

region and adds new regions when necessary. More precisely

if, for some point ν, p(ν|m) is below a threshold pgen for all

regions, then a new region n is added centered on this point ν

and with a covariance initialized to maximize p(ν|n).

The system also computes an adjacency matrix between all

pairs of regions based on the idea that if, for a point ν, p(ν|m1)

and p(ν|m2) are both above a threshold, then m1 and m2 are very

likely to be adjacent.

Global model approximation. The global probability of a data

point νi belonging to the manifold verifying H(ν) = 0 results

from a combination of the probabilities of all local regions. The

difficulty here is that the system must provide either a forward

or an inverse model depending on the need of the controller.

Thus it is designed to answer to a query: given a specification

of some coordinates of a point, what are (if any) the points lying

on the manifold that match this specification?

For a given query νq, after simple mathematical calculations,

the system can provide for each region m the corresponding

answer ν̂am with a degree of confidence given by p(ν̂|m), where

ν̂ = [νT
q ν̂

T
am]T .

But, in many cases, there will be either several discrete pos-

sible answer values or a continuous region corresponding to an

infinity of such potential answers. Thus, a simple weighted av-

erage over the answers of all reliable regions does not provide

a satisfactory solution.

Instead, the system uses the adjacency relationship described

above to group together the answers of connected component

and it provides one averaged answer and the corresponding de-

gree of confidence for each group. By doing so, a set of answers

may sample a continuous space of solutions.

Applications to robot model learning. To our knowledge, this

system has not been applied so far to a robot. It was just com-

pared with lwpr in simulated experiments. For the sake of easy

reference, we call this system imlm (for Incremental Mixture of

Linear Models) below.
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System LWPR XCSF iRFRLS LGP IMLM ILO-GMR

Based on LWR LCSs SVR GPR + LWR GMMs GMR

Main

feature

Dimensionality

reduction

Prediction

vs. condition

space

distinction

Constant

computa-

tional

complexity

Sparsification
Bidirectional

mapping

Use of

kd-trees for

fast access

Other

assets

Available in

C++ and

matlab with

cookbook. Fast.

Widely used

Available in

Java.

Flexible

Simple. Easy

tuning

Less meta-

parameters

than LWPR

No matrix

inversion

required

Simple

Drawbacks

Hard to tune.

Initialization

stage required

Complex.

Sensitive to

tuning

No

improvement

of features

Slower than

LWPR

Less mature,

not used on

real robots

Fixed

number of

features

Favorite

context of

use

Large systems,

along a

trajectory, with

dynamics

Learning on

whole space

Learning on

whole space

Sparse data,

requiring

accuracy

Redundant

and parallel

systems

Learning on

whole space

Table 1: Summary of the discussion of the systems

4. Discussion

All the systems studied in Section 3 have been applied to

learning the mechanical model of some plant. However, many

other regression algorithms exist that could be applied to this

problem. In particular, the regression methods used to learn

a control policy from demonstration can generally be used as

such to model identification problems. In that category, we

already mentioned sogp and imgpe, for instance. We did not

present this broader class of systems because it is well covered

in Argall et al. [3], Calinon [19].

In this section, we focus on the incremental and local regres-

sion algorithms used for learning a mechanical model of robots

presented in more details above. We do not discuss anymore

the anns approaches that are not local because they do not fall

into the unified view that is presented below. In practice, we fo-

cus on lwpr, xcsf, irfrls, lgp, imlm and ilo-gmr. The purpose

of this section is to compare the systems by first providing a

unifying view before discussing their strengths and weaknesses

from the presentation of their properties. This part of the dis-

cussion is summarized in Table 1. Finally, we investigate from

the unifying view whether their specific features could be com-

bined into a new generation of systems.

4.1. Performance comparisons

Several papers present a performance comparison between

some of the systems reviewed here [21, 39, 72, 74]. These

comparisons are made possible thanks to the availability of a

Sarcos and a Barrett arm database first published in Nguyen-

Tuong et al. [72]. The papers generally compare the accuracy

of the models, measured with a standard nmse calculation and

sometimes the prediction time as a function of the number of

samples.

However, the corresponding results are to be taken with care.

Indeed, most of the algorithms are sensitive to meta-parameter

tuning and there is no standard way to accurately perform this

tuning so that all algorithms are given a fair chance. As a conse-

quence, the same algorithm is attributed different performances

in different papers.

A striking outcome of a survey of these results is that, de-

spite its popularity, lwpr is generally less accurate than most

of its competitors. This paradox can be explained by the fact

that lwpr obtained impressive results when learning along a tra-

jectory for very large plants whereas in the comparisons listed

above it is used for learning over the whole space for smaller

plants. We refer the reader to the list of papers above for other

performance comparisons.

4.2. A unifying view

From the survey of the systems presented in Section 3, a uni-

fying view emerges. We consider four aspects of these systems:

the structure of the model, the way this structure evolves or not,

the local regression method used and finally the meta-parameter

tuning issue.

4.2.1. Structure of the models

If we consider Gaussian regions and linear models for xcsf,

and Gaussian kernels for irfrls, then all the systems listed

above include a Gaussian component and a linear component

in their model. However, two broad classes of different struc-

tures must be distinguished. In lwpr, lgp and xcsf, the model

is made of a Gaussian weighted combination of linear models,

whereas in irfrls, imlm and ilo-gmr, it is made of a linear com-

bination of Gaussian kernels. In that respect, the first class of

systems is endowed with a more flexible structure, as already

pointed out about lwr in Section 3.1.4.

4.2.2. Evolution of the structure

Table 2 summarizes in what respect the structure of the

model can evolve in different systems. The systems are or-

ganized from the less flexible one, irfrls, where regions are

generated randomly once and for all to the most flexible one,

xcsf, where all elements of the structure can evolve.

4.2.3. Regression method

All the algorithms listed above perform local regression

based on the minimization of an ls criterion, but the way to
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System iRFRLS ILO-GMR LGP LWPR IMLM XCSF

Addition

of regions
• • • •

Deletion

of regions
•

Moving

centers
• • • •

Moving

shapes
• • • •

Table 2: Capabilities of the systems to evolve the structure of the model. A •
indicates that the system is endowed with the corresponding capability

perform this minimization differs. As clearly stated in Nguyen-

Tuong & Peters [69], standard svr approaches rely on a batch

quadratic programming optimization process to get the linear

parameters whereas gpr gets them through a matrix inversion

(see Section 3.5). irfrls is an svr algorithm, but the batch op-

timization is replaced by an incremental version known as the

QR algorithm in the field of adaptive filtering [88]. ilo-gmr re-

lies on a standard EM algorithm. Finally, xcsf uses standard rls

whereas lwpr relies on the more sophisticated nipals algorithm.

4.2.4. Tuning meta-parameters

In order to approximate an arbitrarily complex function in a

large space, one must deal with a trade-off between the accuracy

of the approximate model and the number of regions used to

perform this approximation. Dealing with this trade-off is a

matter of meta-parameter tuning. Different algorithms use a

different strategy in that respect.

• In irfrls, the only meta-parameter is the number of Gaus-

sian kernels. This makes it very easy to tune and very fast,

but this approach should meet its limitations when many

kernels are required

• In lwpr and lgp, the indirect parametrization is based on

setting in advance the size of the regions through the wgen

parameter. This is a poor compromise since one must try

a wgen value, monitor the number of regions and the accu-

racy, and try again as long as the number of regions is too

large or the accuracy too low.

• imlm sets a threshold pgen on the accuracy of the local mod-

els. Using this threshold provides guarantees in terms of

accuracy, at the expense of computational complexity if a

segmentation into many regions is necessary to reach the

threshold.

• xcsf rather sets a maximum number of regions to perform

the approximation. Such parametrization provides a good

grip on the computational complexity of the process, at

the expense of accuracy. But xcsf also uses a threshold on

the global accuracy of prediction. Indeed, if the maximum

population size is reached, the algorithm tries to improve

individual classifiers in the population until the accuracy

threshold is reached. However, if both constraints are not

set with care, the process may diverge due to incompatible

evolutionary pressures.

4.3. Key features of systems

The unifying view presented above reveals some of the fea-

tures on which the systems can readily be compared. We can

now highlight the strengths and weaknesses of these systems

and exhibit the features that provide them with a unique advan-

tage over their competitors.

4.3.1. LWPR

There are several reasons for the popularity of lwpr. First,

a good documentation and an efficient and versatile code are

available [46]. Second, lwpr has been convincingly applied to

the identification of diverse models (kinematics, velocity kine-

matics and dynamics, forward and inverse) of large mechanical

systems such as humanoid robots. This success was possible

because lwpr is fast, reasonably accurate and because it per-

forms dimensionality reduction in the prediction space of each

local model. This dimensionality reduction feature is unique to

lwpr among the systems we presented. Apart from its very ap-

pealing features, lwpr also suffers from several important limi-

tations.

First, it comes with many meta-parameters and its perfor-

mance is sensitive to their tuning. To temper this criticism,

Klanke et al. [52] provides a useful “cookbook” to help deter-

mine how the meta-parameters should be tuned.

A second problem with lwpr is initialization. Because the

centers of the region do not move during the learning process,

lwpr is sensitive to the samples received in the first iterations.

Thus, in order to get a good prediction accuracy with lwpr, it

is necessary to start with an initialization stage that must en-

sure a good coverage of the latent function domain. However,

this initialization stage can be difficult to realize in a concrete

robotics set-up if the system is not endowed with the model it

is supposed to learn.

Third, all the impressive results published on plants with

many dofs have been obtained along some specific trajectory

in the state space of the plant which makes the problem easier

but also less relevant. It is easier because learning along a tra-

jectory dramatically reduces the domain that has to be split into

regions. With lwpr, covering a domain requires a number of re-

gions that is roughly exponential in the number of dimensions

of the domain: the dimensionality reduction property provided

by nipals is applied to the local model in each region but does

not result in a significantly lower number of regions. Further-

more, experiments show that the performance of lwpr collapses

as soon as the number of regions gets above a few tens of thou-

sands. The problem is also less relevant because controlling a

plant along an articular trajectory prevents making profit of re-

dundant dofs. To face this difficulty, the learning mechanism

has to be endowed with a good extrapolation capability, which

is generally not the case with the local methods studied in this

paper in general and with lwpr in particular.

4.3.2. XCSF

xcsf shares a lot of similarities with lwpr in the structure of

the learned models. However, it differs in the algorithms used to

update this structure and in the meta-parameters that constrain
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the algorithms. A specific comparison between both systems

has shown that xcsf generally outperforms lwpr in standard

function approximation problems, even if lwpr usually con-

verges faster [98]. Among other things, xcsf can be tuned more

intuitively and its evolutionary component can modify the cen-

ters of the approximation regions. Given that xcsf is available

in Java [119], the main reason for its lesser use in the model

learning community is probably its lesser maturity in the field.

But the unique feature of xcsf is the condition space versus

prediction space distinction. This feature can result in impor-

tant savings in the context of learning mechanical models of a

plant. We illustrate these savings in the context of learning the

forward velocity kinematics model and the inverse dynamics

model.

According to (1), learning a forward velocity kinematics

model with lwpr requires the joint positions and velocities q

and q̇ as input and the task velocity ξ̇ as output. But, taking a

closer look at the equation ξ̇ = J (q) q̇, one can see that it relates

linearly ξ̇ to q̇ for different contexts based on q. Thus one can

use the values of q to define the condition space and the corre-

sponding relation between ξ̇ and q̇ to learn the local models in

the prediction space.

Instead of segmenting a (q, q̇) space into regions to approx-

imate the forward velocity kinematics function, one just needs

to segment a (q) space. As a result, the condition space is twice

smaller with xcsf than with any other local regression method.

The same is true when one considers learning an inverse dy-

namics model. Equation (5) describing the dynamics of a poly-

articulated system can be reformulated

Γ = A (q) q̈ + B (q, q̇) . (23)

This equation can be viewed as a linear relation between q̈

and Γ with dependencies on q and q̇

Γ =
[

A (q) B (q, q̇)
]

[

q̈

1

]

. (24)

In this context, B (q, q̇) can be seen as an offset. Thus, similar to

the velocity kinematic case, one can learn an inverse dynamics

model by providing at each time step a state (q, q̇) as condition

parameters and a (q̈,Γ) pair as input to the prediction space.

This approach is less expensive in terms of dimensionality

than the standard one. Indeed, one needs to span (q, q̇) instead

of (q, q̇, q̈) to learn the model. As a result, the space is 1/3

smaller.

In Section 3.1.4, we noted that the major improvement in

function approximation techniques brought by lwr has con-

sisted in separating a linear model from the radial basis function

that delimits the corresponding region of influence. In xcsf,

the idea is put one step further: since those entities are sepa-

rated, they do not need to be based on the same dimensions,

thus the global input vector can be split into a condition part

and a prediction part. The autonomous determination of which

input should be used in the condition part, in the prediction part

or just ignored is a matter for future research.

4.3.3. IRFRLS

The main feature of irfrls is its constant computational com-

plexity. This property results from the segmentation of the la-

tent function domain into a set of random kernels, which is the

simplest possible mechanism. The number of kernels is the

only meta-parameter that needs to be tuned. On the data sets

presented in Nguyen-Tuong et al. [72] and other data sets ex-

tracted from the James and iCub humanoid robots, irfrls ob-

tains a surprisingly good performance compared to its competi-

tors. However, the random kernel approach obviously results in

a suboptimal structure of the model, which may become critical

when the model has to be very large. This system being very

recent, more work is required to better determine its empirical

properties, but given its simplicity, it is a good starting point for

a new family of systems.

4.3.4. LGP

lgp was designed after lwpr and has been compared favor-

ably to its ancestor in several contexts [72, 74]. One difficulty

with lwpr being meta-parameter tuning, a strong incentive for

calling upon gprmethods is that they generally come with much

less meta-parameters. Moreover, by splitting the domain of ap-

proximation into regions, lgp breaks down the computational

complexity of standard gprmethods. It is still slower than lwpr,

but it also inherits the greater accuracy of gpr. However, some

meta-parameters inherited from lwpr for the segmentation into

regions such as wgen are still difficult to tune.

Because it performs local regression based on a gpr process,

lgp is strongly driven towards the use of sparse data for each re-

gion. Sparsification is the main feature brought into this survey

by lgp.

Along this line of research, one may wonder if using standard

Bayesian linear regression instead of gpr in a mixture of experts

approach would not result in a more efficient approach, the fea-

tures necessary for Bayesian linear regression being provided

by the segmentation into regions.

4.3.5. IMLM

As explained in Section 2.2, the forward velocity kinemat-

ics model of a redundant plant is unique whereas there exists

an infinity of corresponding inverse models. Conversely, for a

parallel plant, the inverse velocity kinematics model is unique

whereas there is an infinity of forward models. A first appealing

property of the approach of Lopes & Damas [60] is that it can

store all such models from data without knowing in advance if

the model is unique nor losing the information corresponding

to the potential infinity of solutions.

A second appealing property is that no matrix inversion is

necessary to retrieve either a forward or an inverse information

from the stored data. Intuitively, in the case of kinematics, one

may provide a vector q or a vector ξ and retrieve the comple-

mentary part by looking for all points in the manifold that share

the specified coordinates.

Nevertheless, retrieving the required information from such

a manifold is not straightforward. The manifold being approxi-

mated by a set of Gaussian regions, the system returns one value
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for each region whose probability of belonging to the manifold

is above a threshold. As a consequence, when there is an infin-

ity of correct answers to a query, the system only returns a set of

discrete answers sampling the domain of correct answers. Fur-

thermore, the accuracy of the sampling is sensitive to the size

of the regions.

Finally, when there are several correct answers, one must

take additional constraints into consideration to choose a spe-

cific answer among the possible ones. Despite a first solution

proposed in Lopes & Damas [60], this point is still an open

problem.

4.3.6. ILO-GMR

ilo-gmr is a straightforward extension of gmr systems de-

signed to perform learning from demonstration. It is a simple

approach, whose main drawback is that the number of kernels

have to be determined in advance. However, an interesting fea-

ture of ilo-gmr is its use of kd-trees to organize the regions and

the corresponding samples so as to quickly access them. An

extension of gpr with kd-trees has also been proposed in Shen

et al. [93].

4.4. Combining Features from Several Systems

In the previous section, the key features of the studied sys-

tems have been highlighted. Now, we discuss whether these

features could be combined in order to build a new generation

of systems.

4.4.1. Dimensionality Reduction

The incremental dimensionality reduction property provided

to lwpr by the nipals algorithm is a key feature of lwpr. It is

particularly adequate for learning models along trajectories in

spaces with many dimensions, some of which being irrelevant

along the given trajectory. xcsf learns the same kind of linear

models as lwpr, using rls instead of nipals. It seems that nipals

could replace rls in xcsfwithout major modifications of the rest

of the algorithm. Whether a similar dimensionality reduction

property could be introduced into gpr or gmm based methods

such as lgp and imlm is a more difficult open issue.

4.4.2. Condition Space versus Prediction Space Distinction

As outlined above, lwpr, lgp and xcsf both build their model

as a Gaussian weighted combination of linear models. As a

consequence, the distinction between prediction space and con-

dition space used in xcsf could certainly be transferred to lwpr

and lgp. In contrast, such a transfer would be much less imme-

diate for all the other systems that use a different structure for

the approximation of the latent function.

4.4.3. Learning the Input-Output Manifold

Learning the input × output manifold is unique to imlm. All

the other methods are designed to approximate a function rather

than a manifold. Anyway, even if replacing the gmm foundation

of that system by other regression methods such as the one used

in xcsf or lgp is probably an option, more work is required on

top of imlm in order to efficiently use its unique feature.

4.4.4. Meta-parameter optimization

From Section 4.2.4, the meta-parameters used in imlm and

xcsf look easier to tune than the one used in lwpr and lgp, with

a slight advantage to xcsf. Whether the approach used in xcsf

can be transposed to the other systems is an open question.

Alternatively, one may think of dealing with the accuracy

versus number of regions trade-off with a multi-objective func-

tion optimization approach. Such an approach would generate a

population of non-dominated solutions among which a very ac-

curate solution, a very sparse one or any compromise between

both extrema could be chosen by the user.

4.4.5. Sparsification and fast access to samples

It seems that the sparsification algorithm proposed in lgp is

not specific of this algorithm in any way. Thus, it could prob-

ably be included in most of the other systems, giving rise to

immediate computational savings.

Similarly, the fast access to samples brought by the use of

kd-trees in ilo-gmr could certainly be imported in most if not

all of the systems listed in this survey.

A new system that incorporates these properties as well as

some of those that we listed in the previous sections remain

to be built, giving rise to a new generation of more efficient

systems.

5. Towards more advanced systems

Most of the experimental work presented so far consists in

learning mechanical models of a robot without any interactions

with its environment. In this context, the resulting benefit is

limited. Indeed, the mechanical structure of a robot is generally

almost perfectly known through the cad model, thus a good en-

gineering work and an eventual additional parametric identifi-

cation process can suffice to get an accurate model.

Obviously, the methods presented in this paper are becom-

ing more advantageous when they address the robotics contexts

outlined in the introduction. Future robots will interact physi-

cally with unknown objects and will even do so with unknown

tools given the fast development of dexterous manipulation ca-

pabilities [10, 42, 49]. Even more convincingly, they will in-

teract with human users that are highly unpredictable. In all

these cases, a model provided in advance cannot generally ac-

count for unspecified interactions. In this section, we first stress

the challenges raised by these more difficult contexts of use,

then we survey some new lines of research that start addressing

them.

5.1. New Challenges

To face the challenges of interactions with the environment,

the next generation of systems will have to address problems

with many more dimensions, they will have to adapt faster, and

they will have to memorize several models corresponding to

different contexts of use, together with the capability to switch

between these models appropriately.
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5.1.1. Challenge 1: Plants with more dimensions

Among the algorithms surveyed here, lwpr is the only one

that has been used on a plant as complex as a humanoid. But

only one arm of the robot was moving and, above all, learning

was performed along a specific trajectory. Learning kinemat-

ics and dynamics model of a more than 10 dofs robot over the

whole space is still beyond the capabilities of all state-of-the-

art methods. However, for a humanoid engaged in a complex

everyday-life mission, having such a complete model is neces-

sary. A key property for addressing these larger problems with-

out facing hard computational complexity challenges is gener-

alization. Future systems should definitely be able to extrap-

olate the models they are learning beyond the domain where

they were trained, which is generally not the case of the local

learning methods surveyed in this paper.

5.1.2. Challenge 2: Faster adaptation

A barely addressed issue in all the papers surveyed here is

speed of adaptation. Indeed, when a robot interacts with differ-

ent objects or users, one would like the model to adapt to a new

context of interaction fast enough to deal immediately with this

new context. For instance, if a robot is pouring water from a

container, the weight is changing quickly. Or, if a robot is in

physical interaction with an user, the force exerted by the user

may vary at any moment.

It is hard to accurately present the state-of-the-art on that

topic in the absence of any systematic study, but the methods

presented in this survey are not equivalent in that respect and

are probably slower than what is required for the kind of non-

stationary interactions just described above.

5.1.3. Challenge 3: Switching between contexts

If a robot has to physically interact with several users or ob-

jects, eventually with some tools, the systems described in this

paper must be enriched with two capabilities: the capability to

learn different models corresponding to the different contexts

of interaction and the capability to switch between these mod-

els appropriately. Otherwise, the system would spend a lot of

time re-learning the same models back and forth. An additional

requirement is that the system is able to recognize which model

it should be using in a given context or to determine that a new

model is necessary.

5.2. New Lines of Research

Corresponding to the above challenges, two of the lines of

research below consist in incremental improvements of the ex-

isting systems whereas the third line consists in an extension

of the addressed domain. However, each of the two first lines

contributes to all challenges simultaneously.

5.2.1. Line 1: Combining knowledge and regression

A way to increase the speed of adaptation and to deal with

larger plants is to rely more on expert knowledge about the

plant. Indeed, the model learning approach does not benefit

from prior knowledge of the rbd model of the plant, though

this knowledge is generally available. Recently, the authors

of Nguyen-Tuong & Peters [70] combined the strengths of

rbd identification and machine learning methods, using gpr for

learning the difference between the parametric mapping and the

observed behavior.

Their method provides a higher model accuracy and better

generalization for unknown trajectories compared to rbd iden-

tification and gpr-based methods. Furthermore, it shows a good

learning performance even on sparse and noisy data.

Though their results are promising, it is still unclear how

prior knowledge helps learning a robot dynamics, notably de-

pending on the control law used to actuate the robot. Further-

more, their semi-parametric regression approach does not alle-

viate the methodological difficulty of performing identification,

which, in most cases, is not straightforward.

A different approach to the same problem is presented in

Sun de la Cruz et al. [28], where the authors incorporate prior

knowledge of the rbd model of the plant in lwpr by initializing

all linear models with a first order approximation of the known

rbd. The application to a simple simulated system convincingly

improves the learning and generalization performance.

Other methods based on visual processing such as Her-

sch et al. [43], Mansard et al. [62], Martinez-Cantin et al.

[64], Sturm et al. [99] incorporate prior knowledge of the struc-

ture of the body of the robot. These methods are surveyed in

Hoffmann et al. [44]. The promising line of research corre-

sponding to all these works should be pursued whatever the

model learning method used.

With a very different perspective, the system presented in Ul-

brich et al. [105] learns the forward kinematics model of me-

chanical systems using Bezier curves. Their method is based

on the insight that the forward kinematics model of a mechani-

cal system with rotational joints mainly calls upon trigonomet-

ric functions. It spans efficiently the parametric space of such

functions in order to get an accurate model from sparse data.

Though this method does not rely on a parametric model of

the robot in the classical sense, it is based on a strong assump-

tion about the structure of the model. On the one hand, this

assumption makes the parameter tuning more efficient. On the

other hand, it makes the method less general. In particular,

it can only be efficient when learning the forward kinematics

model of a plant whose dofs all result from rotational joints.

The extension to prismatic joints and to dynamics must call

upon additional assumptions.

5.2.2. Line 2: Active learning

Different ways to span the input/output space can result in a

large difference in the time necessary to learn an accurate model

over the whole space. Thus it can increase both the speed of

adaptation and the size of the problems that can be addressed.

In Machine Learning, choosing appropriately the set of learn-

ing examples so as to increase the learning speed is called active

learning. Active learning of a mechanical model is a difficult

topic because it generates a “chicken and egg” problem. Indeed,

in order to choose the samples that feed the learning process, it

is necessary to know how to drive the plant towards the cor-

responding states. But to do so, having an accurate model is

generally required. A way to escape this difficulty consists in
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calling upon model-free control methods such as articular PID

controllers to drive the system towards areas of interest. So far,

there are few attempts to design specific active learning meth-

ods for learning mechanical models of robots, exceptions being

Baranes & Oudeyer [5, 6], Martinez-Cantin et al. [64], Robbel

[82], Saegusa et al. [85]. Given the growing interest in active

learning in general, important progress can be expected in this

domain in the near future.

5.2.3. Line 3: Switching models and sharing between models

In Petkos et al. [76], Petkos & Vijayakumar [77], the authors

address the problem of switching between models raised in Sec-

tion 5.1.3. They rely on lwpr combined with an EM algorithm

to learn elementary models and use a latent variable to account

for the different unknown contexts of interaction. So far, their

work is just a proof of concept. It should be extended with per-

ception processes to help the system recognizing the different

contexts based on richer information than just the articular state

of the robot. Along a different line of research, given the infin-

ity of inverse velocity kinematics models of a redundant plant,

a different model can be used to achieve each different task in

a different way. Thus, addressing a complex mission composed

of several tasks can also be seen as a problem of learning several

models that must be memorized in parallel. Some authors are

using this approach and learn mechanical models in the context

of multiple tasks based on gpr. More interestingly, since the

inverse dynamics model is unique but may be involved in the

realization of diverse tasks at the kinematic level, one can see

the problem of learning this inverse dynamics model through

a first task and using it for other tasks as a transfer learning

problem [22, 120]. On top of those ideas, a next challenge will

consist in generalizing what is learned in interaction with one

object to interaction with a class of similar objects.

6. Conclusion

The on-line modeling of robotics system with regression

methods is a very active field. In this paper, we surveyed in par-

ticular local and incremental algorithms currently used to solve

this problem, providing a unifying view and comparing their

features. Among other things, we have shown that, despite its

popularity and efficiency for some problems such as learning

along a trajectory in a large domain, lwpr suffers from several

important drawbacks that justify the important effort dedicated

to looking for a better algorithm.

Furthermore, we have shown that several systems come

with interesting additional features, such as the condition

space/prediction space distinction in xcsf or the capability to

learn both the forward and inverse model into a unique mani-

fold in imlm. We highlighted that there is still room for large

performance improvements in this domain just by combining

some the features of these algorithms. Further ideas such as the

multi-objective optimization of the trade-off between the accu-

racy and the number of regions might also give rise to new lines

of research. Finally, we are convinced that the application of

such combinations of algorithms should help addressing in the

near future the “new frontier” of model learning, such as the

physical interaction with unknown objects, tools and users.
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