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a) Grasp adaptation to external perturbation

Abstract—In the context of object interaction and manipula- ___ .
tion, one characteristic of a robust grasp is its ability tocomply M[
with external perturbationsapplied to the grasped objectwhile still fo|-in ")
maintaining the grasp In this work we introduce an approach
for grasp adaptation which learns a statistical model to adapt
hand posture solely based on the perceived contact between the
object and fingers. Using a multi-step learning procedure, the
model dataset is built by first demonstrating an initial hand
posture, which is then physicallycorrectedby a human teacher
pressing on the fingertips, exploiting compliance in the robot
hand. The learner then replaysthe resulting sequence of hand
postures, to generate a dataset of posture-contact pairs thare
not influenced by the touch of the teacher. A key feature of
this work is that the learned model may be further refined by C
repeating the correction-replay steps. Alternatively, the mode
may be reusedin the development of new models, characterized
by the contact signatures of a different object. Our approach is
empirically validated on the iCub robot. We demonstrate grasp
adaptation in response to changes in contact, and show succegsf
model reuse and improved adaptation with additional rounds of
model refinement.
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I. INTRODUCTION

Object interaction and manipulation is a challenging topic
within robotics research. When a detailed model of the object
shape and surface properties is known, one can reason abyti. a)Grasp adaptationWhen an external perturbation is applied on the
grasp optimality. However, the prior knowledge requiremenbject currently grasped by the robot, the robot dynamicatigipts its grasp

. . ) - : ; iotrib it AR comply with the perturbation. bpverview of our approach for learning
IS extensive ObleCt properties like the mass dlsmbuu&&asp adaptation skillsAn adaptive model for maintaining a grasp in response

or surface texture can be difficult to obtain, for examplg changing contacts is built and updated @elpottom) by having a teacher
requiring force sensors or accurate tactile sensing - amd hdemonstrate a grasp and then refine the range of possiblesdeaispiaptation
these properties change as the object is manipulated car Y% C07C2CC PECPACE 00 KO, T B e e
difficult to predict. When detailed information about the@tij by the touch of the teacher. Furthermore, the development @wamodel
shape and surface properties is not known, compromises [ikat is responsive to a new object is also possible througretredse.
grasp sub-optimality and a strong reliance on accuraténnent
sensing must be made. Object manipulation becomes even
more challenging within the context of dynamic interaction
when the grasp on the object is not static.

In this work, the target behavior grasp adaptationthat is,
the ability to be intentionally responsive to external 8o
as to comply smoothly with external perturbations, all whil

works do not consider the additional goal of being intention
ally compliantand to follow perturbations [1], [2], [3], [4].
Smooth compliance in response to object perturbations when
grasping necessitates a tight coordination between akffing
T . . . else the grasped object might fall from the hand. Moreover,
ma!ntammg contact with the object (Fig. 1a). The use q(:daor this coordination is typically ensured by a good knowledfie o
or impedance feedback controllers offer robust solutians #he hand kinematics and of the object shape [5], [6], [7], T8]
the goal of maintaining contact with an object, however, MOZ,ckle this issue, rather than handcraft the coordinatidtems
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of degrees of freedom in the fingers and the sensory signkitisrature that supports and motivates this work. Sectibn |

at play. Showing by example can simplify the specification dhen formally introduces our approach to iteratively learn

coordinated postures between all of the fingers. If the ekesnpan adaptation model, along with the details of the control

are shown kinesthetically, by physically touching the robanethod for grasp adaptation. Hardware specifications amd th

to move its fingers, demonstration also allows the teacherdmperimental setup are detailed in Section IV, and resuits o

provide the robot with an intuitive notion of force. the iCub humanoid in Section V. Section VI concludes with
Our work takes the approach of learning a statistical modglsummary and discussion of contributions, and directions f

able to predict a desired hand posture and fingertip presstutire work.

from the current signature of the contact perceived at the

robot’s fingertips. The approach depends on tactile seraing 1. RELATED WORK

the fingertips and human demonsration to provide an.examplel.his section provides an overview of related literature
set of feasible grasgsThe approach does not require aMYyithin the topics of dexterous manipulation, tactile segsi

kinematic nor dynamic model of the hand nor object, unlikfe\e - ; ; : :
. . . chnologies, reactive grasping and demonstration llegrni
model-based manipulation approaches. Such requiremgats o 9 grasping

detailed model and consequently, precise sensing caiedili ) _
in practice can be an issue for many robotic platforms. bdste A- Dexterous Manipulation
the use of a probabilistic model allows for the encapsutabib In dexterous manipulation, one important task is to de-
the intrinsic non-linear mapping between the noisy tactdta termine the required actuator forces/torques to maintain a
and joint information, obtained directly from example gras grasp to an object [16], [6], [17]. When maintaining grasp
The dataset of examples is built both from human demooentact while modifying the current posture, grasp stabili
stration, and from self-demonstration by the robot after cds an important issue [15]. Indeed, if pose transitions are n
rection by a human teacher. In particular, our model derivesanaged carefully, undesirable behavior can appear, feeg. t
from a multi-step learning procedure, that iterativelyl@isiia object can fall from the hand. This control problem is hard,
training dataset from a combination of teachemonstration especially given that a robotic hand is usually composed of
teachercorrection and learnemeplay (Fig. 1b). Corrections a high number of degrees of freedom, and that precise tactile
are accomplished by having the teacher directly act on tkensing is difficult to obtain, and also inherently sensitig
fingers of the robot. In contrast to other demonstration meamotion and sensor signal discontinuities [18].
anisms like vision systems or data gloves, we suggest thain order to cope with these issues, model-based approaches
directly acting on the fingers allows the human to detect theere developed, which are based on known kinematic and
forces applied to the grasped object, and thus to achievalymamic properties of the hand and object [6], [19]. Howgever
better demonstration of the applied forces. The dataset athese approaches require a quasi-perfect knowledge ofethe g
is built iteratively, as the teacher interactively corrects themetric relationships within the dexterous manipulatojeot
robot's executions and thus refines the learned behavior.spstem. A high quality model of the hand is thus necessary
key distinction in our work when compared to other iterativeo achieve very precise manipulator control and sensind, an
demonstration learning approaches [9], [10], [11], [12B][is such a model is not available for many robot hands [18], [1].
the focus on perturbations, that possibly take the exetdéio Moreover, because of the high complexity of the problem,
from what has been shown in the demonstration set. Our nowebtion and manipulation are usually preplanned, duringcivhi
formulation for avoiding over-generalization also ensutteat the quality of the grasp or intended manipulation is also
the robot’s response is always valid with respect to the @kam optimized through various techniques and criteria [178][1
dataset. Our corrections furthermore aim not only to improy20]. Therefore, the application of these methods is reduce
upon a demonstrated behavior, but also to explicity show general to constrained and controlled environments, and
additional flexibility and adaptation beyond an executedepo rarely adapts online in realtime. Another drawback is thiahs
Our approach is empirically validated on th&Eub approaches typically require high specialization withpess
robot [14], building contact models for multiple objects oto specific hand-object combinations, and thus strugglé wit
different shapes and sizes. The effectiveness of the iiteratthe challenge of generalization to novel objects. With eesp
learning procedure is confirmed, by measuring an increagethis issue, our incremental learning procedure suggests
across models in the joint ranges encompassed by a givense an existing model to bootstrap the development of a new
model, as well as in the smoothness of the adaptation amddel for a similar object. We will show that this procedure
the fingers’ ability to maintain contact with the object whemwan efficiently reduce the time required to develop new nmdel
faced with perturbations. Although we overlook the anabfti ~ Furthermore, recent work has shown the necessity of having
force-closure constraint [15] during model training, wewh access to a rich set of sensory information in order to perfor
that the grasps learned using our approach do in fact s#iisfy manipulation tasks of increasing complexity [21], [22]],[5
constraint of force-closure. The benefit of self-replaydieing [23]. Through the use of such advanced sensing devices,
teacher correction furthermore is demonstrated. touch-based exploratory methods have developed thatvdisco
The following section provides an overview of the relatednd learn object properties and manipulation strategi®} [1
1we assume the training dataset consists of only valid grasies, that the [24], [25]. In our work, t.aCtlle feedback and Contr(.)l Slmua.
grasped object doesn't slip or fall from the hand, as enshyethe teacher’s are learned from experience that the robot acquires byf itsel
supervision. through manipulation. However, we also take advantageeof th



teacher's expertise within a programming by demonstratiamteractive trial and error is used to grasp arbitrary olgj§28],
framework in order to constrain the exploration to areas ahd grasp quality is improved by learning better grasp point

the sensory space that contain valid grasp only. locations [2] or responding to pose estimates from a learned
probabilistic model [30].
B. Reactive Grasping and Contact Maintenance Another promising research direction for helping to reduce

L . . .. the complexity of dexterous manipulation is demonstration
.A common motivation for reactive grasping strategies is to_ learning approaches [34], [2], [35], [36], [37], [38]
circumvent the need for a dgtalled object mOdel' By mea of these methods share the intuitive advantage of being
of low-level r_eflexes [26] or h|gh-|ev_e| behawor_al rules],[q rglatively simple for a human user to transfer task knowéedg
grasp to_anllmproperly modeled object can still be ach|eveto. a robot. Within this line of supervised manipulation, the
Along this line, more complex methods incorporate Sensofy, o+ is directly taught by a human user how to achieve a
data to improve the current representation of the envirattime

The limitation here therefore is the requirement of preciscgaSp [37], [38] through a variety of human-robot intertace

sensing, which is not available for many robot platformsSUCh as complex computer vision systems [36], [37] or data

. . . ag‘loves [39]. These data capture methods however do not allow
Data gathered through reactive grasping strategies is tse a human to perceive the forces that the robot actuall lie
estimate the position and orientation of a novel object,[RY] P y &p

systematically gather information about the object sh&8}, [ o the grasped object

) . . ) Human demonstrations are not used for grasp pose descrip-
[29] and to infer areas where the fingertip might safely t%‘ieon only. For example, in the context 019 graps;[)) pIanning,p

moved to gather more sensor dat:_:\ [30].' Other.approaChe‘?’o%?nonstration data has been treated as statistical piors t
further f’md ggther shape information with the intent to d)u'lreduce the computational cost for searching for optimal-sol
an explicit objec.t model [.31].' . . tions [35]. Another example is to use the variability betwee
.Angther prgcﬂqal application for reactlvg grasping strat emonstrations to teach a robot in what way, and by how
gies 1s to maintain contact after a grasp IS estgbllghed. T lzfxch, to react and adapt to environmental perturbationf [37
CO”“U“_E‘O‘ (_jevelopment of sensor technologies with iningas Learning procedures lend themselves naturally to itera-
sophistication [21], [22], [5], [23] promoted the use of ptiee ive dataset building and behavior refinement. For example,
control schem_es such as force and impedance control [.]JE’]’ human teacher might supervise the learning process, by
and later h_y brid methp ds [5]. These appr.oaches are higrar odifying targets learned from demonstration [9] or resalv
cally cpmbmed with high-level and predefmgd behavioralda mbiguities in goal representations [10]. Datasets ama-ite
that triggers the controllers when appropriate. For examp iyely built by providing new demonstrations in areas of low

early work proposed idea of using reflexes to refine a lic e . - "
2 . y prediction confidence [40], [41], by providing exti
maintain the grasp [26]. Security reflexes are employed rrections on policy predictions to generate new data, [40]

recover a I.OSS of contact [32], and fuzzy Iogip rules speci ] and by physically touching a robot during execution to
a change in contact normal based on perceived forces [ ovide kinesthetic corrections [11], [42], [13].

Contact recovery behaviors are triggered by tracking teaipo As discussed in the introduction, a key distinction between

tactile data to detect slip [5], [34]. A grasping force is bipg our work an other policy refinement approaches is the focus on

to counteract the perturbing force that results from obieg .y hations, which possible take the learner far fromtwha

manipulation b_y .the robot [8], and force fengqck cont.rol Was demonstrated, and the intention to show flexibility and
used for stabilizing the grasps during explicit finger reépos

et . . : . adaptation beyond what was demonstrated. Furthermore, our
tioning for obje_ct rotation and translation behaviors EBI_her executions do not depend on time (unlike [11], [42], [13B, a
approaches pair uppgr-level controllers that_target_ gasps goal is not to execute a trajectory but rather to respond
with lower-level reactive controllers that avoid collis®[30], . iine to changes in contact with an object

[2]. '

As mentioned in the introduction, our work is distinguished I1l. APPROACH ANDMETHODOLOGIES
from existing reactive grasping approaches by its aim t0 be\ya now overview the details of our approach for iterative

compliant to external perturbations; furthermore, thisn€o g o< adaptation learning. In this work, we consider the cas
pliance is learned rather than being hand-coded. The l8arjg, o e he jocation of the contacts between each finger and the
stausucgl model determines how to coordinate the motibn 8bject remains fixed throughout adaptation (Fig. 1a). Fist

all the fingers when responding to external forces. Our gragg| gescribe the variables at play in our approach, as well
adaptation paradigm however does employ hierarchicat@ont, g ha architecture of our system (Sec. IlI-A). We will then

techniques similar to those used in reactive grasping,ghouyeqcribe our algorithm for iteratively building the adajua
with a novel formulation for smoothly switching from h'ghermodel by generating a training dataset over multiple steps
priority position control to force control. The switch ocsuf

under teacher supervision (Sec. IlI-B). Further, we prewid

the current pose is sufficiently close - according to a metrig pica| description of the statistical model (Sec. l)lahd
learned by the probabilistic model - to the target pose. i |;se during behavior execution (Sec. I11-D).

C. Robot Learning A. System Architecture

Information gathered through reactive grasping procexlure The state of our system is described by three main vari-
also is used within learning contexts. Data gathered througbles. Thecontact signaturep € R™¢ corresponds to the
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Fig. 3. Schematic overview of our system and approach. Theptomel
Fig. 2. a) TheiCub hand and corresponding joint angles of thdigits used corresponds to the initialemonstrationwhere the robot’s hand is controlled
in our empirical validations. Each black fingertip of the hamahsists of a by the human teacher through teleoperation; the middle panehddel
tactile sensor array) By pressing on the fingertips, the teacher demonstratesfinementor reusethough corrective feedback while the robot is executing
to the robot the range of candidate hand poses for adapfitin surfaces). its current model; the bottom panel self-demonstratiomf the sequence of
c) In this work, the contact signature¢ of each finger corresponds to thecorrected poses in order to obtain a training dataset thadticorrupted by
contact normald) A perturbation applied on the object results in a changghe touch of the teacher. From these data, a new model is tautéch may
in contact signature. With this information, our learnedcte® controller is further be refined or reused.
able to adapt the grasp in order to maintain the contact wihotbject.

3-dimensional contact normal direction at each of tNg Algorithm 1
fingertips when in contact with an object, composed into aGiven a modek?; 1
single vector Ny = 3 - Nf)._2 The hand posef e RNe 1 Tactile Correction
denotes the joint configuration of a robotic hand having for ¢ ¢ {1.7}
Ny degrees of freedom (DoF). Finally, tlentact pressure Model ©;_; predicts(8", &) given currente?.
s € RN: corresponds to the pressure values measured on Controller executes targéd’, st)
each fingertip. An illustration of these variables is shown in enzeaCher adjust pose, resulting in a measurert@fys*).
Figure 2. ) Result: Sequence; = {(Gt, st)}Ti of pose-pressure pairs.
In our approach, we assume that these three variables are =1
sufficient to determine the grasp of an object. As illustlate 2. Self-Demonstration
in Figure 1b, we iteratively gather datasets of such grasp COnOIer executes target sequente
variables from teacher demonstration, and subsequertly, Res?gbizq“e”cei ={(6".5".9)},_, of pose-pressure-contact
teacher correction. We then learn an estimate of the joint '
distribution of these three variables as a probabilisticdelo 3. Model Learning o
Q. During behavior execution, the model is used to generate a YSe 92t&; to train a new prediction modé?;.
mapping ¢ +— (é,é) that predicts a target hand pose and
desired contact pressure given the current signature of the
contact between each fingertip and the obfeds shown in
Figure 3(middle), which provides a schematic overview af ou 1) Demonstration: In the absence of an existing model,
system, these predictions are then fed as control signalsato initial target hand pose is demonstrated by the teacher
a feedback controller that generates torque commands to (Riy. 1b). A small dataset of pose-pressure-contact tuples

finger motors. & = «{(45"5,s’f,q15t)}tT:1 are recorded (see Fig. 3(top)). From
these data, an initial task mode}, is learned (Sec. 11I-C). As
B. Iterative Building of the Dataset model development is done along several iterations, we will

We now provide the details of iteratively building theindex each variable accordingly. For instance, a modehksar
prediction model, by generating a dataset over multiplpssteafter thei™ iteration will be denoted by;.

through teacher supervision. This method is summarized |n2) Tactile Correction:In our approach, a model of the task

Algorithm 1. : : : : Gh s :
9 can be refined multiple times. During th&" iteration, the
2Taken more generally, the contact signature could refer tariety of te€acher provides corrective feedback while the robot exscu
metrics (e.g. tangential force vector, contact area), deipgron the task and the task using the previously learned prediction mddgl; .

robot platform. : Given the current contact signatuge the model sends control
In our implementation, we sum the pressure measurements of easbrs

located on the same fingertip to a single value per finger, ani.se- N. signals (6,s) to the hand CPer"em (Fig- 3(midd|e))-
4We adopt the notatiort for a target value of prediction variable Concurrently, the teacher provides corrective feedbacty



on the robot's fingers.Figure 2b provides an illustration of [43], which allows us to predict a desired finger postérand
tactile correction under our implementation, where theliea contact sensor reading given the current contact signature
gently pulls or presses on the robot fingers to repositiomthep. The ability of GMM/GMR to generalize and extrapolate
within their compliance limits. As during tactile corremti, well over missing and unseen data has been shown to be
the teacher changes the hand posture and accordingly @lsoetfficient in many experimental settings [44], [45]. In unsee
contact signature, the model predicts new targef8, §) for ~contexts, other non-linear regression methods such asséaus
the controller. The result is a sequenge = {(eﬂst)}f:l Process Regression converge to a default mean value. With
of T pose-pressure pairs. Contact signai¢iris not recorded, respect to our task, if this value is badly tuned, it can lead t
since it is considered to be unreliable on account of theamnt unstable grasps, and therefore to task failure. The prosiabi
with the teacher’s hand in addition to the objéct. encoding of GMM/GMR also has the advantage of being able
The teacher provides corrections to (i) encourage betterdetermine whether a point in the input space is likely unde
contact with the object and (ii) shift the pose as much &Re learned model. This ability to determine the likelihood
possible within the compliance constraints of the handJavhiof a query point is a crucial property, as outside the regions
still maintaining contact. Whether the corrections areridtal covered by the training data inference can be unreliable, an
to refine the current model or develop a new model depenéiénce possibly poor. As will be described in Section I1I-B& w
on whether the hand is interacting with a novel object. If, yetake advantage of this property to ensure the validity of our
then a new model is being developed from teeseof the model prediction.
current model. Note that for reuse to be feasible (i) the hove In a GMM, the joint probability distribution of all variabdée
object must be of a size that is within the compliance limfts ¢s encoded as a sum & Gaussian components,
the robot manipulator when maintaining a posture apprtgria
for grasping the original object, and (ii) the set of adntiksi
hand pose for the novel object should partly overlap that of p(8,s5,6|Q) = Zpk (8,5, & | py, ) 1)
the original object. k=1

3) Self-DemonstrationThis phase generates the data Whic{ﬂ/herepk is the prior of thek™ multidimensional Gaussian

will be actually used to train the new prediction model. Aﬁomponent angly, 3y are respectively its mean and covari-
shown in Figure 3(bottom), the sequenggof pose-pressure gnce such that

pairs from the tactile correction phase are sequentiatlya®

targets to the feedback controller. During this phase, thés Ko . Yook Tesk Zogk
role of the teacher to verify that the execution of this cohtr n, = T 3, = Sor T
sequence produces a set of valid grasp, i.e., ensuringhbat t '
object doesn’t fall from the hand. If not, the correction pha
is restarted. As a result, a sequergge= {(Bt,s‘f,¢t)};p:1 of In order to train the model parameters from the data, the
T pose-pressure-contact tuples is obtained. Note that mow,BExpectation-Maximizationalgorithm is used [46]. In our
the absence of any touch from the teacher, all of the vasabkxperiments, our dataset contains betwa®i0 and 2000
relating to object contacts(¢) are considered to beeliable datapoints, and the value of is set using theBayesian

K

ss,k Es¢,k
Kok E¢9,k Ed)s,k Edbd),k

and thus are recorded. Information Criterion (BIC). Figure 4 shows an example
probability density function estimated by a GMM on a self-
C. Model Learning demonstration dataset.

The final phase of the algorithm is to learn a statistical 2) Modeling the Uncertainty of the Query Inputshe

model(2; from the recorded datg,. Without loss of generality, model(2 is Ieatlrnﬁdtfrolm a dataset_tchqnte;wlng OI?%M po:;lr' i
we omit the index: in the rest of this section to lighten thePressure-contact iLpies seen within “Ine sel-demonairal
notation. dataset. As this dgtaset was recorded in the absence oi.actua
1) Statistical Model:We model the self-demonstration datfx_ternal perturbqtlons, Fhe demonst[rated grasps belprigin
as aGaussian Mixture Mode{GMM) [43], and hence get a this set have all fmger; in contact with the object. !n the;prg
probabilistic encoding of the joint distribution of the iables, ence of such pgrturbaﬂons, however,_ one ormore flqgerstmlgh
i.e., p(0,s,¢|Q). This choice of probabilistic encoding ha§Ose contact with the object, prod_ucmg a contact 5|gna4zure
the advantages of capturing the non-linear correlatioaset that is random (‘?'“e to sensor n.0|s.e.) and thus unreliable.
in the demonstration and sensor data, as well as of encapsulaVVe therefore introduce a reliability measurg for each
ing the inherent noise present the sensory signals. Fortire; 1N9ertip j = {1:'3'Nf}' For the currently perceived contact
Gaussian Mixture Regressiq@®MR) provides a closed-form Signatureg; € R” of each finger, its reliability measure;

solution to compute the conditiona(6, s | ¢, ) of a GMM 01 is @ value that depends on the current pressure reagling
of the corresponding senor. We consider that the stronger th

5We assume a robot manipulator that allows a human teacher to mmate s contact sensor reading, the more reliable the contacttsigna
pose adjustments, either because of some inherent compleagcmechanical gnd so
slack in the fingers, or the existence of explicit reactive iomst

SArguably contact pressurs, and not just contact signatuig, is also 0 5 < gmin
polluted by the tactile correction technique. However, eiogily better min max min min_ max
performance was seen by using the controller with ingétss) during the @ = (85 — ™) /(s™® —sM)  sMN <55 <5 ©))

self-demonstration phase rather than just replaying theese® of pose$. 1 85 = smax



1) Projection to the Input SpaceDuring the execution of
the adaptation behavior, we first check whether the current
query point¢ is likely enough with respect to the mo8elf
it is not, we use a projectiop™ of the query pointgp from
which the model predicts the desired joint configuration and
fingertip pressures. This projection is chosen such #fats
the closest point fromp with a sufficient likelihood under
the model. This operation is required for two major reasons.
First, the prediction of a GMM in response to an input with
low likelihood is a point that is likely to be far from the main
distribution and hence, under our model, unlikely to be &dval
grasp. Importantly, as generating an invalid grasp can tieve
consequence of leading to adaptation instability, we have t
ensure that all generated grasps are valid under the maslel, i
belongs to the set of grasps shown by the teacher. Second,
the regression aims not only to allow the robot to adapt to
changing contact signature, but also to prevent the roloot fr
Fig. 4. lllustration of a GMM encoding within a subset of theinj _be_zhavmg too far from what has bee_n shown. For Fhese reasons,
angle dimensions (the three degrees of the thumb). Arrowscdmslithe it iS necessary for the model to forbid the generation of rest
corresponding location of example hand postures A-E (shawtop). and contact patterns that are too different from the exasnple

in the training dataset.
where s™" and s™ are threshold values on whether the In order to o!etermin_e .if query po_ini) is likely under _the
. . . . 7 model, we define a similarity functiof(¢, «) that assigns
contact signature is considered to be reliable or’not.

To incorporate this information, we derive a new joinEo eabch E.Omt(ﬁl of tE? hm_put. spage, with reliabilityer, a
probability distribution from the original learned mode| that membership value which 1S given by

thumb distal 0, [deg]

additionally depends on the reliability of the input signal: K .
K flg,a) = ZN (¢;N¢,ka2¢¢,k(a)) )
p(0,5,0| ) = > pep(6,s, bluy, Si(a) (4) _ =
k=1 where N is derived from a normal distribution whose output

wheré a = (a1,a1,a1,...,an,,an,,an,)” and the new has been normalized betweérandl, i.e.
covariance matrices are given by

. o N(z;p,E) = exp (—;(ZE — )iz - /,L))
< {Eij,k + diag(—log(a)), fi=j=2¢

Sijr(e) = Sk otherwise In comparison to the marginal likelihoad ¢, ), this mem-
’ bership function has the advantage of considering each-Gaus
sian component to have the same importance, irrespectifely
The distribution thus now additionally considers a joirdtdi the proportion of datapoints that have been used to traih eac
bution from unreliable contact signatures to learned \v@labp componentd? This effect is the result of (i) the absence of the
configurations, the importance of which will become morgriors in Eq. 5, and (ii) the normalization ¢¢. With respect
apparent when describing the regression procedure indBectio the second reason, a poiptthat is located within a given
lI-D. Note that « is an additional prior orp(¢) given the distance (in the Mahalanobis sense) of a Gaussian willvecei
current (potentially unreliable) sensor reading. It coenpénts the same value, irrespective of the size of its covariance.
the variability learned by the model, which originally cose  We then search fop*, the closest point to the current query
only the space of contact pressure readings seen during sgtfint ¢, that has a membership valyéo*, «) higher than
demonstration, all of which were the result of valid grasps.a given threshold).*L. In our previous work [42], we used a
closed-form solution to this problem, since for a given poin

wherei, j € {¢,0,s}

D. Grasp Execution
. s . %In practice, we did not consider the likelihood in its steense. As will be
Once a model is learned, it is used to pl’edICt the eXpec@-ﬁ%cribed in the next paragraphs, we rather consider a memjbdusction

joint configurationf and the expected pattern of pressure valugat is derived from the likelihood. It has the main advantaeancelling the
5 at each fingertip, given the current contact signatire effect of the variable proportion of data-points used tintesach component

. . the GMM.
These two variables will then be used to generate the grasp Because of the nature of our data collection paradigm, ieman

commanding the feedback controller, which will be desaib&jemonstration, several feasible grasp may be shown more tiendthers.
in Section I11-D3. Learning from such a non-uniform dataset induces a biasthegpriorspy,
) of each component of the mixture, which may compromise the setecti
"The value of these parameters is strongly sensor dependf¥hshould be grasps that were shown less frequently by the teacher.
set to a value slightly above the residual noise producedeysensor when  11Tg fix the thresholdrn in our experiments, we consider that a point
there is no contact, ang"® to a value corresponding to a decent pressurg belongs to the model if its Mahalanobis distance to any commone
being applied to the fingertip sensor. of the GMM is below3 = 2 standard deviations, which corresponds to
8Eacha; appears in triplicate to account for tBedimensions ofp; € R3. 1 = exp(—1/282).



where 81, (¢*, a) is the posterior probability of thé'" com-
ponent responsible for the query inpgit with reliability c.

Here, we can observe the effect of the reliability measure
a on the regression. For unreliable contact pressure resding
i.e. Xypr(a) — oo, the conditional will simply ignore the
contribution of¢*, and thus output the mean hand posture and
contact sensor reading of the model. In contrast, for ridiab
pressure readings, i.&,4 () — X,4, the conditional
| becomes equivalent to GMR on the original GMM. The same
sy principle applies if one or more fingers are no longer in
—6.4 ‘ —6.2 ‘ 6 ‘ 62 ‘ contact.
Fig. 5. Two-dimensional illustration of gradient ascent be thembership 3) Finger Actuation: To  control finger actuation a.nd
function for several input query point with the can object. Light dots @chieve the targets produced by the model, we define a
correspond to initial query inputey, dark dots to valid query inputgp*, feedback controller that takes as input the error betweageta
contours to parts of the space with constant membership yalgecr = 1), and current grasp configuration. Since in practice it isroftet
and the thick contour to threshold valge Shown for two dimensionsy( z) . . L . .
of the contact signature for the index fingefs]. possible to satisfy both position and force constraintsusim

taneously, we design our controller to blend the minimaati
of both error signals in a continuous manner.

in the input space, only a single Gaussian component wasThe general idea behind our controller is to give priority to
considered at a time. In our current formulation, a singl@po position control, so that force control is progressiveliivated
in the input space lies within a mixture of Gaussians, arab the current posture gets in the vicinity of the targetyrest
so there exists no closed-form solution. We therefore adofi get an estimate of how near the robot is to the desired
an iterative method. Given threshold if f(¢,) < n we posture, we compute a positional error measuee|[0..1] that
perform gradient ascent on the membership function, dfitil is weighted by the inverse of the covariance of the condition

0.1

is found. The gradient of this function is given by along the dimensions of the hand pose,
0 S 3 A= 6—6)" S0 (66 8
B (p,0) = ZN(¢;H¢,I¢72¢¢J@(CX)) = exp _5( —0)" Xgg (60 -0) (8)
k=1

. 4 In detail, position control is handled by a Proportional-
(2¢¢,k(a)) (¢ —ngr) (6) Integral-Derivative (PID) controller minimizing the erran
and an illustration of the result of this procedure is showhnd posee, = 6 — 6, and force control is handled by

in Figure 5. Note that forf(¢, ) > 7, gradient ascent is @ Proportional-Derivative (PD) controller using the targe
unnecessary and hengé = ¢. contact sensor valug and its errore;, = 5 — s . Blending

2) Model Prediction via Regressiordnce a valid contact Petween the two controllers is accomplished via fadtosuch

signature inputg* is obtained, the next step is to estimatdhat

the desired posturé gnd pressures for the fmgers. Thus, u (97073’ S) —(1- ) (Hg ey + KD g+ 1) /69 dt)
we compute the conditional of our joint probability model by

means of Gaussian Mixture Regression [43], which gives + MM (kS 3 + kP es + KD &)

3\ (Spp S ©)
X 0 Yp9 gs
p(0,5]2¢%0) ~ N ((é > ’ <ﬁ]sg Ses )) ") wheree, ande; are the time derivative of the error in position
and contact sensor reading, respectively. The first ternhef t
equation handles the position PID control, and the secand te
0 s X Lo i the force PD control. Thus when far from the target posture
(g ) = Z EACAR)) K us’k ) + (A — 0) position control is employed, and when near the target
h=1 7 posture § — 1) force control takes over.

with expectation

b = -1 ; N N i
<Eo¢,k ) (Bggr(@) " (o —M¢,k)] The matrix M € RY x R™ maps _the signal o_f the
s,k force controller to the motors of each joint responsible for
and expected variance minimizing the contact sensor reading error of each finger.
A . X Each elemenil/;; of this matrix is given by:
2‘99 o) = B2 (", ) 2"97’“ st ) - 1 if thej*h contact sensor is mounted on the
s0 ss k=1 56,k 88,k M;; = same finger than th&" motor
T .
ook (2 (a))_l ook - 0 otherwise |
DY) ok DY) Finally, k, k5, Kk}, S, k%, kD are the gains of our con-
troller.1?
* -
. p(kh)N (¢ 1B k> Efbdhk'(a)) 12In our implementation these gains are tuned by hatffi£ 60, kg =
B (¢ ,a) - 7, ng =2, k¢ =30, x¥ = 25, k¢ = 5).Note that these gains operate on

% - ~
Zi:1 p(z) N (d)*; e i Ed)q&,k(a)) values of current, which are then mapped to torque commandkdanbtors.



on a fingertip, we define a directian € R? corresponding to
the unit vector normal to the finger surface at the sensor loca
tion. From this, we compute the global directional resp&hse
r; of each fingertipj as the sum of these normals weighted
by the response of each sensor, i:p= >, p; ; r;. To obtain

r* the three-dimensional contact directigr), we normalize the
global response, i.eg; = 75 /75|

@)
%0 09
0000
000

b)

B. Demonstration Interface

Demonstration is performed via teleoperation by a human
Fig. 6. Fingertip sensor technology (a). Each sensor of angfingertip teacher, who simultaneously controls théDoF of the iCub
(b) is associated with a unit vectoar;, normal to the finger surface at the h5nd Teleoperation is accomplished through a joint reéngrd
sensor location (c), whose magnitude is scaled by the seespomse (colored ' . .
surface) (d) when estimating contact normdl (). system and a mapping that allows the human to directly cbntro
the motion of the robot hand by moving her own hand, during
which the robot records from its own sensét3he data glove
IV. IMPLEMENTATION DETAILS (Fig. 1, top) worn by the teacher contaiih$ torsion sensors
that detect the angle of the joints in the human hand. We then

The implementation details of our empirical valldatlonmap the human joint angles to the joint angles of the robot

are provided here, with regards to robot and demonstratiRn o S
X : and, thus accomplishing remote control. A key limitatidn o
hardware, as well as to task domain and evaluation. . ot i .
this teleoperation interface is the absence of haptic faedb
for the human, making the demonstration of a satisfactoel le
A. Robot Platform and Tactile Sensors of contact - this is neither too strong nor too weak - difficult

Our approach is validated on a human-child siz8eDoF !0 estimate.
robot, theiCub [14]. The hand of the iCub (Fig. 2) has
controllable DoF. Each finger, as well as the thumb, considts Validation Task
of 3 phalanges. A single motor controls tRgoints between  Task models are built for multiple objects, beginning with
the 3 phalanges with a single cable, and an additional motarsingle demonstration and following withrounds of refine-
controls the joint between the digit and hand, for a total ehent via repeated correction-replay-learning steps. \ier re
2 controllable DoF per digit. Control of the ring and pinkyto these models as tHeemonstration-Refinement-Refinement
fingers is coupled. Finally, an additional motor controle th(DRR) models. Specifically, task models are built for the
opposition of the thumb. The tendon system of the robot harsliowing 4 objects (Fig. 7): a small cylindrical cars.fcm
allows for a small amount of compliance in the first joint, andiameter,14.6cm height), a large cylindrical caré.6cm di-
a larger amount in the second joint (towards the fingertip) @meter,11.7cm height), a box.0cm x6.0cm x3.0cm) and
each digit. a straightedge rulerl(4cm x31.6cm). Each model is learned
A fingertip sensor arrayl¢t.5mm x14mm) is mounted at 3 times.
the end of each finger and thumb (Fig. 6a). The array consistReused models also are built for multiple objects, begignin
of 12 capacitive pressure sensing nodes and the electroniigh an existing model and following this with round of
processing for the A/D conversion [47]. The fingertip isefinement when interacting with the new object. We refer to
made of compliant and deformable silicone patches whoggse models as theUse-Refinement (URhodels. Reused
capacitance varies when pressure is applied at the surfagedels are built for and from the following objects: for the
Consequently, with this array it is possible to measureaxint small can from the big can (different size, similar shape), f
direction and magnitude at different locations on the fitiger the box from the small can (similar size, different shapa) an
In the experimental work presented in this paper, the thurfor the big can from the box (different size, different shape
index finger and middle finger are utilized, but not the twgach task model developed from model reuse again is learned
coupled digits® The pose of the hand therefore consists of times.
the joint angles for each of thg controllable degrees of During correction, the can objects are perturbed by pulling
freedom in the3 digits utilized, plus the joint that controlsa can side to side, in sweeps that run parallel to the length
thumb opposition, and s@ € R”. We define the sensorof the robot palm, as well as pitching the can forwards and
readings € R® as a vector containing a single real value fobackwards (Fig. 7, left). The box is perturbed in a similar
each fingertipj € {1..3}, taken as the summed response ovésishion. The ruler is held vertically and perturbed by ditgh
all sensor nodep;;,i € {1..12} on the given fingertip, i.e. it to the either side (Fig. 7, right).
s; =y, pji. We further define the contact signatupec R?
as a vector containing an estimate of the contact normal O#FO" our experiments, considering the existence of a singienaoal

. . . . . . pressure zone for each fingertip is a fair assumption.
each flngertlp. As illustrated in Figure 6 (C’e)' for eachssen 15Note that the mechanism used to provide tactile correctidmg gently

pulling or pressing on the fingers - is only able to move the fisgeithin
13The choice of not using the two last digits is motivated by nthigiht  their compliance limits for a given posture. Transitioning acsufficiently
coupling. A single motor controls the motion of both fingersdathis different posture, like the transition from an open to pacibsed hand, must
underactuation makes them difficult to use for fine manipufatasks. be achieved through another mechanism, for example teleaperat

€)



Correction Correction

Fig. 7. Tactile correction for learning grasp adaptatiohe Teacher indicates adaptability within the compliancestraints of a hand postur€grrection).
The learner then replays the sequence of corrected pB&saductioh The final learned model is able to adapt the pose in respendéférent contact
signatures Rerturbatior). Objects: small can (left panels), ruler (right, top), Erean and box (right, bottom).

D. Task Evaluation can handle. The teacher also pushes the object within the

We assess the performance of our approach by evaluatffgOt fingers’” compliance limits, past the postures predict
the evolution of the quality of the models across each legrni®y the mOdfl' 'Z?“f!”%”{'f exaluatlon, we gather a sequence of
phase. During the development of DRR models, we compaamples{(¢’,0',s',6 ,s")};L, at a rate of20ms for a total

the execution quality along the following model progressio duration of aboutl5 seconds. From all of the samples, we
only retain those that are considered to belong to the model,

Qo — Q= Q= Q=D according to the same criteria used to estimate nearness to
a target posture when blending position and force control
(Eq. 8). The following metrics are then used to evaluate rhode
performance for each testing set:

where )y is the model derived from the initial demonstration
Q, follows immediately correction of the initial modg&l, be-
fore self-demonstrationQ; was thus learned usingnreliable
sensory data gathered directly during the correction pfase , Range of Motion The difference between the minimum

is the result of one full correction cycl@, follows correction and maximum joint angle values for each finger:
of the model2; beforeself-demonstration, an@ is the final

model obtained after the second full correction cycle.

In order to demonstrate the efficiency of the model reuse
paradigm, we compare the quality of three models. First, we
consider the immediate reuse of the mo¢t, learned on
object A after2 rounds of correction when applied on a novel
object B. Then werefine this reused model by performing a group).
complete correction cycle using objeBt producing a model . Time in Force-Closure The percentage of time where
that we denote a@f"*. We then test it on objecB. Finally, the three fingers are in contact with the object and the
we compare the latter's performance with the modél that resulting grasp attains force closure [15]:
\év;secgrgylously learned from scratch via demonstration with % Zil((sz > 0)and (FC(¢',6%) > 0))

To evaluate each model, the controller and model are run
while having the teacher physically perturb the object to
explore the full range of possible hand poses that the modek Contact Error. The difference between the target (model-

max;—1.. N 91 — Inini=1__N 01

In order to reduce the number of variables to analyze,
we combine the range values intagroups. We consider
the sum of both joint angles for each of tBdingers 8
groups), and separately, the thumb opposition angle (

The force-closure functio’C(¢,0) € {0,1} is com-
puted using the method described in [48].
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Can object Box object A. Model Refinement

eig (0
2/ 5@ W To look specifically at the effect of refinement, comparisons
will be made between model],, ©; and Q,, on each of
% the four objects. Furthermore, the necessity of self-sejda
highlighted, with the comparison of modef®, vs. ©;, and
P % (Vs Q.
cig(0) 1) Larger Joint Angle Rangestactile corrections were able
to provide to the models a broader range of postures that
enabled grasp adaptation. Figure 9 reportsréimge of motion
averaged across all objects for each phase of our teaching
e e ®) process, while detailed results for each object are given in
o w e w W w w0 w W Table I. A significant trend of increased range of motion was
g0 0\ seen across objects, for all joints (p-valpe< 0.001, two-
way ANOVA'®) as well as within objectsp( < 0.05, two-
way Student t-test’) Moreover, this trend continued with an
additional round of refinement, as the models of all objects,
cig/0) E cig,(0) except those of the ruler, displayed their largest ranges af
B oo e the second round of correction-replay-learning. Thisedéhce
Fig. 8.  After several rounds of refinement, there is an in@easthe in behavior across objects was marked by the significance
range of motion that a model has learned and hence, can use dsp grof the interaction term of the ANOVA, i.e., the object type
adaptation. Example data is given for two different olgjeash(mn's). The \was an important factor in explaining the statistical resul
axes correspond to the projection of the joint spéce R* on the first two . .
principal components. Contours correspond to parts of taeeswith constant Nevertheless, removing the ruler from the testing dataset
marginal likelihood valugr(8]$2), given a learned task modél. canceled this interaction. The reason is that the range @éifin
postures with which the ruler object can be grasped is small,
and thus can be demonstrated in a single refinement cycle.
predicted) and actual (controller-executed) contacteglu Figure 8 shows two examples that illustrate the growth of
averaged across all timesteps of the perturbation: the region of the joint-space that has been learned aftér eac
1 N i oad round of correction.
~ 2= |18 = &l 2) More Stable ContactFigure 9 also reports the time in
force-closure averaged across all objects. This time fsigni
« ShakinessThe difference between the raw and smoothegintly increased with one round of refinemef¥, (vs. Q)
joint velocities, averaged across the testing period: ~ for half of the objects, as well as across objegts<(0.001).
1 ZN, (|97;| B ‘5,-‘) This measure howeyer appeare_d to stabll_lze after one round
N ci=l . of refinement, and did not really improve with a second round
where the smoothed velocit§* is computed via win- (0, vs.(,). However, given that the range of motion displayed
dowed averaging ovet’ € x (window size =0.4s). by the models drastically increased throughout each round

. . o of correction, the important result is that the time in force
The Time in Force-Closuraneasure provides an indication of P

- . . . . closure did not decrease. Paired with the observation kieat t
grasp Sta.b'“ty and adaptation quality, where hlgher mmt’rs variance slightly reduced, these data suggest that, asith oés
lower variances suggest con'stant contact with the objedt ar%finement, the grasps produced by the adaptation mechanism
thus, efficient grasp adaptation. Ti@ontact Error measure

lates o h Il th del id ate ad t.are more stable. Such a conclusion is further supportedéy th
relates to how well the model provides appropriate adaptali,, ., error data (Fig. 9), which significantly reducedhwit

inputs for the controller, where low error corresponds te tr}efinement across all objectp (< 0.001). The model thus

gontroller regularly bglng able to attain the predmtedugal more consistently made predictions that were appropriate f
(i.e. smooth adaptation commands). TRange of Motion

ints to th . f the | q H]T_'controller.
measure points 1o the responsiveness of the learned mo e’owever, the transitions between hand poses were not
with a high value indicating adaptation over a large range ff

: . . ound to become significantly smoother with refinement, as
hand postures. ThBhakinessneasure highlights instances of _ . . . .
indicated by the shakiness measure in the average over®bjec

(Iéig. 9). Nevertheless, this trend we expect is also rel&ted
the explored range of hand poses, which increased at each

Model: Q
@

eig,(0) 20
20

Model: Q;

eig,(0) 20
20

Model: Q,

where||x||, denotes the L1-norm of.

jerky or sudden movements, via high values that indicate
sharp change in joint angle velocity.

16A two-way ANOVA using factorsFy : object type={small can, big can,
V. RESULTS box, ruler} and F»: training phase{Q;, Q;} was performed on selected
! pairsi andj of training phases. Our testing data sample consisssrepeated
measures for each category.
This section presents the findings of our empirical evalua-'The Student t-test was performed by comparing the resultsingbta
. . . between the selected training phases for each object $elyarBhe small
tions. Task models for multiple objects were successfulijto number of samples3(repeated measures per object and training phase)
refined and reused with our approach. motivates our choice of considering a higher p-value for ificance.
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Range of motion for the following joints:

Deg] | Thumb opposition Deg]| Thumb finger [Deg] Index finger [Deg] Middle finger
120 60—+ 60—+ 60—
80 40 40 40
p-values:
40 20+ 20+ 20+ ** p<0.001
* p<0.01
0 - - - 0- - ~ 0- - - 0- - -
Qy Q Q Q O Qy Q Q Q Qy Q Q Q O Qy Q Q Q O
l*_*l L1 %*l L1 L L1 = o Improvement by
3/4 1/4 1/4 1/4 1/4 0/4 1/4 1/4 e i
L 1L ] L 1L ] L 1L ] L 1L ]
s sk sk sk $ex o sk sk Improvement by
4/4 3/4 4/4 3/4 4/4 3/4 4/4 3/4 refinement
Time in force-closure Contact error Joint shakiness .
[Degs] Model learned from:

100% Q) |Initial demonstration

[Sensor unit]
(.(I
14

0.1 Q; 15t round of refinement, w/o self-demonstration
80% 104 Q, | 1% round of refinement, with self-demonstration
0.05+ (N)Z 2" round of refinement, w/o self-demonstration
60% 7 Q, 2" round of refinement, with self-demonstration
w4 4 4 4 i | 0 | i
Q Q Q Q O Qy O O O O Qy Q 9 O O
1 1  I—  I— | I—  I— Improvement by
* * *k *k g
1/4 3/4 4/4 4/4 0/4 0/4 self-demonstration
L Il | L IL 1 L L 1 Improvement by
kk * F
2/4 0/4 2/4 1/4 1/4 0/4 refinement

Fig. 9. Evaluation of policyefinement Range of motion, time in force-closure, contact error andistess measures are given for each model produced
during the development of thBemonstration-Refinement-Refinem@RR) models. (Average values across 3 repetitions of theraxents for all objects.)
Below each plot, stars indicate significant improvements betwtraining phases. Ratios reports the number of objectsti@n separately, exhibited an
significant improvement across each phgse<(0.05).

correction cycle. Again, the important result is here theg t acquired previously. To illustrate this argument, Figure 1
shakiness measure did not increase. shows the model encoding for the contact signature data of
3) The Utility of Self-Demonstratiorfor all object models, two different objects. As can be seen, the areas covered by
an increase in performance according to almost all measueagh model include a lot of overlap, and thus the reuse of the
was observed following self-demonstration compared to tlke@owledge encapsulated in the first model will likely borpt
model derived following tactile correction (Fig. 9, vs.Q, the learning of the second one.
Q3 vs. €25). Although these performance increases were not1) Effective Transfer of Joint Angle Domain Knowledge:
generally significant for the joint ranges, the time in forcethe range of motion averaged across each UR model is
closure and the contact error measures showed a significgfdvided in Figure 10, and detailed values are given in
increase. This confirms our hypothesis that the additionpiple |1. Here we note that the range values achieved fotigwi
contact of the teacher's hands does in fact add noise to the dgeyse are similar to those seen after demonstration plus one
and that a more accurate contact signature is gained throygfing of refinement(s vs. QF). When reusing the model

learner replay of the corrected hand postures. 04, given that no effort has yet been invested into model
learning, and that by contrast, the DRR mof¥¢l has already
B. Model Reuse undergone demonstration plus one round of refinement, these

To look at the effect of reuse, comparisons will be mad@ata highlight the utility of model reuse as an effective neea
between the model® learned for an objectl and reused for transferring domain knowledge and reducing the effort
on a novel objectB, the subsequently refined models’#, involved in model development.
and the DDR model§2? learned for objectB, for multiple After refining modelsQ4', the range of motion further
combinations of objectsl and B. expanded slightly §¢2' vs. Q{?A). In addition, the positive

The main motivation for model reuse comes from the fadifference in range of motion observed between the UR models
that two models, learned for two similar objects, may have@"* and the DRR model€? was highly significant for the
lot in common. Therefore, rather than re-learning the gragipumb opposition joint < 0.001), but less for the other joints
adaptation task from the beginning for each novel objedtyithin and across tested objects). This result can prisnari
model reuse takes advantage of the information that has b&enexplained by the importance of this joint for producing a
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Range of motion for the following joints:

[Deg] | Thumb opposition [Deg] Thumb finger [Deg] Index finger [Deg] Middle finger
120 60 60+ 60+
80 40 40 40
7 7 7 p-values:
40—+ 20 20 20 k% P<0-001
*p<0.01
Q) o of Q o of Q) o of Q) o of
ITI E— E— E— Improvement
2/3 13 13 0/3 by refining a reused policy
ITI 1 I_*I | I— Policy reuse paradigm vs.
3/3 1/3 2/3 1/3 policy refinement only
Time in force-closure Contact error e Joint shakiness
100%| g e Model learned from:
E 157 o1l Q5 | 2" round of refinement on object A

(immediate reuse on object B)

80%- 104 QP* | refinement of the reused model Q5 on object B

54 0057 Q}? 1% round of refinement on object B
60%
wl A A A 0 o

o o of Qo of Qo of
%’ e IT] Improvement
1/3 0/3 1/3 by refining a reused policy
L1 L1 | | . .
Policy reuse paradigm vs.
0/3 0/3 1/3 policy refinement only

Fig. 10. Evaluation ofpolicy reuse Range of motion, time in force-closure, contact error andisiess measures are given for each model considered
for evaluating the policy reuse paradigm. (Average valugesac3 repetitions of the experiments for all objects.) Bet@agh plot, stars indicate significant
improvements between training phases. Ratios reports the erunfilobjects that, taken separately, exhibited an sigmificaprovement across each phases
(p < 0.05).

. . . . Small bject B bject
larger variety of valid grasps within our experimental getu |4, e by, oo

All together, these data support our hypothesis that model
reuse is an effective means of transferring domain knovdedg ,,

2) Contact and Smoothness of Adaptatiofhe desirable
high values for the time in force-closure (Fig. 10) did difam
following immediate reuse. This can easily be explained by,
the dissimilarity of the contact signature between the dif-
ferent objects, producing less appropriate predictiomadigy
Nevertheless, performance then significantly improvedssr ool — o 2% 0l 0 LB
all objects following a round of refinemenf2§ vs. Q’f"‘,

p < 0.001), with final values approaching those of the DRFig. 11. Two-dimensional contact signature for the small daft)(and
models across all ObjeCthA VS. Q{B) box (right) objects. Shown for two dimensions, {;) of the contact signature

. . . for the thumb . Contours correspond to parts of the space with constant
The trend of effective domain knowledge transfer with reusgembership fﬁ,lgtion valug(, o :pl)_ P P

was further underlined by the shakiness measure (Fig. 10),

which displayed similar values for the initial UR models and

DRR models following demonstration plus refinemenf'(vs. Section I11-C2), we compared the performance of augmented
QF). Importantly, this measure improved with refinement oand non-augmented models, by using the models learned for
average for all models%' vs. Q). The immediate reuse of each object after two rounds of refinement. As the exper-
a model for another object having a different contact sigreat imental conditions of the previously described experiraent
produced less reliable contact information, and thus worg&l not produce a large proportion of missing contacts, the
control of the fingers. However, refining the model on theffect of augmenting the models did not result in a significan

0.4

03

correct object overcame this effect. improvement. In order to justify this part of our approaclke, w
. o present here the results of another experiment, where \ve art
C. Grasp Execution: Reliability Measure ficially corrupted the signal coming from a selected fingerti

To look at the effect of augmenting the model by incorfo mimic the fact that, in the absence of contact, the touch
porating a prior on the reliability of the sensor signal (sesensors produce a default noisy response, we set the respons
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. . . . . Thumb Index finger Middle finger
pj. Of the corrupted fingey to follow a normal distribution . iy g

O Q (g
N (finoise Tnoise)s Where pingise @and ongise cOrrespond to the @ m @

mean and standard deviation measured on the response of the "™« Woo| [od@o oo
real sensors of the iCub. 000 000 000
- ) G

For each type of m_odel (augmented qnd non augmented), @ OOOOO @

we performed3 repetitions of an adaptation trial where the Compiionofonesensor (B85 ol |00 00| |0
same finger was corrupted. These trials were run for each 000 Q00 Q00

possible finger, for a total df trials per model type. We then
performed a three-way ANOVA on our experimental data in
order to separate the effects of object type, model type and rime in force-closure Joint shakiness
which finger was corrupted. Our main results are summarized .

"06“1 2" round of refinement,
2 |model without reliability measure
augmented 74 oy g of refinement,
Q,
augmented model
p-values:
normal d
Q Q

Model learned from:

time in force closure as the model was augmented with signal
reliability measuresy( < 0.001). This can be explained by the

[Deg/s

in Figure 12. 015
We observed a significant increase of performance for the, i

0.1

random contact signature that is generated by the corruptéi ‘

T sl el % p<0.001

normal  augmented mal  augmented

. . . . . - . Q Qz *p<001
fingertip. If it is not canceled out by assigning it a low R (I T —
reliability, the information it conveys participates etiyao o s

the selection of the grasp to which to adapt. Because of ﬂﬁ}}, 12. Evaluation of the effect of augmenting the models waitsignal

noise, the target grasp may vary importantly, and therefq{f-!ﬁabilify measure (top) lllustration of the effect of corrupting the response
result in a less stable adaptation. Then, whereas the affecbf a selected fingertip: in this example, the middle fingeottom) Time

the object type was not significant, the effect of the coedpt ilforce'dos“re and shakiness measures are given for epehdymodel
. . verage values across 3 repetitions of the experiments [fasbgects and
finger was also important. The reason for that comes from tf?@ corruption of each finger separately). Below each platissindicate a
arrangement of the considered grasps: the thumb on one sideficant difference between the performance of augmentedus non-
and the two other fingers on the other side. As such, loosifggmented models.
the signal on the thumb results in a greater loss of sensory
information compared to the case where only the information ] . N . .
provided by index or the middle fingertip was corrupted. Eneresses on the fingertips, thus exploiting partial compgain
results were corroborated by the shakiness measure. Ajthothe robot hand. Through this programming by demonstration
this measure was in general higher than in conditions whdRgthodology, we were able to teach a robot to perform the
sensors were not artificially corrupted (see Fig. 9), augeten task by providing it not only with an implicit knowledge
models compensated better for a loss in contack (0.01). pf thg necessary kinematics for adaptatmq, but also with an
We also observed a higher variability in the response of nofiuitive notion of force. Our results confirmed successful
augmented models. Consequently, undesired finger movemdH#@SP adaptation in response to changes in contact forpieulti
were more likely to appear, hence yielding a higher shakine§bjects.
Fina”y, no Signiﬁcant Change in the range of motion was Our approach furthermore allows for the modification of
observed as an effect of augmenting the model. This waslearned model, within two contexts. The first is rifine
expected since the range of joint angles value spanned in efite model to improve adaptation performance, by repeating
condition was the same. the correction-replay steps. The second isetasea model in

In summary, despite the fact that the sensory feedbacktBe development of new model, characterized by the contact
a finger was corrupted, the augmented models still managd@natures of a different object. In both cases the teacher
to make robust predictions that kept the grasp in forceuttos Provides tactile corrections as the learner executes with a
throughout the adaptation task. existing model of the task, thus exploiting the fact that
corrections are easier to provide when the learner is ajread
doing part of the job of actuation on its own, and building
upon domain knowledge already present within the robot

We have introduced a probabilistic approach for grasp adagystem. Both successful model reuse and improved adaptatio
tation, which learns a model to adapt hand posture solelgdbagvith additional rounds of model refinement have been shown.
on the sensor signature of the contact. A statistical modeiportantly, this iterative approach allowed us to progiesly
able to predict a target hand posture and contact magnitutiEgjuce the complexity of teaching the robot to perform a task
given the current contact normal direction, is learned famthat uses a large number of degrees of freedom.
dataset built over multiple steps under human supervidion. The probabilistic task model that we learn is formulated
particular, an initial hand posture is firdemonstratedo the to take advantage of the statistical data encoding in skvera
learner, then physicallyorrectedby a human teacher, andimportant contexts. The first is to avoid over-generalati
finally the resulting sequence of posturesréplayedby the within the input space, by handling unreliable contact atgre
learner as a form of self-demonstration. signals that might result from a missing contact between the

We contribute an empirical validation of our approach oabject and one or more fingers, for example. The second
the iCub robot. To provide tactile corrections, the teachds to follow a perturbation only when the hand is in a

VI. DIscussION ANDCONCLUSION
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posture that is near to what was seen within the demongirates well as arm posture adaptation would allow for incredging
dataset, and to otherwise counteract the perturbationvior facomplex responses to dynamic interactions with objects. Fo
of maintaining posture stability. In short, the demonsgtrat instance, our approach also assumes that the position bf eac
data thus is used not only to determine the reaction of tfiager on the object should remain roughly fixed throughout
robot to environmental changes, but also to determine whadaptation. Extending our work to incorporate finger reposi
grasps are infeasible or input signals are poor, by exptpititioning techniques used for explicit object manipulatioouad
a probabilistic representation which captures the inhererertainly enhance the general applicability of our method.
variability in the data. A third advantage is to avoid the At a more technical level, a more advanced model of finger
need of a detailed model of the hand kinematics and objexttuation could be incorporated, for example that takesecab
geometry, by implicitly encapsulating this informatiortana  friction into consideration. We expect that an improvediaet
model built from sensory data only. In contrast to modeleldastion model would have a significant impact on the success of
methods that require precise force sensing, actuation antha learned behavior, as the performance of a graspingmsyste
detailed environment model, which can be an impediment addpends heavily on the actuation controller. Similarlputh
impractical on many robotic platforms, our learning appfoa the use of an impedance controller would require knowledge
was capable of extracting the non-linearities inherentuths of the dynamic parameters of the manipulator and very peecis
problems with a compact probabilistic model. force sensing capabilities, with such a controller our apph
Our approach thus contributes to the challenging areauld be applied on a larger variety of robots, especially on
of object interaction and manipulation within the contexthose that do not have the intrinsic mechanical slack that we
of dynamic environments, when contact with the object i®ok advantage of in order to provide corrections. A finahare
changing due to large perturbations. Some limitations & thof interest would be to combine our grasp adaptation approac
work include the following. The input space of our regressiowith a model-based approach that can optimally plan arainiti
formulation is not sufficiently rich to disambiguate difet grasp and also recover from a loss of contact produced by too
hand postures that produce the same contact signature §teong a perturbation.
contact normal directio), and so a model must be learned
for each object individually. Also, the sensing capalgbti ACKNOWLEDGMENT

of our robot platform have restricted our approach 10 the g research leading to these results has received funding
development fingertip manipulation paradigms only. A‘aCt'from the Swiss National Science Foundation through the
sensor with greater coverage or finer resolution would aIIOWCRR in Robotics, and the European Community’s Seventh
for manipulations that engage the entire hand. Improving_ o Programme FP7/2007-2013 - Challenge 2 - Cog-

this sensory capability would also allow our approach to B e systems, Interaction, Robotics - under grant agesem
applicable on a larger set of objects. A tactile sensor wi}p) [231500]-[RbBOSKIN] ’

greater coverage and resolution also might provide adiditio
object information useful for defining an input space that
is sufficiently rich to disambiguate different hand posture
that produce the same contact signature. To tackle thisr latt
issue, enhancing our prediction method to select the baspgr
from a multi-modal distribution is a very interesting resda
question, that is left for future work.

Since our approach implicitly encapsulates the hand kine-
matics and object information, it is unlikely that a learned
model would generalize directly to the addition or removal o
one or more fingers. Nevertheless, models developed under ou
approach have been shown to be capable of handling the loss
of sensory feedback from a finger. We therefore expect that
one round of correction should be sufficient to learn, from
the reuse of an existing model, a new model for a smaller
number of fingers. If instead one or more fingers is added to
the effector, the prior knowledge of the existing model vabul
allow the teacher to focus on correcting the additional finge
only.

There are many other promising directions in which to
continue this work. The first is to integrate the adaptive
contact models with our prior work, that incorporated facti
corrections on the iCub arms, with the result of a complete
tactile teaching interface for learning full hand-arm npara-
tion behaviors interactively via demonstration. One alsghmn
reason about the dynamics of the contact signatures, as they
change over time. Integrating such information with thechan
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Range of motion: thumb opposition [deg]

Range of motion: thumb finger [deg]

DETAILED RESULTS OF THE EVALUATION OF POLICY REUSEDATA ARE GIVEN FOR ALL REUSE COMBINATION TESTED OBJECTS DURG THE
DEVELOPMENT OF THEUR MODELS (AVERAGE VALUES ACROSS3 REPETITIONS OF EACH EXPERIMENY.
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A—B (9% QB , 0B (953 Qf, 0B
big can—small can | 74.8+9.6 92.6+14.0 54.24+13.3 | 33.7£6.9 32.3+4.4 26.6+4.5
box—big can 85.3+27.0 130.440.9 75.8+8.5 34.6+16.3 35.3+6.1 31.2+1.5
small can—box 64.3+3.2 90.6+13.7 61.5+14.5 26.0£3.6 46.14+8.5 31.547.9
average value 74.8+18.7 104.5+21.5 63.8+15.3 31.54+11.1 37.948.9 29.84+5.8
Range of motion: index finger [deg] Range of motion: middle finger [deg]
A—B Q3 QB , 0P 03 o, 0P
big can—small can | 32.0+4.5 29.14+2.6 23.84+0.6 36.24+6.4 34.0+2.9 26.6+5.2
box—big can 37.94+8.7 37.8+11.3 29.44+5.0 36.6+19.4 42.6+12.0 29.0+3.9
small can—box 26.2+1.8 43.4+6.1 26.8+8.6 31.449.8 44.8+16.1 29.7+£11.6
average value 32.1+7.5 36.7+9.6 26.71+6.2 34.7+13.3  40.5+12.6 28.44+7.8
Time in force-closure [%] Contact error [sensor unit]
A—B Qs af, 0F 04 o8, 0P
big can—small can 7019 93+6 96+3 6.4+0.7 5.710.8 3.9+1.5
box—big can 8244 90+£3 9543 4.1+£1.2 5.1+1.0 5.24+1.5
small car—box 96+4 94+2 95+1 4.14+1.4 4.1£1.0 4.74+2.2
average value 83+12 92+4 95+3 4.94+1.6 5.0+£1.1 4.6+1.8
Shakiness [deg/s]
A—B Qs Qf, oF
big can—small can | 0.09+0.04 0.08+0.04  0.07+0.05
box—big can 0.0940.05 0.0740.03 0.07£0.04
small car—box 0.084+0.04 0.064+0.02  0.10£0.05
average value 0.09£0.04 0.07+0.03  0.08+0.05
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Range of motion: thumb opposition [deg] Range of motion: thumb finger [deg]
Qo N oh Qo Qo Qo O oh Qo Qo
small can 8.7+2.1 33.6+4.2 54.24+13.3 68.0+£32.8 94.948.1 9.0+1.3 24.242.3 26.6+4.5 23.6+£8.3 35.1+£2.7
big can 9.6+0.8 47.8410.3 75.8+8.5 76.8+31.8 102.94+1.7 8.0+2.1 17.0+4.9 31.2+1.5 43.4+4.8 42.3+7.0
box 11.5+0.5 40.343.2 61.54+14.5 69.54+19.1 88.44+15.3 9.5+4.8 23.34+2.2 31.547.9 45.7+16.3 56.448.0
ruler 4.9+1.5 12.8+5.8 15.242.1 5.3£1.3 18.0+3.9 7.6+0.9 8.9+2.3 12.54+2.5 8.8+7.5 10.9+2.2
average value 8.7+2.8 33.6+14.6 51.74+24.9 54.9+38.0 76.1+35.1 8.5+2.8 18.44+6.9 25.5+9.1 30.4+18.3 36.2+17.4
Range of motion: index finger [deg] Range of motion: middle finger [deg]
Qo 0 oh Qs Qo Qo Oy oh Qo Qo
small can 9.5+2.6 21.9+3.1 23.8+0.6 29.9+10.5 33.5+2.6 10.5+1.6 23.8+0.2 26.6+5.2 29.3+£7.3 32.0+£6.5
big can | 10.2+2.4 19.4+2.5 29.445.0 41.5+3.6 39.442.8 9.0+0.9 19.44+6.9 29.04+3.9 42.94+4.1 44.6+4.7
box 13.2+2.2 17.9+£7.4 26.8+8.6 41.9410.2 52.1£2.5 9.4+4.7 22.84+4.9 29.7£11.6 46.91+14.1 56.0%£5.5
ruler 6.94+1.4 10.24+4.9 11.14+0.9 10.44+4.4 12.1+1.6 12.0+0.3 9.31+2.6 23.3£1.8 10.446.6 22.2+2.5
average value| 9.9+3.1 17.3+£6.6 22.8+8.6 30.9+£15.0 34.3+14.7 10.2+2.8 18.84+7.3 27.14£7.2 32.4+16.8 38.7£13.7
Time in force-closure [%] Contact error [sensor unit]
Qo Q4 N Qs Qs Qo Q1 N Qs Qo
small can 9544 88+6 96+3 9144 95+2 5.3+2.0 12.24+8.2 3.9+1.5 15.1+8.4 3.6+1.0
big can 8249 90+4 95+3 9144 98+3 5.6+2.7 12.2+1.3 5.2+1.5 10.7+2.2 4.0+1.0
box 7517 81+10 95+2 90+5 9610 4.54+3.3 14.943.1 4.7+2.2 10.44+4.0 4.1+1.5
ruler 8245 75+14 87+1 55424 86+7 5.3+1.4 13.3+5.8 3.7£0.5 13.94+5.0 3.6%£1.0
average value 83+10 84+11 94+4 82420 9446 5.24+2.5 13.24+5.4 4.44+1.7 12.6+5.8 3.8+1.2
Shakiness [deg/s]
Qo o Q Qo Qo
small can | 0.06%£0.03 0.10£0.05 0.07£0.05 0.06£0.03 0.06£0.03
big can | 0.09+0.05 0.0740.03 0.07£0.04 0.09+0.06 0.08+0.05
box 0.14+0.06 0.1240.05 0.10£0.05 0.08+0.04 0.0840.04
ruler 0.09+0.04 0.0940.05 0.10+0.06 0.12+0.07 0.06+0.05
average value| 0.10£0.05 0.10£0.05 0.09+£0.05 0.09+£0.06 0.07£0.04

TABLE |
DETAILED RESULTS OF THE EVALUATION OF POLICY REFINEMENT DATA ARE GIVEN FOR ALL TESTED OBJECTS DURING THE DEVELOPMENDF THE DRR MODELS (AVERAGE VALUES ACROSS3
REPETITIONS OF EACH EXPERIMENY.
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