

(a) 3-leg walking robot (RobotSL). (b) 4-leg walking robot (Robot4L).

Fig. 1. G\D representation of the robotic modules.

Fig. 2. Example of cooperative behavior.

are developed in detail. This work is organized as follows. Section 2
presents the inverse and direct kinematic model of the leg.
The direct kinematic model is found via the Successive Screw
Displacement Method. Then the workspace of the leg is found
and finally instantaneous kinematics is introduced. In Section 3
the high level control architecture and the multi-task model are
presented. In Section 4 the communication architecture and the
user interface are developed and the experimental results are
shown in Section 5. Finally conclusions and future works are
presented.

2. Kinematic model of the leg

One of the most relevant topics of a walking robot is the design
of its legs. It must be focused not only on their individual behavior
but also on the overall behavior of the robot, considering the
desired task and posture that the robot has to achieve.

The new SMART robotic walking agents propose a four-legged
mechanism, with 3 D.o.F. for each leg composed of two rotational
joints (named hip and knee), and a prismatic joint for extending
the leg, named ext (see Fig. 3).

2.1. Direct kinematics

The direct kinematics model of the leg is obtained by applying
a successive screw displacement method [10]. This method is
based on the identification of the screw axes parameters ($), the
reference position (?„) and the target position (Pef).

Let us consider as the reference position of the mechanism the
one presented in Fig. 3. Let us attach a fixed frame Oxyz placed on

{HIP} qi
{1}

{}Jom
Link
Axis Screw

Fig. 3. Leg forward kinematics.

Table 1
Screw axis parameters.

Joint Si Si Soi di

1
2
3

(0 ,0 ,1)
(1 ,0 ,0)
(0 , 0 , - 1)

91

0

(0, 0, 0)
(0 , - / , , - / 2)
(/ 0 - F / 3 , - / , , O)

0
0

<(3

the hip joint, and place one screw axis in each joint with the same
direction of the joint axis. Then, the targeted position can be found
according to (1).

Pef=AiA2A3Po, (1)

where A is the ith screw transformation matrix associated to the
ith-screw axis, and Po = [k + h , —h , —h — U , 1] are the homo­
geneous coordinates of the reference position. The parameters of
each screw axis are presented in Table 1.

ql= 0+a

(a) Backward-Knee.

ql=0-a

0 Fx

/
•'x

\ : . / C
.' / Knee

F) /

(b) Forward-Knee.

Fig. 4. Possible configurations.

2.2. Inverse kinematics

Given the nature of the kinematic chain of the leg, two possi­
ble configurations may result from the inverse kinematic problem.
These two possible configurations named: forward-knee and back­
ward knee, depend on the selection of the state of gi.

Let us consider an arbitrary position of the foot given by f =
[Fx, Fy, F^], and let us take a closer look at the projection of the leg
over the XY plane, as shown in Fig. 4, where P is the projection of
F over the plane XY.

As it can be seen.

U/IP dip

a = arctan(d/ip, doA)

9 = arctan(fy,fz),

(2)

(3)
(4)

where dop = JF/ + Fy^, and doA = 'o + h-
Thus, the state of gi for a backward-knee or forward-knee

configuration is given by (5)

(5)
qi = 9 -\- a, Knee front
qi = 9 — (X, Knee back.

However, there still exists a blind gap where the selection of
configuration is uncertain.

With gi known, the position of the knee joint can be found
according to (6).

B = [cosgidoc, singidoc, -(2], (6)

where doc = ^/ik + hY + h'^.
The distance from the knee joint to the foot, defines the state of

g3, as expressed below

93 IBf I U (7)

where BF = OF - OB.
The state of g2 is defined as follows.

92
BFz

arccos •
IBfJI

BFz
g2 = — arccos

where z

Backward-Knee,

Forward-Knee,

(8)

l|Bf||
[0, 0, - 1] .

2.3. Workspace of the leg

The workspace of the kinematic chain is made up of all those
possible positions where the foot can reach without exceeding the
physical capabilities of the mechanism.

Therefore, several positions for the foot (f = [F^, Fy, F^,]) are
proposed, and using the inverse kinematic model of the kinematic
chain, it is verified if the state of the joints resides in their work
range. If the proposed position passes the verification procedure,
then the position belongs to the workspace of the kinematic chain,
otherwise, it is discarded.

After the evaluation of several positions taken from a rectangu­
lar box of 1 cm X 1 cm X 1 cm, and considering the real amplitude
of work of each joint (see Table 2), the workspace of the kinematic
chain is generated and presented in Fig. 5.

2.4. Instantaneous kinematics

In order to make a synchronized movement of the leg along a
desired path with a prescribed speed, the motion of the individual
joint has to be carefully coordinated. This coordination is achieved
by relating the joint velocity space and the foot velocity space (end
effector velocity space).

According to [10], the first-order instantaneous kinematics of a
serial robot can be written as (9)

X^QiJi, (9)

where $„ = [&>„, voV is the resultant twist that describes the
infinitesimal displacement of the end effector, $j is the unit twist
associated to the ith joint and g; is the intensity of the ith twist.

Expressing (9) in a matrix form, and defining J = [$i, $ 2 , . . . ,
$„], the instantaneous kinematic equation can be written as.

(10)

Therefore, the columns of } (from the Jacobian matrix of the
kinematic chain), corresponds to the twists associated to each
joint.

Considering that the general expressions of an unit twist for
a revolute joint and a prismatic joint is given by (11) and (12)
respectively.

Sn X S (11)

(12)

where s and Sg are given in Table 1, the Jacobian matrix of the leg
can be expressed as follows.

(a) WS a. (b) WS b.

Fig. 5. Leg's Workspace.

Fig. 6. Walking gait of tlie SMART robotic agent.

Table 2
Amplitude of work for eacli joint.

Joint Min Max Unit

qi - j r / 3 j r /3 rad
<(2 - j r / 3 j r /3 rad

Q3 0 100 mm

Jo

0
0
1

cos(qi)
sin(qi)

0

0
0
0

0
0
0

h sin(qi)
-h cos(qi)

- sin(qi) sin(q2)
cos(qi) sin(q2)

- cos (92)

(13)

However, VQ is the linear velocity of a point po in the end
effector that is instantaneously coincident with the origin of a
reference frame in which the twists are expressed [10]. Therefore,
the velocity at any point °p/ = [px, Py, Pz] will be given according
to the following expressions, (15).

Wf 0)f = 0)f

v/ Vo + 'a>r X V
(14)

Taking into consideration (14), the Jacobian matrix can be rear­
ranged, and expressed as.

Jf

cos(qi)
sin(qi)

0
sin(qi)(-pz-|-/2)
(Pz -'2)cos(qi)

Py cos(qi)-|-Px sin(qi)-|-/i

And the instantaneous kinematic equations can be rewritten as

r 0
0

1

Py
-Px
0

-sin(qi)sin(q2)
cos(qi)sin(q2)

- cos (q2)

(15)

COf
--Jf (16)

2.5. Walking pattern for each leg

Fig. 6 shows the robot's movements while performing a walking
cycle. Additionally, the initial position of the robot agent and
the movement of each leg can be observed. The transfer phase
is represented by the initial point • and the final point (D).
Both points are linked by a straight line and the direction of the
movement is shown by the arrow.

In order to study the timing of the leg's trajectory, it is necessary
to define the path to be followed by the foot as a function of
time. The movement of the foot should be done smoothly and

Fig. 7. Elliptical movement of robot's foot.

continuously and at the second-order to be at least differentiable.
The smooth movement of the foot implies that the movement
of the robot's trunk is also smooth. To ensure the smooth foot
traj ectory it is required to observe spatial and temporal restrictions
imposed on the kickstand. Some criteria to select the path are listed
below.

• The orientation of the curve has to be normal to the ground
during the upward or downward movement of the supporting
foot.

• The second derivative of the curve should be continuous.

The walking mode is solved by fixing the paths that make the
robot's feet; i.e. using the same path for all legs and setting an
identical relative gap. In the Smart system it is proposed the legs
will follow an elliptical path. This path fulfills both restrictions
imposed on the motion curve. Fig. 7 shows this trajectory where
the marked b point is limited by the maximum and minimum
length of the third actuator.

In order to complete the leg's movement, it is necessary that the
leg comes back to the initial position after the relative gap. Since
the leg is in contact with the ground, it is assumed that the path
described by the leg is a straight line, which should join the starting
and ending points (pj„j and Pe„d) of the gap (see Fig. 8).

3. Description of the multi-task architecture

Fig. 9 shows the control scheme implemented in the SMART
project. The task planning and control are centralized in a PC that
acts as the master and sends out commands in order to control the
modules simultaneously. Closing the control loop, a commercial
IP camera is placed at the top of the scene where the robots
move. This camera sends images (in bmp format) to the controlling
software in the master computer.

The free library OpenCV (special functions for matrix processes
and position recognition) for image processing was used. However,
a especial software was developed for the orientation of the robot.
With this visual information the control software can recognize
each module, its position and orientation and, also, the obstacles
present in the scenario. After that, it is possible to plan the
path for each robot. Path calculation is based on computer vision
techniques. The images that the system receives from the colored
camera are the input to the computer vision system. Using a
binary matrix, created in the computer vision part using OpenCV
libraries, the system can search for the shortest path between two
coordinates.

The matrix gives a binary view of the image. All obstacles are
set to 1 and all other coordinates are set to 0. Objects and other
SMART robots should be avoided. When all objects and robots are
detected, the objects are expanded, in order to build a safe zone.
The path planner only uses the free spaces to find a path. When
moving a single robot, the other SMART robots can be seen as
obstacles too. When calling the path planner function, a vector with
the coordinates to move the robot to a certain position is returned.

Finding all obstacles and robots in a System is not only
important but they should also be identified. Fig. 10 shows a
processed imaged after being taken by the camera. The trajectory
generated by the path planner in order to avoid obstacles can
be observed here. Based on the information given by the path
planning function, the controlling block will send the commands
to the robots so they can move in the correct direction. The
commands can be forward, turn left or right movements. These
basic movements for the robots are in text-files. Going to
another coordinate can be a movement containing multiple basic
movements.

3.1. Communication structure

The communication part is created in C++ and a UML scheme is
shown in Fig. 11. The Socket class includes all functionality to use
sockets in a client and server mode. The socket can be bound to the
address of the server using the connect() function. Sending and
receiving data can be done by using the read() and write() system
calls.

The typical server does not initiate the connection. Instead, it
waits for a client to call and request for services. The server can be
established by using the listen() and accept() functions.

The Camera class uses the functionality of this socket to send,
order the web cam and receive information from the socket.
The communication block in the engine also uses the server side
functionality of the Socket class to listen for incoming commands
from the graphical user interface.

Plane x-z

0

-5

-10

6
X 8

(a) Elliptical Trajectory designed for the leg. (b) Trajectory for a walking gait.

Fig. 8. Trajectory of the leg in the task space.

High Level

Control

Move/Stop

I TCP/IP

Low Level
Control

Control PC

TCP/IP
Bluetooth

master

Images

Blustairih
slave

RS232

Data Input
Servo-motors

Controller

RC Signal

S«nsors Servo-motors

Fig. 9. Hardware and software architecture.

Fig. 10. Hardware and software architecture.

fsodoEt &A
OatM

=i Relds

T / hSocket

^ wsaData

=1 Methods

V -Socket
V Accept
V OoseSocket
V Connect
V Listen
V Recv

* Send

« Socket(+lover l . .
V J

Gam - * n l
Cta»

=1 Re ds =1 Re

portCom

^ Methods
V '^Com
V BvteToRead
V OoseCom
V Com(-i- loverio9-
V rmt
V OpenCom
V WriteCom
V WrtePololu

/

ComWindows (^
Cbu

o Relds

,1* g_cto

^ g_dcb

-^ g_liCOM

1= Me

V

:hods 1= Me

V "COrttWirtdOwS
V BvteToRead
V CloseCOM
V ComWindows
V InitCOM
V Op enCOM
V ReadCOM
V WriteCOM

V J

Fig. 11. UML diagram for the communication architecture.

Bluetooth communication is established in the Com and
ComWindows classes. These classes contain the C++ functionality
in order to bind a Bluetooth device to a certain COM port. Data
can then be sent to the Bluetooth device using the WriteCom()
function.

The SMART control software, called the engine, is a C++
programmed Win32 console program. It contains all the parts
needed to control the SMART robots. The most important parts of

PetriNet
I

Planner

Stop

-• Control
I

*—• Communication

Vision
I Position

Fig. 12. Scheme of the ENGINE architecture.

Table 3
OEMSPA 312i technical data.

Power class
Processor
Supply voltage
Power consumption
External dimensions
Environmental conditions

l ,+7dBm(50m)
BGB203 Philips chipset
3-6 Vdc
1 mA (min), 17 mA (avg), 70 mA (max)
23 X 36 X 5 mm
Max operating T: - 3 0 to +85 °C

the engine could be the communication net, the computer vision,
the path planner and the control. The engine has a multi-threaded
architecture. This makes a good amount of task-level parallelism
(TLP) available. After modeling tasks by Petri Net [7] they can be
implemented and executed thought a multi-threaded architecture.
This advantage of a multi-threaded program allows it to operate
faster. The engine architecture is given in Fig. 12. The interaction
between the main parts in the engine is based on the control of
threads and call function. The interaction between the main parts
included in the control software can be seen here. In a modular
robotic system, agents should be able to communicate through
messages. More complex modular robot structures are made of a
high amount of individual units. A robust communication protocol
is crucial. The communication architecture has to take into account
possible mechanical or electronic failures of a module.

Bluetooth communication. The SMART environment uses Bluetooth
with GFSK modulation to communicate among SMART robot and
control software. By using Bluetooth-based communication the
SMART robot developers are able to separate the communication
from the mechanical connectors. Wireless communication is suit­
able for self-reconfiguring modular robots. Socket communication
is used between the client user interface and the control software
(kernel) and they receive images from the IP webcam. The PC run­
ning the engine is equipped with a Belkin Bluetooth USB adapter.
The Belkin F8T009 Bluetooth adapter supports Bluetooth version
1.2. SMART robots are equipped with the OEMSPA 3121 adapter by
ConnectBlue. Once it is connected to its host system and config­
ured, the Serial Port Adapter can communicate, using Bluetooth,
with a wider range of other Bluetooth devices such as other Serial
Port Adapters, mobile phones, handheld computers and laptops.
The OEM Serial Port Adapter Electrical & Mechanical Datasheet
contains important information about the OEM Serial Port Adapter.
A list of the characteristics of the adapter is given in Table 3.

For the communication with the serial port adapter, the baud
rate is changed to 9600 since the Pololu mini servo controller used
for controlling the SMART robot servos, works at 2400 or 9600
baud. This can be done, using the OEMSPA 3121 Serial Port Adapter
in the AT mode.

Thread synchronization. The ability in executing more than one
process at a time is known as multi-processing. A thread is another
mechanism for splitting the workload into separate execution
streams. A thread is lighter in weight than a process. The engine
in the SMART environment manages the different threads used in
the environment. Synchronization of threads is considered, so that
they do not break while executing on resources and memory.

Threads can be easily created and destroyed. They can be given
different attributes. While starting up, the main thread starts
two other threads: an image processing thread (called the vision

tliread) and a communication tliread. Tlie processing tliread in­
cludes tlie computer vision part. It gets an image from tlie web­
cam, using a socl<et and does tlie processing using OpenCV. Tlie
tliread runs in a never-ending loop. In order to reach synchroniza­
tion, mutual exclusion is used. The communication thread acts as
a socket server and can receive commands from a user interface.
While receiving a command in the communication thread, some
other threads can be started such as the controlling block. The con­
trolling block can call the path planning function to update path
calculation. The program creates a new thread every time a new
action is sent by the user interface. When the previous action for
a specific robot is not yet finished, the thread is killed and a new
thread is started. The previous command will never be finished.

3.2. Socket communication

The communication that occurs between the client and the
server must be reliable. That is, no data can be dropped and have
to arrive on the side of the client in the same order as sent by
the server. TCP provides a reliable, point-to-point communication
channel for those client-server applications on the Internet.

The structure designed for the SMART environment, supports
command communication from client to server using a socket on
TCP protocol. The commands have a defined structure including
the action identifier, some parameters and a character indicate the
end of a command. The protocol designed for this communication
can be extended when new commands are included in the system.
The action identifier is a single number that is unique for each
service the server fulfills. The command associated with a given
identifier can take some parameters divided by a comma. While
the protocol is a sequence of seven bytes, the % sign is used for
dividing different commands [8].

The first byte is the command identifier. Different Petri Net
tasks can have different command identifiers. The ID of the SMART
robot is given in the second byte, followed by a comma to
separate the data. Bytes four and six are the parameters for the
command i.e. when the command is for a certain robot to move
to a point, the parameters will be an X and Y coordinate. Socket
communication is also used for receiving images from the webcam
as an input for the computer vision delivered by the controlling
software. The webcam acts as a server, sending images over the
socket to the kernel reacting on HTTP GET/POST requests from the
controlling software. The images are saved as bitmap images with
the maximum resolution.

3.3. Petri net in SMART system

The behavior modeling for both the individual agent and
the group are implemented with Petri Nets (PN). SMART is a
heterogeneous system since the robots, the IP-camera, the image
processing software and the control software are considered as
agents of the system. As a consequence.

Definition. In the SMART System, an agent is a collection of soft­
ware and hardware elements that are able to cooperate in order to
reach a common objective.

The classical Petri net allows modeling of states, events, condi­
tions, synchronization, parallelism, choice, and iteration. For this
reason, the PN is widely used in multi-agents modeling [11-13,
5]. Even though, the agents might be treated as software systems,
the modeling concept can be taken to robot agents [14,15]. On the
other hand, the formal theory of PN allows evaluating the systems
behavioral properties, which is a way for its application to be much
more generalized.

In a strict sense, a PN is defined as an n-tuple N = [P, T, F, W},
where P is a set of states, T is a set of finite transitions. Both sets
satisfy P |^ T = 0 and P |J T 7̂ 0. The weight of the arch/j,,, that
bounds the place pj with the transition t̂ is defined as u; G W —>
Na+ where Na+ = {1, 2,. . . .} is the set of positive integers. A
mark M over an N net, is a mapping P —> Na. M(pj) defines the
number of marks at Pi G P. A marked PN, is defined as NM = {N,M}
and the initial mark is noted as M°.

A place p is called an input place of a transition t if there exists
a directed arc from p to t. Place p is called an output place of
transition t if there exists a directed arc from t to p. We use •t to
denote the set of input places for a transition t. The notations t»,
•p and p» have similar meanings, e.g., p» is the set of transitions
sharing p as an input place.

Most workflow systems support a separate model of the
workflow process from the modeling of the structure of the
organization and the resources within the organization [16]. The
reasons for decoupling these two dimensions when specifying a
workflow are: the complexity is reduced, the reuse is stimulated,
and a process without changing the organizational model (and
vice-versa) can be modified. In the process dimension, the tasks
needed to be executed and the order is specified. Modeling a
workflow process definition in terms of a Petri net is rather
straightforward: tasks are modeled by transitions, conditions are
modeled by places, and cases are modeled by tokens.

Definition WF-PN. A Petri net Pw = (P,T,F) is a WF-net
(WorkFIow net) if and only if:

• Pjv has two special places: an input place, pj„, and an output
place Pout- Place pj„ is a source place: •pj„ = 0. Place Pout is a
sink place: Pout» = 0-

• If a transition t* to PN is added which connects place Pout with
Pin (i.e. •t* = {Pout} and t*» = {Pi„}), then the resulting Petri
net is strongly connected.

As it was referred before, WF-PN are implemented as a multi­
threaded architecture in C++, and the synchronism is managed by
the kernel. The reader is referred to [17] for details. In Section 4, the
authors present two examples of behavior that show the manner
of modeling using workflow Petri Nets.

3.4. User interface

In order to improve system control and viewing, a user interface
was developed. This interface is a graphical program that allows
the user to send commands to the robots and it gives a view of the
system environment.

The commands given in the user interface are sent to the engine
which takes control over the robots. Communication between
user interface and engine is based on socket communication.
Using sockets, it is possible to create the user interface in any
programming language that support socket communication like
Java, C++ or C#. For programming the client, a C# Windows
application is chosen.

When creating a user interface, usability is one of the main
problems. In the SMART environment, the user can interact with
different SMART robots at the same time. In order to implement the
different functions in a single user interface, a multiple document
interface (MDI) is used. The disadvantage of MDI is the lack of
information about the current opened windows. In order to view
a list of windows open in MDI applications, the user typically has
to select a specific menu. For this reason a window organizer was
implemented. The interface is shown in Fig. 13. The user interface
offers all functionalities for a user to run the robots based on
Petri net methodology. The user has the option to move a robot
from the current position to a new coordinate. This command uses

U l lidc Oft

5 ^ 3 ~ 1 OtaM 1

P
Hf>¥t

9m*

X: P m

r-- i» m
1 r s i n

Fig. 13. View of the user interface developer in C#.

tlie patli planner available in tlie engine. Anotlier functionality
offered by tlie client is 'free ride'. Tliis option allows tlie user to
send basic movemen t commands to tlie robot. Tliese actions send
tlie correct command to tlie controlling software using a socl<et
communicat ion and client communicat ion protocol as discussed
in tlie following section.

4. Experimental result

In this section two complete examples about modeling behavior
of SMART'S agents are developed. One of the objectives of this
project is to move a set of SMART robots in a coordinated way to
complete a predefined task. SMART agents move inside a metallic
s tructure that has a colored IP-Camera placed 2 meters on its top.
The camera takes the actual pictures in the host computer where
the engine software runs and carries out recognition and proper
decisions based on the computer vision results. This architecture
is shown in Fig. 14.

The t ime to process an image, taken by the camera, and to give a
control order to a SMART robotic agent takes 150 ms. Moreover the
robot has to complete the work, such as receiving commands , and
moving the servos at the same t ime. If not, a buffer will be filled
wi th unfinished commands .

4.1. Example 1: Cooperation among SMART agents for helping a
robotic agent in avoiding an obstacle

The tasks that every agent of the SMART system realize is
modeled wi th a WF-PN. As a consequence, a more complex net
that models the system in its totality would exist. As an example,
a WF-PN where an agent must change its trajectory since the
detection of an obstacle is schematized in Fig. 15. It can be seen
that it is composed of 5 sub-WF-PN, detailed above.

• NJ^-'^ models the software of the image which is captured.
• NJ^-^ models the image processing software, in order to get the

localization of the agents and obstacles. The capture and image
processing is done 11 t imes per second.

• N ^ models the movemen t of any robotic agent. W h e n this sub­
net is active, it implies that one or more agents are moving
following a free path reference.

• N^^"' models the avoiding collision algorithm. If two agents
are too close, they are ordered to stop and reprogram their
trajectories.

models the kernel of the application. jwCTRL

Fig. 14. Testbed for Smart project.

The sub-net tha t models the camera N',^-^ is integrated by the
followings e lements :

Pi IP camera takes a b m p image
P2 Waiting t ime for taking a new image
Ti Send b m p image to processing block
T2 Take a new picture
W weighing of the arc: W G R'^"^ = {1,1}
M(0) initial marking M(0) = {0}.

The sub-net tha t model the image processing N™-^, is composed
by the e lements detailed bellow:

P3 Get an image from a kernel message
P4 Send Information of the scene to the kernel program
P5 Ready to process a new image
T3 Processing image package
W weighing of the arc: W G R'^"^ = {1,1}
M(0) initial marking M(0) = {0}.

PN for mb<J.eling
nage process

Fig. 15. Petri Net to model a cooperative task among SMART Agents. A robotic agent is helped to avoid an obstacle.

••^•1

^

A, i
Fig. 16. Example 1: Cooperative Task among SMART Agents.

The elements that integrates the sub-net that models the
control software, N™^ are:

Pe Start the decision process

T4 XOR-Split transition. Information of robot and obstacle
localization is in the control block

W weighing of the arc: W G R^"^ = {1,1}

M (0) initial marking M (0) = {0}.

Fig. 17. Example 2: Cooperative Task among SMART Agents.

Transit ions Ti and T3 make the synchronizat ion of the visual
process, tha t m e a n s if the process function does not finish its job ,
the IP camera is not going to take a n e w photograph .

The sub-ne t tha t models the communica t ion interface N ^ is
composed of,

Tg Resource Fire Transi t ion: Send an order to a robot by
Bluetooth

Pg Execute the m o v e m e n t order
Tg Send a finish m o v e m e n t message to a decision block

Sub- R d P ^ ?
modela el proc. O^

la imagen

Final State

P9

\ \ Ps • .'̂
• ^ Sub- RdP del ^

• ^ e n t e n qua* '
acude en ayuda

Fig. 18. Model of Cooperative task between two SMART robotic agents using Petri Nets.

W
M(0)

weighing of the arc: W G R^"^
initial marking M(0) = {0}.

{1,1}

Finally, the path planning (A*,NJ^'~°') that is integrated as a
routine in the kernel software is modeled with the following
elements,

P-j Start the Planning function
Pg Place for math consistency
Ts Resource Fire Transition. Send message to calculate a new

position
Te Calculus of the new position
Ty Send new position to the control block
W weighing of the arc: W G R^"^ = {1,1}
M (0) initial marking M (0) = {0}.

The above example is shown in Fig. 16. The robot agent has to
move to a new point, it can detect obstacles by using vision and
can consequently dodge them. The SMART robot detects the black
obstacle and moves around it.

agents. In the hardware agents there are two kinds of robots with
three and four legs. In any multi-agent system, its success depends
largely on its communications architecture. Therefore this article
broadly describes the model and protocol used in this system. The
software developed to control the system includes all functional­
ity that was planned for the SMART robots in this first phase of the
project. The software can easily be expanded in the future when
new tasks will be added to the modular robotic system. The de­
veloped software has a typical modular robotics architecture. The
multi-agent system guarantees good performance of cooperation
tasks among agents robots, camera, userinterface and the commu­
nication protocol.

In the future an auto-connected architecture will be developed,
that is using reciprocal communication, and robots will thereby be
able to help each other. When a single robot cannot finish the task,
other robots can help accomplish the task without the controlling
software having to interact. In the same manner, process calculus
will be added on board, so each module can take decisions by
itself.

4.2. Example 2: Cooperation among SMART agents to help robotic
agents to complete a task

Another task for a SMART robot, can be changing the config­
uration of robots and other objects. Fig. 17 shows a possible sit­
uation, where the yellow SMART with three legs has to move to a
new point, but there are obstacles that prevent it from carrying out
such a task. In this case, a 4-legged robot helps the yellow robot by
moving the obstacles and consequently finding a path to its final
point. This is another example of cooperation between the robots
in a modular robotic system.

This cooperative behavior is modeled by the WorkFlow Petri
Net shown in Fig. 18. In this model two new sub-nets appear to
shape the cooperation between both robotic agents.

5. Conclusions

This article presents a modular robotic system called SMART.
This system consists of different types of software and hardware

References

[1] A. Collinot, A. Drogoul, P. Benhamou, Agent oriented design of a soccer robot
team, in: Proceeding of International Conference on Multi Agents Systems,
1996.

[2] S. Deloach, E. Matson, Y. Li, Applying agent oriented software engineering
to cooperative robotics, in: Proceedings of the Fifteenth International Florida
Artificial Intelligence Research Society Conference, 2002.

[3] H. Fiorino, C. Tessier, Agent cooperation: a petri net based model, Proceeding
of International Conference on Multi Agent Systems 3 (1998).

[4] D. Franklin, T. Gresser, Is it an agent, or just a program? a taxonomy for
autonomous agents, in: Proceedings of the Third International Workshop on
Agent Theories, Architectures, and Languages, Springer-Verlag, 1996.

[5] H. Lund, R.L. Larsen, O.s.E. Hallundbik, Distributed Control in Self-
reconfigurable Robots, Springer, 2003.

[6] L Zhiwu, X. Shuwen, On Modeling a soccer robot system using Petri nets, in:
Proceeding of the IEEE International Conference on Automation Science and
Engineering, Shanghai, China.

[7] J.-S. Lee, A Petri net design of command filters for semiautonomous mobile
sensor networks, IEEE Transactions on Industrial Electronics 55 (2008).

[8] M. Sims, D. Corkill, R.V. Lesse, Automated organization design for multi-agent
systems, pp. 151-185.

[9] M. Veloso, D. Nardi, Special issue on multirobot systems, Proceedings of the
IEEE 97 (2006).

[10] L Tsai, Robot Analysis: The Mechanics of Serial and Parallel Manipulators,
Wiley-lnterscience, 1999.

[11] K. Hiraishi, An elementary model for design and analysis of multi-agent
systems, proc. on coordination models and languages, in: Proceedings of the
5th International Conference on Coordination Models and Languages, 2002,
pp. 220-235.

[12] K. Hiraishi, Performance evaluation of workflows using continuous petri nets
with interval firing speeds, lElCE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 11 (2008) 3219-3228.

[13] Y.T. Kotb, S.S. Beauchemin, J.L. Barron, Petri net-based cooperation in multi-
agent systems, in: Proc. of Fourth Canadian Conference on Computer and
Robot Vision, 2007, CRV07, pp. 123-130.

[14] D. Corkill, S.E. Lander, Modelling, analysis and execution of multi-robot tasks
using petri nets agent organizations. Object Magazine 8 (4) (2008) 41-47.

[15] L Montano, J.F. Garcia, J.L. Villarroel, Using the time petri net formalism for
specification, validation, and code generation in robot-control applications.
The International Journal of Robotics Research 19 (1) (2000) 59-76.

[16] W. van der Aalst, Three good reasons for using a petri-net-based workflow
management system, in: [16] pp. 179-201.

[17] C. Garcia, R. Saltaren, J. Lopez Blazquez, R. Aracil, Development of the user
interface for the robotic multiagent system Smart, Revista Iberoamericana de
Automaticae lnformatica7 (2010) 17-27.

