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Abstract
An alternative to deploying a single robot of high complexity can be to

utilize robot swarms comprising large numbers of identical, and much sim-
pler, robots. Such swarms have been shown to be adaptable, fault-tolerant
and widely applicable. However, designing individual robot algorithms to
ensure effective and correct overall swarm behaviour is actually very diffi-
cult. While mechanisms for assessing the effectiveness of any swarm algo-
rithm before deployment are essential, such mechanisms have traditionally
involved either computational simulations of swarm behaviour, or experi-
ments with robot swarms themselves. However, such simulations or exper-
iments cannot, by their nature, analyse all possible swarm behaviours. In
this paper, we will develop and apply the use of automated probabilistic for-
mal verification techniques to robot swarms, involving an exhaustive math-
ematical analysis, in order to assess whether swarms will indeed behave as
required. In particular we consider a foraging robot scenario to which we
apply probabilistic model checking.

1 Introduction

Robot swarms, comprising a number of simple and identical robots, have been de-
veloped by many researchers and deployed in significant application areas [4, 5, 1].
Although the behaviour of each individual robot is simple, these robots work to-
gether to achieve potentially quite complex swarm behaviour. Consequently, un-
derstanding individual robot behaviour is easy, but predicting the overall swarm
behaviour is much more difficult. In particular, it is very difficult to design an in-
dividual robot control procedure that, when replicated across all the robots, will
guarantee the required swarm behaviour.
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In [29], we introduced the idea of using formal verification techniques, in
particularly probabilistic model checking, to assess swarm behaviour in a more
comprehensive manner than simply by simulation or testing on selected scenarios.
While we introduced the idea in [29], very little verification and analysis was car-
ried out in that short paper. Here we will extend and develop that work in order
to show how probabilistic model checking can be effectively used, in a number
of ways, to automatically and exhaustively assess swarm activity. Thus, we aim
to show that probabilistic model checking is a useful alternative tool to simula-
tion and practical experimentation that not only allows the simulation of particular
runs of the system but also enables verification of quite sophisticated temporal and
probabilistic properties.

We exhibit our approach by analysing, in depth, an existing swarm algorithm
and its related probabilistic model. Specifically, we examine the state-based control
algorithm at the heart of the foraging robots developed in [34, 35]. These forag-
ing robots aim to search for, grab, and retrieve, food items, bring them back to
their ‘nest’ and then rest. Thus, at any time, robots may be resting (in the nest), out
searching for food, grabbing the food, bringing food back to their nest (i.e. deposit-
ing), or returning to the nest having failed to retrieve food (i.e. homing). By select-
ing swarm algorithms that have already been designed, implemented and tested,
we can compare our analysis with the simulation-based assessments from [34, 35].
Specifically, we should be able to formally verify behaviours that have been found
to be important within these swarm scenarios. Further, [34] proposes a macro-
scopic probabilistic model for such a system which we also adapt and apply prob-
abilistic model checking to.

The basic foraging algorithm [34], involves several important parameters that
must be supplied. These include the time each robot spends resting, the probability
of a robot finding food, the energy expended by the robot in searching, the energy
gained by food, etc. In analysing swarm algorithms of this sort, it is particularly im-
portant to see how the settings of such parameters affect global swarm behaviours
in terms of, for example, overall swarm energy or the ratio of searchers to resters
within the swarm. By such an analysis we can explore under what conditions the
swarm exhibits optimal behaviour. In the verification we carry out here, we show
that, given specific parameters to be used in practice, we can assess overall swarm
behaviour as well as specific analysis relevant to each system.

Traditionally, the analysis of swarm behaviour is carried out either by testing
real robot implementations, or by computational simulations; see, for example, [30,
35]. Real implementations are clearly forced to follow a particular architecture
while simulations only examine a subset of all the possible swarm behaviours.
However, if the swarms are to be used in safety-critical areas, or even where swarm
failure might involve financial penalties, the above approaches guarantee very little
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about actual swarm behaviours.
Within Computer Science, a general alternative to the examination of systems

through simulation or testing is to use formal verification. In particular, the variety
of formal verification called model-checking [11] has become extremely popular.
Here, a mathematical model of all the possible behaviours of the system in question
is built [21], incorporating all the different robots, and then all executions through
this model are assessed against a logical formula describing a required property of
the system. If there is a possible swarm execution that violates the required prop-
erty, then this is highlighted and the swarm designer can examine this potentially
anomalous behaviour in detail. Additionally model checkers usually allow the ex-
ploration of particular runs of the system if required, i.e. a simulation of the system
modelled.

The logical properties assessed in standard model checking are temporal prop-
erties [20]. However, since robot control algorithms usually require not only the
formalisation of temporal behaviour, but also of uncertain behaviours, then we
choose to use a more sophisticated model checking approach. Specifically, we use
the probabilistic model checker PRISM [23], through which we can analyse not
just the temporal, but also the probabilistic, properties of the swarm.

In summary, we here target an existing robot swarm algorithm for foraging
robots, describe the control algorithm within each robot in terms of a probabilis-
tic model [34], and then automatically analyse all possible runs through a system
of multiple robots via the PRISM model checker. Note that, while we can verify
properties of individual robots, we are particularly concerned with global swarm
behaviour. Thus, we will show that we can not only re-create the simulation re-
sults from relevant papers [34], but can also show that certain properties hold for
all possible runs/configurations, i.e. we can formally verify swarm behaviour. This
work takes the basic idea from [29], extends it, applies it to different properties,
considers and assesses a number of different ways of robot swarm verification via
probabilistic model checking. This work also moves beyond just the testing and
simulation of robot swarms to formal verification via probabilistic model check-
ing and provides the potential for more detailed and systematic analysis of swarm
behaviours.

In Section 2 we introduce the foraging robot scenario while, in Section 3, we
outline the model checking approach to verification and describe the probabilistic
model checker PRISM which allows us to carry out both simulation and verifica-
tion activities. In Sections 4 to 6, we consider a range of different mechanisms
for modelling the swarm behaviour and the corresponding problems of carrying
out verification via model-checking on these. Thus, in Section 4, we examine
the basic microscopic or agent-based model, in which each robot is modelled in
detail and the swarm model is constructed from the product of all the individual
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robot models. In Section 5 we turn to the macroscopic or population-based model
whereby we abstract away from the details of individual robot behaviours and con-
sider modelling the population as a whole, thus allowing us to represent a much
larger number of robots. In Section 6, we consider variations, combinations, and
extensions of these approaches.

In these sections, particularly Sections 4 and 5, we show how probabilistic
temporal formulae can be verified of all executions through these models. This
provides a route to the formal modelling of swarm behaviour followed by detailed,
yet automatic, formal verification assessing logical properties of all executions.
Our particular contribution here is to explore the formal verification of probabilistic
and population-based models of swarm behaviour via model checking, and to show
how formal verification can indeed provide the swarm designer with a powerful
tool for comprehensive analysis to increase his/her confidence while designing a
particular swarm.

In Section 7 we discuss related work with respect to both foraging robots and
verification for robot swarms. Finally, in Section 8, we provide concluding remarks
and explore future work.
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Figure 1: Probabilistic Finite State Machine for a Single Foraging Robot [34].
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2 The Foraging Robot Scenario

The foraging robot scenario we base our probabilistic model checking analysis
on is that presented in [34]. Here, within a fixed size arena, there are a number
of foraging robots, i.e. each robot must search a finite area and bring food items
back to the common nest. Food is placed randomly over the arena and more may
appear over time. The food items collected will increase the energy of swarm,
but searching for food items will use energy up and there is no guarantee that
robots will actually find any food. The behaviour of each robot in the system is
represented by the probabilistic state machine in Figure 1, comprising the states:

SEARCHING, wherein the robot is searching for food items;
GRABBING, wherein the robot attempts to grab a food item it has found;
DEPOSITING, wherein the robot moves home with the food item;
HOMING, wherein the robot moves home without having found food; and
RESTING, wherein the robot rests for a particular time interval.

Associated with transitions between these states are both time-out conditions
and probability values:

Ts: amount of time a robot can continue searching;
Tg: amount of time a robot can attempt grabbing;
Td: amount of time spent depositing;
Th: amount of time spent homing;
Tr: amount of time spent resting;
γf : the probability of finding a food item; and
γg: the probability of grabbing a food item.

In an actual swarm model, timeouts may vary for DEPOSITING and HOMING, e.g.
due to the distance from the nest, so we consider the average timeouts.

The probabilistic finite state machine in Figure 1 is adapted from [34], and it
does not include the obstacle avoidance activities. We consider the case of avoid-
ance in Section 5.2.4. Importantly, in this study, we are not aiming to directly
model any specific swarm; our thesis is that formal modelling and automated ver-
ification of the form carried out here can be useful in the analysis required in
swarm robotics design. Thus, while we do not claim to verify exactly the de-
tailed model from [34], we show that our approach can at least carry out all the
forms of test/simulation reported in [34] and can go much further in terms of full
exploration.

Note that, in order to apply model-checking methods we must ensure that the
model under study has only finitely-many states. Hence we model timeouts (i.e.
Ts, Tg, Td, Th, Tr) as a sequence of states representing each state in Figure 1. For
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example, if Tr = 4 the RESTING state is replaced by four states Ri for i = 0, . . . , 3
representing robots who have been resting i+ 1 moments. To clarify, we note that
in Figure 2 the states and transitions on the left are transformed to the combination
on the right, signifying a delay of three additional time steps. So, instead of the
resting phase taking one time step, it now takes four, moving on to searching.

DEPOSIT

RESTING

SEARCHING

DEPOSIT

R0 R1 R2 R3

RESTING

HOMING

SEARCHING

HOMING

Figure 2: Practical Modelling of Delay — in model checking the subgraph on the
left is replaced by that on the right.

Initially all robots are in the state SEARCHING. At each time step, robots move
to the GRABBING state with probability γf (the chance of a robot finding food).
Robots stay in the SEARCHING state with probability 1 − γf . If a robot cannot
find food within Ts time steps (i.e. t ≥ Ts), it will move to the HOMING state. In
the GRABBING state the robots move to the DEPOSITING state with probability γg

(the chance of grabbing the food), and stay in the GRABBING state with probability
1 − γg. If a robot cannot grab a food item in Tg time steps (i.e. t ≥ Tg), it will
move to the HOMING state. The robots in the HOMING (respectively DEPOSITING,
RESTING) state take Th (respectively Td, Tr) time steps to return back to the nest
(respectively deposit food, rest) before they move to the next state.

3 Model Checking Using PRISM

Formal verification aims to assess a logical requirement (given within formal logic)
of all behaviours within a system. Within this general field, model checking [11]
is an algorithmic technique for exhaustively analysing the logical correctness of a
finitely-represented system. It checks a logical requirement (typically stated in a
form of temporal logic) against all possible behaviours of the system in question.
Thus a finite structure (such as a finite-state automaton), is used to describe all
possible behaviours of the system and then model checking assesses this logical re-
quirement against all possible paths through the finite-state automaton (correspond-
ing to all possible runs of the system). Model-checking has come to prominence
in recent years as it provides fast, automated, and relatively easy to use verification
techniques. These, in turn, are embodied within tools that are widely available,
such as SPIN [24], NuSMV [10], Java PathFinder [40], and UPPAAL [3].
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Given that the state-machine in Figure 1 describes a probabilistic model, we
can analyse both probabilistic and temporal properties of our robots using a prob-
abilistic model checker, such as PRISM [23]. This supports three types of proba-
bilistic model: Discrete-Time Markov Chains (DTMCs); Continuous Time Markov
Chains (CTMCs) and Markov Decision Processes (MDPs). When we assess such
models containing detailed probabilistic information, it is natural to use logical
requirements which can describe these probabilistic aspects. So, when we ver-
ify properties of an individual probabilistic state-machine, our input to PRISM is a
probabilistic model (technically a DTMC) and a property which can be represented
in a number of probabilistic temporal logics, such as PCTL [22].

PCTL is an extension of the well-known branching-time temporal logic CTL [16]
which can be used to represent quantities such as “the probability a robot eventu-
ally reaches the nest”, “the probability that the energy in the system is greater than
E”, etc.

PCTL fomulae are interpreted over a Markov chain (or an Markov decision
process). The execution of a Markov chain constructs a set of paths, which are
infinite sequences of states. The i−th element of a path σ is denoted by σ[i].
The set of paths from a state s is denoted by Paths(s). A probability measure
πm for a set of paths with a common prefix of the length n, s0 → s1 → ... →
sn, is defined to be the product of transition probabilities along the prefix, i.e.
µ(〈s0, a1, s1〉)× ...× µ(〈sn−1, an, sn〉) [22].

Apart from the usual operators from classical logic such as ∧ (and), ∨ (or) and
⇒ (implies), PCTL has the probabilistic operator P∼r

1, where 0 ≤ r ≤ 1 is
a probability bound and ∼∈ {<,>,≤,≥,=}. Intuitively, a state, s, of a model
satisfies P∼r[ϕ] if, and only if, the probability of taking a path from s satisfying
the path formula ϕ is specified by ‘∼ r’. The following path formulae ϕ are
allowed: ©φ; ♦φ; φ; φUψ; and φU≤kψ (Note that the operators ♦φ and φ
can actually be derived from φUψ).

As an example, the property that “the probability of ϕ eventually occurring is
greater than or equal to b” can expressed in PCTL as follows:

P≥b[true U<∞ϕ] .

The informal meanings of such formulae are:

Xφ is true at a state on a path if, and only if, φ is satisfied in the next state on
the path;

♦φ is true at a state on a path if, and only if, φ holds at some present/future
state on that path;

1The P∼r operator is the probabilistic counter-part of path-quantifiers ∀ and ∃ of CTL.
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φ is true at a state on a path if, and only if, φ holds at all present/future
states on that path;

φUψ is true at a state on a path if, and only if, φ holds on the path up until ψ
holds; and

φU≤kψ is true at a state on a path if, and only if, ψ satisfied within k steps
on the path and φ is true up until that moment.

The formal semantics of PCTL formulas are given as follows: Assume M is
either a DTMC or an MDP, and V is the corresponding valuation function mapping
each state s to a set of propositions. For a given PCTL-formula ϕ and a state s, the
satisfaction relation |= is inductively defined on the structure of ϕ as follows [22]:

M, s |= p iff p ∈ V (s)

M, s |= ¬φ iff M, s 6|= φ

M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2

M, s |= P∼r[ψ] iff πm(σ ∈ Paths(s) s.t.M, σ |= ψ) ∼ r

Path formulas are defined on the following semantics:

M, σ |= ©φ iff M, σ[1] |= φ

M, σ |= φ1Uφ2 iff ∃i ≥ 0 s.t. M, σ[i] |= φ2 and (∀j < i) M, σ[j] |= φ1

M, σ |= φ1U≤kφ2 iff ∃i ≤ k s.t. M, σ[i] |= φ2 and (∀j < i) M, σ[j] |=
φ1

PRISM can then be used to verify whether or not a PCTL formula holds on
a given probabilistic structure representing all the executions of the system being
modelled. In addition, PRISM can also be used to compute either the minimum or
maximum probability over a range of possible configurations or parameters of a
model, producing a form of best/worst-case analysis.

As well as probabilistic queries, PRISM also supports quantitative structures
defining costs and rewards. These structures can be used to reason about quantita-
tive measures such as “expected number of hits”, “expected success rate”, etc. This
is achieved using ‘R’ operator, which works in a similar fashion to the ‘P’ operator
above. For example, R=?[C ≤ 10] returns the expected cumulative reward within
10 units of operation.

One of the key features of PRISM is its underlying symbolic implementation
technology using data structures based on binary decision diagrams (BDDs) [6, 7].
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These allow both compact representation and efficient manipulation of extremely
large probabilistic models, by exploiting structure and regularity derived from their
high-level description. Such techniques have been successfully applied to the prob-
abilistic verification of models with as many as 1010 states [15].

4 Microscopic Approach
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Figure 3: Microscopic View of Swarm Behaviour — product of individual robot
behaviours provides state space of the whole system.

To model swarms based on the transition system in Figure 1 we have a number
of options. The first is the microscopic approach, where we instantiate such a
transition system for each robot in the swarm and then take the product of all these
to provide the behaviour of the overall swarm 2. Global variables can then be used
to calculate, for example, the number or robots searching or resting at any moment,
or the swarm energy.

Although this approach is convenient for observing the behaviour of single (or
small numbers of) robots, it is very inefficient to apply it to the overall swarm
behaviour. Most model checkers require the full product of the state space induced
by the transition system of individual robots to be generated. A schematic view
of this approach is given in Figure 3. The product of the state space quickly leads
to an explosion in the number of global states, a well known problem for model
checkers [12].

In order to practically evaluate the efficiency of this approach we created a
PRISM model for each robot. As described above, PRISM then takes the product
of these to create the state space for the overall swarm. In Table 1 we present

2When taking the product of two automata, there are many variations. We take a simple, syn-
chronous view, as follows. For every state in automaton A, say A1, A2, A3, . . . and automaton B,
say B1, B2, B3, . . ...., then given transitions A1 −→ A2 labelled by α and B1 −→ B2 labelled
by β, then we can have a transition A1B1 −→ A2B2 labelled by αβ where A1B1, A2B2, etc., are
states in the product automaton and αβ is a consistent label. We do this for every possible pair of
transitions.

9



the model construction time for PRISM and the corresponding state space for each
different swarm size3.

Table 1: State space and time for model construction.
number of robots model construction time state space

1 0.10 sec. 2.8× 102

2 0.69 sec. 8.2× 106

3 4.35 sec. 2.3× 1010

4 12.6 sec. 6.6× 1013

5 28.5 sec. 1.9× 1017

6 54.5 sec. 5.4× 1021

As can be seen from Table 1, the number of states is very small for single robots;
but the state space explodes rapidly if we increase the number of robots. Even with
just six robots the state space reaches the magnitude of 1021.

The situation is even more problematic when undertaking verification, which is
even more demanding in terms of computational resources. Table 2 shows that the
memory requirement for the verification of a simple property (such as the property
stating that the total number of robots is always equal to the initial number of
robots) exceeds 3 GB even in the case of only three robots. We have insufficient
memory to verify this property for more than three robots.

Table 2: Verification time and memory usage vs. swarm size.
number of robots verification time memory usage

1 0.38 sec. 81 KB
2 78 sec. 156 MB
3 835 sec. > 3 GB
4 − −

These results show that, due to the state explosion problem, the microscopic ap-
proach is very inefficient if we wish to observe the behaviour of the overall swarm,
and this analysis becomes effectively impossible with even a medium number of
robots. However, for a detailed analysis of the interaction between small numbers
of robots, this microscopic approach remains useful.

3Experiments were run on a 2.4 Ghz Core 2 Duo computer with 6 GB RAM running Mac OS
10.5.7.
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5 Macroscopic Approach

PRISM is generally quite efficient, allowing us to analyse models with as many
as 1010 states (see, for example, [15]). However, as we saw in Section 4, the
naive application of PRISM to robot swarm verification may generate even larger
state spaces. In the microscopic approach we built a product state-machine from
multiple copies of the state-machine in Figure 1. The size of the resulting model
was huge. We now consider an alternative approach to solving the problem of
verifying the properties of swarms comprising large numbers of robots. Rather than
representing each robot as a different probabilistic state machine and then taking
the product of all these machines to generate the whole system, we use a counting
abstraction approach (see, for example, [13]). Sometimes called the population
model, this is particularly useful if there are many identical, independent processes,
as is the case in a robot swarm, and allows us to abstract away from low-level
probabilistic details and so just consider global population behaviour.

5.1 Modelling the Scenario

Since we know that all the robots are modelled by identical probabilistic state ma-
chines, then we will model the whole system by one state machine with exactly the
SEARCHING, HOMING, etc, states we saw in Figure 1. However, to each of these
states we add a counter which is used to record how many robots are actually in
that state at that moment. Thus, if 20 robots are searching then the counter in the
SEARCHING state will be 20. By examining Figure 1 we can calculate how many
of these should move to GRABBING, how many should move to HOMING, and how
many should remain in SEARCHING at each step. Thus, in addition to the 5 states,
each state is labelled with a set of difference equations explaining how the number
of robots associated with each state evolves. It is important to note that we are
abstracting away from local probabilities and now considering a more global view.

Now we are in a position to define the (difference) equations describing how
the numbers of robots in each of the 5 states changes over time.

At time t, let

• NS i(t): number of robots at the SEARCHING state for i time steps
(i ∈ {0, . . . , Ts − 1}),

• NG i(t): number of robots at the GRABBING state for i time steps
(i ∈ {0, . . . , Tg − 1}),

• ND i(t): number of robots at the DEPOSITING state for i time steps
(i ∈ {0, . . . , Td − 1}),
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• NH i(t): number of robots at the HOMING state for i time steps
(i ∈ {0, . . . , Th − 1}), and

• NRi(t): number of robots at the RESTING state for i time steps
(i ∈ {0, . . . , Tr − 1}).

Now, assume that Ns(t), Ng(t), Nd(t), Nh(t) and Nr(t) denote the total num-
ber of robots in the states SEARCHING, GRABBING, DEPOSITING, HOMING and
RESTING, respectively at time step t. Then, the number of robots in each state at
time step t can be calculated using the following equations:

Ns(t) =
Ts−1∑
i=0

NS i(t); Ng(t) =
Tg−1∑
i=0

NG i(t);

Nd(t) =
Td−1∑
i=0

ND i(t); Nh(t) =
Th−1∑
i=0

NH i(t);

Nr(t) =
Tr−1∑
i=0

NRi(t)

and the total number of robots at time t, Ntotal(t) is as follows.

Ntotal(t) = Ns(t) +Ng(t) +Nd(t) +Nh(t) +Nr(t)

Following Figure 1, NS i(t), NG i(t), etc., are calculated by:

NSi: NS 0(t+ 1) = NRTr−1(t)
NS 1(t+ 1) = (1− γf )NS 0(t)
. . . . . .
NSTs−1(t+ 1) = (1− γf )NSTs−2(t)

NGi: NG0(t+ 1) = γf

Ts−2∑
i=0

NS i(t)

NG1(t+ 1) = (1− γg)NG0(t)
. . . . . .
NGTg−1(t+ 1) = (1− γg)NGTg−2(t)

NDi: ND0(t+ 1) = γg

Tg−2∑
i=0

NG i(t)

ND1(t+ 1) = ND0(t)
. . . . . .
NDTd−1(t+ 1) = NDTd−2(t)
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NHi: NH 0(t+ 1) = NGTg−1(t) + NSTs−1(t)
NH 1(t+ 1) = NH 0(t)
. . . . . .
NH Th−1(t+ 1) = NH Th−2(t)

NRi: NR0(t+ 1) = NH Th−1(t) + NDTd−1(t)
NR1(t+ 1) = NR0(t)
. . . . . .
NRTr−1(t+ 1) = NRTr−2(t)

Note that fractional values are rounded to the nearest whole number.

5.2 Verification

In this section we will analyse different scenarios based on different parameter
settings. All these scenarios have been the subject of relevant research which has
been carried out on real robots or simulations. Here we will consider them in a
verification context.

The probabilistic model developed in [34] was assessed by carrying out simu-
lations, effectively testing only selected scenarios. We now wish to capture these
in PCTL and then carry out PRISM verification. There are many properties we can
verify, but we will concentrate on the ones derived from corresponding questions
in the related papers, e.g. [34].

So, in this section, we present the results from running PRISM on our model
with different properties and parameters. We run them both in simulation mode,
whereby we generate a single random run, and in verification mode, whereby we
assess all possible runs against a PCTL formula.

However, before discussing the model checking experiments, we will explain
how swarm energy is calculated. In a swarm, each robot consumes a certain amount
of energy at each time step. We assume that a robot consumes Es, Eg, Er and Eh

units of energy at each step in the SEARCHING, GRABBING, RESTING and HOMING

states, respectively, and each food-item delivers the swarm Ed units of energy (we
assume that Ed is net energy, i.e. it is the energy obtained from the food carried
minus the energy consumed in the depositing state; we also assume that a robot
can carry only one food-item.) The total swarm energy in the next time instance,
denoted by En(t+ 1), is calculated as follows:

En(t+1) = En(t)+EdNDTd−1(t)−EsNs(t)−EgNg(t)−ErNr(t)−EhNh(t)

where NDTd−1(t) denotes the number of robots that have been in DEPOSITING

for Td − 1 time steps; and Ns(t), Ng(t), Nr(t) and Nh(t) denote the number
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of robots that are in the SEARCHING, GRABBING, RESTING and HOMING states,
respectively, at time t.

Figure 4: Total swarm energy vs. the total number of robots, where γf = 0.5 and
Ed = 40.

In the sequel, we take N as the total number of robots. The energy parameters
used in the verifications are as follows: Ed = 50, Er = 2, Eh = 6, Es = 12 and
Eg = 12. We also take Ts = Tg = Th = Td = Tr = 5 seconds. We note that
these parameters are easy to change for comparison with specific robot simulations
or experiments.

5.2.1 Basic Swarm Model (with fixed γf and γg)

We begin our analysis with a model based on the state structure in Figure 1, which
we will subsequently enhance to become more sophisticated aiming to show that
we can easily capture a number of different scenarios. We start with a scenario,
where γf (probability of finding food) and γg (probability of grabbing food) are
constant. Throughout this scenario, we assume γg = 0.7.

Figure 4 illustrates the simulation of the total swarm energy w.r.t. different
number of robots, when Ed = 40 (the energy delivered by each food item). The
figure shows that the swarm gains energy throughout the foraging process. From
this observation, we would conclude that this swarm colony can survive since it
will have sufficient energy. However, this does not reflect all situations, because
the simulation in the figure considers only some behaviour of the system. In order
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to explore all behaviours, our analysis should be based on verification.
Using the verification module of PRISM we can verify whether a property holds

for all possible runs; or we can determine the actual probability of a property being
true. Assume we want to check the scenario above with verification, and assume
we want to consider an arbitrary food finding probability. Table 3 illustrates the ver-
ification results of the expected energy levels reached within T seconds, expressed
by R=?[C ≤ T ], when we take γf ∈ {0, 0.1, . . . 1}, Ed = 40 and T = 1000. In
Table 3, ? is used to query PRISM to return the value (Here, C is a PRISM operator
denoting the accumulation.). As the table shows, the expected energy levels of the
swarm are negative, if we consider all possible cases.

R=?[C ≤ T ] P=?�(R≥0[S])
N expected energy probability
100 −12.96× 103 0.0
200 −34.46× 103 0.0
300 −76.97× 103 0.0
400 −134.52× 103 0.0
500 −197.37× 103 0.0

Table 3: Verification results of expected swarm energy for different number of
robots (Ed = 40, γf ∈ {0, 0.1, . . . 1}).

R=?[C ≤ T ] P=?�(R≥0[S])
N expected energy probability
100 135.00× 103 1.0
200 260.79× 103 1.0
300 361.94× 103 1.0
400 447.97× 103 1.0
500 522.66× 103 1.0

Table 4: Verification results of expected swarm energy for different number of
robots (Ed = 50, γf ∈ {0.1, 0.2, . . . 1}).

Table 3 also shows the probability that the expected energy’s always being pos-
itive in the long run, expressed by P=?�(R>0[S]), is 0.0 (Here, ‘S’ is an operator
which denotes the steady state (long-run or equilibrium) behaviour of a model.)
This shows that the swarm will not have enough energy in the long run to survive.

Like other model checkers, PRISM provides a visual presentation of the indi-
vidual executions, and counter-examples. This tool helps us analyse the counter-
examples when a property does not hold, and change the model accordingly. As we

15



show in Table 3, the verification result of P=?�(R≥0[S]) 0.0. When we analysed
the traces provided by the PRISM we figured out that more energy-rich foods need
to be provided, and the food finding probability (γf ) should always be positive. We
therefore changed the parameters accordingly, and re-ran the verification experi-
ments. The Table 4 illustrates the new results, where we changed the parameters as
Ed = 50 and γf ∈ {0.1, 0.2, . . . 1} (we kept the rest of the parameters same), and
modify the model accordingly. The results show that the expected swarm energy
(which is the accumulation of all possible paths) never goes below 0.

We can actually verify a single property by simply considering a random choice
of robots. In this case, we assumeN is chosen arbitrarily from the set {20, 40, . . . 500}.
When we perform the verification, the PRISM returns 305 × 103 for the prop-
erty R=?[C ≤ T ] (where T = 1000 seconds), and returns 1.0 for the property
P=?�(R≥0[S]).

Another design condition is that the total number of robots, N , never changes
(i.e. equal to the initial number of robots Ninit). This can be expressed in PCTL
as follows:

P≥1 (N = Ninit)

whereN is the initial number of robots. We also verified this formula using PRISM,
thus guaranteeing that the above design condition is indeed satisfied.

5.2.2 Swarm Model with variable γf and γg

Figure 5: Total swarm energy vs. the (decreasing) probability of finding food (γf )
for N = 2000 (We assume γg = 0.7 and Ed = 50).
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Figure 6: Total swarm energy v.s. α, the density of arena, for N = 2000 (We
assume γf and γg are variable, and Ed = 50.)

In Figure 4, the γf values remained constant throughout the runs. Now, in
Figure 5, we use a variable γf value that decreases over time, i.e. modelling the
situation when food gradually becomes more scarce. So, γf is 1.0 at t = 0, and
reduces by 0.001 in every second. The simulation in Figure 5 shows that the total
swarm energy initially increases, since the probability of finding food is high, i.e.
there is much food available for the swarm. When the probability of finding food
decreases, i.e. food availability reduces, the energy gain becomes equal to the en-
ergy spent by the swarm. After a while the energy gained becomes less than the
energy spent, since the food becomes scarce, and therefore the total swarm energy
decreases.

Although γf is variable in Figure 5, its decrease depends only on time. This
dependency does not allow an infinite execution of the system. In Figure 6 and
Figure 7 we instead consider that γf and γg are variable. Namely, γf depends
on the number of robots foraging (i.e. robots searching, grabbing and depositing).
Specifically, we assume that

γf (t) =
(

1−
αNforaging(t)

N

)
where Nforaging(t) = Ns(t) + Ng(t) + Nd(t), and α is the density factor, such
that α ∈ {0, 0.1, . . . , 1}. The density factor denotes how densely the arena is
populated (informally speaking, it represents the grid size and population ratio).
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So, if the arena is densely populated, i.e. α is high, then γf will be more sensitive
to the changes in the number of foraging robots.

We also assume that γg depends on the number of robots grabbing, which is
formulated as follows:

γg(t) =
(

1− αNg(t)
N

)
.

Intuitively, if more robots are in the GRABBING state, the probability of a robot
being able to grab a food item decreases; if fewer robots are ‘GRABBING’, the
robot has more chance to grab a food item (i.e. there is less competition).

Figure 7: Number of foraging robots v.s. α, the density of arena, for N = 2000
(We assume γf and γg are variable, and Ed = 50.)

Figure 6 shows that the energy gain of the swarm decreases if the density of
the arena increases whereas Figure 7 shows that the number of foraging robots
converges to oscillate above and below some value in all cases; but it will converge
more quickly if the density of the arena is high.

Rather than just running individual experiments, we can verify some properties.
Assume we wish to verify the probability that

“if the number of robots is more than n, then the average swarm energy
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exceeds E within tA time steps”.

This property can be used to make sure that the swarm reaches a desired energy
level within a certain time, if there are sufficient number of robots. This property
can be expressed in PCTL as follows:

P=?�(N ≥ n⇒ true U≤tA(Enaverage ≥ E))

We checked the above formula under the assumptions that γf , γg are variable, α ∈
{0, . . . , 1}, N ∈ {20, 40, . . . , 400}, n = 100, E = 100 × 103, and tA = 100.
PRISM returned a probability value of 0.97. This result shows that, in this scenario,
it is most likely (97%) that the total energy required is reached within the required
time, if the swarm has at least 100 robots.

Using the same settings we also queried the following formula

P=?�(t ≥ tA ∧N ≥ k ⇒ Nforaging ≥ n)

which analyses the probability that after tA time steps the number of foraging
robots is always greater than n, if the total size of the swarm is larger than k robots.
The verification result 1.0 for n = 100, k = 300 and tA = 100. This property is
also useful for checking whether a certain number of robots are always foraging.

5.2.3 Swarm Model with variable γf and γg and without Resting Timeout

In the scenarios above, we assumed that if a robot moves to the RESTING state from
HOMING or DEPOSITING states, it waits Tr time steps in the RESTING state. We
now change this scenario and assume that the robots do not wait in the RESTING

state for a fixed amount of time before moving to the SEARCHING state, but the
waiting time depends on a probability γs. This probability, in turn, depends on the
number of robots in the DEPOSITING and HOMING states. Namely, robots move
from RESTING to SEARCHING states with probability

γs(t) =
λNDTd−1(t)−NHTh−1(t)

N
,

and stay in the RESTING state with probability 1 − γs. In the above, λ is the
energy gaining parameter, and NDTd−1(t) (respectively NHTh−1(t)) denotes the
number of robots that have been in DEPOSITING (respectively HOMING) for Td−1
(respectively Th − 1) time steps. Intuitively, we can think of this new scenario
as follows: since each robot brings a food item when in the DEPOSITING state, if
more robots move to the DEPOSITING state and fewer robots move to the HOMING

state, then more robots will move to the SEARCHING state. As can be seen above,
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γs is proportional to the energy gaining parameter λ. That is, if we increase the
value of λ, then more robots will move to the SEARCHING state.

Figure 8: Number of foraging robots and total swarm energy vs food energy gain
(λ) for N = 2000 (We assume γf , γg are variable, α ∈ {0, 0.1, . . . , 1} and Ed =
50).

We can simulate the swarm behaviour of the swarm for a particular number
of robots and λ value. Assume γf and γg are defined as in Section 5.2.2, where
we take α ∈ {0, 0.1, . . . , 1}. Figure 8 shows the number of foraging robots and
corresponding energy gains with respect to different λ values. If we increase λ,
both the number of foraging robots and the energy of the swarm increases.

For our scenario, we define a PRISM model where λ takes discrete steps with
increments of 0.1 in the range of values that λ can take. In this experiment, we take
λ ∈ {2.0, 2.1, . . . , 3.0} and N ∈ . . . {20, 40, . . . , 200}. We also assume that γf

and γg are defined as in Section 5.2.2, where we take α ∈ {0, . . . , 1}.
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Then we checked the following PCTL property:

P=?�(R =?[C ≤ T ]{N ≥ m} ≥ 2× R =?[C ≤ T ]{N ≥ n})

which assesses the probability that the expected energy of the swarm whose size
greater than m is at least the double the expected energy of the swarm whose size
is greater than n. PRISM actually verifies that this is always the case for m = 200
and n = 100. This property is an example of comparing the behaviour of two
different swarm.
Note that in the subformula R =?[C ≤ T ]{N ≥ m}, the {} represents a filter
expression. That is, the property is only checked at the executions where N ≥ m
is satisfied.

We also checked following property:

P=?♦(P≥1�Nforaging ≥ l{n ≤ N ≤ m})

which states that if the number of robots is between n and m, then there is a future
time point from which the number of foraging robots is always greater than l. The
verification result of this property 0.60 for n = 100, m = 200 and 50, which
implies this is guaranteed only 60% of time.

5.2.4 Collision Avoidance

In the original probabilistic model in [34] there are additional states to deal with
avoidance. In particular, the states SEARCHING, GRABBING, DEPOSITING and
HOMING each have an associated state AVOIDANCEx where x ∈ {s, g, d, h} where
AVOIDANCEs denotes avoidance when searching, AVOIDANCEg denotes avoidance
when grabbing etc. Associated with each avoidance state is a parameter Ta which
denotes the time taken for avoidance and a probability γr of moving to an avoidance
state. In the case of the states AVOIDANCEs, AVOIDANCEd and AVOIDANCEh after
the time for avoidance is over there is a transition back to the state that the robot
was previously in i.e. SEARCHING, DEPOSITING or HOMING (assuming that the
searching time Ts, depositing time Td or homing time Th is not over). From the
state AVOIDANCEg, after the time for avoidance is over there is a transition back
to the state SEARCHING (assuming the grabbing time Tg is not over). If, in each
case the time for the searching Ts, grabbing Tg, depositing Td or homing Th is
over a transition is made to the state they would have been in if avoidance had not
taken place. That is HOMING if they were in the AVOIDANCEs or AVOIDANCEg

states and RESTING if they were in the AVOIDANCEs or AVOIDANCEd states. The
probabilistic state machine which models this scenario is presented in Figure 9.

To model the new scenario we must first extend the calculations of how many
robots are in each state to take account of these additional states and transitions.
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Figure 9: Probabilistic state machine extended with Avoidance states.

Let NAS j,i(t) be the number of robots in the AVOIDANCEs for i time steps
(i ∈ {0, . . . , Ta−1}) having already performed j time steps (j ∈ {0, . . . , Ts−1})
in searching (We can define NAGj,i(t), NADj,i(t) and NAH j,i(t), similarly.) In
order to cover the collision avoidance, we modify the equations in Section 5.1 as
follows:

NASj,i: NAS j,0(t+ 1) = γrNS j(t)
NAS j+1,1(t+ 1) = NAS j,0(t)
. . . . . .
NAS j+1,Ta−1(t+ 1) = NAS j,Ta−2(t)

NAGj,i: NAGj,0(t+ 1) = γrNGj(t)
NAGj+1,1(t+ 1) = NAGj,0(t)
. . . . . .
NAGj+1,Ta−1(t+ 1) = NAGj,Ta−2(t)

NADj,i: NADj,0(t+ 1) = γrND j(t)
NADj+1,1(t+ 1) = NADj,0(t)
. . . . . .
NADj+1,Ta−1(t+ 1) = NADj,Ta−2(t)
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NAHj,i: NAH j,0(t+ 1) = γrNH j(t)
NAH j+1,1(t+ 1) = NAH j,0(t)
. . . . . .
NAH j+1,Ta−1(t+ 1) = NAH j,Ta−2(t)

NSi: NS 0(t+ 1) = NRTr−1(t)
NS 1(t+ 1) = (1− γr)(1− γf )NS 0(t) + NAS 0,Ta−1(t)
. . . . . .
NSTs−1(t+ 1) = (1− γr)(1− γf )NSTs−2(t) + NASTs−2,Ta−1(t)

NGi: NG0(t+ 1) = (1− γr)γf

Ts−2∑
i=0

NS i(t)

NG1(t+ 1) = (1− γr)(1− γg)NG0(t) + NAG0,Ta−1(t)
. . . . . .
NGTg−1(t+ 1) = (1− γr)(1− γg)NGTg−2(t) + NAGTg−2,Ta−1(t)

NDi: ND0(t+ 1) = (1− γr)γg

Tg−2∑
i=0

NG i(t)

ND1(t+ 1) = (1− γr)ND0(t) + NAD0,Ta−1(t)
. . . . . .
NDTd−1(t+ 1) = (1− γr)NDTd−2(t) + NADTd−2,Ta−1(t)

NHi: NH 0(t+ 1) = NGTg−1(t) + NSTs−1(t) +
Ta−1∑
j=0

NAGTg−1,j(t) + NASTs−1,j(t)

NH 1(t+ 1) = (1− γr)NH 0(t) + NAH 0,Ta−1(t)
. . . . . .
NH Th−1(t+ 1) = (1− γr)NH Th−2(t) + NAH Th−2,Ta−1(t)

NRi: NR0(t+ 1) = NH Th−1(t) + NDTd−1(t) +
Ta−1∑
j=0

NAH Th−1,j(t) + NADTd−1,j(t)

NR1(t+ 1) = NR0(t)
. . . . . .
NRTr−1(t+ 1) = NRTr−2(t)

This is modelled in PRISM by extending the original model in Figure 1 with
additional states and updating the fomulae calculating the numbers of robots as
described above. In this scenario, we assume

γf (t) =
(

1−
αNforaging(t)

N

)
; γg(t) =

(
1− αNg(t)

N

)
; γr(t) =

αNactive(t)
N
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where Nactive is defined as the active robots in the arena, i.e. Nactive(t) = N −
Nr(t).

Figure 10: Number of foraging robots v.s. α, the density of arena for N=2000.

Figure 10 shows the number of foraging robots vs different α values for 2000
robots. The figure shows that if the density of the arena increases, the number of
foraging robots decreases, because more robots move into avoidance states. We
can observe that the average number of foraging robots are less than the case of
without avoidance states. This is because some of the robots avoid from collision,
and stop foraging.

5.3 Verification vs. Statistical Simulation

In this section, we present some statistics on the verification experiments we carried
out in Section 5.2. Namely, we provide the resources used to construct the relevant
model and to perform verification.

Some of the verification experiments in Section 5.2 can be approximated using
statistical simulations, such as Monte Carlo. A statistical simulation works on a
statistical sampling scheme, where the problem is solved using a set of randomly
generated samples, and measuring what fraction of the random set satisfy a prop-
erty [19].
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Although statistical simulation can be useful in some cases, this method has
some limitations. Verification (and model checking) explores all situations; whereas
statistical simulation can explore some situations, and cannot observe all behaviours.
In some critical scenarios, this might cause some problems. For example, the safety
properties such as “it is guaranteed that something bad will never happen” need to
be evaluated under all possible situations, which cannot be achieved by the simu-
lation method.

The other limitation is that simulations need to be executed for a certain amount
of time. On the other hand, we perform verification and model checking unbound-
edly. That is, the execution of a verification experiment should not necessarily be
restricted by a time bound. Thanks to the underlying mathematical foundation,
model checkers automatically construct a finite structure which is mathematically
equivalent to the infinite run of the system.

Table 5: Space and time usage in model construction.
model construction

Model scenario states transitions trans. matrix time
1 random γf 34, 937 35, 186 1, 966, 611 390 sec.
2 variable γf , γg 10, 221 10, 418 362, 545 1, 814 sec.

3
variable γf , γg 17, 076 18, 285 52, 487 171 sec.

no resting timeout

Table 6: Comparison of space and time usages of verification and statistical simu-
lation.

verification statistical simulation
Prop. Model result time memory result time memory

I 1 true 37 sec. 750 KB true 125 sec. 162 MB
II 1 305× 103 2473 sec. 101 MB 301× 103 127 sec. 164 MB
III 1 1.0 9276 sec. 748 KB N/A N/A N/A
IV 2 1.0 5.8 sec. 420 KB 1.0 148 sec. 158 MB
V 2 0.97 67 sec. 24 MB N/A N/A N/A
VI 3 0.60 4 sec. 23 MB N/A N/A N/A
VII 3 1.0 131 sec. 32 MB N/A N/A N/A

In Table 6, we compare the verification results with statistical simulations 4.
4We remind that experiments were run on a 2.4 Ghz Core 2 Duo computer with 6 GB RAM

running Mac OS 10.5.7.
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To perform the simulations, we use the statistical model checking environment of
PRISM, which works very similar to the Monte Carlo method 5. The advantage
of using PRISM’s own simulation environment is that it allows us to use PCTL
formulas to perform simulation, which cannot be done using Monte Carlo, or sim-
ilar methods. This gives us the opportunity to compare verification and statistical
simulation directly in the same model and using the same logical formulae.

In Table 6, the properties I, II, III, IV, V and VI are defined as follows (assume
N is the total number of robots at any time, Ninit is the initial number of robots,
Nforaging is the number of foraging robots, Enaverage is the average energy, and
R =? is the expected energy):

I P≥1(N = Ninit)

II R=?[C ≤ T ]

III P=?�(R>0[S])

IV P=?�(t ≥ tA ∧N ≥ k ⇒ Nforaging ≥ n)

V P=?�(N ≥ n⇒ true U≤tA(Enaverage ≥ E))

VI P=?♦(P≥1�Nforaging ≥ l{n ≤ N ≤ m})

VII P=?�(R =?[C ≤ T ]{N ≥ m} ≥ 2× R =?[C ≤ T ]{N ≥ n})

where ta = 100 seconds, T = 1000 seconds, E = 100 × 103, n = 100,m =
200, k = 300, l = 50. Note that the properties above were checked against the
corresponding models in Table 5, where each model was constructed according to
the parameter settings of the related scenario.

Despite the fact that verification is in general slower than simulation, Table 6
shows that the performance of the verification experiments we carried out is very
promising (Note that the verification results are based on unbounded execution;
whereas the simulation results are based on 1000 seconds of the execution of the
system.). Even in some cases, verification performs better than simulation. Actu-
ally, the abstraction technique that we employ prevents the state explosion problem,
and makes the resulting state space significantly less than the product space. We
remind that in the microscopic approach the state space raised to the magnitude of

5We could actually implement a statistical simulation, such as the Monte Carlo method, using
MATLAB. In this case, some of the functionalities of PRISM need to be simulated using some
MATLAB features. For example, randomness of sampling can be obtained by choosing a suitable
random set, and the probabilistic choice is simulated by comparing a random number output of the
rand function with a probabilistic threshold.
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1021 for as low as 6 robots (see Table 1). However, in the macroscopic approach,
we could reduce the state space to the level of 105 states for much higher number
of robots. This proves the effectiveness of our abstraction method.

Note also that the simulation method cannot handle some of the verification
experiments, because the complex logical formulae, such as III, V, VI, VII, are
not supported by the simulation tool (In Table 6, they are marked as N/A). This is
actually another limitation of the statistical simulation.

5.4 Discussion

The size of a probabilistic model (i.e. the number of states/transitions) is critical
to the efficiency of probabilistic verification on it, since both the time and memory
required to perform verification are proportional to the model size. Actually, the
complexity of model checking a PRISM model against a PCTL formula is linear
in the size of the formula and polynomial in the size of the model [22]. Therefore,
the complexity of the verification problems discussed in this paper is polynomial
in the total number of states and transitions in the probabilistic transition systems.

This result suggests to use an efficient way of modeling. Unfortunately, it is
very easy to create models that are extremely large. As discussed in Section 4,
if we consider the bahaviour of each robot individually, modeled as a transition
system, and then consider the overall system behaviour, modeled by the product of
all individual transition systems, we end up a huge state space. We observed that
this makes the verification very difficult. Actually, Table 1 shows that having the
product of transition systems rapidly increases the state space, i.e. the model size.
Also, Table 2 shows that the verification becomes impossible after a certain size.

Although it has been proved that the complexity of the verification polynomi-
ally depends on the model size, the verification becomes intractable for this type
of modeling because the model size explodes very quickly. Actually, the state
explosion is a common problem in model checking. Therefore, our macroscopic
approach provides a remedy for this problem. Here, instead of modeling the robots
individually, we model the common behaviour in a single state machine. This
method is feasible because all the individual robots exhibit same behaviour.

The advantage of this method is that the model size does not depend on the
number of robots, because we only have one transition system. Since the model
size, i.e. the number of states and transitions in the state machine, does not increase
rapidly, the resulting state space is under control and the state explosion problem
is prevented. This is indeed illustrated in Table 5, where the model sizes are signif-
icantly lower than the of Table 1, and unlike the microscopic case model sizes do
not increase exponentially. Therefore, the verification becomes tractable.

We also remark that in Section 5.2 we have shown that verification can be used
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in the analysis of various scenarios discussed above. Our aim here is not to show
that one particular scenario is better than the others; we rather show that we can
model a number of scenarios that may be of interest to swarm designers and in
addition to providing simulations can verify relevant properties of these scenarios.

This technique can be applied to other scenarios as well. For example, obsta-
cles and interference between robots can be considered. One possible approach
for modelling this scenario is to take timeouts as a function of number of forag-
ing robots. For example, when there are obstacles and interference, timeout for
searching increases, that is, robots spends more time searching.

Finally, it is worth mentioning that we can also use performance metrics other
than energy, such as number of objects collected per second, number of objects
collected per unit of energy, foraging efficiency, etc.

6 Other Approaches

As we have seen already, the counting/population abstraction allows us to model
large numbers of robots. However, the probabilistic elements within the original
model are “smoothed” out to provide difference equations over discrete values.
While this provides a very tractable approach, it is useful to then consider what
can be done if we re-introduce probabilistic aspects into the counting/population
model. In fact this allows us to develop many, quite complex, formulations but we
will just outline two such in the sections below.

6.1 Uncertainty in the Counting Abstraction

When we model the probabilistic behaviour of a robot, can we be certain that our
probability estimates are correct? Surely there is always the possibility that they
miss important aspects? And then, when we move to the counting/population ab-
straction, are all aspects taken care of? Concerning this second problem, imagine
that we have a transition from state S1 to S2 which has a probability of 0.000001.
When we move to the counting abstraction then this transition effectively rounds to
zero, even with as many as 10000 robots. So, we can re-introduce some uncertainty
in both the above cases by having probabilistic transition even within our counting
abstraction. Consider Figure 11.
Here the state transitions on the left-hand side represent a straightforward counting
abstraction with N robots moving from state S1 to state S2 at every step. However,
if the original modelling is uncertain, or if we have lost some possibilities due
to rounding real numbers to integers, then we might wish to re-introduce various
possibilities. So, we might adapt the state transitions to be like those on the right-
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Figure 11: Introducing Probabilistic Transitions into a Counting/Population
Model.

hand side where there is now a small (here just 1%) chance that N− 1 robots will
move as above, but that 1 robot will also move to a different state (S3 in Figure 11).
In such a way we might re-introduce some more realistic extreme conditions into
the overall modelling.
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Figure 12: General Population Abstractions.

6.2 Abstracting from the Abstraction

As we move to a counting/population abstraction, we move from considering de-
tailed probabilities to considering the exact numbers of robots that are in certain
states. But, is it really important to know exactly how many robots are in each
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state? Possibly all we need to know is that there are zero, a small non-zero number,
a medium sized number, a large number, or all the robots in a certain state. This
would lead us on to some model such as in Figure 12 where there are a number
of (probabilistic) possibilities, but where each possibility only has a broad cate-
gorisation of the number of robots. This, then, allows us to reason about general
population movement in a probabilistic context without being concerned over exact
robot numbers. This can be useful when our swarm population is very large.

7 Related Work

Related work falls into two main areas: comparison of our results with that of other
foraging robot research, and the application of formal methods, in particular model
checking, to robot swarms.

7.1 Foraging Robots

Foraging robots have been studied in a number of other papers, for example [32,
30, 33, 34, 35]. The foraging robot scenario we focus on here is from [34]. In that
paper the authors’ develop a probabilistic model for a swarm of foraging robots.
They then consider the net energy of the swarm and the number of robots search-
ing, resting and homing using the probabilistic model and a simulation. However,
as stated previously, we here ignore avoidance. Note that we could add states to
represent avoidance to the transition system represented in Figure 1 and probabil-
ities that the avoidance state is reached to match the model in [34]. In Section 5
of that paper the energy of the swarm over time is considered for different resting
times (Figure 8 and Figure 9) for the probabilistic model and a simulation. This
is similar to the experiments we have carried out. In that paper it is shown that
there is an optimum resting time to maximise swarm energy given the other swarm
parameters.

Figure 9 of [34] plots the number of robots searching, resting and homing for
a particular value of the resting parameter. This shows that, in the probabilistic
model, the number of robots varies at first before reaching a steady state. The
simulations vary over time but deviate above and below the values predicted by
the model. In our paper, Figure 8 plots the number of robots over time related to
differing probabilities of finding food and food energy factor. These both show
the initial oscillation followed by an eventual steady state, a pattern that was also
observed for the probabilistic model in [34].

Foraging robots are also considered in [35] where the authors examine simple
mechanisms for adjusting the ratio of resting to foraging robots. These mechanisms
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include successful food retrieval by the robot itself, successful food retrieval by
other robots and collisions with other robots. The authors find that the use of shared
information about food retrieval by team mates achieves the highest net energy and
the fastest change of ratio of resters to foragers when the food density changes.
This is analogous to the experiments we carried out in Section 5.2.3. Since we
model the robots as a swarm we cannot isolate the parameter of successful food
retrieval by the robot itself. Further, as we do not model avoidance, we cannot
consider collisions with other robots. However, we can examine the number of
robots who have been successful or unsuccessful in retrieving food by looking at
the number of robots in the DEPOSITING and HOMING states. In this case, rather
than adjusting time-outs for searching and resting (Ts, Tr respectively) we can
change the probability of leaving the RESTING state depending on the number of
robots in the DEPOSITING and HOMING states.

In [30] a foraging robot scenario similar to that described above is used. Here,
robots have a probability, P , of leaving the nest and P can be changed dynamically
depending on whether the robot itself has had previous success or failure in finding
food; success increases P while failure decreases it. Two hypotheses are tested.
First, whether the efficiency of the swarm is increased by dynamically changing
P (self organisation) and, second, whether two classes of robot emerge: one spe-
cialised in foraging and one specialised in resting with high and low values of P
respectively (task allocation). Experiments with real robots have confirmed both of
these hypotheses. In our paper, Section 5.2.3 highlights scenarios where the prob-
ability of leaving the nest is dependent on robots having found food or not. As we
model the swarm of robots rather than individual robots we cannot directly retrieve
the probability of an individual robot leaving the nest or consider the specialisation
of robots (hypothesis 2 of [30]).

There are numerous other papers that discuss foraging of robot swarms in-
cluding [32], which develops a mathematical model for a group of foraging robots
and considers the effects of interference on the performance of the swarm. In ad-
dition, similar works have been carried out, which focus on different aspects of
robots, such as coordination [17], motion planning and control [31], high-level
behaviour [26], etc.

7.2 Formal Verification of Robot Swarms

We here highlight previous work in which the formal verification of robot swarms
has been considered, typically using model checking or deductive techniques for
temporal logics. We begin by examining our previous work in this area. We have
formally specified the alpha algorithm [37] for a wireless connected swarm using
temporal logics. Each robot has range limited wireless communication and can

31



only receive and broadcast messages to robots within range.
In [41] we specified this swarm algorithm using propositional linear-time tem-

poral logic. In [9] this temporal specification of swarm algorithms was used to
explore ways to generate implementations from a formal specification.

In [2] we considered the state transition system for a swarm of foraging robots,
from [35] and represented this using both propositional and first-order temporal
logics. A number of properties are then verified using a resolution based theorem
prover for these logics. Whilst this models the transition system for each robot,
similar to that in Section 4 of this paper, it focuses on the state robots are in rather
than specific location or movement details. In the propositional setting we could
only represent a small number of robots due to the state explosion problem also
encountered in this paper. In the first-order case, the robots are represented using
variables and, although this allows us to represent an infinite number of robots,
syntactic restrictions of the monodic first-order temporal logic used in the prover
added further representational limitations.

In [27, 28], Kloetzer and Belta adopt a model checking approach to analysing
the motion of robot swarms. A hierarchical framework is suggested to abstract
away from the many details of the problem. First, a continuous abstraction is used
to capture the main features of the swarm’s position and size (the example consid-
ered uses the centroid and variance of robot positions to achieve this). Next this
continuous abstraction is abstracted further, providing a discrete model to which
model checking can then be applied. That approach differs in a number of ways
to this paper. Firstly it concentrates on robot motion and behaviour such as obsta-
cle avoidance, swarm cohesion, and collision avoidance. Our work has abstracted
away from considerations of robot location in that we do not represent details of the
physical space. Thus, while Kloetzer and Belta concentrate on detailed movement,
navigation, and collision avoidance of robots, we concentrate on the high-level be-
havioural choices of the robots, rather than their low-level navigation. We also
consider much larger numbers of robots within a swarm and highlight the proba-
bilistic aspects of their behaviours.

A paper related to that of Kloetzer and Belta is that of Fainekos et al. [18].
Again, the emphasis here is on the analysis of robot motion rather than swarm be-
haviours. This approach again involves the production of a discrete representation
(specifically, a finite state transition system) of the continuous space of movement.
A model checker is used to produce traces that satisfy particular properties (e.g.,
visiting regions in a particular order, eventually visiting a region but avoiding other
regions on the way). These are then used to produce a continuous movement plan
whilst maintaining the required property. The key difference between that work
and ours is again that they focus on motion and do not mention robot swarms. A
related approach is given in [25] which, after assessing a number modelling and
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verification techniques, focusses on model checking. There the underlying transi-
tion system has states that relate to the robots’ behaviour, but only a small number
(three) of robots is considered.

In [8], Casadei and Viroli investigate “collective sorting”, an online distributed
algorithm with emergent properties, using PRISM. They model individual ele-
ments and then take a product of finite-state structures to produce the overall state-
space. Importantly, they use approximation techniques to avoid state-space explo-
sion. Although not directly addressing robot swarms, this work also highlights how
probabilistic model checking can be very useful in analysing the emergent proper-
ties on self organising systems. In contrast, we tackle a realistic robot architecture,
address large numbers in a swarm (through the population-based approach) and
verify important swarm coherence properties.

Other formalisms have been considered to specify and verify aspects of real-
istic robot swarms. In [39], Rouff et al. compare a number of formal methods
for representing and verifying part of the Autonomous Nano Technology Swarm
(ANTS) mission aimed at sending small swarms of spacecraft to study the asteroid
belt. As a result of this, in [38] four formal methods were selected, namely Com-
municating Sequential Processes (CSP), Weighted Synchronous Calculus of Com-
municating Systems (WSCCS), X-Machines and Unity Logic. These are proposed
for use alongside techniques from agent-oriented software engineering. While the
authors do not apply these techniques, they conclude that there is a need to de-
velop new formal techniques alongside specialised sets of models and software
processes based on a number of formal methods and other areas software engi-
neering. Importantly, they do do not tackle specific swarm architectures, carry out
full verification experiments, or address the probabilistic aspects inherent in any
practical undertaking.

Finally, in [33], Lerman et al. use distributed stochastic processes to model
swarm robots. An individual robot controller is used to develop a probabilistic
model and is applied it to the area of “stick pulling”, foraging and aggregation.
The modelling is macroscopic, i.e. it directly describes the collective behaviour of
the swarm and so bears a relationship to our work. Their models are compared
with simulations and experiments on real robots with good agreement between the
models and simulations or experiments. The paper [36] also develops a stochastic
approach.

8 Concluding Remarks

In this paper we have taken a probabilistic state transition system for existing for-
aging swarm robots from [34] and used it as the basis for verification of global
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swarm behaviour using the PRISM model-checker. Rather than instantiating such
a transition system for each robot and performing local verification, we primar-
ily adopt a macroscopic (alternatively termed “population-based” or “counting ab-
straction”) approach, where we represent the whole swarm using one transition
system calculating the number of robots in each state (based on a combination of
the number of robots in the previous state and the probability that robots change
state). This allows us to analyse the global foraging robot scenario for a number
of parameters. In particular, we investigate the changes to swarm energy relating
to changing the probability of finding food and differing resting timeouts. We also
experimented with variable probabilities including the probability of moving from
resting to searching states and the probability of grabbing.

It is important to note that the use of this counting abstraction allows us to
analyse the behaviour of large numbers of robots — otherwise, we would not have
been able to carry out local verification even with tens of robots composed to-
gether. Using this approach we can formally verify that certain behaviours will
always happen. This is not something that can easily be achieved with either simu-
lation or testing. Our overall point is that formal verification of this form provides
an essential tool for the swarm algorithm designer, especially if reliable and pre-
dictable swarm behaviour is required. Finally, we considered several additional
abstractions incorporating uncertainty into the counting abstraction and moving
away from a calculation of the actual robot numbers in each state to a qualitative
notion of population size in each state.

While foraging robots are taken as a particular case study, the approach is vi-
able for any variety of robot whose essential control can be characterised in a finite-
state form. Thus, while our states are of the form ‘Resting’, ‘Searching’, ‘Homing’,
etc., we could just have easily have used any other finite set of states that the robot
might be in. For example, a swarm of *excavation* robots might have states such
as ‘Digging’, ‘Waiting’ and ‘Stuck’, while for more cooperative robots we might
have ‘Searching’, ‘Coordinated’, and ‘SwarmConnected’. Between all such states,
as long as there are straightforward probabilistic values, based on a uniform dis-
tribution, and as long as any timing delays are discrete and finite then we believe
the approach describe here could be used for verification in such scenarios. Our
collaboration with robotics experts confirms that many simple swarm robots can
indeed be modelled in this way [14].

While this paper describes the essential approach, work is under way to develop
a more user friendly front-end, as this interface will make it easier for designers to
provide PRISM models and PCTL properties. This involves developing a toolbox
that will allow simple robot algorithms to be described and then expanded for in-
put to PRISM. A beta version of such a front-end, called “SwarmChecker”, was
developed [42], and it is under development to support more features.
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Our future work in this area includes extending the analysis presented here to
incorporate further robot interactions, and develop PRISM models for other do-
mains such as “stick pulling”.
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APPENDIX

We have proposed using a probabilistic model checker to investigate temporal and
probabilistic properties of a particular probabilistic model. This can easily be ap-
plied to other probabilistic models. States in the probabilistic model correspond to
one or more states in the PRISM model which are represented by variables. Condi-
tions such as exiting a state S within n timesteps can be modelled using PRISM by
splitting S into n states S0, . . . Sn−1. Variables can be declared using the syntax

s : [0..9] init 0;

which says that s is an integer variable with values between 0 and 9. Transitions
can be modelled using the following syntax

[]s = 0 → 0.3 : (s′ = 1) + 0.7 : (s′ = 2);

stating that if the variable s has value 0 then the value of s will be 1 in the next
moment with probability 0.3 and it will be 2 at the next moment with probability
0.7. The uniform probabilities in the scenarios we considered are calculated using
this syntax.

To model a system using a cross product of individual probabilistic model we
define a module in PRISM for each probabilistic model and instantiate it multiple
times. For the counting abstraction approach only one module is required but we
need to add calculations (using the keyword formula) to define how the number of
robots in each state are calculated.

The variables in Section 5.1 are declared as states. Due to the space restric-
tions, we can only provide some part of the PRISM code. Below we show how the
variable NGi is expressed in PRISM, where we take i = 5 (Note that we do not
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include the end points of the timeouts).

(N G0′ = ceil(gamma f ∗N S0) + ceil(gamma f ∗N S1)+
ceil(gamma f ∗N S2) + ceil(gamma f ∗N S3))&

(N G1′ = floor((1− gamma g) ∗N G0))&
(N G2′ = floor((1− gamma g) ∗N G1))&
(N G3′ = floor((1− gamma g) ∗N G2))&
(N G4′ = floor((1− gamma g) ∗N G3))&

Note that the state values must be integers. We therefore round up the real numbers.
We deal with the other variables similarly. We now denote how gamma f (γf ) is
declared in PRISM. Below we consider the case that gamma f is variable (see
Section 5.2.2)

formula gamma f = 1− (N foraging ∗ alpha/N);

where alpha ∈ {0, 0.1, .., 1} is the density factor, N foraging is the total number
of foraging robots, and N is the total number of robots. The other cases of the
probabilities are dealt with similarly.

We augment the probabilistic models developed in PRISM costs or reward
structures to calculate quantitative measures relating to model behaviour. For ex-
ample, the energy of the swarm is implemented as below:

rewards
true : (E food ∗N D4− E r ∗NR − E h ∗N H − Es ∗N S−

E g ∗N G)/1000;
endrewards

whereE R = E R0+E R1+E R2+E R3+E R4 (resp. E H,E S andE G).
The above reward structure calculates the instantaneous energy of the swarm. The
expected energy at a state is the the sum of all the individual rewards. Note that we
divided the result by 1000, because we want to have the result per 1000 units.
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