
Towards Temporal Verification of Swarm Robotic Systems

Clare Dixona, Alan Winfieldb, Michael Fishera, Chengxiu Zenga

aDepartment of Computer Science,University of Liverpool, Liverpool, L69 3BX, UK
bBristol Robotics Laboratory, University of the West of England, Bristol BS16 1QY, UK

Abstract

A robot swarm is a collection of simple robots designed to work together to carry out some task.
Such swarms rely on: the simplicity of the individual robots; the fault tolerance inherent in having a
large population of identical robots; and the self-organised behaviour of the swarm as a whole. Al-
though robot swarms present an attractive solution to demanding real-world applications, designing
individual control algorithms that can guarantee the required global behaviour is a difficult problem.
In this paper we assess and apply the use of formal verification techniques for analysing the emer-
gent behaviours of robotic swarms. These techniques, based on the automated analysis of systems
using temporal logics, allow us to analyse whether all possible behaviours within the robot swarm
conform to some required specification. In particular, we apply model-checking, an automated and
exhaustive algorithmic technique, to check whether temporal properties are satisfied on all the possi-
ble behaviours of the system. We target a particular swarm control algorithm that has been tested in
real robotic swarms, and show how automated temporal analysis can help to refine and analyse such
an algorithm.

Keywords: Swarm Robotics, Formal Verification, Emergent Behaviour, Temporal Logics,
Model-Checking.

1. Introduction

The use of autonomous robots has become increasing appealing in areas which are hostile to
humans such as underwater environments, contaminated areas, and space, or where direct human
control is infeasible due to the complexity or speed of the robot interactions [1, 2, 3]. Rather than
deploying one or two, often large and expensive, robots a significant focus is now on the design and
development of swarms of robots.

A robot swarm is a collection of simple (and usually identical) robots working together to carry
out some task [4, 5, 6]. Each robot has a relatively small set of behaviours and is typically able to
interact with other (nearby) robots and with its environment. Robot swarms are particularly appealing
when compared with fewer, more complex robots, in that it may be possible to design a swarm so that
the failure of some of the robots will not jeopardize the overall mission, i.e. the swarm is fault tolerant.
Such swarms are also advantageous from a financial point of view since each robot is relatively simple
and mass production can significantly reduce the fabrication costs.

Despite the advantages of deploying swarms in practice, it is non-trivial for designers to formulate
individual robot behaviours so that the emergent behaviour of the swarm as a whole is guaranteed
to achieve the task required of the swarm, while the swarm will not exhibit any other, undesirable,
behaviours [7]. Specifically, it is often difficult to predict the overall behaviour of the swarm just
given the local robot control algorithms. This is, of course, essential if swarm designers are to be able

Email addresses: cldixon@liverpool.ac.uk (Clare Dixon), Alan.Winfield@uwe.ac.uk (Alan
Winfield), mfisher@liverpool.ac.uk (Michael Fisher), zcx@liverpool.ac.uk (Chengxiu Zeng)

Preprint submitted to Robotics and Autonomous Systems February 17, 2012

to effectively and confidently develop reliable swarms. So, we require some mechanism for analysing
what the swarm can do, given the behaviour of individual robots and a description of their possible
interactions both with each other and with their environment. Using such a mechanism, the designer
can then assess to what extent the swarm behaves as required and, where necessary, redesign to avoid
unwanted outcomes.

Currently, the analysis of swarm behaviour is typically carried out by experimenting with real
robot swarms or by simulating the robot swarms and testing various scenarios (e.g. see [8, 9]). In
both these cases any errors found will only be relevant to the particular scenarios constructed; nei-
ther provides a comprehensive analysis of the swarm behaviour in a wide range of possible circum-
stances. Specifically, neither approach can detect a problem where undesirable behaviour occurs in
some untested situation.

A well-known alternative to simulation and testing is to use formal verification, and particularly
the technique called model-checking [10]. Here a mathematical model of all the possible behaviours
of the system is constructed (often a finite state transition system) and then all possible executions
through this model are assessed against a required logical formula representing a desired property of
the system. In the case of systems such as robot swarms, the mathematical model usually represents
an abstraction of the real control system, while the logical formula assessed is usually a temporal
formula representing the presence of a desirable property or the absence of an undesirable property
on all paths; see, for example [11]. We emphasise that model checking is different from simulation
as it can check a property holds on all paths through the input model. Simulation (or real robot
experiments) allows the observation of what occurs on particular runs of the system.

In this paper we will develop the use of temporal verification for robot swarms in an effort to
formally verify whether such swarms do indeed exhibit the required global behaviour. This work is
an extension of our preliminary results in [12]. We show how such an approach can provide a useful
tool for the swarm designer and, in particular, how the linked use of formal verification, abstraction,
and simulation, provides a strong basis for swarm algorithm analysis. The structure of this paper is
as follows. We consider related work in Section 2. In Section 3 we give details of the temporal logic
in which logical requirements are given and provide an overview of the model-checker we use. In
Section 4 we describe our use of formal verification to assess swarm algorithms and introduce one
existing algorithm, namely Nembrini’s alpha algorithm [9], that we will analyse. In Section 5 we
describe the abstractions we use in more detail. In Section 6 we give verification results from using
the temporal logic model-checker. In Section 7 we describe a simulation for the alpha algorithm and
provide comparisons with the model-checking results. In Section 8 we discuss the results. We provide
concluding remarks and directions for future work in Section 9.

2. Related Work

In this paper we focus on a particular swarm algorithm aimed at swarm aggregation, namely
Nembrini’s alpha algorithm. Its behaviour and properties have been analysed using simulations and
real robot experiments in [9, 13]. The application of temporal logics to robots swarms has not been
widely used. We here highlight previous work in which the formal verification of robot swarms
has been considered, typically using model-checking or deductive techniques for temporal logics.
We begin by examining our previous work in this area, where we have formally specified the alpha
algorithm considered here again using temporal logics [14]. However, in that paper the focus is on
specification rather than verification. In [15] this temporal specification of swarm algorithms was used
to explore ways to generate implementations from a formal specification.

In [16] we considered the state transition system for a swarm of foraging robots from [17] and
represented this using both propositional and first-order temporal logics. A number of properties are
then verified using temporal resolution based theorem provers [18, 19] for these logics. Whilst this
models the transition system for each robot, similar to that in Section 6 of this paper, it focuses on

2

the state or mode that the robots are in rather than their specific location or movement details. In
the propositional setting we could only represent a small number of robots due to the state explosion
problem also encountered in this paper (discussed further in Section 8.3). In the first-order case, the
robots are represented using variables and, although this allows us to represent an infinite number of
robots, syntactic restrictions of the monodic first-order temporal logic used in the prover added further
representational limitations.

In [20] the probabilistic model of a swarm of foraging robots presented in [17, 21] is analysed
using the probabilistic model-checker PRISM [22]. Again the actual location of the robots is ignored
and the focus is on the modes of the robots, e.g. resting, searching for food, etc. Different ways of
modelling the swarm are proposed, including the product of individual robot transition systems and
using a counting abstraction to model the whole swarm using a single transition system where the
number of robots in each state is recorded. Probabilistic properties relating to, for example, swarm
energy are checked for different swarm parameters.

In [23, 24] a model-checking approach is adopted to considering the motion of robot swarms. A
hierarchical framework is suggested to abstract away from the many details of the problem including
the location of the individual robots. First, a continuous abstraction is used to capture the main features
of the swarm’s position and size (the example considered uses the centroid and variance of robot
positions to achieve this). Next this continuous abstraction is abstracted further, providing a discrete
model to which model-checking can then be applied. That approach differs in a number of ways to
this paper. In particular, we are interested in the emergent behaviour of the swarm so model individual
robots whereas in that paper the descriptions of individual robots are abstracted away from. Further,
the paper assumes a centralised communication architecture which is not assumed here.

A related paper is [11] which again considers model-checking robot motion but does not discuss
robot swarms. That paper uses a discrete representation of the continuous space of movement produc-
ing a finite state transition system. A model-checker is used to produce traces that satisfy particular
properties (e.g., visiting regions in a particular order, eventually visiting a region but avoiding other
regions on the way). These are then used to produce a continuous movement plan whilst maintaining
the required property. The differences between that work and ours are that they do not deal with robot
swarms which is our focus here. A related approach is given in [25] which, after assessing a number
modelling and verification techniques, focuses on model-checking. There the underlying transition
system has states that relate to the robots’ behaviour, but only a small number (three) of robots is
considered.

Other formalisms have been considered to specify and verify aspects of realistic robot swarms.
In [26], Rouff et al. compare a number of formal methods for representing and verifying part of the
Autonomous Nano Technology Swarm (ANTS) mission aimed at sending small swarms of spacecraft
to study the asteroid belt. As a result of this, in [27] four formal methods were selected, namely Com-
municating Sequential Processes (CSP), Weighted Synchronous Calculus of Communicating Systems
(WSCCS), X-Machines and Unity Logic. These are proposed for use alongside techniques from
agent-oriented software engineering. While the authors do not apply these techniques, they conclude
that there is a need to develop new formal techniques alongside specialised sets of models and software
processes based on a number of formal methods and other areas software engineering. Importantly,
they do do not tackle specific swarm architectures or carry out full verification experiments.

Finally, in [28] the authors propose a formalism for describing and analysing emergent properties
and behaviour from lower level behaviours of a system. Again the focus of the paper is on presenting
the formalism rather than applying it to a specific case study.

3. Temporal Logic and Model-Checking

In order to carry out formal verification we aim to apply model-checking to a particular robot
swarm algorithm. Model-checking [29] is an algorithmic technique that checks whether specified

3

temporal properties hold over the evolution of dynamic systems as they change over time. Temporal
logic is used to describe such temporal properties.

3.1. Temporal Logic

Temporal logics have been widely used to represent and reason about systems that change over
time [30, 31, 32]. The particular variety of temporal logic we consider is propositional linear-time
temporal logic (PTL) [33], where the underlying model of time is isomorphic to the Natural Numbers,
N.

3.1.1. Syntax
The symbols from propositional logic we include are ‘false’ (false), ¬ (not), ∨ (or). The future-

time temporal connectives that we use include ‘♦’ (sometime in the future), ‘ ’ (always in the
future), and ‘ h’ (in the next moment in time). Formally, PTL formulae are constructed from the
following elements:

• a set, PROP of propositional symbols;

• propositional connectives, false, ¬, ∨; and

• temporal connectives, h, ♦,

The set of well-formed PTL formulae (WFF), is inductively defined as the smallest set satisfying the
following.

• Any element of PROP and true and false are in WFF.

• If A and B are in WFF then so are ¬A A ∨B ♦A A hA

Note that the other Boolean operators can be defined using standard equivalences and other operators
such as ‘U’ (until) can be incorporated. A literal is defined as either a proposition symbol or the
negation of a proposition symbol.

3.1.2. Semantics
Models for PTL formulae can be characterised as sequences of states of the form:

σ = s0, s1, s2, s3, . . .

where each state, si, is a set of proposition symbols, representing those propositions which are satisfied
in the ith moment in time.

The notation (σ, i) |= A denotes the truth of formula A in the model σ at state index i ∈ N and
this is formally defined as follows.

(σ, i) 6|= false
(σ, i) |= p iff p ∈ si where p ∈ PROP
(σ, i) |= A ∨B iff (σ, i) |= A or (σ, i) |= B
(σ, i) |= ¬A iff (σ, i) 6|= A
(σ, i) |= hA iff (σ, i + 1) |= A
(σ, i) |= ♦A iff ∃k ∈ N. (k > i) and (σ, k) |= A
(σ, i) |= A iff ∀j ∈ N. if (j > i) then (σ, j) |= A

For any formula A, model σ, and state index i ∈ N, then either (σ, i) |= A holds or (σ, i) |= A
does not hold, denoted by (σ, i) 6|= A. If there is some σ such that (σ, 0) |= A, then A is said to be
satisfiable. If (σ, 0) |= A for all models, σ, then A is said to be valid and is written |= A.

4

3.2. Model-Checking

Model-checking [10] is a popular technique for verifying the temporal properties of systems. It
is an algorithmic technique for exhaustively analysing the logical correctness of a finitely-represented
system. It checks a logical requirement against all possible behaviours of the system in question. Input
to the model-checker is a model of the system and a property to be checked. The model is a finite
structure, for example a finite-state transition system representing all the paths through the system to
be verified. The property is a formula to be checked on that model usually expressed in some form of
temporal logic, for example, the linear-time temporal logic PTL, or the branching-time temporal logic
CTL [34]. Model-checking has come to prominence in recent years as it provides fast, automated,
and relatively easy to use verification techniques. A number of practical model-checking tools have
been developed for example SPIN [35], NuSMV [36], Java PathFinder [37], and UPPAAL [38]. In this
paper we will use NuSMV [36] which allows properties expressed in both CTL and PTL to be checked.

Essentially, we construct a set of finite-state transition systems, corresponding to each of the
robots in the swarm, and then model-check a PTL formula against the concurrent composition of
these transition systems. The key element of model-checkers is that, if there are execution paths of
the system that do not satisfy the required temporal formula, then at least one such “failing” path will
be returned as a counter-example. If no such counter-examples are produced then all paths through
the system indeed satisfy the prescribed temporal formula.

4. Analysing Swarm Algorithms

Analysing the behaviours of large and complex robotic control systems is notoriously difficult,
and is particularly problematic for formal verification techniques. However, when we move on to
consider robot swarms, two aspects lead us to re-consider the use of formal verification:

1. individual robotic behaviours are much simpler within a swarm than within larger individual
robots; and

2. the emergent behaviour of cooperating swarms is hard to simulate and test using standard tech-
niques.

So, our aim is to develop, deploy and extend formal verification techniques for use in swarm robotics
and so show that formal verification is viable in this, more restricted, context. Yet, even within swarm
robotics, the application of formal verification remains very difficult. The continuous aspects of both
the robotic control system and the robots’ movements and environment do not sit well with the discrete
and finite nature of model-checking. Fortunately, in developing simple robotic control algorithms,
engineers typically use finite-state machines as part of their behavioural design. Thus, we can base
our verification on such finite-state machines provided by roboticists and so verify the algorithms,
as designed. There remains the problem of the use of continuous functions/variables in such state
machines. As in the verification of hybrid systems, we must provide abstractions to simplify such
continuous values so that model-checking can be carried out [39]. However, we note that even with
such abstractions, representing the location and movement for a number of robots will generate a huge
state space so initially we must focus on small grid sizes and numbers of robots.

Thus, in summary, our approach is as follows.

1. Take the design of a swarm control algorithm for an individual robot, as represented in the form
of a finite-state machine.

2. Describe an abstraction that tackles the continuous nature of the domain, the potentially un-
bounded number of robots, and the nature of concurrent activity and communication within the
swarm.

5

3. Carry out (automatic) model-checking to assess the temporal behaviour of the model from (2).
If model-checking succeeds, then return to (2) refining the abstraction to make it increasingly
realistic. If model-checking fails, returning a scenario in which the temporal requirement is
not achieved, then analyse (by hand) how the algorithm in (1) should cope with this scenario.
Either there is a problem with the original algorithm, so this must be revised, or the algorithm is
correct for this scenario and so the abstraction in (2) must be revisited and expanded to capture
this behaviour.

This process is continued until no errors are found in (3) and the abstraction in (2) is sufficiently
close to the physical scenario to be convincing, and here is one area where we can employ simulation
techniques. While this cycle is clearly not (and cannot be) fully automatic, the results from model-
checking help direct us in refining the algorithm and/or abstractions used in the design. This approach
follows the spirit of the “counter-example guided abstraction refinement” method initiated in [40] and
applied to hybrid systems in [41].

4.1. The ‘Alpha’ Algorithm
As a case study we consider algorithms for robot swarms which make use of local wireless connec-

tivity information alone to achieve swarm aggregation. Specifically, we examine the simplest (alpha)
algorithm described in [9, 13]. Here each robot has range-limited wireless communication which, for
simplicity, we model as covering a finite distance in all directions from the robot’s location. Beyond
this boundary, robots are out of detection range.

The basic alpha algorithm is very simple:

• The default behaviour of a robot is forward motion.

• While moving each robot periodically sends an “Are you there?” message. It will receive “Yes,
I am here” messages only from those robots that are in range, namely its neighbours.

• If the number of a robot’s neighbours should fall below the threshold α then it assumes it is
moving out of the swarm and will execute a 180◦ turn.

• When the number of neighbours rises above α (when the swarm is regained) the robot then
executes a random turn. This is to avoid the swarm simply collapsing in on itself.

Thus, each robot has three basic behaviours: move forward (default); avoidance (triggered by the
collision sensor); and coherence (triggered by the number of connected neighbours falling below α),
as shown in the Finite State Machine of Figure 1.

Figure 1: Alpha algorithm robot controller Finite State Machine

5. Abstraction

In the following we explain in more detail the abstractions that are used to build an appropriate
model to be checked. We note, first of all, that the robot control engineers have already made sig-
nificant simplifications, particularly concerning continuous dynamics. Thus, in [9, 13] a continuous

6

abstraction is used to capture the main features of the swarm’s position and size. An example consid-
ered is using the centroid and variance of robot positions. This continuous abstraction must then be
discretised, before model-checking can be applied.

Spatial Aspects. We consider a number of identical robots moving about a square grid and assume
that the grid is divided into squares with at most one robot in each square. We assume a step size
of one grid square and that a robot can detect other robots for purposes of avoidance in the adjacent
squares. The robot has a direction it is moving in. Rather than taking a bearing, we simply describe
this as one of North, South, East or West. To make the problem finite we limit the grid size to be an
n× n square which wraps around, i.e. assume that the horizontal x-axis and vertical y-axis is marked
from 0 to n− 1. In the grid we assume that moving North moves upwards, South moves downwards,
East moves to the right and West to the left. If a robot is located in square (n− 1,m) and moves East
in the next moment it will be in square (0,m). Similarly if a robot is located in square (m, 0) and
moves South in the next moment it will be in square (m,n − 1) etc. Initially the robots may have
any direction but are placed on the grid where they are connected to the swarm but in different grid
squares. Initially, any robot may move first.

Connectivity. Regarding connectivity, this is calculated from the robots’ relative positions. Initially
we assume that each robot can detect other robots in the eight squares surrounding it. Hence, in a 5×5
grid if a robot is in square (1,1) (denoted in Figures 2 and 3 by R) it can detect robots in squares (0,0),
(0,1), (0,2), (1,0), (1,2), (2,0), (2,1), and (2,2). This is shown in Figure 2. Thus it has a wireless range

R

Figure 2: Wireless range of 1 in a 5× 5 grid

of one square in all directions. Note that as we have assumed that the grid wraps round the wireless
detection range acts similarly. For example if the grid size is 5×5, a robot located in grid square (2,0)
will be connected with robots in the grid squares (1,4), (2,4), (3,4) as well as with robots in the five
squares adjacent to it. The wireless range for such a robot is depicted in Figure 3. Initially we set the

R

Figure 3: Wireless range of 1 in a 5× 5 grid showing wrap around

value of α = 1 i.e. a robot is connected if it can detect at least one other robot.
The proposition coni denotes that robot i is connected to at least α other robots. In our verifi-

cation, we aim to show that for all robots i, ♦coni follows from our specification, i.e. each robot
stays connected infinitely often. Thus, the swarm need not always be connected but, if it becomes

7

disconnected, should eventually reconnect. In particular, no specific robot will remain disconnected
forever. Further, we note that checking ♦coni for robot swarms of size four or larger with α = 1
would be satisfied on runs where the swarm breaks into two sub-parts with the robots in each sub-part
remaining connected infinitely often. However, as in this paper we only deal with small swarm sizes
this will not be a problem.

Motion Modes. Each robot can be in one of two motion modes: forward or coherence. The connec-
tivity of each robot can also be in one of two modes: connected or not connected. The combination
of motion and connectivity give us four possible alternatives.

• In the forward mode, when connected, move forward and the motion mode remains ‘forward’.

• In the forward mode, but not connected, turn 180◦ and change the motion mode to ‘coherence’.

• In the coherence mode, but not connected, move forward and the motion mode remains as
‘coherence’.

• In the coherence mode, when connected, perform a 90◦ turn (i.e. either 90◦ left or 90◦ right)
and change the motion mode to ‘forward’.

Avoidance is dealt with as follows. If a robot is moving in some direction and the square ahead is
occupied:

• move to the right or left;

• if these are both occupied move backwards; else

• stay in the current position.

The original direction the robot was moving in is maintained.

Concurrency. An important variety of abstraction concerns the representation of concurrent activity
within the swarm of robots. Thus, in modelling this aspect we must ask questions about whether
all robots run simultaneously, whether some robots run faster than others, etc. Thus, there is a wide
variety of different abstractions we might use, which in turn correspond to different mechanisms for
concurrently composing the robot transition systems/models.

• synchrony — all robots execute at the same time and with the same clock.

• (strict) turn taking — execution of the robots is essentially interleaved, but the robots must
execute in a certain order, e.g. r1, r2, r3, r1, r2, r3, etc.

• (non-strict) turn taking — execution of the robots is again interleaved but for m robots in every
cycle of m steps each robot moves once, so we can now have a situation where a robot executes
two steps consecutively, e.g. r1, r2, r3, r3, r2, r1, etc.

• (fair) asynchrony — robots execute at the same time, yet some robots are faster than others.
However the fair aspect ensures that a robot can only take a finite number of steps before all
other robots have finished their step, i.e. each robot must get a chance to move infinitely often.

It is important to note that the particular view of concurrency taken can significantly affect the verifi-
cation results.

8

6. Verification Using Model-Checking

We model Nembrini’s alpha algorithm and aim to verify the property ♦coni for each of the i
robots. The model is a finite-state transition system written in NuSMV’s input language representing
the algorithm in Section 5. Due to the large state spaces involved we assume initially that the grid is
5×5 and there are two robots and subsequently increase these values. We appreciate both the grid size
and number of robots is small but this will increase and allowing the grid to wrap around means that
the robots can, for example, move North forever. As well as considering different numbers of robots
and grid sizes we will change the abstraction we use relating to concurrency and wireless range.

6.1. The NuSMV Input File

We provide a sample input file for the two robots synchronous case with a 5× 5 grid where α = 1
in Appendix A. The input file represents the movement of the robots as described in Section 5.
Essentially the transition system representing the movement of a single robot is instantiated a number
of times and the model-checker constructs the cross product of these on which to check the property.
In the input file the keyword ‘MODULE’ is used to specify the movement of each robot. Variables
storing the robot’s location, direction and motion mode are defined. The next value of variables is
defined as a series of cases dependent on the current value of some conditions. For example the
statement below gives the next value for the robot direction. It states that if the current mode of the
robot is forward, it is not connected and its direction is North then in the next moment its direction
will be South.

fnocon & direction = n : s;

Each robot is instantiated a number of times depending on the number of the robots required. Fair
asynchrony is modelled using the NuSMV keyword ‘process’ indicating that one of the instantiated
modules is chosen to execute non-deterministically. The ‘FAIRNESS running’ statement is used
to ensure each instantiated robot will be chosen to execute infinitely often. To model strict or non-strict
turn taking the movement of the robots is modelled as synchronous but the rules defining movement
are guarded by whether it is the current robot’s turn to move. If it is not that robot’s turn to move, the
location, direction and mode of the robot remains the same. Several global variables are defined such
as ‘range’ to denote the wireless range and ‘lenmax’ to denote the grid size.

The property we wish to verify is denoted as follows

LTLSPEC G F connected1 & G F connected2;

where ‘LTLSPEC’ states this is a property from propositional linear time temporal logic, ‘ G’ repre-
sents the temporal operator always (), ‘F’ represents the temporal operator sometime (♦) and ‘&’
is the propositional logic operator conjunction (∧). The variables connected1 and connected2
represent the propositions coni where i = 1, 2 and are calculated from the robots’ relative positions.
Note that a response of ‘true’ from the model-checker means that every path from every initial state
of the model satisfies this property. A response of ‘false’ means not all paths satisfy the property and
NuSMV outputs a failing trace.

The following results are from running NuSMV on a PC with a 2.13 GHz Intel Core 2 Duo E6400
processor, 3GB main memory, and 5GB virtual memory running Fedora release 9 with a 32-bit Linux
kernel.

6.2. Results: Changing the Concurrency Mode

Here we provide results from running the model-checker where the concurrency mode is fair
asynchrony, non-strict turn taking, strict turn taking and then synchrony. In each case we consider two
robots with grid sizes 5× 5, 6× 6, 7× 7 and 8× 8 and three robots with grid sizes 5× 5 and 6× 6.

9

Fair asynchrony means that each robot can take an arbitrary number of steps before another has
a turn to move but each robot must move infinitely often, i.e. we disallow situations where, after
some point, one robot never gets a chance to move again. Intuitively we might expect this to be the
best choice to model robot swarms since, because of physical differences between robots they will
not move at exactly the same rate. With (non-strict) turn taking, exactly one robot can move at any
moment and for m robots in every cycle of m steps each robot moves once. Thus for two robots
where ti denotes robot i takes a turn to move t1, t2, t1, t2, t2, t1, . . . represents a valid sequence of
turns but t1, t2, t1, t1, . . . does not. With strict turn taking, exactly one robot can move at any moment
and they follow a strict order. For example, for two robots we might have t1, t2, t1, t2, t1, t2, With
synchrony robots all move at the same time.

For fair asynchrony, non-strict turn taking and strict turn taking, for the size of grid and number
of robots we have experimented with, the model-checker returns ‘false’. This means that NuSMV can
show that the property does not hold on all paths from every initial state for fair asynchrony, non-strict
turn taking and strict turn taking for every case that was tried. The two robot cases take less than two
minutes whereas the three robot cases take more than an hour. Looking at the failing traces obtained
help us to identify the cause of the failure. These are output automatically by the model-checker
and may not represent the shortest failing trace. In the following failing traces r1 denotes that robot
1, and r2 denotes robot 2. We use the following abbreviations: FC (forward and connected); FNC
(forward and not connected); CC (coherence and connected); CNC (coherence and not connected);
Loc (location); and Dir (Direction). Additionally (x, y) denotes the x and y positions of the robot. If
this is underlined it denotes that this robot moves next.

In Figure 4 we provide a failing trace for the fair asynchronous case for a 6 × 6 grid for two
robots produced by NuSMV. From state 1.2 onwards the pair of robots is unconnected. State 1.19 is
the same as 1.7 showing that the pair of robots can loop round the states 1.8 to 1.19 forever remaining
unconnected. Also in this cycle each robot gets at least one chance to move, satisfying our fairness
constraint. The trace shows that, after some initial moves, both robot 1 moves West forever and

State 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19
Loc r1 (0,0) (0,0) (5,0) (4,0) (4,0) (3,0) (2,0) (2,0) (2,0) (2,0) (1,0) (0,0) (5,0) (4,0) (3,0) (2,0) (2,0) (2,0) (2,0)
Dir r1 E E W W W W W W W W W W W W W W W W W
Mode r1 FC FNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC
Loc r2 (0,1) (0,2) (0,2) (0,2) (0,1) (0,1) (0,1) (0,0) (0,5) (0,4) (0,4) (0,4) (0,4) (0,4) (0,4) (0,4) (0,3) (0,2) (0,1)
Dir r2 N N N N S S S S S S S S S S S S S S S
Mode r2 FC FNC FNC FNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC

Figure 4: Failing trace for fair asynchrony with a 6 × 6 grid and two robots.

robot 2 moves South forever. Allowing each robot to take several steps before the other has a turn
to move means that they never become connected again. Although the movement of the real world
robots is inherently asynchronous, as each robot will run at slightly different rates, the modelling of
this using NuSMV’s fair asynchrony does not appear to capture this sensibly. This is because using
fair asynchrony with the model-checker one robot can take hundreds of steps before any other gets a
chance to move. This doesn’t match the real world expectation that all robots are moving at the same
time and at almost the same speed. Because of this we next consider non-strict and then strict turn
taking.

In Figure 5 we provide a failing trace for the non-strict turn taking case for the 6×6 grid output for
two robots produced by NuSMV. We use the same abbreviations as previously. From state 1.2 onwards
the pair of robots is unconnected. State 1.17 is the same as 1.5 showing that the pair of robots can loop
round the states 1.6 to 1.17 forever, remaining unconnected. Looking at the failing trace in Figure 5,
robot 1 makes a move resulting in the robots losing connectedness which they never regain. This may
be due to a number of reasons. One reason is that robot 1 has to wait two steps before it can take any
action relating to this loss of connectedness (robot 2 next moves twice). This might be avoided by
using a strict turn taking abstraction which we consider next.

10

State 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17
Loc r1 (0,0) (0,5) (0,5) (0,5) (0,0) (0,0) (0,1) (0,1) (0,2) (0,3) (0,3) (0,3) (0,4) (0,4) (0,5) (0,5) (0,0)
Dir r1 S S S S N N N N N N N N N N N N N
Mode r1 FC FNC FNC FNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC
Loc r2 (0,1) (0,1) (5,1) (4,1) (4,1) (3,1) (3,1) (2,1) (2,1) (2,1) (1,1) (0,1) (0,1) (5,1) (5,1) (4,1) (4,1)
Dir r2 E E W W W W W W W W W W W W W W W
Mode r2 FC FNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC

Figure 5: Failing trace for non-strict turn-taking with a 6× 6 grid and two robots.

In Figure 6 we provide a failing trace for the 5×5 grid output for two robots by NuSMV where the
abbreviations used are as previously. From state 1.3 onwards the pair of robots is unconnected. State
1.15 is the same as 1.5 showing that the pair of robots can loop round the states 1.6 to 1.15 forever
remaining unconnected. In this trace robot r1 does some avoidance moving from state 1.1 to 1.2 as
robot r2 is in its way. Considering the failing trace, the robots lose connectedness and both end up

State 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15
Loc r1 (0,0) (4,0) (4,0) (4,4) (4,4) (4,3) (4,3) (4,2) (4,2) (4,1) (4,1) (4,0) (4,0) (4,4) (4,4)
Dir r1 N N N S S S S S S S S S S S S
Mode r1 FC FC FNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC
Loc r2 (0,1) (0,1) (0,2) (0,2) (0,1) (0,1) (0,0) (0,0) (0,4) (0,4) (0,3) (0,3) (0,2) (0,2) (0,1)
Dir r2 N N N N S S S S S S S S S S S
Mode r2 FC FC FNC FNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC CNC

Figure 6: Failing trace for strict turn taking with a 5× 5 grid with two robots.

travelling South forever trying to re-connect to the swarm. Note that in the first step, robot 1 tries to
move Northwards to location (0,1) but cannot do this as robot 2 is there. Robot 1 carries out some
avoidance and moves sideways to location (4,0). Note that, as both robots are still connected, this
would be an alternative starting location which would not involve avoidance.

These results show that changing the computational abstraction (from fair asynchrony to non strict
or strict turn taking) does not appear to be the best abstraction to model concurrency as a robot may
have to wait one or more steps before reacting to a loss in connectedness. Next we consider a different
method of concurrency, i.e. synchrony where robots all move at the same time. This is different from
the previous cases where robots moved one at a time. Now model-checking returns ‘true’ for all the
two robot cases tried and ‘false’ for all the three robot cases tried. The two robots cases take less than
one second whereas whilst for the three robot cases the 5× 5 case takes less than one hour the 6× 6
case requires more than an hour.

Observing the successful traces of the two robot cases, if the robots are both moving in the same
direction originally they continue in this same direction in the forward connected mode forever. If
they are in different directions they move away from each other, correct this in the coherence mode
by moving back together, become re-connected and repeat one of the above two patterns again. This
type of movement can be observed from the experiments with the real robots.

Although real robot swarm are strictly speaking asynchronous, the real robot implementation of
the alpha algorithm means that they behave collectively as if they were synchronous (as explained in
more detail in Section 8.1). Thus we feel that runs of the model checker in synchronous mode is a
better abstraction to model the alpha algorithm. This explains why the traces obtained match more
closely the runs of the real world whereas the runs for the other modes of concurrency we considered
do not.

With three robots and grid sizes of 5× 5 and larger, it is possible for one robot to become discon-
nected from the other two. In Figure 7 we show a failing trace for three robots on a 5 × 5 grid. In
Figure 7 we can see robots 1 and 2 remain connected with each other right from the start both trav-
elling North. However robot 3 is moving South and becomes disconnected after one step. Although
this robot turns and moves back to its starting position (1,0) it can never catch up with the other two
robots and remains disconnected forever.

It could be argued that the reasons for this are either that, in the three robot case, we need a bigger

11

State 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Loc r1 (0,0) (0,1) (0,2) (0,3) (0,4) (0,0) (0,1) (0,2)
Dir r1 N N N N N N N N
Mode r1 FC FC FC FC FC FC FC FC
Loc r2 (0,1) (0,2) (0,3) (0,4) (0,0) (0,1) (0,2) (0,3)
Dir r2 N N N N N N N N
Mode r2 FC FC FC FC FC FC FC FC
Loc r3 (1,0) (1,4) (1,0) (1,1) (1,2) (1,3) (1,4) (1,0)
Dir r3 S S N N N N N N
Mode r3 FC FNC CNC CNC CNC CNC CNC CNC

Figure 7: Failing trace for synchrony with a 5× 5 grid with three robots.

α parameter, or that the wireless range is too small potentially resulting in frequent loss of connection
(or both). Hence we next attempt to consider these cases specifically by increasing the wireless range
so that it is larger than the step size and increasing the α parameter, i.e. in the three robot case each
robot needs to remain connected to two others.

6.3. Results: Increasing Wireless Range or Alpha Parameter
We now increase the number of squares over which we can detect other robots. This was pre-

viously set at one square from a robot. We now increase this to be two squares from a robot, i.e. a
robot can detect others in the five by five squares centred on the robot. In the following we assume
synchronous concurrency. Obviously, as we have increased the detection area, in grid sizes of 5 × 5
and smaller all robots will always be connected at all moments. Hence we only consider grid sizes of
6×6, 7×7 and 8×8, 9×9, and 10×10 and three robots with grids sizes 6×6, 7×7 and 8×8. With
the increased wireless range we still obtain ‘true’ for all the two robot cases analysed and ‘false’ for
all the three robot cases tried similar to synchronous case with the wireless range being one. Times
for the two robot cases are less than two seconds whereas the times taken for the three robots cases
are greater than an hour.

In Figure 8 we show a failing trace for three robots on a 6 × 6 grid. Examining the failing trace
with the increased wireless range, see Figure 8, we reach a cycle where all the robots move in the same
direction, two within wireless range in the forward connected mode and one not within wireless range
in the coherence non-connected mode. The disconnected robot never manages to catch the others.

State 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10
Loc r1 (0,0) (5,0) (0,0) (0,5) (0,4) (0,3) (0,2) (0,1) (0,0) (0,5)
Dir r1 W W E S S S S S S S
Mode r1 FC FNC CC FC FC FC FC FC FC FC
Loc r2 (2,2) (2,1) (2,0) (2,5) (2,4) (2,3) (2,2) (2,1) (2,0) (2,5)
Dir r2 S S S S S S S S S S
Mode r2 FC FC FC FC FC FC FC FC FC FC
Loc r3 (2,1) (2,2) (2,3) (2,2) (2,1) (2,0) (2,5) (2,4) (2,3) (2,2)
Dir r3 N N N S S S S S S S
Mode r3 FC FC FNC CNC CNC CNC CNC CNC CNC CNC

Figure 8: Failing trace for synchrony with a 6× 6 grid with three robots and increased wireless range.

We now increase the α parameter from one to two, meaning that each robot must be able to detect
two others (hence we need to have at least three robots). We note that now, with this modified alpha
algorithm (i.e. with α = 2) we still obtain results of ‘false’ for all the three robot cases tried (grid sizes
5× 5 to 8× 8) which all finish in less than an hour. Considering the failing traces for three robots we
reach a cycle where all the robots are moving in the same direction in the coherence non-connected
mode, i.e. there are not two other robots in range. This is illustrated in the failing trace in Figure 9

12

State 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15 1.16
Loc r1 (0,0) (4,0) (0,0) (0,1) (0,0) (4,0) (0,0) (0,4) (0,0) (0,1) (0,2) (0,3) (0,4) (0,0) (0,1) (0,2)
Dir r1 W W E N S W E S N N N N N N N N
Mode r1 FC FNC CC FNC CC FNC CC FNC CNC CNC CNC CNC CNC CNC CNC CNC
Loc r2 (1,1) (0,1) (1,1) (1,0) (1,4) (1,3) (1,4) (2,4) (1,4) (1,3) (1,4) (1,0) (1,1) (1,2) (1,3) (1,4)
Dir r2 W W E S S S N E W S N N N N N N
Mode r2 FC FNC CC FC FC FNC CC FNC CC FNC CNC CNC CNC CNC CNC CNC
Loc r3 (1,0) (2,0) (1,0) (1,4) (1,0) (0,0) (1,0) (1,4) (1,3) (1,4) (1,0) (1,1) (1,2) (1,3) (1,4) (1,0)
Dir r3 E E W S N W E S S N N N N N N N
Mode r3 FC FNC CC FNC CC FNC CC FC FNC CNC CNC CNC CNC CNC CNC CNC

Figure 9: Failing trace for synchrony with a 5 × 5 grid and three robots with α = 2.

where after some initial moves all the robots move North in the coherence mode but are not connected
to both the other two robots. We note that we can also find a failing trace for both α = 2 and wireless
range = 2 for an 8 × 8 grid. The failure of the three robot (synchronous) cases, illustrated by the
traces in Figures 7, 8 and 9, seem to be due to a known flaw in the alpha algorithm described in [9].
This will be discussed further in Section 8.

We can continue this until either the abstractions are realistic enough, or until our verification
attempts take too much time/space. We will discuss the latter in Section 8. However, as the failing
traces appear to demonstrate a real (and known) flaw of the alpha algorithm we do not continue
attempting verification for other cases.

7. Simulation

We have also developed a NetLogo [42] simulation of the alpha algorithm to investigate and com-
pare the failing traces in the synchronous cases obtained from NuSMV with runs of the simulation.
NetLogo is a multi-agent modelling environment where multiple of agents can be modelled and in-
teractions between individual agent’s behaviour and any emergent patterns can be observed. NetLogo
has two principal agents, a mobile agent turtle and a stationary agent patch. In the graphical user
interface, a turtle is represented as a chevron and a patch is represented as a tile. We use a turtle to
model individual robots. A turtle is suitable to model robot behaviours as it has attributes such as
heading, position and can move one step forward, detect the existence of other agents within a range
etc. The space the turtle moves in is two dimensional and is divided up into a grid of patches, similar
to the grid square abstraction.

The simulation code is developed based on the pseudocode for the alpha algorithm from [9].
There are two main classes: the GUI class responsible for the simulation’s Graphical User Interface,
and Robot class. The GUI class has attributes for configuring alpha parameter and robot’s population,
direction and procedures for initialising robot and space and triggering interactions between robots.
The space is wrap-around but not restricted to be a limited grid size. If two robots are connected
then this is depicted by a line drawn between them. The Robot class is used to model each robot
in a swarm. It inherits from the Turtle class and several attributes are defined corresponding to the
variables from the pseudocode for the alpha algorithm. An example of the simulation displaying three
robots is provided in Figure 10.

We use the simulation to try and compare the synchronous failing traces shown in Section 6 with
runs in the simulation. First we run the simulation with two robots and α = 1. Similar to the
successful traces described in Section 6.2 after several initial moves, the two robots stay connected
and move towards the direction forever. A screen shot from this is shown in Figure 11, with the two
robots moving East and the line between them depicting that they are connected.

We next consider the simulation with three robots case, also with α = 1 to try and compare with
the failing trace in Figure 7. In the failing trace we observe a run where after some moves all three
robots move in the same direction but one robot never catches up with other two connected robots.
This behaviour can also be observed in runs of the simulation and is shown in Figure 12 where all
three robots move North, the top two are connected whilst the bottom robot is not connected.

13

Figure 10: Interface to the simulation showing three robots with two connected

Figure 11: Two robots with α = 1

14

Figure 12: Three robots with α = 1

If we increase the alpha parameter from one to two in the simulation we can obtain the type of
failing trace as shown in Figure 9. Figure 13 shows a run in the simulation where all three robots
move towards the same direction (Eastwards) but none of them is connected.

Figure 13: Three robots with α = 2

Given the failing traces produced by NuSMV, we have used the relevant parameters from these
traces eg alpha parameter, number of robots, starting positions etc as input parameters to the simulation
and observed the resulting runs. In each case we have been able to observe a run of the same form as
the failing trace output by the model-checker during verification. This helps us to confirm that there
is indeed a problem with the algorithm, at least in the cases of small numbers of robots.

Note that we can represent larger swarms of robots with the NetLogo simulation. Experiments
with larger swarms are described in [43], following the experiments in [9], which vary the number of
robots and alpha parameter. Even for larger population sizes not all runs maintain coherence. This is
explained in [9] and discussed in the next section.

15

8. Discussion

Next we discuss the abstractions we have taken, compare the model-checking results with existing
results from the alpha algorithm and consider the size of the state space.

8.1. Abstractions

First we consider the method of concurrency used to model the problem. Intuitively, the choice
of fair asynchrony seems to be the obvious choice because, with real robots moving in the world,
there is no global clock that the robots have access to and we cannot guarantee that each robot will
move at exactly the same speed since their physical components, e.g. motors, wheels, etc., may have
small differences. Hence we considered this mode of concurrency first. However our model-checking
results led us to believe that fair asynchrony, non-strict and strict turn taking are all unsuitable for
modelling this problem. In the first case one robot may make many moves and in the second case
one robot may be able to make two moves before the others have chance to react. In the case of
strict turn taking a robot has to wait for the others all to make moves before it can react to a loss in
connectedness. This is confirmed by the ‘false’ results obtained in Section 6. Such failing traces would
not be represented by the actual runs of the algorithm. Hence we believe that synchrony, counter to
our original expectations, is the best abstraction for concurrency. This is because (i) the real robots
move at almost the same speed and importantly (ii) they check their connectivity status multiple times
per movement step, so two real robots that become disconnected both react to the loss of connectivity
at very nearly the same time, in effect, synchronously.

Regarding the wrap around grid abstraction we note that, potentially, some failing traces could not
appear in actual runs of the algorithm. If we took smaller grids, for example 4×4, and a disconnected
robot travelling in some direction, for example West, then the wrap around nature of the grid may mean
the robot becomes re-connected to robots that are some distance East of the robot. For this reason we
have only considered grid sizes of 5× 5 or larger and have checked that the failing traces listed above
do not suffer from this problem. This choice is supported by the notion of grid independence defined
below.

Let the term grid independent mean that the robot movement in a failing trace for a wrap around
grid can be translated into an infinite grid obtaining the same connectedness values for each robot. We
can show that, in the case of synchrony, once we have found a grid independent trace for an n × n
grid we can extend this to a grid independent trace for an m×m grid where m > n. Hence when we
find one such trace for a number of synchronous robots and some grid size we do not have to try any
larger sized grids. Additionally we assume that 2α+1 < n otherwise all the robots on an n×n finite
grid will be connected. The theorems and proofs can be found in Appendix B.

Note that grid independent traces will not include traces where robots are moving in opposite
directions in rows/columns that are less than or equal to α from each other. For example one robot
travelling North and another travelling South with x values of 3 and 4 respectively. With a finite
wrap-round grid such robots may meet each other having moved off the top and bottom of the grid
respectively and become re-connected so the robots will take some action as they perceive that they
have re-located the swarm, whereas in the infinite grid the robots would remain disconnected forever
moving away from each other.

Finally we consider the relative sizes of the robot movement step size, avoidance range and wire-
less range. In all the examples we have considered, apart from where the wireless range is set to
2 in all directions (Section 6.3), we have set wireless range equal movement step size equal avoid-
ance step. In real robots and sensor based simulations, the movement step size is usually less than
avoidance range which is usually less than wireless range. This would be something to explore when
applying verification to other swarm algorithms.

16

8.2. The Alpha Algorithm
The alpha algorithm has been well studied and, to date, analysed with both simulated and real

robots [9], and using a probabilistic mathematical modelling approach [13]. However, neither sim-
ulation, real robot experiments, nor mathematical modelling provide formal proof of the algorithm’s
correctness. Consider simulation (or real robot experiments, which may be regarded as ‘embodied’
simulations). Given that simulated (or real robots) move in a real-valued, not grid-based, world with
typical swarm sizes of 40 robots and alpha values of 5, 10 or 15, for 10,000 seconds [13], we have a
practically infinite state-space and each simulation run tests only a tiny number of paths through that
state-space.

As outlined in Section 4, the model-checking approach of this paper attempts to formally prove
correctness by reducing the state-space to a tractable size so that every path through that state-space
can be tested. That reduction is achieved by means of introducing, firstly, a number of simplifying
assumptions and, secondly, by running very small swarm sizes (2 or 3 robots) and very small grid-
worlds (5× 5 up to 8× 8). We thus need to ask ourselves whether the failure to verify the correctness
of the algorithm in some cases of Section 5 is because (a) the algorithm is flawed or (b) the simplifying
assumptions (necessary for tractability) are so severe that they go beyond the bounds within which the
algorithm should be expected to work.

The model-checking results of Section 6 show that, with the three robot synchronous cases, we
can still obtain failing traces. Some of these are of the form presented in Figure 14. This illustrates
a possible scenario in which robot A has become disconnected from the swarm and turns round but
never catches up with B and C. Because robots B and C remain connected to each other, with α = 1, B
and C do not react to the loss of robot A and A remains disconnected. We consider both increasing the

Figure 14: The bridge or cut-vertex problem

α parameter and wireless range but still obtain failing traces similar to the above form. These results
confirm a known problem with the alpha algorithm, which occurs when a robot or group of robots is
linked to the rest of the swarm by a single link (known as a bridge or cut-vertex). This problem was
discussed by Nembrini [9] and overcome by the improved beta algorithm [9].

Finally, we discuss the size of the state space that needs to be explored.

8.3. The State Explosion Problem
Obviously we would like to consider larger numbers of robots. Even with the previous obser-

vation about grid independent traces, we may need to consider larger grid sizes but are faced with
the well known state explosion problem [29]. Even with the simplifications we use here, the state
space explored is huge. Modelling a robot’s position on an n × n grid, with 4 directions, and two
motion modes for r robots requires of the order of (n × n × 4 × 2)r states to be explored. The state
space increases further with variables to deal with turn taking etc. Let Rn = n × n × 4 × 2. For
the non-strict turn taking case (the column TT in the table below) and two robots the total state size
will be (Rn)2 × 4 and for three robots (Rn)3 × 21 (where 4 and 21 represent global variables that
deal with the non-strict turn taking). For strict turn taking case (the column STT in the table below)
and two robots the total state size will be (Rn)2 × 2 and for three robots (Rn)3 × 3 (where 2 and
3 represent global variables that deal with the strict turn taking). For fair asynchrony and synchrony

17

(the column FA/SYN in the table below) and two robots the total state size will be (Rn)2 and for three
robots (Rn)3. The change in wireless range or alpha parameter will not change the size of the state
space. For example, in the case of three robots, using non-strict turn taking within a grid of 7 × 7,

Problem TT No. of states STT No. of states FA/SYN No. of states
5× 5 grid, 2 160,000 80,000 40,000
6× 6 grid, 2 331,776 165,888 82,944
7× 7 grid, 2 614,656 307,328 153,664
8× 8 grid, 2 1,048,576 524,288 262,144
5× 5 grid, 3 168,000,000 24,000,000 8,000,000
6× 6 grid, 3 501,645,312 71,663,616 23,887,872
7× 7 grid, 3 1,264,962,048 180,708,864 60,236,288
8× 8 grid, 3 2,818,572,288 402,653,184 134,217,712

Figure 15: The state space for different modes of concurrency for differing sized grids and numbers of robots.

we have more than a thousand million states. Most of the two robot cases finish in times less than
two minutes. However the three robot cases take much longer with some cases taking several hours.
It is well known that model-checking suffers from the state explosion problem [29]. To combat this
we will have to apply and develop some of the work that has been carried out in the model-checking
field using more sophisticated abstractions, clever representations, and reduction techniques such as
slicing, and symmetry in order to limit the state space [44, 45, 46].

9. Conclusions and Future Work

In this paper we have shown how formal verification can be used as part of the development of
reliable robot swarm algorithms. In particular, we have applied verification using model-checking
to a particular swarm algorithm, namely the alpha algorithm. To apply model-checking we have
had to develop a number of abstractions to make the model of the swarm discrete, finite and not too
large. Contrary to our initial intuition, we believe that synchrony seems to be the best way to model
concurrency. This is because although robot swarms are inherently asynchronous and each robot will
move at a different rate real world robot swarms do not allow one robot to make a large number of
steps before the other can move, one of the implications of modelling the swarm movement using fair
asynchrony with the model-checker. Additionally, although we have used a finite wrap around grid
we have shown for particular types of trace, grid independent traces, once we have found a failing
trace for a particular grid size and set of input parameters we need not check larger grid sizes as we
can extend the failing trace into one for a larger grid. The failing traces we present for the synchronous
three robot examples show the bridge or cut-vertex problems with the alpha algorithm identified in [9].
We have also demonstrated these failing traces using a NetLogo simulation.

Although our examples involving two or three robots might be considered too small to constitute
a swarm, they do represent a valid test-case for self-organised flocking or aggregation algorithms,
such as the case study of this paper. Indeed swarms of two or three robots are useful in that they test
the lower limit bounds of swarm size and are therefore much more demanding of the algorithm than
larger swarm sizes with higher values of alpha, as tested in simulation studies. Indeed the abstractions
required by the approach also represent a tough set of boundary cases for the algorithm. Further
the production of failing traces provides a focus for deeper analysis and consideration by the swarm
designer.

We clearly need further work to tackle the state explosion problem. This will involve develop-
ment of abstractions and reduction techniques [45, 46] relevant to swarm algorithms as well as the
application of techniques such as symmetry detection [44] to allow the analysis of larger grids, swarm

18

sizes and further investigation of the relative sizes of the robot step size, avoidance range and wireless
range. Further, we could experiment with other model-checkers to see whether these allow larger
number of robots and grid sizes than we have used in this paper. Additionally we could use probabil-
ities to represent uncertainty such as the unreliability of the robot sensor near to the maximum range
leading to the use of probabilistic model-checkers such as PRISM [22].

We would like to extend and apply the ideas developed in this paper to other swarm algorithms.
Several more complex variants and extensions of the alpha-algorithm have been developed such as
Nembrini’s Beta algorithm [9] and the Omega-algorithm developed by Bjerknes [47]. The Omega
algorithm does not make use of wireless connectivity to maintain aggregation but instead times the
duration since a robot last made an avoidance manoeuvre; if that value exceeds threshold, omega, then
the robot turns toward its estimate of the centre of the swarm based on sensor readings.

A simple extension to the Omega-algorithm referred to above allows for a more complex swarm
behaviour, namely emergent swarm taxis toward a beacon (i.e. an Infra-Red light source). This is
a particularly interesting future candidate for analysis using formal verification and model-checking
since the swarm-taxis behaviour is truly emergent; it requires a minimum of, typically, five robots.

References

[1] J. Yuh, Design and Control of Autonomous Underwater Robots: A Survey, Autonomous Robots
8 (1) (2000) 7–24.

[2] T. Arai, E. Pagello, L. Parker, Editorial: Advances in Multi-Robot Systems, IEEE Trans.
Robotics and Automation 18 (5) (2002) 655–661.

[3] W. Truszkowski, H. Hallock, C. Rouff, J. Karlin, J. Rash, M. Hinchey, R. Sterritt, Swarms in
Space Missions, in: Autonomous and Autonomic Systems: With Applications to NASA In-
telligent Spacecraft Operations and Exploration Systems, NASA Monographs in Systems and
Software Eng. Springer, 2009, pp. 207–221.

[4] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems,
Journal of Artificial Societies and Social Simulation 4 (1), (2001).

[5] G. Beni, From Swarm Intelligence to Swarm Robotics, in: Proc. International Workshop on
Swarm Robotics (SAB), Revised Selected Papers, Vol. 3342 of Lecture Notes in Computer Sci-
ence, Springer, 2005, pp. 1–9.

[6] E. Sahin, A. F. T. Winfield, Special issue on Swarm Robotics, Swarm Intelligence 2 (2-4) (2008)
69–72.

[7] W. M. Spears, D. F. Spears, J. C. Hamann, R. Heil, Distributed, Physics-Based Control of
Swarms of Vehicles, Autonomous Robots 17 (2-3) (2004) 137–162.

[8] K. Støy, Using situated communication in distributed autonomous mobile robotics, in: SCAI
’01: Proceedings of the Seventh Scandinavian Conference on Artificial Intelligence, IOS Press,
2001, pp. 44–52.

[9] J. Nembrini, Minimalist Coherent Swarming of Wireless Networked Autonomous Mobile
Robots, Ph.D. thesis, University of the West of England (2005).

[10] E. Clarke, O. Grumberg, D. A. Peled, Model Checking, MIT Press, 2000.

[11] G. Fainekos, H. Kress-Gazit, G. Pappas, Temporal Logic Motion Planning for Mobile Robots,
in: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
IEEE Computer Society Press, 2005, pp. 2020– 2025.

19

[12] C.Dixon, A. Winfield, M. Fisher, Towards Temporal Verification of Emergent Behaviours in
Swarm Robotic Systems , in: Towards Autonomous Robotic Systems (TAROS), Vol. 6856 of
LNCS, Springer, 2011, pp. 336–347.

[13] A. Winfield, W. Liu, J. Nembrini, A. Martinoli, Modelling a wireless connected swarm of mobile
robots, Swarm Intelligence 2 (2-4) (2008) 241–266.

[14] A. Winfield, J. Sa, M.-C. Fernández-Gago, C. Dixon, M. Fisher, On Formal Specification of
Emergent Behaviours in Swarm Robotic Systems, International Journal of Advanced Robotic
Systems 2 (4) (2005) 363–370.

[15] D. Chen, A Simulation Environment for Swarm Robotic System based on Temporal Logic Speci-
fications, Master’s thesis, University of the West of England (November 2005).

[16] A. Behdenna, C. Dixon, M. Fisher, Deductive Verification of Simple Foraging Robotic Be-
haviours, International Journal of Intelligent Computing and Cybernetics 2 (4) (2009) 604–643.

[17] W. Liu, A. Winfield, J. Sa, J. Chen, L. Dou, Strategies for Energy Optimisation in a Swarm of
Foraging Robots, in: Proc. 2nd International Workshop on Swarm Robotics (SAB), Vol. 4433 of
LNCS, Springer, 2007, pp. 14–26.

[18] U. Hustadt, B. Konev, TRP++ 2.0: A temporal resolution prover, in: Automated Deduction—
CADE-19, Vol. 2741 of Lecture Notes in Artificial Intelligence, Springer, 2003, pp. 274–278.

[19] M. Ludwig, U. Hustadt, Fair derivations in monodic temporal reasoning, in: Conference on
Automated Deduction–CADE, Vol. 5663 of Lecture Notes in Computer Science, Springer, 2009,
pp. 261–276.

[20] S. Konur, C. Dixon, M. Fisher, Analysing Robot Swarm Behaviour via Probabilistic Model
Checking, Robotics and Autonomous Systems 60 (2) (2012) 199–213.

[21] W. Liu, A. F. T. Winfield, Modeling and optimization of adaptive foraging in swarm robotic
systems, The International Journal of Robotics Research 29 (14) (2010) 1743–1760.

[22] A. Hinton, M. Kwiatkowska, G. Norman, D. Parker, PRISM: A Tool for Automatic Verification
of Probabilistic Systems, in: Proc. 12th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), Vol. 3920 of LNCS, Springer, 2006, pp.
441–444.

[23] M. Kloetzer, C. Belta, Hierarchical abstractions for robotic swarms, in: Robotics and Automa-
tion, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, 2006, pp. 952
–957.

[24] M. Kloetzer, C. Belta, Temporal Logic Planning and Control of Robotic Swarms by Hierarchical
Abstractions, IEEE Transactions On Robotics 23 (2007) 320–330.

[25] S. Jeyaraman, A. Tsourdos, R. Zbikowski, B. White, Kripke Modelling Approaches of a Multiple
Robots System with Minimalist Communication: A Formal Approach of Choice, International
Journal of Systems Science 37 (6) (2006) 339–349.

[26] C. Rouff, A. Vanderbilt, W. Truszkowski, J. Rash, M. Hinchey, Verification of NASA Emergent
Systems, in: Proc. 9th IEEE International Conference on Engineering Complex Computer Sys-
tems Navigating Complexity in the e-Engineering Age, IEEE Computer Society Press, 2004, pp.
231–238.

20

[27] C. Rouff, M. Hinchey, J. Pena, A. Ruiz-Cortes, Using Formal Methods and Agent-Oriented Soft-
ware Engineering for Modeling NASA Swarm-Based Systems, in: Proc. International Swarm
Intelligence Symposium (SIS), IEEE Computer Society Press, 2007, pp. 348–355.

[28] C.-C. Chen, S. Nagl, C. Clack, A calculus for multi-level emergent behaviours in component-
based systems and simulations, in: Proceedings of Emergent Properties in Artificial and Natural
Systems (EPNACS), 2007, pp. 35–51.

[29] E. M. Clarke, O. Grumberg, Avoiding The State Explosion Problem in Temporal Logic Model
Checking, in: ACM Symposium on Principles of Distributed Computing (PODC), 1987, pp.
294–303.

[30] H. Barringer, M. Fisher, D. Gabbay, G. Gough (Eds.), Advances in Temporal Logic, Vol. 16 of
Applied Logic Series, Kluwer, 2000.

[31] M. Fisher, D. Gabbay, L. Vila (Eds.), Handbook of Temporal Reasoning in Artificial Intelli-
gence, Vol. 1 of Foundations of Artificial Intelligence Series, Elsevier, 2005.

[32] M. Fisher, An Introduction to Practical Formal Methods Using Temporal Logic, Wiley, 2011.

[33] D. Gabbay, A. Pnueli, S. Shelah, J. Stavi, The Temporal Analysis of Fairness, in: Proceedings of
the Seventh ACM Symposium on the Principles of Programming Languages, Las Vegas, Nevada,
1980, pp. 163–173.

[34] E. M. Clarke, E. A. Emerson, Design and Synthesis of Synchronisation Skeletons Using Branch-
ing Time Temporal Logic, in: D. Kozen (Ed.), Proceedings of the Workshop on the Logic of
Programs, Vol. 131 of LNCS, Springer, 1981, pp. 52–71.

[35] G. J. Holzmann, The Spin Model Checker: Primer and Reference Manual, Addison-Wesley,
2003.

[36] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
A. Tacchella, NuSMV 2: An OpenSource Tool for Symbolic Model Checking, in: Proceedings
of International Conference on Computer-Aided Verification (CAV), 2002, pp. 359–364.

[37] W. Visser, K. Havelund, G. Brat, S. Park, Model Checking Programs, in: Proc. 15th IEEE
International Conference on Automated Software Engineering (ASE), IEEE Computer Society
Press, 2000, pp. 3–12.

[38] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, W. Yi, UPPAAL — a Tool Suite for Au-
tomatic Verification of Real–Time Systems, in: Proc. Workshop on Verification and Control of
Hybrid Systems III, no. 1066 in LNCS, Springer, 1995, pp. 232–243.

[39] T. Henzinger, P.-H. Ho, H. Wong-Toi, HYTECH: A Model Checker for Hybrid Systems, Inter-
national Journal on Software Tools for Technology Transfer 1 (1-2) (1997) 110–122.

[40] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-Guided Abstraction Re-
finement for Symbolic Model Checking, J. ACM 50 (5) (2003) 752–794.

[41] R. Alur, T. Dang, F. Ivančić, Counterexample-Guided Predicate Abstraction of Hybrid Systems,
Theoretical Computer Science 354 (2) (2006) 250–271.

[42] S. Tisue, U. Wilensky, Netlogo: Design and implementation of a multi-agent modeling environ-
ment, in: Proc. Agent 2004, 2004, pp. 7–9.

21

[43] C. Zeng, Simulation and Verification of Robot Swarms, Master’s thesis, University of Liverpool
(2011).

[44] A. Miller, A. Donaldson, M. Calder, Symmetry in temporal logic model checking, ACM Com-
puting Surveys 38 (3), (2006).

[45] O. Grumberg, H. Veith (Eds.), 25 Years of Model Checking - History, Achievements, Perspec-
tives, Vol. 5000 of LNCS, Springer, 2008.

[46] C. Baier, J.-P. Katoen, Principles of Model Checking, MIT Press, 2008.

[47] J. D. Bjerknes, Scaling and Fault Tolerance in Self-organised Swarms of Mobile Robots, Ph.D.
thesis, University of the West of England (2010).

Appendix A. Sample Input File

We provide the NuSMV input file for the two robot synchronous case where α = 1.

---This file has two robots and a 5x5 grid.
---Robots are synchronous and have avoidance.

MODULE main
VAR
robot1: robot(connected1,lenmax,0);
robot2: robot(connected2,lenmax,{10,11});

INVAR !(robot1.loc = robot2.loc);

DEFINE
range := 1;
lenmax := 5;
abs12x:=

case
(robot2.xcoord >= robot1.xcoord): (robot2.xcoord - robot1.xcoord);
1: (robot1.xcoord - robot2.xcoord);

esac;

abs12y:=
case
(robot2.ycoord >= robot1.ycoord): (robot2.ycoord - robot1.ycoord);
1: (robot1.ycoord - robot2.ycoord);

esac;

connected1 := (((abs12x) <= range) | ((lenmax - abs12x) <= range)) &
(((abs12y) <= range) | ((lenmax - abs12y) <= range));

connected2 := (((abs12x) <= range) | ((lenmax - abs12x) <= range)) &
(((abs12y) <= range) | ((lenmax - abs12y) <= range));

LTLSPEC G F connected1 & G F connected2;

-- definition of each robot
MODULE robot(connected,lenmax,initloc)
VAR
loc: {00,01,02,03,04,10,11,12,13,14,20,21,22,23,24,30,31,32,33,34,40,41,42,43,44};
direction: {n,s,e,w};
motion: {for,coh};

22

ASSIGN
init(loc) := initloc;
next(loc):=

case
fcon & (direction = n) : mn;
fcon & (direction = n) : {me, mw};

fcon & (direction = s) : ms;
fcon & (direction = s) : {me, mw};

fcon & (direction = e) : me;
fcon & (direction = e) : {mn,ms};

fcon & (direction = w) : mw;
fcon & (direction = w) : {mn,ms};

cohnocon & (direction = n): mn;
cohnocon & (direction = s): ms;
cohnocon & (direction = e): me;
cohnocon & (direction = w): mw;

fnocon & (direction = n): ms;
fnocon & (direction = s): mn;
fnocon & (direction = e): mw;
fnocon & (direction = w): me;

cohcon & (direction = n) & next(direction = e): me;
cohcon & (direction = n) & next(direction = w): mw;
cohcon & (direction = s) & next(direction = e): me;
cohcon & (direction = s) & next(direction = w): mw;
cohcon & (direction = e) & next(direction = n): mn;
cohcon & (direction = e) & next(direction = s): ms;
cohcon & (direction = w) & next(direction = n): mn;
cohcon & (direction = w) & next(direction = s): ms;

1: loc;
esac;

init(motion) := for;
next(motion):=

case
fcon: for;
fnocon: coh;
cohnocon: coh;
cohcon: for;

1: motion;
esac;

init(direction) := {n,s,e,w};

next(direction):=
case

fcon : direction;
fnocon & direction = n : s;

23

fnocon & direction = e : w;
fnocon & direction = s : n;
fnocon & direction = w : e;
cohnocon: direction;
cohcon & direction = n: {w,e};
cohcon & direction = s: {w,e};
cohcon & direction = e: {n,s};
cohcon & direction = w: {n,s};

1: direction;
esac;

-- variables defined from the above parameters.
DEFINE
fcon := (motion = for) & (connected = 1);
fnocon := (motion = for) & (connected = 0);
cohcon := (motion = coh) & (connected = 1);
cohnocon := (motion = coh) & (connected = 0);

mn:= 10*(loc/10) + (((loc mod 10)+1) mod lenmax);
ms:= 10*(loc/10) + (((loc mod 10) + lenmax -1) mod lenmax);
me:= (loc +10) mod (lenmax*10);
mw:= (loc +(lenmax*10) -10) mod (lenmax*10);

xcoord:= loc/10;
ycoord:= loc mod 10;

Appendix B. Proofs of Theorems

We provide the relevant Theorems, Lemmas and their Proofs for the notion of grid independence
discussed in Section 8.

Lemma 1. Let r1 and r2 be robots in an n × n finite grid Gn×n moving synchronously with a grid
independent trace. Robots r1 and r1 are connected in Gn×n if and only if they are connected in the
infinite grid G.

PROOF. From the definition of grid independence.

Lemma 2. Robot r1 has position (x, y) in an n× n (finite) wrap round grid if and only if its position
following the same sequence of movements in an infinite grid is (jn + x, kn + y) for some integers j
and k.

PROOF. We show this by induction on the movement of the robot. The base case is the robot’s initial
position. Let us assume initially the robot is at (x0, y0) in the finite grid. Thus in the infinite grid it is
also at (x0, y0) which can be represented as (jn + x0, kn + y0) where j = k = 0. Assume that the
Lemma holds for m moves of the robot. We show it holds for the m + 1th step. At step m assume the
robot is at position (x′, y′) in the finite grid and by the inductive hypothesis at (jn+x′, kn+y′) in the
infinite grid. Because x′ and y′ are positions in the n×n finite grid 0 ≤ x′ ≤ n−1 and 0 ≤ y′ ≤ n−1.
We assume the movement is North. We consider two cases. Firstly assume 0 ≤ y′ ≤ n − 2. The
new position of the robot in the finite grid is (x′, y′ + 1) and hence the new position of the robot in
the infinite grid is (jn + x′, kn + y′ + 1) (where 1 ≤ (y′ + 1) ≤ n − 1) as required. Next assume
that y′ = n − 1 in the finite grid. The new position of the robot in the finite grid after moving North
is (x′, 0). In the infinite grid it is in position (jn + x′, kn + y′ + 1) = (jn + x′, kn + n− 1 + 1) =
(jn+x′, kn+n) = (jn+x′, (k+1)n+0). In both cases we obtain the required form. The movement
South, East and West is analogous.

24

Theorem 3. Given a grid independent trace for an n×n grid we can extend this to a grid independent
trace for an m×m grid where m > n.

PROOF. First note that by assumption 2α + 1 < n so α < n. We show that any pair of connected
robots in an n × n grid is also connected in an m × m grid (where m > n). Let r1 and r2 be
robots in an n × n finite grid Gn×n moving synchronously with a grid independent trace. Let r1 be
at position (x, y) and robot r2 be at position (x′, y′). From Lemma 2 and the assumption that this is a
grid independent trace, in the infinite grid robot r1 is in position (jn+x, kn+ y) and r2 is in position
(j′n + x′, k′n + y′) for some integers j, j′, k, k′. Let m be a larger grid size, i.e. where m > n.
Representing the robots position in the infinite grid with respect to m rather than n we have robot r1

is at position (j1m + x1, k1m + y1) and r2 is in position (j′1m + x′1, k
′
1n + y′1) where

(jn + x) = (j1m + x1)
(kn + y) = (k1m + y1)

(j′n + x′) = (j′1m + x′1)
(k′n + y′) = (k′1m + y′1)

Thus by Lemma 2 robot r1 is at (x1, y1) in the m×m finite grid and robot r2 at (x′1, y
′
1) in the m×m

finite grid. If robots r1 and r2 are connected in the n × n finite grid then by Lemma 2 they are also
connected in the infinite grid so

|(jn + x)− (j′n + x′)| ≤ α and |(kn + y)− (k′n + y′)| ≤ α

and therefore

|(j1m + x1)− (j′1m + x′1)| ≤ α and |(k1m + y1)− (k′1m + y′1)| ≤ α.

To show that robots r1 and r2 are connected in the m×m finite grid we need to show that

|x1 − x′1| ≤ α or (m− |x1 − x′1|) ≤ α and
|y1 − y′1| ≤ α or (m− |y1 − y′1|) ≤ α.

The second disjunct in each pair deals with when the connectedness is measured over the edges of the
grid eg with (2,5) and (2,0) where m = 6.

We consider the case for the x co-ordinates. The case for the y co-ordinates is similar. There are
three cases to consider j1 = j′1, j1 = j′1 + 1, and j1 = j′1 − 1. Note that if j1 > j′1 + 1 or j1 < j′1 − 1
the distance between the robots in the infinite grid is > m. This contradicts the assumption that the
robots are connected, m > n and α < n.

• j1 = j′1 As |(j1m + x1)− (j′1m + x′1)| ≤ α we have |x1 − x′1| ≤ α as required.

• j1 = j′1 +1 As |(j1m+x1)− (j′1m+x′1)| ≤ α we have |((j′1 +1)m+x1)− (j′1m+x′1)| ≤ α
and therefore |(m + x1 − x′1)| ≤ α. As m > n and n > α then x′1 > x1 so m− |x1 − x′1| ≤ α
as required.

• j1 = j′1 − 1 This is similar to the previous case.

This shows that the difference in x co-ordinates of the robots in the finite m × m grid are less than
or equal to α (or their wrap round distance from each other is less than or equal to α). The proof for
the y co-ordinates is similar. So any pair of connected robots in an n × n grid is also connected in
an m×m grid (where m > n). Thus for grid independent traces we have shown that given a failing
trace from an n× n grid we can construct one for a m×m where m > n.

25

