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A B S T R A C T 

In this work, the dimensional synthesis of a spherical Parallel Manipulator (PM) with a 3PSU-IS kinematic 
chain is presented. The goal of the synthesis is to find a set of parameters that defines the PM with the best 
performance in terms of workspace capabilities, dexterity and isotropy. The PM is parametrized in terms 
of a reference element, and a non-directed search of these parameters is carried out. First, the inverse 
kinematics and instantaneous kinematics of the mechanism are presented. The latter is found using the 
screw theory formulation. An algorithm that explores a bounded set of parameters and determines the 
corresponding value of global indexes is presented. The concepts of a novel global performance index 
and a compound index are introduced. Simulation results are shown and discussed. The best PMs found 
in terms of each performance index evaluated are locally analyzed in terms of its workspace and local 
dexterity. The relationship between the performance of the PM and its parameters is discussed, and a 
prototype with the best performance in terms of the compound index is presented and analyzed. 

1. Introduction 

The synthesis of a parallel mechanism (PM) can be divided 
into two main topics, the definition of the mechanical architecture 
(Structural Synthesis), and the determination of the dimensions of 
its elements (Dimensional Synthesis). 

The first is related to the number, type and relative position of 
joint axes of the PM, which can be obtained by several systematic 
approaches [1-3]. Even though the pattern of movement, the 
actuators and the degrees of freedom of the PM are defined during 
the structural synthesis, the incorrect dimensioning of its elements 
will result in a mechanism with poor performance. Therefore, the 
correct design of a PM must unequivocally determine the best 
geometry that satisfies the design requirements [4]. 

For the dimensional synthesis of a PM, the mechanism has to 
be modeled and the dimensions that are most appropriate for the 
task according to the criteria adopted for the evaluation of its 
performance, have to be found. 

Some authors base the dimensional synthesis on the maximiza­
tion of a performance index related to the Jacobian matrix. The 

Condition Index and the Global Conditioning Index (GCI) are per­
haps the most known and used indexes for the design and eval­
uation of a mechanism [5-9]. However, it is often used for the 
definition of a cost function and an optimization problem. In [10], 
the optimal kinematic design is formulated as a non-linear pro­
gramming problem of a cost function based on the media and stan­
dard deviation of the condition number of the Jacobian matrix. 

Since the optimization problem of a cost function is quite 
complex, genetic algorithms (GA) or other search methods during 
the synthesis are often used. In [11], the optimization of the 
parameters of a three-legged 6DoF Haptic device is carried out by 
the minimization of an objective function, which is defined by the 
minimum of the global design indexes implementing a GA for a 
global optimization. GA is also implemented in [12] to determine 
the optimal configuration of a 3UPU pure translation and a 3UPS 
pure orientation PM. It also implements Monte Carlo's method to 
determine the performance indexes. In [13] a controlled random 
search algorithm is presented in order to solve the constrained 
non-linear optimization problem that maximizes the effective 
regular workspace of a Delta and a Stewart-Gough robot. 

In this work, the dimensional synthesis for a novel spherical 
PM is presented. The PM is parametrized considering one of its 
elements as reference, which provides a scalable solution for a real 
application. A non-directed search of these parameters is carried 
out in order to find the relationship between the parameters that 
guarantee a good performance in terms of a novel compound global 
index that integrates information of its workspace capabilities, 
dexterity and isotropy. The results obtained during the simulations 
are implemented into a real prototype and its real physical 
characteristics are presented. It also shows that the design criteria 



Fig. 1. 3PSU-1SPM. 

cannot depend on the evaluation of only one global performance 
index. 

This paper is organized as follows: first, a brief introduction to 
3PSU-1S spherical parallel manipulator and its kinematic modeling 
are presented. Then, the methodology applied is completely 
detailed and summed up in a descriptive flow chart. It is followed 
by the results from simulations, which are presented and further 
discussed. Finally the conclusions are stated. 

2. 3PSU-1S spherical parallel manipulator 

The 3PSU-1S is a four-legged parallel mechanism, where the 
passive leg imposes the spherical movement pattern, controlled by 
three PSU type legs with the prismatic pair actuated (see Fig. 1). 

Since the active legs are placed over the vertices of an equilat­
eral triangle, the geometry of the mechanism can be fully charac­
terized by the length of the links L\, L2, L3 and L4, and the radius 
RB and RM of the circumscribed circle of the equilateral triangles of 
the base and moving platform respectively, see Fig. 2(a). 

2.1. Inverse kinematics 

Let us attach a fixed reference frame Oxyz at the center of 
rotation of the passive leg as presented in the schematic wire 
diagram of the mechanism in Fig. 2(a). 

The link L3 of the ith-leg is connected to the moving platform 
by a universal joint, thus the opposite extreme of this link (B¡ = 
[Bix, Biy, BjJ) can only move over the surface of the sphere £¡ with 
center in Q = [Qx, Q , Qz] and radius L3 (see Fig. 2(b)), defined 
according to (1). 

(Bix - Cix)
2 + (Biy - Ciy)

2 + (Biz - Ciz)
2 = L3

2. (1) 

Bj also belongs to line /¡, whose direction vector is associated to the 
axis of the prismatic actuator, defined by (2), 

U : Bt = At + kX (2) 

where í¡ is the unit vector pointing along the direction of line /¡, and 
is parallel to the z axis (i.e. í¡ = [0, 0, 1]). Expanding (2), it can be 
demonstrated that Bix = Aix and Biy = Aiy. Taking this result into 
(1), B¡z can be found according to (3). 

Biz = Qz ± JL3
2 - (Aix - Cix)

2 - (Aiy - Ciyy. (3) 

Fig. 2. Schematic wire diagram of the 3PSU-1S. 

Given the nature of the square root operator, then two possible 
solutions can be obtained E¡~, B+ when selecting the — or + sign 
in (3) respectively. However, the B+ solution has to be discarded, 
because it leads to collisions between the legs and the moving 
platform. 

Then, the state of the prismatic actuator is given by (4). 
ki = Biz-Aiz. (4) 

2.2. Screw based Jacobian matrix 

The traditional process for finding the instantaneous kinematics 
of a parallel mechanism consists of differentiating the inverse 
kinematic equation. However, this process is tedious and may 
lead to possible errors. A much better methodology is the use 
of screw theory and the concept of reciprocal screws [14]. They 
provide a better geometrical insight into the problem and allow the 
precise and complete analysis of singularities of the mechanism 
[15,16]. 

Therefore, let us define an instantaneous reference frame 0', , ,, 
x y z 

which is instantaneously coincident and parallel to the reference 
frame Oxyz, and express all the twists of the mechanism with 
respect to this instantaneous reference frame. All the twists 
associated to the joints of the ith-leg of the 3PSU-1S mechanism 
are shown in Fig. 3, where S,̂  is the jth-twist associated to the 



jth-joint of the ith-leg, and u,^ is the unit vector associated to the 
corresponding twist. The instantaneous reference frame 0', , , is 

x y z 

not shown for graph clarity. 
According to [17], the resulting twist for the end effector ($e/) 

can be found as the linear combination of the twists associated to 
each joint of a leg given by (5), 

ief 
COef 

v0' 

where &>, 

9l , i$ l , i + 92,i$2,i + 93,i$3,i + 94,i$4,i + 95,i$5,i + 96,i$6,i (5) 
T 

•ef V &>z] , is the angular velocity of the end 

voy>, v0z>] is the linear velocity of a effector, v0< = [v0x>, 
point that belongs to the end effector expressed at the origin of the 
instantaneous reference frame, $jj is the unitary twist associated 
to the jth-joint of the ith-leg, and q^ is its corresponding intensity. 

It must be noticed in (5) that since the pattern of movement of 
the mechanism is governed by the spherical joint of the passive 
leg, no translation for the end effector is allowed, therefore v0< = 
[0, 0, 0]T . 

Using the reciprocal screw's property, all the twists of the 
passive joints can be eliminated from (5). In particular, the 
reciprocal screw to any spherical joint and universal joint, is a $0 
screw that passes through the center of the joint. Therefore, the 
reciprocal screw for each leg is a $0 that passes through the center 
of the universal joint and the center of the sphericaljoint, and given 
by (6), 

«r,i 
ftj x u r j (6) 

where u r j = (c¡ — fo¡)/llc¡ — b¡\\. Taking the reciprocal product 
$ r ¡ o $e/,(5) is reduced to (7). 

$r,i ° $ef = 9l, i($r, i ° $1,0- ( ? ) 

Considering the reciprocal product operator YI = ; 0 , where / 
is the 3 x 3 identity matrix and 0 is the 3 x 3 zero matrix, (7) can 
be expressed as follows [1]: 

[n$rA]T$ef = qu(imrA]T$u), (8) 

where $IJ = [0, u^] is the twist S^ associated to the prismatic 
joint. 

Replacing $IJ and $e/ in (8), and expanding for legs i = 1, 2, 3, 
the velocity equation of the mechanism can be found according 
to (9). 
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7 
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Defining/* andL as follows, 

(i»i x ur>1)' 

(i>2 X U r > 2) 

(i>3 X U r , 3 ) T 

(9) 

(10) 

h (11) 

u'r j U ^ i 0 0 

0 uT
r2uh2 0 

0 0 <3u l i3_ 

the velocity equation of the mechanism can be expressed as: 
Jx(oef=Jqq, (12) 

where q = [ q u , qia, 91,3] 

Fig. 3. Screws associated to the 3PSU-1S PM. 

If the inverse matrix of Jq exists, the velocity equation of the 
mechanism can be written in terms of the overall Jacobian matrix 
J =]ql]x, as follows: 

Jcoef = q. 

3. Dimensional synthesis methodology 

(13) 

The methodology proposed is based on the parametrization 
of the PM in terms of the length of the elements L\, L2, L3, L4, 
RB and RM, and their normalization according to a geometric 
characteristic. This consideration allows us to have a dimensionless 
analysis, which permits a scalable solution. A bounded set of these 
parameters is defined and the algorithm analyzes all the PMs in 
terms of the global performance indexes presented below. For the 
evaluation of the global performance indexes (GPI), the workspace 
of each PM is discretized into nodes. A non-oriented search for the 
parameters where the PM has the best performance in terms of a 
compound index is performed. 

A schematic flow chart of this method is presented in Fig. 4. As 
it can be observed, the algorithm can be divided into three main 
tasks: 

1. Parameter generation: it generates the different sets of 
parameter that describe a unique mechanism. 

2. Mechanism evaluation: for every generated set of parameters, 
the geometric relations of the PM are established and the per­
formance of the PM is evaluated over its discretized workspace. 
These steps are detailed in the following subsections. 

3. Data processing: the algorithm shows the relationships 
between each GPI and the PM's geometry. It finds the set of 
parameters that maximizes each of the GPI evaluated. It also 
evaluates the following compound index: 

C = fiWSii ¿o-jCP/j V (14) 

which is intended to integrate into a single index the workspace 
and dexterity characteristic of the PM. /3 and cf¡ are ponderation 
factors. 
The PMs with maximum performance found are analyzed 
considering their local dexterity behavior and their workspace 
capabilities. 
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CD 

3.2. Constraints verification 

The workspace of a mechanism is always dependent to its 
physical limitations, which are given by the implicit constraints 
of the kinematic chains, such as the range of work of each joint 
and the collisions or interferences between the elements of the 
mechanism, among others. In this work, the physical limitations 
of the PM under evaluation are considered and modeled as 
follows: 

1. Prismatic Stroke Constraint: the prismatic stroke constraint 
imposed on each leg can be written as dmin < d¡ < dmax. Where 
d¡ is the state of the prismatic joint of the ith-limb given by (4), 
and dmin and dmax are the minimum and maximum strokes of 
the actuator. During the simulations, it is assumed that dmin = 0 
and dmax = 2RB. 

2. Universal and Spherical Joint Constraint: it is considered that 
its relative movement can never exceed the region limited by 
the circular cone defined by an axis normal to the joint, an 
aperture angle Smax = 160° and its apex located at the center of 
the joint ([19]). 

3. Leg Interference: it is based on the evaluation of the minimum 
distance between two cylinders ([20]). In this work, it is only 
considered the interference between any link L2 and link L3, 
because the constraints imposed by the universal joints do not 
allow collisions between any other elements. The diameter of 
the cylinders for L3 and L2 are assumed as d¿3 = 0.1 RB and 
di2 = 0.15 RB, respectively. 

3.3. Index calculation 

Fig. 4. Methodology implemented. 

3.1. End-effector state generator 

The parallel mechanism under analysis has a spherical motion 
pattern, therefore the end-effector state generator generates all the 
possible orientations in R3. 

The orientation generator uses the quaternion representation 
method for orientation, which permits a singularity-free repre­
sentation. Furthermore, with the parameterization stated below, it 
permits a unique representation for each orientation without am­
biguities, and all the orientation in R3 can be visualized as a solid 
sphere [18]. 

Therefore, a given rotation represented by a unit axis ü and the 
quantity <fi rotated around this axis, can also be expressed as a unit 
quaternion, as follows: 

[« ^ [cos(0/2), 

= IIPII2 = e 

vsin (0/2)]7 

)
2+ei

2 + e2
2 + e3

2 

(15) 

= 1 where (15) must satisfy: ppT 

and ||v|| = 1. 
The vector s = vsin(0/2), will describe a solid sphere S 

of unitary radius. Therefore, a point of the solid sphere s = 
[ei, e2, e3], defines a vector where its direction is associated 
to the rotation axis according to v = s/||s||, and its norm is related 
to the angle of rotation according to <fi = ±2arcsin(||s||). The 
± sign depends on whether e3 > 0 or e3 < 0, respectively. The 
z-coordinate of the direction vector v = [vx, vy, vz] is considered 
always vz js 0 in order to avoid ambiguities in the orientation 
representation. 

Therefore, the orientation generator defines a vector s = 
[ei, e2, e3], where e-i, e2 and e3 e [—1, lj.Thus, if ||s|| si 1 
(i.e. s belongs to the spherical solid of unitary radius), then the 
orientation generated will be given as follows: 

PT = [Vl - ||s||2, s]T = [cos(0/2), vsimW2)]T (16) 

3.3.1. Workspace index 
The workspace of the mechanism is defined by all the positions 

and orientations that can be achieved without exceeding its 
physical limitations. 

The simpler way to obtain the workspace is to discretize the 
objective workspace into nodes (nG), and identify those nodes 
(nws) that are feasible. Therefore, the ratio: 

WSI nws (17) 

gives an idea of the workspace capabilities of the mechanism, and 
can only take values in the interval [0, 1]. 

However, since there are singular configurations that separate 
the workspace into smaller regions (as it is presented in the results 
section), in this work the evaluation of the WSI only considers 
those nodes that belongs to the maximum region free of singular 
postures. 

3.3.2. Global condition index 
In linear algebra, the condition number expresses the sensitivity 

of the solution of a linear system to errors in the known data 
or the system itself. On the other hand, the Jacobian matrix 
of a robot maps the joint space into the end effector space. 
Therefore, the performance of a robot for a given configuration 
can be characterized with the condition number of the Jacobian 
matrix [5], according to K(J) = [/|.L/_1|, where 

maxx^0- (18) 

Since the condition number can take values in the interval [1, oo), 
the condition index given by CI(J) = K~Í(J) and bounded to (0, 1] 
is usually used instead. When it tends to zero, the Jacobian Matrix 
is badly conditioned, and the mechanism could fall into a singular 
configuration. 
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Fig. 5. Performance of the PM according to its design parameters. 

The global condition index [21], is introduced in order to 
evaluate the global performance of the mechanism in all its 
workspace and it is defined as follows: 

GCI 
¡w CI(J)dW 

IwdW 
(19) 

and takes values over the interval (0,1]. However, given the 
complexity in finding an exact solution for the integral term, a 
discrete formulation is used instead: 

CCI 

nws 
J2CIQ) 

J = l 

nws 
(20) 

where nws are the nodes that belong to the workspace of the PM. 

3.3.3. Global level and distribution ratio index 
The overall performance of the mechanism can be characterized 

by means of the CCI, though, this index does not reflect the unifor­
mity or non-uniformity of the performance of the mechanism. If 
the discrete formulation for the CCI is observed comprehensively, 
it resembles the mean value for the CI over the workspace of the 
mechanism (nws). Thus, the GCI tolerates small regions of poor be­
havior and may overrate a design that is unacceptable in practice. 

Therefore, a novel bounded index named Level and Distribution 
Ratio Index (Ra) is proposed in this work. It penalizes the non-
uniformity of the index over the workspace, defined as follows, 

Rr 
CCI 

uAaa + 1 
(21) 

where aa is the standard deviation of the CI over the workspace, 
and Ra € (0, 1]. a4 is a ponderation factor. 

3.3.4. Kinematic conditioning index 
The Kinematic Conditioning Index (KG), is defined as fol­

lows [22]: 

KCI 
1 

Krnin U ) 
(22) 

where Kmin(J) is the minimum condition number of the Jacobian 
matrix in the entire workspace. This index gives an idea of the 
worst performance of the mechanism in the workspace, and KCI e 
[0, 1]. A PM with KCI = 1 means that it is isotropic since all their 
singular values are identical, while a KCI = 0 means that the PM 
possesses at least one singular posture in its workspace. Hence, 
it can be inferred that a higher KCI makes a matrix closer to the 
isotropic condition and a lower KCI makes it closer to singularity. 

3.3.5. Global isotropy index 
The Global Isotropy Index (Gil) was introduced by Stocco 

et al. [23] and defined as the relationship between the largest 
and smallest singular values of the Jacobian matrix in the entire 
workspace, as follows: 

GIIQ) 
A-min U ) 

¿•max U ) 
(23) 

The Gil is a worst-case performance measure. The Gil is essentially 
a global inclusive version of the condition number. However, the 
Gil evaluates a robot design by the bounds on its singular values 
and not by an average value. It does not tolerate intermittent 
displays of poor performance. It also takes scale information into 
account since this information is reflected by the singular value 
bounds. 

4. Simulation results 

For the dimensional synthesis, the PMs are parametrized 
considering the radius of the base platform (RB) as the normalizing 
length, and the rest of its elements will be expressed as an RB 

times scale factor. In this work, 9261 PMs are generated and 
parametrized considering the scale factors presented in Table 1. 
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Fig. 6. Local characteristics of the PMs with maximum indexes. 

Table 1 
Parametrization of the PM. 

Parameter 

RB 

RM 

¿1 
¿2 
¿3 
¿4 

Scale factor 

1 
[0,2] 
[0,2] 
0.25 
[0,2] 
0 

Variation 

_ 
0.1 
0.1 

-
0.1 

-

The objective workspace analyzed is discretized into 33401 states 
nodes. The performance of the PMs in terms ofeach global index is 
presented in Fig. 5 as contoured slices. 

As shown in Fig. 5(a), the workspace of the mechanism 
increases as L3, L\ tends to 2, and RM tends to 0. It can also 
be observed that the WS of the PM is drastically reduced if L3 
decreases. Fig. 5(b) shows that a PM will have a good performance 
in terms of the CCI if all the parameters tend to 2. However, it also 
shows that enhanced performances can be achieved if L\ and L3 
tend to 0.5 and RM tends to 1. As shown in Fig. 5(c), the evaluation 
of the PMs in terms of Ra resembles the behavior of CCI, but 
with lower intensities. Therefore, all the PMs present a uniform 
distributed performance. In Fig. 5(d), it can be observed that the KCI 
is enhanced if RM, L\ and L3 tend to 2. However, good performances 

in terms of KCI can be obtained if Ru and L\ tend to 0 and L3 > 0. 
Fig. 5(e) presents the performances of the PMs in terms of GIL It 
can be seen that in order to achieve a good performance, L\ must 
tend to 0, and RM must be related to L3 as follows: while L3 tends 
to 1, RM must tend to 0. 

The PMs with maximum performances found in terms of each 
global index are presented in Table 2. As it can be observed, 
there are three optimum PMs: PM1 = [0.2, 2.0, 2.0], PM2 = 
[1.2, 0.2, 0.5] and PM3 [1.4, 1.7, 1.3]. PM2 is optimum in 
terms of the CCI, Ra, and Gil indexes, however it has a very reduced 
workspace. On the other hand, the optimum PM in terms of WSI 
(i.e. PM1) has a poor performance in terms of the other indexes. 
These PMs are further analyzed by evaluating their workspaces, 
their singular configurations and their local dexterity (CI(J)). 

The workspace of the PMs and their singular configurations 
are presented in Figs. 6(a), (d), (g). The workspace is presented 
as a solid volume, while the singular configurations (i.e. those 
configurations where det(J) = 0) as a translucent surface. The 
workspace of the PMs free of singularities are presented in 
Figs. 6(b), (e), (h), as a solid volume. The local dexterity of PMs 
are presented as colored contours for different slices of their 
workspace free of singularities in Figs. 6(c), (f), (i). 

From the previous results, it can be easily observed that the 
optimum PMs in terms of each GPI do not have a wide non 
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Fig. 7. Local characteristics of the PMs with maximum indexes. 

Table 2 
PMs with maximum performance indexes. 

Index 

WSImax 

^(-Imax 

KQmax 

K-{-*max 

Climax 

c 

WS1 

0.3231 
2.39e-4 
2.39e-4 
0.0480 
2.39e-4 

0.2276 

GC1 

0.0708 
0.9992 
0.9992 
0.5328 
0.9992 

0.2499 

Rci 

0.0686 
0.9992 
0.9992 
0.4463 
0.9992 

0.2270 

KC1 

0.1254 
0.9992 
0.9992 
0.9999 
0.9992 

0.4385 

Gil 

4.5e-4 
0.9992 
0.9992 
0.0051 
0.9992 

0.0050 

C 

0.2287 
0.0024 
0.0024 
0.2556 
0.0024 

0.5688 

[RM,L-¡, L3] 

[0.2, 2.0, 2.0]1 

[1.2, 0.2, 0.5]2 

[1.2, 0.2, 0.5] 
[1.4, 1.7, 1.3]3 

[1.2, 0.2, 0.5] 

[0.7, 2.0, 1.8]4 

singular workspace and good local dexterity at the same time. 
Thus, the performance of the PMs has to be evaluated in terms of an 
index that integrates all the GPIs. Therefore, the compound index 
presented in Section 3, is defined as: 

C = WWSI(RC, + KCI + Gil). (24) 

It must be noticed in (24) that the CCl is not included in the 
definition of the compound index in order to avoid redundancy 
of information since the performance of the PMs in terms of Ra 

resembles the behavior of the CCI. 
The best PM in terms of the compound index is given by PM4 = 

[0.7, 2.0, 1.8]. In Fig. 7, an insight of the characteristics of this 
PM is presented. As it can be observed, it has a workspace greater 
than 22% of all the 3D orientation space, and it also presents an 
acceptable local dexterity, (see Table 2). 

5. 3PSU-1S real prototype 

Considering the performance of PM4 obtained in the previous 
section, and a radius of the base platform RB = 50 mm, the first 
prototype of the 3PSU-1S PM is implemented. (See Fig. 8). 

The 3PSU-1S spherical PM uses 3 Faulhaber Linear DC-
Servomotors LM 1247 080-01 for the actuation. These linear 
motors are made up of a magnetized rod that slides in­
side a controlled magnetic field, providing a controlled linear 
motion. 

Given the reduced range of work of the commercially available 
spherical joints, the spherical joints of the mechanism are 
implemented as a universal joint plus a revolute joint orthogonally 
placed. The kinematic model of the mechanism explained in 
Section 2 is implemented in Labview. The linear motors are 
commanded via a CAN bus. 

The maximum pure rotations along the principal axis of the 
mechanism (i.e.x.y.z) are presented in Fig. 9. The maximum pure 
rotations along z, are limited by the singular configuration of the 
mechanism. 

Fig. 8. 3PSU-1S real prototype. 

6. Conclusions and discussion 

In this work, the dimensional synthesis for the 3PSU-1S 
spherical PM has been presented. 

The PM is parametrized and normalized according to a geo­
metrical characteristic. This consideration allows a dimensionless 
analysis, which permits a scalable solution that can easily be im­
plemented in a real prototype. 

The criteria adopted for the dimensional synthesis is based on 
the evaluation of a compound performance index that integrates 
the workspace and dexterity characteristics of the PM. In this work, 
it has been proven that the dimensional synthesis of a mechanism 
cannot be based on the evaluation of only one design criteria, but 
it has to integrate different perspectives for the evaluation. 

The methodology presented in this work could be used as a 
guide for the design of spherical parallel manipulator, which could 
be extended to a spatial parallel mechanism if some criteria for the 
homogenization of the Jacobian matrix is adopted. 



(a) Rxmin = - 30° . (b) Rxmax = 30°. (c) Rymin = - 30° . 

(d) Rymax = 30°. (e) Rzmin = -30° . (f) Rzmax = 60°. 

Fig. 9. 3PSU-1S maximum pure rotation. 
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