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Abstract

The primary challenge for any autonomous system operating in realistic, rather unconstrained scenarios is to man-
age the complexity and uncertainty of the real world. While it is unclear how exactly humans and other higher animals
master these problems, it seems evident, that abstraction plays an important role. The use of abstract concepts allows
to define the system behavior on higher levels. In this paper we focus on the semantic mapping of indoor environ-
ments. We propose a method to extract an abstracted floor plan from typical grid maps using Bayesian reasoning. The
result of this procedure is a probabilistic generative model of the environment defined over abstract concepts. It is
well suited for higher-level reasoning and communication purposes. We demonstrate the effectiveness of the approach

using real-world data.
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1. Introduction

The primary challenge for any autonomous system
operating in realistic, rather unconstrained scenarios is
to manage the complexity and uncertainty of the real
world. In robotics this holds, as soon as the robots leave
the carefully engineered production environments in
which they have been so successful in the past decades.

The typically high degree of uncertainty in real-world
environments, that makes a robot’s life so hard, comes
from the following sources: the limited measurement
accuracy and other limitations of the system’s sensors,
modeling errors and purposefully made simplifications
in the system’s internal representations, unobserved en-
vironment dynamics and random effects in action ex-
ecution. While it is unclear how exactly humans and
other higher animals master these problems, it seems
evident, that abstraction plays an important role. The
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use of abstract concepts allows to define the system be-
havior on higher levels and independently of the exact
setting of the environment and the exact sensor read-
ings.

In this study we address the first two of the problems
mentioned above, in that we provide the system with a
limited capability of abstraction allowing for a higher-
level understanding of its environment. In addition, we
directly address the uncertainty related issues by strictly
following a probabilistic approach that explicitly mod-
els and keeps track of the uncertainty associated with
any variables of the problem.

As a by-product, the system’s capability to use prede-
fined concepts will ease cooperation in mixed human-
robot tasks, since a common language used by both the
human and the robot is a precondition for efficient ex-
change of information between both parties. This is
however not addressed in this paper.

To illustrate the general idea, we use an example
from an indoor navigation scenario, namely the seman-
tic analysis of the commonly used occupancy grid maps.
The objective of the presented method is to provide an
abstracted, semantically annotated but still probabilistic
map of the indoor environment. For this purpose, we
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Figure 1: A typical occupancy grid map of an indoor environment,
obtained from the Robotics Data Set Repository (Radish) [3].

first use a robot — equipped with a 2D laser scanner —
to build an occupancy grid of the environment using a
standard SLAM method [[1] and then employ the pro-
cedure described in the reminder of this document to
extract the semantic information. To do this, we use a
Markov Chain Monte Carlo (MCMC) based sampling
technique [2] to generate samples from the probability
density function capturing the distribution of probable
worlds the robot could encounter. The maximum poste-
rior solution could then be used as an estimate of what
the world semantically looks like.

2. Problem Formulation

Most of todays’ mapping approaches aim to construct
a globally consistent, metric map of the robot’s operat-
ing environments. See Fig. [I|for a typical result. Such
maps enable the robot to localize itself with respect to
the environment and thus determine its global pose in
an assumed flat world with an accuracy of typically a
few centimeters in translation and below one degree in
rotation. Based on this capability, the robot can also
plan a path and navigate towards a goal, that will also
be specified by its metric position in the global map ref-
erence frame. However, the robot does not understand
its environment in terms of typical semantic concepts
like rooms, corridors or functionally enriched concepts
like a kitchen or living room. Furthermore, the robot
does not understand relations like adjacency, connectiv-
ity via doors, or properties like rectangularity that — if
known to be relevant to the given environment — could
help to build the maps in the first place.

Our work aims at extracting such semantic models of
the environment from the more or less raw sensor data.
In the context of this paper, we assume, that a map, like
the one depicted in Fig. |1} was already constructed using
one of the proven methods available for this purpose [1]].

Assigning semantics to spatial maps in robotics has
not been looked at as intensely as the metric or topolog-
ical mapping. Still, several important contributions to
the field have already been made. They can be clustered
into two major groups. The first group consists of meth-
ods based on place labeling, some notable examples are
(415016 7, 18L 9L 10, [11]]. These methods assign semantic
labels to places or regions of the accessible work space
of the robot. They are very much in the tradition of [[12]]
or [13].

A second group is formed by approaches assigning
semantic labels to parts or objects of the perceived struc-
ture of the environment, like traversable terrain, trees
or similar structures in outdoor environments or walls,
ceilings, and doors in indoor settings [[14} 1516417, (18l
19120, 21}, 22]].

In addition to the two groups mentioned above, there
are also other approaches. The approach of [23] seman-
tically models places via objects. In [24], a method is
proposed, which explores the environment in a room-
by-room style and fits the explored map part into poly-
gons. Tapus and Siegwart [25] build a map of the en-
vironment based on so called fingerprints of explored
places. Lim et. al. [26] introduce an ontology-based
method that integrates low-level data with high-level
constraints to represent the knowledge as a semantic
network.

Different from those methods mentioned above, we
aim to construct a probabilistic generative model of the
world around the robot, that is essentially based on ab-
stract semantic concepts but at the same time allows to
predict the continuous percepts that the robot obtains via
its noisy sensors. This abstract model has a form sim-
ilar to a scene graph, a structure which is widely used
in computer graphics. The scene graph (see Fig.[2]c) in
our case consists of rooms and doorways connecting the
rooms and can be visualized as a classical floor plan(see
Fig.|b).

The scene graph and thus also the semantically anno-
tated world state is denoted by a vector of hidden pa-
rameters W specifying the world state, that generated
the occupancy map M we are currently looking at. In
the Bayesian framework we can use a maximum poste-
rior approach to infer the most probable state W* € Q
from the space of probable worlds Q given the map M.

W* = argmax p(W|M), €))
with
P(WIM) o< p(MIW)p(W). (2
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Figure 2: a) A simplified occupancy grid map: Unexplained area is drawn in grey, free space is drawn in white. Occupied area is drawn in black.
b) A possible floor plan represented as a scene graph (W): The world is divided into four rooms and the corresponding unexplained area. The
connectivity is given by the wall types (dwall: a wall that has one or more doors on it; nwall: a wall that separates two rooms but does not contain
a door on it; bwall: a wall that just serves as boundary). A partially dotted line in light-gray indicates a dwall, where the dotted part is the door, and
the solid line part is the rest of the wall. A light-gray line (without dots) shows one nwall, and black stands for a bwall. ¢) The semantic description
of the world in form of the scene graph: Directed links connect nodes. The dashed lines represent connectivity. Like room 4, each room has three
child nodes: walls, free space, and doors. Note that the lowest level of node in the tree structure is the grid cell that belongs to walls, free space and

doors.

Here p(W|M) is the posterior distribution of W given
the known map M and p(W) is the prior specifying,
which worlds W are possible at all. p(M|W) is the like-
lihood function describing how probable the observed
map M is, given the different probable worlds repre-
sented by a parameter vector W. The actual seman-
tic model is represented in the structure of the param-
eter vector W, while semantically relevant constraints
go into the prior p(W).

3. A Generative Model for Occupancy Grids

In our case W contains the scene graph, i.e. the pa-
rameters of a floor plan: number of rooms, their dimen-
sions and connectivity, the location of doorways. Here,
rooms are defined as rectangular space that is enclosed
by four walls, and walls are line segments defined by

two end points. Connectivity indicates the spatial re-
lationship of different rooms, and it is expressed in the
types of walls: wall with door (dwall), neighbor wall
(nwall) and boundary wall (bwall). A dwall is a wall
that has one or more doors on it. The term door acutally
refers to a door opening in a wall, which is a line seg-
ment made up by free space that can be passed so as to
enter another room. A nwall separates two rooms but
does not contain a door on it, whereas a bwall is a wall
that just serves as the boundary of the world.

Certain a-priori assumptions about some properties of
the structured world are made based on context knowl-
edge as follows:

1) a room has four walls and possesses a rectangular
shape.

2) aroom has at least one door, and a door is placed



on a wall.
3) each cell in the map should only belong to one
room.

These a-priori constraints are enforced by means of
the prior p(W) in our generative model (2). The prior
penalizes worlds that are not fully compliant with the
above assumptions:

p(W) =a; Xas X as, 3)

where a1, @, and @3 are the corresponding penalization
terms for the point 1), 2) and 3) of the prior information
respectively, and they are defined as follows:

9 conflict with point 1)
— 1° 0

aL = { 1, otherwise, “)
_ | W2, conflict with point 2),

@2 = { 1, otherwise, )

a3 = l—[ w;’(c(x-y))’
c(x,y)eM
o(c(x, -1, 0(c(x, > 1,
veny) = { 0(0t(he:\?v)ise ee ©)

where ¥,¥, and 3 are penalization terms with
Yi,¥2,%3 € (0,1). 6 is the number of pairs of ad-
jacent walls whose included angle is not 90 degree
(xtolerance). c(x,y) denotes one grid cell in the map
M. o(c(x,y)) indicates the number of rooms, to which
c(x,y) belongs. a3 is a cell-wise penalization of the
overlap between different rooms, i.e. if there is no
overlap in one cell c(x,y), then o(c(x,y)) is equal to O
or 1, in which case y(c(x,y)) is 0 (no penalization in
cell c(x,y)). Otherwise, if o(c(x,y)) is bigger than 1,
which means the cell c(x,y) belongs to more than one
room, then y(c(x,y)) is bigger than O (penalization in
cell c(x,y)). For the experiments shown in Section E}
the penalization terms are set as follows:y; = 0.9,y =
0.9,¢3 = 0.6.

For our generative model, we need to specify the like-
lihood function p(M|W) additionally. Since M is repre-
sented by an occupancy grid with statistically indepen-
dent grid cells ¢ € M, we only need to come up with a
model p(c|W) for all cells at their locations (x, y) in the
map M:

MWy =[] plexniw). )

c(x,y)eM

For our model p(c(x,y)|W), we first discretize the
cell state M(x,y) by classifying the occupancy values

into three classes “occupied=2", “unexplained=1"" and
“free=0" so as to generate the classified map Cy(x,y)
according to:

2’ OSM(x’y)Sh(h

Cu(x,y) =3 1, h, <M(x,y)<h,, ®)
0, h,<M(,y),

where &, and h,, are the intensity thresholds for occupied
and unexplained grid cells. Based on our world model
W we can also predict expected cell states Cy/(x,y) ac-
cordingly:

2’ (-x’ y) € SW?
Cwx,y)=4 1, (x,y) €S, 9
0, (x,y)eSy,

where §,,S, and S/ are the set of all the wall cells,
unknown cells and free space cells in the world W re-
spectively. p(c(x,y)|W) can then be represented in the
form of a lookup-table.

In principle the likelihood p(c(x, y)|W) plays the role
of a sensor model. In our case it captures the quality of
the original mapping algorithm producing the grid map
(including the sensor models for the sensors used during
the SLAM process), and could be learned from labeled
training data. However, for the experiments described
in section [5| we used the empirically determined values
given in Table

4. Searching The Solution Space

For solving equation (1) we need to efficiently search
the large and complexly structured solution space .
Here we adopt the approach of [2], who propose a data
driven Markov chain Monte Carlo (MCMC) technique
for this purpose. The basic idea is to construct a Markov
Chain that generates samples W; from the solution space
Q according to the distribution p(W|M) after some ini-
tial burn-in time. One popular approach to construct
such a Markov chain is the Metropolis-Hastings (MH)
algorithm [27, 28]]. In MCMC techniques the Markov
chain is constructed by sequentially executing state tran-
sitions (in our case from a given world state W to an-
other state W’) according to a transition distribution
O(W’|W) of the sub-kernels. An example of O(W’'|W)
is given in Table [2] In order for the chain to converge
to a given distribution, it has to be reversible and er-
godic [27]. The MH algorithm achieves this by generat-
ing new samples in three steps. First a transition is pro-
posed according to ®(W’|W), subsequently a new sam-



Cwl(x,y) Culxy) 0 (occupied) 1 (unexplained) 2 (free)
0 (wall) 0.8 0.1 0.1
1 (unknown) 0.1 0.8 0.1
2 (free) 0.1 0.1 0.8

Table 1: The lookup table for p(c(x, y)|W).

ple W’ is generated by a proposal distribution Q(W’|W),
and then it is accepted with the following probability:

p(W'|M)Q(WIW’)
" p(WIM)Q(W'|W)

AW, W) = min(l (10)

The resulting Markov chain can be shown to converge
to p(W|M). However the selection of the proposal dis-
tribution is crucial for the convergence rate. Here, we
follow the approach of [2] to propose state transitions
for the Markov chain using discriminative methods for
the bottom-up detection of relevant environmental fea-
tures (e.g. walls, doorways) and constructing the pro-
posals based on these detection results. [2] created the
term data driven MCMC for this procedure.

4.1. MCMC Kernels

In order to design the Markov chain in form of the
Metropolis-Hastings algorithm, the kernels that mod-
ify the structure of the world are arranged as reversible
pairs. Currently, we use four pairs of kernels, and these
include:

e Kernel pair 1: ADD or REMOVE one room.
— ADD: draw one new room from certain can-
didates, then try to add this room to the world.
— REMOVE: try to cancel one existing room

from the world.

e Kernel pair 2: SPLIT one room or MERGE two
rooms.

— SPLIT: try to decompose one existing room
into two rooms.

— MERGE: try to combine two existing rooms,
and generate one new room out of them.

o Kernel pair 3: SHRINK or DILATE one room.

— SHRINK: try to move one wall of one room
along certain orientation, so that the room be-
comes smaller.

— DILATE: similarly to SHRINK, move one
wall of one room, so that the room becomes
bigger.

o Kernel pair 4: ALLOCATE or DELETE one door

— ALLOCATE: draw one door from the door
candidates that are provided by door detector,
then try to assign it to two existing rooms.

— DELETE: cancel one assigned door.

Fig. shows an example of the four reversible
MCMC kernel pairs, using the same simplified occu-
pancy grid map as in Fig. 2] The world W can tran-
sitto W, W', W and W by applying the sub-kernel
REMOVE, MERGE, SHRINK and DELETE, respec-
tively. By contrast, the world W', W', W and W can
also transit back to W using corresponding reverse sub-
kernels.

4.2. Discriminative Generation of Chain Transition
Proposals

As mentioned above, we use discriminative methods
to propose candidates for MCMC kernels, so as to accel-
erate the convergence of the Markov chain. In the fol-
lowing, we define and explain the discriminative meth-
ods used with respect to corresponding MCMC kernels.

4.2.1. ADD

Currently, two room detectors are adopted to propose
room candidates for ADD: a wall based room (WBR)
detector and a free space room (FSR) detector. In the
context of topological navigation several approached for
the online detection of rooms have been proposed [29,
30]. Here, we detect the rooms offline based on the input
map.

WBR detector. This room detector makes use of the
well known Hough Transform [31]] for edge based wall
detection and generates room candidates using the de-
tected line segments according to the following proce-
dure: We extend the detected line segments so as to di-
vide the map into sub-areas, then these sub-areas are
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Figure 3: Reversible MCMC kernel pairs: ADD/REMOVE, SPLIT/MERGE, SHRINK/DILATE and ALLOCATE/DELETE.

recombined to give new rooms which obey our prior in-
formation. One example of the WBR room detector is
demonstrated in Fig. ] Here, the map is divided into
six sub-areas: al, a2, a3, a4, a5 and a6, and these sub-
areas are recombined to generate 18 room candidates,
which are: al, a2, a3, a4, a5, a6, ala2, a3a4, a5a6, ala3,
a3a5, a2ad, a4a6, ala3a5, a2ada6, ala2a3ad, a3adaS5a6
and ala2a3a4a5a6. We sample from the set of all can-
didate rooms in a resampling style [32]. Each of the
generated room candidates are weighted according to
how well their walls match the observations provided
by the occupancy grid map. The weight of a room w,
is defined as the lowest wall weight w,,; among its four
walls, where j, j € {ry, r, r3, r4}, indexes the wall, with
ri, i €{1,2,3,4}, indicating the ith wall of room r:

W= Mmin W, (11
JEtri,ra,r3,ra}

The wall weight w,is calculated as:
n(w;)
ww/ = ’
lwj)
where I(w;) indicates the length of wall w; and can be

computed from the coordinates of its two end points
(-xw/;] 9 ijJ )7 (ij,Z’ ijyz):

12

100)) = iy, = X+ Gy =3t (13)

The term n(w;) counts the number of wall cells that
match with the map:

nwp) =y tx), (14)
(X,y)Ew;
where

17 CM(X,Y) :O3

1x.y) = { 0, otherwise. 3)



Having obtained the weights of all the room candi-
dates, we implement Q(W’|W) by sampling from the
candidates according to their cumulative weights A,.
First, we normalize their weights w,:

, Wy
w

T Y

reB

(16)

where B indicates the set of all the room candidates gen-
erated by the WBR detector. Then, we calculate the cu-
mulative weights A, for room r:

A, = Z w;. (17)
i=1

Finally, we can draw a room candidate n out of B, by
generating a random number k, k € [0, 1),

n = min{ilk < A;}. (18)

FSR detector. Sometimes rooms will be missed by the
edge-based procedure mentioned above. This is often
the case for rooms only partially explored during grid
map construction or when walls have been obstructed
by furniture and thus not have been perceived by the
laser scanner. We therefore use an alternative method
for room detection. This detector works on the basis
of connected-components analysis and is referred to as
free space room (FSR) detector. If there are still regions
of the map which are not explained by the world af-
ter many MCMC steps (4000 steps in the experiments),
then we try to find them using the FSR detector as fol-
lows: 1) make a copy of the classified map, which we
denote as C},; 2) cancel the regions that are already ex-
plained by the current semantic world W from C’,, we
denote the rest of C}, as C};; 3) detect unexplained re-
gions in C}; based on connected-components analysis
[33], and generate room candidates out of them. Fig.
[5] shows one example of the FSR detector. Here, the
world W does not cover the shaded area in the map, then
we detect it using the FSR detector and generate room
candidates out of it. Having generated the room candi-
dates, we use the same sampling technique as done with
the WBR detector to propose room candidates ((TT) to
(18)). The number of MCMC steps after which the FSR
detector is activated should be big enough so that each
of the unexplained regions is relatively small and can be
easily used to generate new room candidates.

4.2.2. SPLIT
For SPLIT we again use the Hough transformation
based line detection to propose splitting options. Hough

line detection is applied within rooms that already exist
in the world W (member rooms of W). First, a room r
is randomly chosen according to a uniform distribution,
which means every room contained in the current world
has the same chance to be chosen. Then, the Hough line
detector is applied within the room r to detect possible
room splits. Let E, denote the set of the detected line
segments within room r. Each detected line segment
e,e € E, is weighted, using its length I(e):

w, = l(e), 19)

where the length [(e) is similarly calculated as done in
(13). Then we normalize the weights and build the cu-
mulative distribution of E,. Furthermore, we draw one
line segment out of E,, as done with the WBR detector
((T6) to (13)).

Once a line segment is chosen, it is extended, so that
it intersects with the walls of the room. Currently, only
the case is accepted that two opposite walls of the room
are intersected. The case that two neighbor walls are in-
tersected is neglected. With the extended line segment,
we propose to split the room into two rooms. The MH
algorithm then decides whether this action is accepted.
A typical example of the SPLIT sub-kernel is shown in

Fig. [6]

4.2.3. MERGE

The sub-kernel MERGE is the inverse of SPLIT. It
tries to combine two member rooms of the current world
W, so as to generate a new room, then the MH algorithm
decides whether the proposed new room is accepted. To
do this, the first room r is drawn from the set of all mem-
ber rooms Ry of world W according to a uniform dis-
tribution, which means that each member room has the
same possibility to be chosen. Additionally, a second
room s needs to be selected from the rest of the mem-
ber rooms, s € Ry \ r. For sampling s, we define a
new weight a,(s), which is the reciprocal of the distance
d(c,, cs) between the center point ¢, of room r and the
center point ¢, of room s:

d(er, ) = (e = ey 02+ @y — P, (20)

where (c,.x, ¢,.y) and (c;s.x, ¢s.y) are the grid cell index
of the two center points. The weight a,(s) is calculated
as follows:

ey

@) = ey

Subsequently, we normalize the weights a,(s), cal-
culate the cumulative probability and draw the second
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Figure 4: The WBR detector. a) A simplified occupancy grid map. b) The line segments detected by the Hough line detection. c¢) Divide the
map into sub-areas al, a2, a3, a4, a5 and a6, by extending the detected lines. Generate room candidates out of these sub-areas. The detected line

segments are shown in light-gray.
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Figure 5: FSR room detector. a) A simplified occupancy grid map. b) The current world W: the shaded area is not explained. c) C};: cancel the
already explained regions from C), and detect unexplained regions based on connected-component analysis, then generate room candidates out of
these detected regions. In this example, a room candidate is generated from the shaded area.

room, as done in (I6) to (I8). Once the two rooms
are obtained, we try to combine them into one room.
The underlying idea for using a,.(s) in the sampling is
that the closer two rooms are spatially located, the more
likely they can be combined. Fig. [7]illuminates an ex-
ample of MERGE.

4.2.4. SHRINK and DILATE

The kernel pair SHRINK/DILATE tries to move a
wall w; of a member room 7 in the current world W,
so that this room can better match the map. Here, j, j €
{r1,ra, r3, r4}, indexes the wall, with r;,i € {1,2,3,4},
indicating the ith wall of room r. For selecting the room
r from the set of all member rooms Ry, we define a new
weight b,:

1 1
b,:{ e w Sy

hy, otherwise, (22)

where w, is the room weight defined in (TI). A, is a
predefined threshold for the weight. Using b,, a room is
drawn according to (I6) to (I8). The reason for this is

that the worse a room matches the map, the more likely
it should be changed by SHRINK/DILATE.

Once the room is selected, one wall w; needs to be
drawn from its four walls. Following the same idea, we
define a new weight v,,. for sampling the wall:

L Ly
Vo = we;” oy = 23
i { h,, otherwise, 23)
where Wy, is the wall weight defined in , and h, is

a predefined threshold. Again, the wall is drawn ac-
cording to Vs 88 done in to (]E[) After the wall
is selected, we try to shift it parallel to its original ori-
entation using a bias that is drawn from a zero-mean
Gaussian distribution. In principle, the algebraic sign
of the selected bias decides whether a SHRINK or a
DILATE is proposed, e.g. if a positive sign proposes
a SHRINK, then a negative sign will propose a DI-
LATE. In general, SHRINK and DILATE sub-kernel
have both 50% chance to be proposed. An example of
the SHRINK/DILATE kernel pair is shown in Fig.[g]



world W

splitting possibilities

SPLIT accepted: world W'

b)

Figure 6: SPLIT sub-kernel. a) The current world W. b) The room 1 (light-gray dashed rectangle) is chosen for SPLIT. Two line segments are
detected (black thick lines) as splitting possibilities. One of them is selected and extended to split the room (the black thin line). c¢) After the

accepted SPLIT action, the new world W is created.

world W

selected rooms for MERGE

MERGE accepted: world W'
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Figure 7: MERGE sub-kernel. a) The current world W. b) The room 6 is selected as the first room, the room 7 is selected as the second room.
Here, room 7 and room 5 have better chance to be chosen as the second room than room 1, 2, 3 and 4, because room 5 and 7 are closer to room 6.
The four vertices of the new room are surrounded by gray circles. c¢) After the accepted MERGE action, the world W' is generated.

4.2.5. ALLOCATE

A door detector which is based on connected-
components analysis [33]] proposes door candidates for
the sub-kernel ALLOCATE. We draw one door candi-
date from the set of all candidates according to their
weights. Here, the weight wg of a door g is similar to
the weight of walls w,,, that is defined in @):

o 1@
£l

(24)

where [(g) is calculated the same as in , and n'(g) is
computed as follows:

W= ) 1), (25)
(x.y)eg
where
’ _ 19 CM(x7 }7) = 2,
txy) = { 0, otherwise. (26)

Using the weight wg, one door candidate is drawn
from the set of all detected candidates, as done in (16)
to @) Then, the MH algorithm decides whether this
door will be accepted. In the following, we detail how
to detect door candidates.

According to the indisputable fact that doors must be
located on walls in the real world, we search doors along
walls in the structured world in the following steps:

1) Expand each wall in its perpendicular direction, so
that a rectangular area is created out of each wall.
Note that each wall should be shortened before the
expansion, so that the extended area does not over-
lap each other within one room.

2) Detect the overlap of these rectangles using
connected-components analysis, because the over-
lap area indicates on which wall the potential door
candidates can be found. Localize the wall part that
has caused the overlap.

3) Divide the localized wall part averagely into sev-
eral small segments, so that each segment is



world W

selected room for SHRINK/DILATE

DILATE accepted: world W'

Figure 8: SHRINK/DILATE kernel pair. a) The current world W. b) The room 5 is selected. Here, the two gray walls are more likely to be
chosen, because they match the map worse than the other two black walls. We assume that the left gray wall is selected for SHRINK/DILATE. The
light-gray arrow points to one DILATE possibility, whereas the black arrow points to a SHRINK possibility. ¢) After the accepted DILATE action,

the world W' is generated.

equally long. Because each of these segments
could be a part of a door, we weight them accord-
ing to (24) and try to combine the verified segments
to build a door (we define a segment as a verified
segment, if its weight is bigger than certain weight
threshold).

Combine the verified segments on each wall, if the
distance between them is lower than certain dis-
tance threshold. Find the corresponding part of the
combined segments on both walls and use them as
door candidates.

4)

The above process is demonstrated in Fig. [0

After a successful ALLOCATE action, one door is
assigned to two rooms, and each assigned door contains
the following information: ID of the two rooms, ID of
the walls on which the door is located, grid cell indices
of the door.

4.2.6. REMOVE and DELETE

The sub-kernel REMOVE and DELETE have simi-
lar functionality, which is to cancel one existing mem-
ber room and one assigned door respectively. There are
no special discriminative methods used for these two
sub-kernels. They just draw one member from the cor-
responding set (existing rooms or assigned doors) and
propose to cancel this member, then the MH algorithm
decides whether this proposal is accepted. Following
the idea that the worse a member matches the map, the
more likely it should be canceled, we use the weight b,
defined in (22) for room sampling. Similarly, we define
a new weight z, for door sampling:

< hy

1 L
W, "’ w,
Z = 8 8 )
8 {hg, otherwise,
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where w, is the door weight defined in @), and hy is a
predefined threshold.

4.3. Proposal Probability QW' |W) and Q(W|W')

The proposal probability Q(W'|W) describes how
probable it is that the world W transits to the world W',
and by contrast, Q(W|W') is the probability for transit-
ing back to the world W, given the world W'. Intu-
itively, Q(W'|W) is the product of the normalized weight
of the selected elements (room candidate, splitting line,
wall etc.) in the corresponding MC sub-kernel defined
in the previous section. For instance, in the ADD or
REMOVE sub-kernel, Q(W'|W) is equal to the corre-
sponding normalized weight of the selected room can-
didate or that of the selected member room. Q(W'|W) in
ALLOCATE and DELETE can be calculated similarly
to that in ADD and REMOVE respectively. In SPLIT,
Q(W'|W) is the product of the corresponding normal-
ized weight of the selected member room and that of the
selected splitting line. In SHRINK/DILATE, Q(W'|W)
is product of three terms: the corresponding normal-
ized weight of the member room, that of the selected
wall and that of the generated Gaussian bias. Similarly,
Q(W'|W) of MERGE is calculated as the product of the
corresponding normalized weight of the first room and
that of the second room.

Compared with Q(W'|W), the calculation of Q(W|W")
is less intuitive, because the back transition is virtual
and must be defined. For ADD, Q(W|W/) should per-
form the same function as the sub-kernel REMOVE,
namely, the world W’ transits back to the world W by
canceling the room that is added in the transition from
W to W’, thus Q(W|W') of ADD should be the nor-
malized weight of the added room in the sub-kernel
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Figure 9: ALLOCATE sub-kernel. a) The occupancy grid map. b) The current world W with no assigned doors. c) Step 1: each wall is shortened
and expanded. The expanded areas are marked by light-gray dashed rectangles. The rectangles filled with gray show the overlap areas. d) Step 2:
the two pairs of walls that have caused the overlap areas are localized. Note that the black line indicates a pair of overlapping walls, and the other
pair of walls is shown in light-gray. e) Step 3: divide the two pairs of walls into six segments, using the black lines. Weight each segment according
to how well they match the map. Verified segments are shown in dashed lines, other segments are drawn in solid lines. f) Step 4: combine those
verified segments, between which the distance is under certain threshold. Find the corresponding part of the combined segments and use them as
door candidates (light-gray lines). Note, all the segments on one wall are detected as verified segment in step 3, which means this whole wall forms
a big combined segment, but the final door candidate must correspond to the door candidate on the other wall. That is the reason why only a small

door candidate is detected on this wall pair.

REMOVE. Q(W|W') of REMOVE can also be calcu-
lated as the normalized weight of the room, that is
canceled in the transition from W to W’, in the sub-
kernel ADD. Analogously, O(W|W') of SHRINK, DI-
LATE, MERGE, SPLIT, ALLOCATE and DELETE
can be calculated in a style similar to Q(W'|W) in their
corresponding reverse sub-kernels. In addition, the
SHRINK/DILATE pair just tries to move one wall of
the selected room using a relatively small bias, thus the
resulting world W’ is similar to W. For computational
simplicity, we assume that Q(W'|W) and Q(W|W') are
equal in the SHRINK/DILATE pair.

5. Experiments

We apply our algorithm to several occupancy grid
maps. The selection probabilities of the MC sub-kernels
are listed in Table |Zl Here, the selection probabilities
depend partially on the iteration index . At the begin-
ning (8 < 1000), the world W does not contain much

information about the map, so we mainly apply ADD to
propose new rooms into the world, using the WBR de-
tector. For § > 1000, the selection probability of ADD
is set to be very low (0.05), because most part of the
map is already explained during the initial exploration
(B < 1000). In addition, we activate SPLIT, MERGE,
SHRINK and DILATE to change the form of the mem-
ber rooms of the world. For 8 > 4000, we activate AL-
LOCATE and DELETE, so that the connectivity infor-
mation is explored and attached to the world. Moreover,
the FSR detector is also activated for 5 > 4000 to detect
left-over free space regions. Table 2] effectively imple-
ments a heuristic scheduling policy.

Fig. depicts the process of Markov chain con-
vergence by showing the evolution of the log poste-
rior log(P(W|M)) along the development of the Markov
chain on the left side. In an initial burn-in process the
chain quickly approaches its target distribution P(W|M).
This is indicated by the rapid increase of the posterior
in the beginning. We can also see the discontinuities at



sub-kernel erarion 8 B <1000 | 1000 < <4000 | g >4000

ADD 0.8 0.05 0.05
REMOVE 02 0.05 0.05

SPLIT 0 0> -

MERGE 0 02 02
SHRINK 0 0.25 0.2
DILATE 0 0.25 02
ALLOCATE 0 0 0.05
DELETE 0 0 502

Table 2: Transition probabilities ®(W’|W) of MC sub-kernels.
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Figure 10: The typical development of the posterior probability P(W|M) (left) for the input map shown in Fig.|l1|and the acceptance rate of the
proposed state transitions (right) along the Markov chain development in terms of iterations.

the iteration 1000 and 4000 which show the effect of the
scheduling policy. The jump at iteration 1000 is a con-
sequence of the activation of new transition kernels that
greatly improve the system’s capability to structurally
adapt the world state W to the observations in the map.
After the initial phase, the chain samples from P(W|M)
and produces samples that are slight variations of the
world W and do not significantly improve the situation
any more.

This convergence process can also be seen by look-
ing at the development of the acceptance rate of the
Metropolis-Hastings algorithm (see Fig. [I0} right). In
the early phases, the acceptance rate is comparatively
high, which means that most of the transitions proposed
by Q(W’|W) are accepted, since they correspond to a
significantly improved explanation of the map M by the
model W’. Towards the end, the acceptance rate stabi-
lizes on a low level.

Fig. [[T] shows a typical result of the overall process.
Here, part a) shows an original input occupancy map M
[3]. Part b) shows the classified map Cy(x,y) that is
defined in (8), with black, gray and white indicating oc-
cupied, unexplained and free cells respectively. Part c)
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visualizes the world state W representing our structured
semantic model. Here black, gray, white and light-gray
show the wall, unknown, free and door way cells respec-
tively. In part d), walls (gray) and doors (light-gray) of
the world W are directly plotted onto the original input
map M, so as to give a more intuitive comparison.

Since we effectively produce samples from P(W|M)
representing the distribution of probable worlds W
given the observation M, different samples represent
different explanations of the data using the modeling
structures available for constructing W. In our case,
these are rectangular rooms and doorways. For demon-
stration purposes we purposefully chose a map, that is
not fully compliant with these assumptions. Therefore
various alternative explanations should produce equally
good results.

Fig.[12]and Fig.[T3|show two high-likelihood samples
drawn from P(W|M), i.e. two alternative explanations
of the input map used in Fig. [T} Three such samples
are compared in Fig.[T4] where the main differences are
pointed out by arrows. A human observer, using a more
complex understanding of typical architecture and also
of furniture that is currently not modeled, would proba-



c)

Figure 11: Analysis of the “ubremen-cartesium” dataset [3]]. a) The occupancy grid map M. b) The classified map Cy(x,y) with three intensity
values (black=wall, grey=unexplained, white=free). c) The analyzed world W (black=wall, gray=unknown, white=free, light-gray=door). d)
Walls (gray) and doors (light-gray) of the world W drawn into the original map M.

bly select the model in Fig.[T3]

A result for a different input map [3] is illustrated in
Fig.[I5] Compared with the map used in Fig. [TT} this
map is relatively simple.

As before Fig. [T6]shows the progression of chain con-
vergence in terms of log-posterior and acceptance rates.
Again, we can clearly identify the burn-in phase and the
effects of our scheduling policy at iterations 1000 and
4000.

The computational cost strongly depends on the size
of the occupancy grid map, and the major part of the
computation is spent in the evaluation of the generative
model. The computation speed of analyzing the map in
Fig. [TT] (size:1237x672) is around 30 iterations per sec-
ond (ips), and in general it takes about 10000 to 20000
iterations, until the Markov chain reaches a good state,
so the computation time on the current PC is around 5
to 10 minutes. By contrast, the map used in Fig. [T3]is
much smaller (size:556x322), and the same computer
reaches around 140 ips, which leads to an overall com-
putation time of 1 to 2 minutes. Currently, we use a
single-threaded implementation, where at each iteration
only one sub-kernel is tested for the sampling. One
of the most important features of the Markov chain is
that the current state is only dependent on the previous
one, therefore, it is theoretically possible to do multiple
tests using different sub-kernels at each iteration, then
only the successful test results are saved for the sam-
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pling. Using today’s powerful off-the-shelf multi-core
CPUs, this idea can be easily realized and should lead
to a much less computation time.

6. Summary and Outlook

This paper proposes a new approach for automati-
cally extracting semantic information from more or less
preprocessed sensor data. We propose to do this by
means of a probabilistic generative model and MCMC-
based reasoning techniques. Our work differs from pre-
vious semantic mapping approaches, that mostly use
various classification methods in a bottom-up fashion
to label either spatial regions or places based on context
or that assign semantic labels directly to portions of the
observations. Instead we construct an abstracted seman-
tic and top-down representation of the domain under the
consideration: a classical indoor environment consist-
ing of several rooms, that are connected by doorways.

We use Bayesian reasoning to build this semantic
map, so that it is aligned with the preprocessed sen-
sor observations, that a robot made during an environ-
ment exploration and mapping stage. This introduces
a bottom-up path into the approach and employs data
driven discriminative environment feature detectors to
analyze the continuous noisy sensor observations. The
semantic environment model that we generate, is struc-
tured similarly to a scene graph and is perfectly suited
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Figure 13: Alternative explanation 2 of the “ubremen-cartesium” dataset [3].

for any higher level reasoning and communication pur-
poses.

Currently, we assume rooms with a rectangular
shape, which however does not imply that our approach
is restricted to this room type only. The general idea
behind this is to demonstrate the exploitation of ab-
stract (uncertain) rules on how the environment might
be structured. Adhering to these rules helps the robot
to interpret the noisy sensor data more correctly. In
fact, other room types can be introduced to the approach
in that we update the prior, add discriminative meth-
ods for proposing rooms of other types and implement
functionalities for carrying out new geometrical opera-
tions (e.g. for SHRINK/DILATE and SPLIT/MERGE).
However, the general approach will be the same.

While we currently generate representations that
more or less resemble a classical floor plan (including
semantics however), the extension of our work to more
functionally enhanced representations (e.g. differenti-
ating several room types based on the context, adding
other types of concepts like general objects or furniture)
will be pursued in the future. It is also straight forward
to extend the concept towards 3D environment repre-
sentations. A second line of research will address the
integration of this type of semantic knowledge into the
perception procedures at the run time of the robot.
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Figure 16: The typical development of the posterior probability P(W|M) (left) for the input map shown in Fig. Eland the acceptance rate of the
proposed state transitions (right) along the Markov chain development in terms of iterations.
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