
HAL Id: lirmm-00800829
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00800829

Submitted on 28 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Planning contact points for humanoid robots
Adrien Escande, Abderrahmane Kheddar, Sylvain Miossec

To cite this version:
Adrien Escande, Abderrahmane Kheddar, Sylvain Miossec. Planning contact points for humanoid
robots. Robotics and Autonomous Systems, 2013, 61 (5), pp.428-442. �10.1016/j.robot.2013.01.008�.
�lirmm-00800829�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00800829
https://hal.archives-ouvertes.fr

Robotics and Autonomous Systems 61 (2013) 428–442
Contents lists available at SciVerse ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Planning contact points for humanoid robots
Adrien Escande a,∗, Abderrahmane Kheddar a,b, Sylvain Miossec c

a CNRS-AIST Joint Robotics Laboratory, UMI3218/CRT, Tsukuba, Japan
b CNRS-UM2 LIRMM, Montpellier, France
c PRISME, Université d’Orléans, IUT de Bourges, France

a r t i c l e i n f o

Article history:
Received 15 December 2011
Received in revised form
5 January 2013
Accepted 21 January 2013
Available online 9 February 2013

Keywords:
Multi-contact planning
Humanoid robot
Posture optimization

a b s t r a c t

We present a planner for underactuated hyper-redundant robots, such as humanoid robots, for which the
movement can only be initiated by taking contacts with the environment. We synthesize our previous
work on the subject and go further into details to give an in-depth description of the contact planning
problem and the mechanisms of our contact planner. We highlight the structure of the problem with a
simple example, present the contact space and the heuristics we use for planning, and explain thoroughly
the implementation of the different parts of the planner. Finally we give examples of planning results for
complex scenarios with the humanoid robot HRP-2.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Underactuated systems such as humanoid robots can only
move by contacts (and sometimes grasps) with the environment.
In an obstacle-free, flat, horizontal or lightly-sloped terrains a
humanoid robot moves by alternating contacts between the feet
and the ground. Each contact creates a constraint on a foot
and the reconfiguration of the posture by the actuators induces
a movement of the remaining links. For such environments,
several approaches proved to be efficient to plan motion for
humanoid walking [1–4] or even running [5–7]. The seminal
work in [8] illustrates motion generation from contact prints for
general biped computer graphics figures.More recently impressive
walking behaviors are generated automatically [9,10] even for
highly uneven virtual terrains [11–13] (see also [14] in robotics).
In cluttered environments, specific motion planners are devised.
Situations where the humanoid is asked to cross under or over
obstacles are tackled respectively by [15,16]. In another work, a
dedicated approach deals with situations where crossing under
the table or moving through a narrow tunnel are asked [17].
In the latter case, crawling using knees and elbows is the most
appropriate strategy for humanoids. In other studies [18], planning
and control of dynamic transition betweenwalking, swingingwith
hands, and crawling for Gibbon (monkey-like) robots illustrates
the need to use several links for locomotion.

There is however the need formore general planners. One could
gather the above different approaches into contact postures and

∗ Corresponding author. Tel.: +81 298619244.

0921-8890/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2013.01.008
contact transitions primitives, whose combination could be used
to plan motion for various situations. But it is difficult to unify
these approaches because they use different control strategies
and they require tremendous efforts and tricks for tuning. Even
if such primitives could be devised, each of them would be valid
for predefined links and for a predefined contact spot for each
link. Ideally, in cluttered environments, a humanoid robot must
be capable of planning motion without restricting the choices
of possible contacts that can be made, i.e. considering contacts
between any part of its body and any parts of the environment (and
even its ownbody). This iswhatwe are tackling here.Workingwith
contacts is not straightforward: contacts are taken on the surfaces
of objects that are also obstacleswedonotwant the robot to collide
with. They also occur for subspaces of the configuration space
with zeromeasure. For these reasons, classical planning algorithms
cannot be used readily. Our work is a solution to that problem. It
proposes a planning algorithm that achieves general non-gaited
multi-contact planning. It combines an adapted best first planning
algorithm (BFP), to span a tree of possible contacts and a posture
generator that checks the feasibility of a contact configuration.
The BFP algorithm is entirely revisited to plan in the space of
contacts and the posture generator is formulated as a non-linear
optimization problem. To our best knowledge, our planner is to this
day the only one that has been successfully applied to humanoid
robots (or systems of equivalent complexity) in complex, cluttered
environments, such as presented in the two last scenarios of this
paper.

Our planner belongs to the class of contact-before-motion
planners in that the obtained whole-body trajectory is the conse-
quence of a sequence of contacts (whereas in the motion-before-
contact planners, the contacts are chosen after a trajectory has

http://dx.doi.org/10.1016/j.robot.2013.01.008
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://dx.doi.org/10.1016/j.robot.2013.01.008

A. Escande et al. / Robotics and Autonomous Systems 61 (2013) 428–442 429
Fig. 1. Left: a 2d tripod robot with 2-dofs legs and single point contacts. Right: a representation of the 8-dimensional configuration manifold of the robot, with the 7
submanifolds corresponding to the different contact combinations. Note that each submanifold’s representation corresponds to a different projection so as to depict all of
them in a 3d drawing which captures the connectivity of these spaces.
been planned). Earlier works in this class include the planner of
Bretl [19] for climbing robots that has been later adapted to hu-
manoid robots by Hauser [20]. The contacts happen at fixed prede-
fined locations in the environment, sometimes sampled at random
on surfaces in the latter. Due to the use of RRT, the output plan is
jerky and needs some smoothing in post-processing, that cannot
eliminate all unnecessary movements, hence a lack of naturalness.
This lack is due both to the use of RRT and the fixed locations of
the contacts that might not be suitable. In [21], motion primitives
are used to get smoother paths and choose more natural contacts.
The solution is however limited by the library of primitives, los-
ing some generalness. By taking another algorithmic approach, our
planner does not suffer these drawbacks. The contacts can be taken
anywhere on predefined surfaces and both the postures and the
choices of contacts are obtained byminimizing a cost function. This
enforces naturalness while keeping generalness. Moreover our ap-
proach lets the user have some control on the overall look of the
solution, as will be detailed later. The contribution of this paper is
twofold: (i) we illustrate the difficulties of contact planning by an
example with a simplified robot, (ii) we propose an algorithm for
the general case and give a detailed and comprehensive description
of all its components along with the justification of the heuristics
used and the implementation details, going far beyond the synthe-
sis of our previously published work [22–25].

The paper is organized as follow: we illustrate the contact
planning structure (Section 2) then give a detailed description
of our contact planner with a presentation of both the concepts
(Section 4) and the implementation (Section 5 for a first basic yet
complete presentation of the different parts, Section 6 for pos-
ture generation, and Section 7 for advanced planningmodules).We
then exemplify its usage with scenarios involving the humanoid
robot HRP-2 [26].

2. Problem overview

In this section, we illustrate the structure of the contact points
planning problem. We consider a simplified 2-dimensional tripod
robot evolving on a flat floor (at the elevation y = 0). It is reduced
to a central point and three legs, each of which has a hip and a knee
joint (see Fig. 1, left). The feet are considered to be single points.
The configuration space of this robot C can thus be described by the
2D position of the mass, and two angles per leg (for which we do
not consider any joint limits). C is thus an 8-dimensional manifold:
C = R2
× S6 (with S the unit circle). To model an underactuated

robot, we consider that this robot can only move when at least
one of its feet is in contact with the floor. Furthermore, the
robot’s movement is limited to lie in Cfree defined as the set of
configurations for which all points P of the robot except the feet in
contact must have an elevation yP > 0. Finally, we consider non-
sliding contacts. This is a purely geometric approach since we do
not account for the gravity field so that there is no equilibrium
issue.

2.1. Contact submanifolds

A foot contact is geometrically specified by a 2-dimensional
constraint: the position (xi, 0) of the foot on the floor. When a
single foot Fi (i = 1, 2 or 3) is in contact at (xi, 0), the robot evolves
on a 6-dimensional submanifold S i

xi of Cfree which is the null-space
of the constraint. We also consider the 7-dimensional submanifold
S i
=


xi∈R S i
xi , which is the set of all configurations for which Fi is

in contact, regardless of contact position.
Likewise, we define the 4-dimensional submanifolds of C for two
feet Fi and Fj (i ≠ j) respectively in contact at xi and xj (we drop
the always-zero elevation of the contact for conciseness) as Di,j

xi,xj .
These sets are bounded by the constraints on xi and xj induced by
the robot geometry: the feet cannot be further apart than the legs
lengths allow. Thus Di,j

xi,xj ⊂ ∂S i
xi ∩ ∂S j

xj , where ∂X denotes the
boundary of X .
From there we obtain the 5-dimensional manifolds Di,j

xj =


xi∈R

Di,j
xi,xj ⊂ ∂S i

∩ ∂S j
xj and Di,j

xi =


xj∈R Di,j
xi,xj ⊂ ∂S i

xi ∩ ∂S j, as

well as the 6-dimensional submanifolds Di,j
=


(xi,xj)∈R2 Di,j
xi,xj ⊂

∂S i
∩ ∂S j. The first one is the set of configurations for which the

foot Fj is fixed as a specified position xj while Fi has the correct
elevation, but its position on the floor is unspecified (yetwithin the
geometrical limits). The second one is the symmetric case where Fi
is fixed and Fj is not. Di,j is the set of configurations where both Fi
and Fj are contacting with the floor without being fixed to it.
Lastly, we can define a 2-dimensional submanifold for triple
contacts Tx1,x2,x3 , with F1, F2 and F3 in contact at x1, x2 and
x3, and all the 3,4,5-dimensional manifold obtained by relaxing
the constraint on the position of one or several feet, among
which is T =


(x1,x2,x3)∈R3 Tx1,x2,x3 . The submanifolds S i, Di,j and

T represent the 7 possible contact combinations of the robot in
our example, with respectively one, two or all three of the feet Fi
in contact (see Fig. 1).

430 A. Escande et al. / Robotics and Autonomous Systems 61 (2013) 428–442
Fig. 2. Left: the foliations of the single support submanifolds. Right: an example of path (from bottom leaf to top one) with the following contact sequence: {F1} , {F1, F2} ,
{F2} , {F1, F2} , {F1} , {F1, F2} , {F2} , {F2, F3} , {F3}, {F1, F3} , {F1}. The movements in double support phases cannot be represented due to the lack of dimensions of the 3d
representation.
2.2. Movement limitations

For a given i,


S i
xi


xi∈R

is a family of disjoint manifold. Mathe-

matically it forms a foliation of S i, and a submanifold S i
xi is called a

leaf. Such structures have already been exhibited in manipulation
planning [27,28]. In terms ofmovements for the robot, two distinct
leaves correspond to twodistinct placements of Fi, and thus it is not
possible to go directly from one leaf to another: that wouldmean a
contact sliding. The movements in S i are thus restricted to happen
in the leaf the robot is currently in. To move from one leaf to the
other, the robot will need to go out of S i, which means making (at
least) another contact.

Likewise,


Di,j
xi,xj


(xi,xj)∈R2 (resp.


Di,j

xi,xj


xi∈R,


Di,j

xi,xj


xj∈R,


Di,j

xi


xi∈R

and


Di,j
xj


xj∈R) is a foliation of Di,j (resp. Di,j

xj , Di,j
xi , Di,j and Di,j) for

which it is not possible to go fromone leaf to the other. In each case,
itmeans that in order to go to another leaf of the same foliation, the
robotmust travel out of this foliation, which corresponds to adding
or removing a contact. Similar structures and conclusions arise in
the triple contact case, see Fig. 2.

2.3. The complexity of contact planning

Due to the structure of the configuration space and the re-
striction on the robot movements, planning a path with contacts
is much more complex than the classical piano mover’s planning
problem where we search a path in a continuous space. The con-
tact planning problem, on the contrary, is a hybrid problem which
mixes three kind of choices. Firstly, when the robot is in a given
contact combination, there is a discrete choice to bemade concern-
ing the next combinations: if it is in S1 for example, the robot can
attempt to add a contact and go either to D1,2, D1,3 or simultane-
ously two contacts and go to T . From D1,2, it could go to S1, S2 or T ,
by removing a contact in the two first cases, or adding one in the
last case. Secondly, when adding a contact, there is a continuous
choice to be made as to where the contact should occur, i.e. what
will be the leaf of the next submanifolds. Lastly, within a leaf, we
compute the path between the point where the robot enters the
leaf and the one planned for its exit.

Several difficulties occur in more complex situations: the
presence of obstacles and the need for configuration taking into
account the stability of the robot reduce the feasible space, so that
it might not always be possible to find a path on a leaf between
the entering and exiting configuration. There can also be several
contact surfaces, increasing the number of combinations for single,
double and triple contact submanifolds, since not only the choice
of the feet in contact must be made, but also the pairing of each
contact foot with a surface.

To summarize, contact planning features three kinds of choices:

• the discrete choice of the sequence of contact combinations,
i.e. a sequence of foliations,
• the continuous choice of the positions of the contacts, i.e. the

choice of a leaf within a foliation, and
• the continuous choice of a path on a leaf between two contact

combinations.

This triple level of choices is particularly complex because of the
huge size of the set of discrete choices and because each of the
choices is highly dependent on all the other choices previously
made. In particular, the continuous choice of a leaf at a time will
impact the further possibilities of discrete choices. The addition of
physics considerations such as the equilibrium of the robot adds
complexity to the problem and prevents us from straightforwardly
using the reduction property used in [27].

3. Best first planning

The contact planner we are presenting in this paper is derived
from a potential-field-based planner called Best First Planning
(BFP) [29], briefly describe hereafter.

3.1. Algorithm

The main principle of BFP is to grow a tree of configurations
based on a discretization of the configuration space C by expanding
at each iteration the best leaf of the actual tree, where best is
defined by a potential function over C. The root node is the
configuration qinit, and the expansion of the tree ends when one
of the new leaves is (very close to) the target configuration qend.
The expansion of a leaf relies on the notion of m-neighbor in a
discretized space: if δ is the discretization step, a m-neighbor of
q is obtained by (separately) incrementing or decrementing at
most m coordinates of q by δ. For instance, if C = R2 and δ =
0.1, the 2-neighbors of (1, 0) are (0.9, 0), (0.9,−0.1), (1,−0.1),
(1.1,−0.1), (1.1, 0), (1.1, 0.1), (1, 0.1) and (0.9, 0.1).
The algorithm is described in Algorithm 1. T is a tree whose nodes
values are configurations, and L is the list of its leaves, i.e. the
nodes that have not been visited for expansion yet. L is sorted
in increasing order, according to the potential function U . Two
operations are defined on T :

• add(q, T) adds a node with value q to T ,
• isAlreadyIn(q, T) checks if T has a node with value q.

A. Escande et al. / Robotics and Autonomous Systems 61 (2013) 428–442 431
Data: qinit, qend,U(q)
Result: a sequence


q0, q1, · · · , ql


, with q0

= qinit, ql
= qend

and qi+1 son of qi for 0 ≤ i < l
1 - L is a sorted list, initially empty
2 - T is a tree, initially empty
3 begin
4 insert(qinit,L)
5 add(qinit,T)
6 while no isEmpty(L) do
7 q← first(L)
8 for each neighbor q′ of q do
9 if U(q′) < M and no isAlreadyIn(q′,T) then

10 setFather(q′, q)
11 add(q′,T)
12 insert(q′,L)
13 if q′ = qfinal then
14 return backtrackPath(q′)
15 return failure

Algorithm 1: Best First Planning Algorithm

For the list structure, three operations are available:

• insert(q, L) inserts a leaf with value q in L according to its
potential value U(q),
• first returns the first element of L, i.e., the leaf with smallest

potential U(q), and deletes it from the list,
• isEmpty(L) returns truewhen the list L is empty, false otherwise.

Finally, setFather(l, n) assigns n as the father node of the leaf l, and
backtrackPath(q) goes back from father to father from the node
with value q to the root of T and returns the path from the root
to q.
By always expanding the best non-visited node of T , BFP acts
as a steepest descent algorithm with predefined possible descent
direction (the choice of m for the m-neighbors), and fixed step
length, until it reaches a local minimum of U . Then it consider
every discretized configurations in the basin of attraction of this
minimumby increasing order of potential value, until it finds away
out and resumes its steepest descent-like search. A physical image
of this process would bewater following a slope, arriving in a basin
and filling it up until it goes over the edge and flows away from it.

3.2. Features

It is worth pointing out several features of the plain BFP
algorithm, to see how theywill translate when tackling the contact
planning:

1. a potential field function U: it gives a guide for the search. This
guide is however not perfectly followed (i.e. the algorithm does
not descend following exactly the gradient) because of the way
the sons of a node are chosen. In order to have the algorithm
return a correct path, U should be an attractive field toward the
target configuration, and be repulsive when nearing obstacles.

2. a discretization of the search space, on which the notion of
neighbors relies and hence the way sons are generated. The
discretization step is a crucial parameter of the algorithm. It
must be small enough to ensure passing through corridor of the
configuration space, yet big enough so as to not increase the
computation time unnecessarily.

3. free path between neighbors: it is a strong hypothesis of BFP,
that the path between two m-neighbors lies in the free space if
both neighbors do. This hypothesis ismost likely validwhen the
discretization is small enough. Otherwise line 9 of the algorithm
should include an additional checking function freePath(q, q′).
4. limitation of the search space: if U globally increases when going
away from the target configuration, the choice of M defines
a closed set of the configuration space. This is necessary for
termination.

5. loop avoidance: the test isAlreadyIn(q′, T) prevents the algo-
rithm from visiting the same configuration twice. With 4, this
ensures termination.

6. new leaves: the way to generate the sons of a node implies the
direction the algorithm can take to perform the search. In BFP,
the sons are them-neighbors, but other choices could be made.

7. ending condition: the way to define the target was reached.
Here it is when a leaf is equal (or very near to) the target
configuration.

Some of these features are trivial. They are nonetheless crucial and
will get more complex in contact planning.

4. Contact planner: specificities and concepts

4.1. Contacts and planning space

From here, we consider a robot with a free-flying root and n
unit joints. The particularity of contact planning is to look for a
path in submanifolds of the configuration space corresponding to
the surfaces of the C-obstacles: denoting ri(q) the volume of the
workspace occupied by the i-th body ri of the robot at configuration
q, R(q) the volume occupied by the whole robot, and Oj the
volume of the j-th object of the environment, the planning occurs
in

Cc =


q ∈ C|∃i, R(q) ∩ Oi ≠ ∅, R(q) ∩

◦

Oi = ∅ and ∀j ≠ k,

rj(q) ∩ rk(q) = ∅


where
◦

X denotes the interior of X .
Not all points of Cc are interesting however, because some surfaces
of the environment or the robot may not be appropriate for
contact: a window may not bear the robot’s weight, some parts of
the robot may be too fragile, etc. To account for this and to simplify
the problem,we consider contacts between predefined spots of the
robot and predefined surfaces of the environment.We also restrain
to fixed contacts (e.g. non-sliding or non-rolling).

A contact spot on the robot is defined by a triple

ri,H i

j , h
i
j


where ri is a body of the robot, H i

j is an element of SE(3) expressing
the position of a contact frame with respect to the body’s frame,
such that the origin of this frame is a point of the body’s surface,
and the z-axis of this frame is an inner normal to this surface. hi

j is
a set of points forming the convex hull of the contact surface. Note
that for a body ri we can define several contact spots. The set of all
contact spots is noted Scontacts.

For the environment, we select smooth surfaces that can
support a contact and denote their set Ssurfaces. For each surface, it is
possible to define a continuous mapping giving the normal vector
and a tangent one for each point (x, y). For the sake of simplicity,
we will consider only planar surfaces, but our algorithms extends
easily to the surfaces of general convex objects by taking correctly
into account the contacting area between the body and the surface,
and less trivially to non-convex cases by carefully considering the
collisions.

A robot-environment contact c is fully determined by the choice
of a couple of Scontacts×Ssurfaces and the triple (x, y, θ), where (x, y)
denotes a point of the environment surface, and θ is the angle
around the normal vector at (x, y) made by the tangent vector at
(x, y) and the x-axis of the contact frame of the robot. The choice
of the couple being discrete, the set of all contacts c is a subset of
the 4-dimensional space N × R3. For a given k, we consider the

432 A. Escande et al. / Robotics and Autonomous Systems 61 (2013) 428–442
k-tuples of contacts such that no body appearsmore than once, and
we denote Sk the corresponding set. kmust be at least one, because
the robot needs at least one contact to be stable, and cannot be
more than n + 1 since a robot with n unidimensional joints and a
free flying root has n+ 1 bodies. Consequently, we define the set

S =
n+1
k=1

Sk. (1)

This set of sets of contacts appears to be the natural planning
space for our problem: moving a robot from one place to another
amounts to searching for a sequence of sets of contacts achievable
by the robot. In this space, a m-neighbor of an element is another
set of contacts obtained by at most m contact changes (addition
or removal, but not displacement: going from (c1, c2) to (c1, c ′2),
where c2 and c ′2 involve the same body, is done in two steps by
first removing c2 then adding c ′2).

4.2. Feasible sequence of contacts sets

We define here what is an achievable sequence for the robot.
S is more meaningful for our purpose than C and is smaller since
effectively the number of contacts is less than 4 or 5. The size of S
is thus less than 20 while the size of C ranges usually from 30 to
more than 100. Yet, we cannot forget completely about C because
we need the configuration of the robot to test some physical and
geometrical properties. We say that a set of contacts s ∈ S is
feasible if there exists (at least) one posture for the robot, such
that the contacts are effective and the geometrical constraints
(joint limits, collision avoidance. . .) and physical constraints
(equilibrium, possible torque limits. . .) are satisfied. Such a posture
is awitness posture. We denote by Qs the set of all witness postures
for a contacts set s. Whether it is empty or not can be decided by a
feasibility problem (FP), that we describe in Section 6.

A sequence of feasible contacts sets (s1, s2, . . . , sl) is feasible
itself, if there is a continuous path satisfying successively each si:

∃ϕ : [1, l]→ C, (1) ϕ is C0,

(2) ∀i ∈ [|1, l− 1|] , ∀u ∈ [i, i+ 1[, ϕ(u) ∈ Qsi

(3) ϕ(l) ∈ Qsl .

Finding such a path might be done by using classical planning
methods on constrained submanifolds [30,31]. These approaches
however are too costly to be used as checking routines within our
planner; therefore we use a heuristic we now describe.

Forϕ to be continuous,we need two conditions: (i) Qsi∩Qsi+1 ≠

⊘ and (ii) Qsi−1 ∩ Qsi and Qsi ∩ Qsi+1 both belong to the same
connected component of Qsi .
The first condition means that one can find a path to change the
contacts from si to si+1. We first remark that Qsi can be written as
the intersection of two subsets of C, one defined by the stability
(i.e. equilibrium) constraints derived from si that we denote Qstab

s
and the other defined by all the remaining (and mostly geometric)
constraints, Qgeom

s .
(i) implies that Qgeom

si ∩ Qgeom
si+1 ≠ ⊘. A sufficient way to ensure

this is to plan only with 1-neighbors, i.e. one passes from si to si+1
only by adding or removing exactly one contact. Let us assume that,
without loss of generality, si ⊂ si+1, which implies Qgeom

si ⊃ Qgeom
si+1

and Qstab
si ⊆ Qstab

si+1 . We then have:

Qsi ∩ Qsi+1 ≠ ⊘ ⇔ Qgeom
si ∩ Qstab

si ∩ Qgeom
si+1 ∩ Qstab

si+1 ≠ ⊘ (2)

⇔


Qgeom

si ∩ Qgeom
si+1


∩


Qstab

si ∩ Qstab
si+1


≠ ⊘ (3)

⇔ Qgeom
si+1 ∩ Qstab

si ≠ ⊘. (4)
This means that there is a path between two 1-neighbors si and
si+1 if one can find a posture satisfying the geometric constraints
of the biggest (for the inclusion) of the two sets and the stability
constraints of the smallest one.

Condition (ii) means we can find a path within Qsi to perform
the contact changes from si−1 to si+1. In some specific cases (for
example with a thin obstacle) this path may not exist, but these
cases being rare, we suppose there is always one.

We thus construct our feasible sequence by adding or removing
contacts, one at a time, and finding at each step a witness posture
taking into account the changing contact geometrically but not
physically (i.e. for the stability). This can be seen as checking the
feasibility just before a new contact ismade or just after an existing
one was released.

5. Contact planner: implementation

This section discusses the implementation of our contact
planner by describing its different components. We give a first
practical way to implement each of themwith the exception of the
Posture Generator, in charge of the feasibility checking, which is
described on its own in the next section. This first implementation
gave good results in not-too-complicated scenarios [22]. Section 7
goes into the details of more sophisticated implementations for
some of these components, aiming at tackling more complex
environments and achieving better speed.

5.1. Contacts BFP

Algorithm: Contacts BFP
Data:


sinit, qinit


, Qgoal,U(s, q)

Result: a sequence

s0, q0


,

s1, q1


, · · · , (se, qe)


, with

s0, q0

=

sinit, qinit


, qe
∈ Qgoal and si+1 1-neighbor

of si
1 - L is a sorted list, initially empty
2 - l is a list
3 - n and n′ are nodes
4 begin
5 n←


⊘, sinit, qinit


6 insert(n,L)
7 while no isEmpty(L) do
8 n← first(L)
9 if allowsToReachGoal(n) then

10 return backtrackPath(n)
11 l← generateSons(n)
12 for each node n′ in l do
13 if U(n′) < M and trajectoryExistsTo(n′) then
14 insert(n′,L)
15 return failure

Algorithm 2: Contacts BFP

Algorithm 2 presents the main routine of our planning, called
Contacts Best First Planning. While very similar to Algorithm 1, it is
however more complex to implement.
Since we work in S but need to prove the feasibility of a contact
set by a witness posture, the input and output of the algorithm
are based on couples from S × C. A node can then be seen as a
triple (f , s,u) with f the father node, s ∈ S and q ∈ C. The goal,
determining the successful termination of the algorithm is given
as a subset Qgoal ⊂ C, possibly of lower dimension, described as
a set of equalities and inequalities on q. It is reached for the set of
contacts se if a posture qe exists in Qse∩Qgoal. To guide the planning
toward the goalwe also provide the algorithmwith a potential field

A. Escande et al. / Robotics and Autonomous Systems 61 (2013) 428–442 433
U defined over S×C (although onemight want to use only S or C).
Unlike the classical approach in potential field planning, U cannot
incorporate readily a repulsive component based on the distance
between the robot and the environment since at any time, parts of
the robot need to be in contact with the environment. The robot
however needs to be guided around (or under/over) the obstacles.
We introduce in Section 7.2 a way to build a potential field that
copes with this obstacle/support duality. For the sake of simplicity,
we will write U(n) for U(s, q), where n = (f , s, q). Likewise we
write Qn for Qs.

The algorithm still grows a tree by expanding the best leaf
according to U , that can be found in the sorted list L. The function
allowsToReachGoal(n) checkswhether Qn∩Qgoal is empty or not by
trying to solve the corresponding feasibility problem, and returns
trueupon success, producing awitness postureqe.We suppose that
the path between n · q and qe exists. generateSons(n) generates
the sons of n and is detailed in the next section. It includes
what is equivalent to the loop avoidance, discretization and leaves
generation in the classical BFP. Lastly, we mention the function
trajectoryExistsTo(n) which returns true if a path exists between
n and its father. In our implementation, this function is trivial
and always returns true, since we follow the heuristic mentioned
above.

5.2. Sons generation

Algorithm: generateSons
Data: n, a node
Result: l, the list of leaf expanded from n, initially empty

1 - s, a list of contacts, initially empty
2 - N , the set of the nodes already generated during the whole
planning

3 begin
4 (f , s, q)← n

// Suppressing a contact
5 if length(s)≥ 2 then
6 for each c in s do
7 s′ ← s\ {c}
8 n′ ← (n, s′, q)
9 if add(n′,N) then

10 if generate(n’,c) then
11 l← l ∪


n′


// Adding a contact
12 for i← 1 to size(Econtacts) do
13 if no isAlreadyInContact(s, i) then
14 for j← 1 to size


Esurfaces


do

15 l← l ∪ generateNewContacts(n,i,j)
16 return(l)

Algorithm 3: Sons generation

For a node n = (f , s, q), the generation of sons is based on the
1-neighbors of s, i.e. the sets of contacts obtained from s by either
adding or removing a contact. The function generateSons presented
in Algorithm 3 is therefore divided in two parts. The first part
explores the possibility to remove a contact from s. It trivially tries
every contact, one by one. A new node candidate n′ is create at
line 8, using the witness posture of its father for the initialization.
The block on lines 9–11, which also appears in Algorithm 4, checks
the validity of this candidate with respect to two criteria. The first
test is the transposition of the loop avoidance: add(n,N) checks if
n appears in N . If not, it adds it to N and returns true, otherwise
it does nothing and returns false. It is implemented by defining a
strict order relation ≺ on S (see 5.3). This way N is represented
as a red–black binary tree and the existence test/insertion can be
performed in O(ln(size(N))).
Algorithm: generateNewContacts
Data: n, a node, i and j, indices of the contact spot and the

surface
Result: l, a list of leaves whose father is n, initially empty

1 - N is the set of the nodes already generated
2 begin
3 if forbiddenContact(i,j) then
4 return(⊘)
5 (f , s, q)← n
6 contacts← getContactCandidates(i,j)
7 for each c in contacts do
8 s′ ← s ∪ {c}
9 n′ ← (n, s′, q)

10 if add(n′,N) then
11 if generate(n’,c) then
12 l← l ∪


n′


13 return(l)
Algorithm 4: New contacts for a given couple (contact spot,
surface)

The second test is the feasibility test. generate(n, c) with
n = (f , s, q) attempts at finding a witness posture qw for the
non-emptiness of the set Qs∪{c} with c not participating to the
stability. This is the transcription of the sufficient conditions of (i)
in 4.2. Note that in Algorithm 4, c is already in s, yet it will not
participate to the stability. generate is implemented as a feasibility
(or optimization) problem as described in Section 6. The process
is initialized with the actual configuration q attached to n and
replaces it byqw upon completion. This iswhy in bothAlgorithms 3
and 4 we construct the new nodes with the configuration of their
fathers: the sets Q attached to the father and the sons being
largely similar, the father’s configuration already satisfies many
constraints of the sons’ feasibility problems.

The second part is more complex because there is usually
an infinite number of possible new contacts. This complexity
is handled by the function generateNewContacts presented in
Algorithm4 and its sub-function getContactCandidates. This second
part iterates over the possible new pairs in Scontacts × Ssurfaces.
The sub-function isAlreadyInContact(s, i) returns true if the body
corresponding to the i-th contact spot in Scontacts is already
participating to a contact in s. Remember that the sets of contacts
in S cannot involve twice the same body of the robot.

The working of Algorithm 4 is fairly straightforward. Two sub-
functions need to be explained: forbiddenContact(i, j) relies on a
list of invalid pairs of Scontacts × Ssurfaces given by the user and
returns true if (i, j) denotes a pair in this list. The use of this list can
be motivated by security issues, the control of the overall aspect
of the result or the introduction of some a priori knowledge. For
example, one might want to avoid the robot putting its feet on a
table. getContactCandidates(i, j) returns a list of potential contacts
between the contact spot i and the surface j, that have then to be
validated by the block we described above. How to build this list is
discussed in Section 5.4.

5.3. Ordering S

A contact can be described by the tuple (i, x, y, θ) with i the
index identifying a couple in Scontacts×Ssurfaces. For s ∈ S , we define
ind(s) = [i1, . . . , ik] the sorted list of the indices corresponding to
the contacts in s. We also construct ps = (x1, y1, θ1, . . . , xk, yk, θk),
the vector of these contacts parameters, in the same order as the
indices in ind(s).
If s and s′ are such that ind(s) = ind(s′), thenwe say that s and s′ are
equal iff ∥D (ps − ps′)∥ ≤ k ·ϵ, with D a diagonal matrix to account

434 A. Escande et al. / Robotics and Autonomous Systems 61 (2013) 428–442
for the non-homogeneity between angles and distances, and ϵ a
positive constant.Wewrite ps ≠ ps′ if the previous inequality is not
verified. One must note that this equality relation is not transitive.

Using the lexicographic order on the vectors,we can then define
an order relation≺ on S : s ≺ s′ iff

• card(s) < card(s′)
• or card(s) = card(s′) and ind(s) < ind(s′)
• or ind(s) = ind(s′) and ps ≠ ps′ and ps < ps′ .

Through the use of the set N with the equality presented here,
we obtain an implicit discretization of S whose parameters are D
and ϵ: when a node n is inserted in N , it defines a region of S in
which we cannot chose a new set of contacts (because the test
add(n′,N) would fail). Provided the environment is bounded, we
thus have a finite (yet huge) number of contacts sets. How these
sets are distributed in S is determined by the way of generating
contact candidates.

5.4. Generating contacts candidates

A pair of Scontacts × Ssurfaces being given, generating candidates
amounts to choosing triples (x, y, θ).
Ideally, the generation of candidates should verify the three follow-
ing points:

(i) ensure a good coverage of the surface, to avoid ignoring pos-
sible paths for the robot,

(ii) give a small number of candidates to avoid combinatorial ex-
plosion,

(iii) give feasible contacts as much as possible. Indeed, the feasi-
bility checking is the most expansive part of the planner, and
takes more time when failing to find a witness posture than
when it manages to produce one.

Determining a strategy to take into account these three points is a
crucial step of our contact planner. Such a strategy must be cheap
enough so that it does not cost more than its benefit, especially
regarding point (iii). Reducing the contact surface we consider is a
necessity and can be roughly done by intersecting the surface with
a sphere centered at the root of the limb containing the contact
spot and a conservative radius. Our first implementation of the
candidates generation is based on this sphere–surface intersection
and a randomgeneration of (x, y, θ)with (x, y) on the intersection.
The compromise between (i) and (ii) is done by choosing the
number of generated triples. It appears experimentally that taking
a number proportional to the square root of the surface’s area gives
good results: this gives us enough samples for small surfaces yet
not too much for larger ones.

5.5. Potential field

Constructing a potential field efficiently guiding the planning
is the second crucial point in our work. We discuss here some
basic solutions andwill present amore complex one in Section 7.2.
The idea is above all to have a guide in the workspace: we do not
aim at a precise posture, but usually at a place in space or more
precisely, a subset of C. Thus, a first idea is to construct a simple
attractive potential

x− x0
2 based on the position (and possibly

the orientation) of the robot’s root or CoM and a target position.
For a given node, this potential will be evaluated at its witness
posture. Another idea is to base this potential on the position of
the contacts or their barycenter, and a target barycenter. Being
defined only on S , this potential field has the advantage of not
relying on the witness posture that is dependent of the way to
produce it. These types of potential may be combined. We can also
add to them bonus or penalty terms in order to favor or penalize
some class of contacts sets, for motivation ranging once again from
Fig. 3. The different constraints defining Q.

security to aesthetic. For example, when we wanted to run the
output of the planner on a real robot, we greatly penalized the sets
with hands only, to prevent the robot from walking on its hands,
while permitting it to use them in conjunctionwith other parts, for
instance to pass under a table.

An important drawback of the potential fields presented here is
that they do not take obstacles into account. This will be tackled in
Section 7.2.

6. Posture generation

This section describes a tool that is extensively used throughout
the planning process, since it provides the witness postures
attesting for the feasibility of a set of contacts. It relies on the
notion of task, which denotes in this work a set of equalities and
inequalities over C, namely g(q) = 0 and h(q) ≤ 0. A contact is a
special case of task. The naming taskwas already used for equalities
in a planning context [31], and is closely related to the notion of
task function in control [32].

6.1. Feasibility problem

Given a set of tasks {Ti}, the subset Q ∈ C of the geometrically
and physically correct configurations verifying these tasks is
written (see Fig. 3):

Q =


q−i ≤ qi ≤ q+i , ∀i ∈ [|1, n|], (a)
ϵij ≤ d(ri(q), rj(q)), ∀(i, j) ∈ Iauto, (b)
ϵik ≤ d(ri(q),Ok), ∀(i, k) ∈ Icoll, (c)
s(q) ≤ 0, (d)
gi(q) = 0, ∀ Ti, (e)
hi(q) ≤ 0, ∀ Ti (f)

(5)

where inequalities (5)(a) describe the joint limits. We consider 1d
joints. Bounds for more complex joints could be written in a more
general form b(q) ≤ 0.

Eqs. (5)(b) and (c) express the auto-collision and collision
avoidance constraints, d(O1,O2) being the (signed) distance
between objects A and B. As in Section 4, ri(q) (resp. Ok) denotes
the volume of the workspace occupied by the i-th body ri of the
robot at configuration q (resp. k-th obstacle). ϵij and ϵik are security
distances, thus usually positive. Iauto is a subset of [|1, n + 1|]2:
some pairs of bodies can never collide because of joint limits or of
other collisions that will always occur before, and it is not always
possible to write a collision avoidance constraint as a positive

A. Escande et al. / Robotics and Autonomous Systems 61 (2013) 428–442 435
distance requirement. Denoting byNO the number of objects in the
environment, Icoll is a subset of [|1, n+1|]×[|1,NO|]: pairs (ri,Ok)
involved in a contact should not be part of it, for example.

s is a stability criterion written only on the configuration q and
will be described in Section 6.4.

One might want to take into account the limitation on the
actuators of the robot. This can be done by introducing additional
variables, namely the torques τ and the contact forces f. They are
linked to q by the dynamic equation of a multi-body system in the
static case:
g1(q)
g2(q)


=


τ
0


+


JTc1(q)

JTc2(q)


f (6)

which should then be added as a constraint (Jc being the Jacobian
matrix of the contact points corresponding to f and g the gravity
term). One can then impose bounds on τ : τ−i ≤ τi ≤ τ+i ,∀i ∈
[|1, n|] and the stability constraint will be rewritten as s(f) ≤ 0
and accounts for the contact forces being inside friction cones. This
solution however increases the number of variables,which induces
a greater cost to solve the feasibility problem. We do not consider
bounds on τ in this work.

6.2. Positioning constraints

Geometrically imposing the contact between a body ri of the
robot and a surface of the environment is a special case of
positioning a body at a given location in the workspace.

We denote H j
i the element of SE(3) describing the position of a

frame i w.r.t. a frame j. For a vector v (resp. a point p), we write vi
(resp. pi) its coordinates in the frame i and vj (resp. pj) in the frame
j.Wehave the non-linear relation vj = Rj

iv
i (resp.pj

= H j
ip

i), where
Rj
i is the rotation part ofH j

i . If k is a third frame, we haveHk
i = Hk

j H
j
i

(see [33, Chapter 2]). We denote the world frame by 0.
Positioning the body ri in the workspace is done by superim-

posing a frame attached to this body (we called it contact frame in
Section 4.1) with a frame in the environment. Let i denote the local
frame of ri, j the attached frame and e the environment frame. The
superimposition constraint can be written H0

j (q)

=H0

i (q)H i
j


=

H0
e . It is conveniently expressed in R6 by

t0j (q)− t0e = 0 (7)

log


R0
e

−1
R0
j (q)


= 0 (8)

where t is the translation part of H . For R a rotation of axis u and
angle θ , we have log(R) = θu.
For a contact task, the frame j is chosen as described in 4.1 and e
is a frame such that its origin is on an environment surface, and its
z-axis correspond to the outer normal of the surface at this point.

For more modularity, we implemented the rotation part (8) by
expressing the perpendicularity between the axes of frames j and
e:

i0(q) · b0
= 0 (9)

i0(q) · n0
= 0 (10)

j0(q) · n0
= 0 (11)

−j0(q) · b0
≤ 0 (12)

−k0(q) · n0
≤ 0 (13)

with ij = de
= (1, 0, 0)T , jj = be

= (0, 1, 0)T , kj
= ne

=

(0, 0, 1).
The two inequalities are necessary to discriminate between the
four possible cases satisfying the equalities.
The advantage of such a set of constraints over Eq. (8) is the
possibility to take a subset of it. We use later the following weaker
positioning constraints:
t0j (q)− t0e


· n0
= 0 (14)

i0(q) · n0
= 0 (15)

j0(q) · n0
= 0 (16)

−k0(q) · n0
≤ 0. (17)

These constraints force the origin of frame j to lie in the plan x–y of
frame e but not at a particular position, and the z-axis of j is aligned
with the z-axis of e, with the rotation around this axis let free. For
a planar surface described by e, it means the contact spot j (of body
ri) is in contact with this surface, but the parameters (x, y, θ) of this
contact are not fixed.

Other geometric tasks can be described this way, see for
example [24].

6.3. Collision constraints

To express that two objects O1 and O2 (bodies of the robot or
parts of the environment) are not in collision, we use a signed
pseudo-distance, i.e. a function d such thatd(q) > 0 if O1(q) ∩ O2(q) = ∅ (a)
d(q) = 0 if O1(q) ∩ O2(q) = ∂O1(q) ∩ ∂O2(q) (b)
d(q) < 0 otherwise. (c)

(18)

Additionally, the gradient of this function needs to be continuous
for the optimization solver.1

The Euclidean distance between the objects, extended to the
penetration case by quantifying the depth [34], is a suitable
candidate for Eqs. (18)(a)–(c), and its gradient is continuous when
both objects are convex and one of them is strictly convex. We
presented in [35] a strictly convex bounding volume to ensure this
gradient’s continuity.

To compute the gradient of d, we extend the reasoning found
in [36] to the case of two moving objects: if P1 and P2 are the
fixed points of O1 and O2 that coincide with the witness points of d
(i.e. the points realizing the distance) at configuration q, denoting
p0
1(q) and p0

2(q) their coordinates in the world frame, we have

∂d
∂q
=

1
d(q)


p0
1(q)− p0

2(q)
T ∂p0

1

∂q
−

∂p0
2

∂q


. (19)

6.4. Stability constraints

We give here two expressions for the stability constraint s(q).
The simplest one is based on the classical projection of the CoM
in the sustentation polygon [37]: for a contact, the contact spot
gives us a set of points h =


pj
1, . . . , p

j
k


expressed in its contact

frame j. When the contact is realized, we have H0
j (q) = H0

e , so
that the contact points are at the positions H0

e h =

H0

e p
j
1, . . . ,

H0
e p

j
k


. Now, if we have all l contacts, the sustentation polygon

is the (2d) convex hull of all the projected contact points:
conv


π

H0

e1h1

∪ · · · ∪ π


H0

elhl

, where π : R3

−→ R2 denotes
the projection onto the x–y plane. We denote πi the m points of
this convex hull indexed in the trigonometric order, and ni =
0 1
−1 0


(πi+1 − πi) (with the convention πm+1 ≡ π0), the outer

normal to segment πiπi+1. Then, G(q) being the CoM expressed in

1 Non-smooth optimization routines for problems with generic objective and
constraint functions are difficult to find off-the-shelf and usually not as fast and
perfected as state-of-the-art algorithms for smooth optimization.

436 A. Escande et al. / Robotics and Autonomous Systems 61 (2013) 428–442
Fig. 4. The architecture of the posture generator, as a dialog between an optimization algorithm (in green) which asks for the values or derivatives at a point of the problem
functions and a simulator (in blue) which computes them. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
the world frame, we have:

s(q) =

 [π1 − π(G(q))]T n1
...

[πm − π(G(q))]T nm

 . (20)

This criterion is valid if all contacts are on the same horizontal
plane. It is conservative if the contacts are on different horizontal
planes (see [37]). For both situations, this is the criterion we adopt
because it is fast. In all other cases we use a second criterion,
which is a static version of the one proposed in [38,39] and
similar to [40]: if we consider that τ is not bounded, then the
first n lines of Eq. (6) can always be satisfied, and the robot
is only constrained by the last 6 lines which are equivalent to
the Euler–Newton equations: g2(q) = Jc2(q)T f. Note that if the
equation is expressed in the world frame, what we consider now,
Jc2 is independent of the configuration. Furthermore, to avoid
sliding, each contact force must be inside a Coulomb friction
cone and so f is inside a product of cones: f ∈ F = ×Cj. If we
consider discretized friction cones, then F is also a discretized (or
polyhedral) cone (in dim(f) dimensions) so that f can be written
as a positive linear combination of rays: f =


αi≥0

αifi where
the fi are deduced from the rays of the discretized friction cones.
It follows that g2(q) =


αi≥0

αiJTc2 fi, hence g2(q) belongs to a
(possibly open) polytope that is the 6d convexhull of the JTc2 fi. Using
a double description algorithm such as cddlib [41], we can get a
representation of this polytope as a set of linear inequalities and
so write s(q) = Ag2(q)+ b. With further operations, this criterion
can even be expressed in 3 dimensions [42]. Computing the linear
inequalities takes up to a few ms for several contacts, each with 4
contact points and 4-sided discretized cones.

6.5. Adding a criterion

If Q is not empty, it is generally a non-countable set. It might
then be useful to specify a criterion o to be minimized, so as to
select a particular posture. The feasibility problem becomes then
a minimization problem

min
q∈Q

o(q). (21)

An advantage to using a criterion is that the obtained witness
posture is less dependent on the solver mechanisms and the initial
guess (the optimization problem may however have some local
minima, even if o is convex, because of the constraints). This is
important when the potential field of the planning is based on q
so that nodes are ‘‘fairly’’ evaluated. To this end using the planner’s
potential field as a posture criterion is a possibility we use later.

Otherwise, the criterion can have several forms, frommaximiz-
ing the stability of the robot (by rewriting each line of the stability
constraint as si(q) ≤ w, and minimizing w) to notions of comfort
posture (see e.g. [43]).We first used the distance to a reference pos-
ture: ∥q− q∗∥2 which gives good results for simple scenarios [22].
In the next section, we propose a variant of a criterion based on the
distance to a reference path s ∈ [0, 1]→ q∗(s) ∈ C:

min
s,q

q− q∗(s)
2 . (22)

6.6. Implementation details

To solve the above feasibility/optimization problem we use
FSQP [44]. Our posture generator is build over two parts as advo-
cated in [45] (Chapter 1): the algorithm part which consists in an
object encapsulation of FSQP and knows nothing about the prob-
lem to be solved, and the simulation part, which we called Posture
Calculator, that performs all posture-related computation at the re-
quest of the algorithm, and knows nothing about optimization (see
Fig. 4).

The Robot class performs all the computations related to the
kinematics of the robot, for instance the position of a point of
the robot in the world frame, or its gradient. The Constraint class
represents a function from Rm into R (with m the number of

A. Escande et al. / Robotics and Autonomous Systems 61 (2013) 428–442 437
Fig. 5. The search volume V is build as the product of the surface’s parameters domain and the segment [0, 2π] (left). When a new contact with parameters P is found, a
volume VP is constructed around (middle) and V \ VP is divided into convex sub-volumes (right).
variables) that can be considered either as constraint or objective
function by the solver. It implements the different kinds of
parametric function that we need to describe the problem. For
example the collision avoidance constraint between the objects
Oi and Oj computes a · d(i, j, q) + b where a, b, i and j are the
parameters and d(i, j, q) = d(Oi(q),Oj(q)).
ConstraintsSet implements a group of constraints describing a task,
for instance a contact or the stability criterion. It is meant to help
the user by providing a higher level interface, so that he just has
to give the task parameters, and the corresponding constraints are
automatically generated.
Lastly, the Posture Calculator handles two functionalities: it ensures
the sorting of the constraints according to FSQP requirements
(non-linear inequalities first, then non-linear equalities. . .) and it
keeps up-to-date the stability and collision constraints according
to the contacts added or removed.

The computations are made using lazy evaluation so as to avoid
evaluating the same data twice.

7. Improving planning

7.1. Advanced contact generation

We saw that for a pair of Scontacts×Ssurfaces a contact is specified
by a triple (x, y, θ). For this pair, the sets of all triples is a subsetV of
R3 which can be seen as the product of the surface (or the domain
of its parameters) and the segment [0, 2π] (see Fig. 5).

Searching for contact candidates amounts to finding points in
this volume, and the three points of Section 5.4 can be rewritten
as:

(i) ensure a good coverage of V ,
(ii) give points not too close from each other,
(iii) give points corresponding to feasible contacts as much as

possible.

(iii) remains the difficult point: if s is the set of contacts we try to
add a contact to, the projection of Qs onto V is far from being trivial
so that biasing the search toward ‘‘good’’ points in V does not seem
to be practical.

The solution we propose is to let (x, y, θ) be chosen by the Pos-
ture Generator, rather than proposing candidates which may not
be feasible: using Eqs. (14)–(17) instead of Eqs. (9)–(13) for a new
contact involving ri constrains only 3 dofs of ri, and lets (x, y, θ)
free. Upon successful completion of the posture generation with
this weaker form of contact, we have the parameters of a feasible
contact. If the generation fails, then we assume no contact can be
found for the current pair (body, surface). This assumptionmay not
hold, because the Posture Generator does not guarantee to find a
solution if there is one. However, it happens to be true in practice
for the vast majority of cases since the optimization is started with
the configuration of the father, hence not far from the solution.
Once a first point P = (x, y, θ) has been found in V , we have
to find another one, not too close from it (condition (ii)). To do so,
the idea is to generate a new point in V \ VP where VP is a small
volume centered around P , then, for this new point, exclude an-
other volume fromV and generate a newone, repeating these steps
until the Posture Generator cannot find a solution. In practice, we
want to work with convex search volumes to avoid introducing
(more) local minima in the optimization scheme, and we further-
more restrain these volumes to have boundaries in θ of the form
θ = constant. Such a volume can be described by the following
inequalities:

A

t0j (q)− t0e


+ b ≤ 0 (23)

θ− ≤ θ(q) ≤ θ+ (24)

where A and b describe the limitation of the surface (that we as-
sume to be convex or divisible in convex pieces) and θ(q) is the
angle between the projection of


t0j (q)− t0e


on the surface and the

reference direction. The volume VP is chosen to be a parallelepiped
of dimensions δl×δl×δθ , with δl and δθ two parameters that con-
trol the density of points. V \ VP is then divided in convex volumes
of the same shape (see Fig. 5). In each of these volumes a genera-
tion will be attempted before further subdivision, until no solution
exists. This leads to Algorithm 5.

The construcSearchVolume(j) method divides the surface with
index j into convex pieces and builds the corresponding search
volumes by computing their productwith [0, 2π]. generate(n, i, V)
performs a posture generation with the contacts of n and the
weaker form of contact involving ri within the search volume V .
retrieveContact(n, i, j) identifies the values (x, y, θ) for the contact
between thepair identified by (i, j) at configurationn·q and returns
the contact. Lastly, divideSearchVolume(V , c) subdivides V \VP into
convex search volumes, where P is the point corresponding to c ,
and returns these new volumes, if any (V \ VP eventually gets
empty). The algorithm terminates when there is no more search
volumes in which to find contacts.

7.2. Guide path and potential field

Using solely an attracting potential field to guide the planner
toward the goal appears to be limited because the presence of
obstacles will create local minima in Cfree whose size will be
correlated to the size of the obstacles, and the number of contact
spots. We thus need a field that guides the planning around (or
above/under) the obstacles. We achieve that by constructing a
descending valley-like shape potential field following a rough path
in C (see Fig. 6). This rough path gives an idea of the overall
trajectory without the detailed movements due to the contacts.
We define it as a linear interpolation between a small numbers
of key postures. It does not matter if the path thus obtained
does not lay fully in Cfree. These key postures can be computed
automatically [46] or givenmanually. In the latter case, it gives the

438 A. Escande et al. / Robotics and Autonomous Systems 61 (2013) 428–442
Fig. 6. Starting from a piecewise linear path (dotted line, on the left) we construct a smoother path (plain line), uponwhichwe base a descending valley-like shaped potential
field (right).
Algorithm: generateNewContacts2
Data: n, a node, i and j, indices of the contact spot and the

surface
Result: l, a list of leaves whose father is n, initially empty

1 - N is the set of the nodes already generated
2 begin
3 if forbiddenContact(i,j) then
4 return(⊘)
5 n′ ← n
6 V ← construcSearchVolume(j)
7 while no isEmpty(V) do
8 V ← first(V)
9 if generate(n’, i, V) then

10 c ← retrieveContact(n’,i,j)
11 n′ ← (n, n′.s ∪ {c}, n′.q)
12 V ← V ∪ divideSearchVolume(V , c)
13 if add(n′,N) then
14 l← l ∪


n′


15 return(l)
Algorithm 5: Contact generation with search volumes

user a way to encode high level specification about themotion like
going around or under the table, entering the house by the front or
rear door. . .

Let p : [0, 1] −→ C be a continuous path, and π : C −→ Croot
the projection onto the configuration space of the robot’s root. We
denote q′ and p′ the images of a configuration q and the path p by
π . We can safely assume that π is bijective from p to p′: it would
not be the case if p′ was self-intersecting, which would imply the
robot is coming back to a place hewas before (all themovements in
between were unnecessary) or if the posture was changing while
the root is kept fixed. This second case can be easily avoided: it
does not hurt to change a bit the root’s position, the path being
only approximate.

Then, denoting q′p the closest point of p′ from q′, we define
qp = π−1(q′p), and write the potential field as

Up(q) =
q− qp

2 − α · l′ (25)

where l′ is the curvilinear coordinate of q′p along p′. The first term of
this function is a pseudo-distance to the path and gives the valley-
like shape; the second accounts for the distance traveled along the
path, and gives the slope toward the goal. The α factor weights the
contribution of the two terms.

If p is piecewise linear, this potential field however is not even
continuous because the closest point q′p jumps when q′ passes
from the Voronoi region of a segment to the other, implying a
discontinuity of l′. This can be partially corrected by ‘‘rounding’’ the
angles of p: we replace each angle by an arc of circle (in dimension
n+ 6) for which we chose the maximal radius such as the distance
to the original path is less than a given constant. As long as the
distance to the modified path is less than the radii, Up is C1.

Two terms can be added to this potential field. First, from p,
it is easy to derive guide paths pi for the bodies ri, and build
potential fields Upi(q) based on the distance from the bodies to
their guide paths. Adding such terms to Up for selected bodies
(typically the feet and hands, sometimes the knees) enables the
planner to anticipate the movements of these bodies which is
useful when the robot needs to radically change the posture (for
example to pass from walking to crawling) (see [25]).

Second, we can add a term US over S , as devised in 5.5, to
account for the characteristics of the set of contacts.

7.3. Very best first contact planning
Unless the planner gets stuck in a huge local minima, what

should be avoided by the use of the previously proposed potential
field if a solution exists, most of the nodes generated during the
planning will never be visited for further expansion, and thus are
generated to no avail. We present here a method to drastically
reduce the number of generated nodes.

Suppose at first that we have an oracle capable to tell us at
no cost for a node f which of its sons n will have the best rating
according to the potential field. Then, when f is expanded, it
suffices to generate n and to add it in the list of leaves L. Indeed,
the siblings of n being worse than n they will never be selected for
expansion as long as n has not been selected itself. When, at an
ulterior iteration, n is selected, its best sibling n′ has to be put in L
because it might be better than all the other elements already in L.
So, each time a node is selected for expansion, only its best son and
its best sibling are generated and inserted in L (see Fig. 7), which
greatly reduce the number of unused nodes generated.We call this
principle Very Best First Planning.

Unfortunately, in the case of contact planning, we do not have
such an oracle, but we have a semi-oracle in the sense that we
are able to predict that some nodes will be better than some
others without generating them. This is achieved by using the
potential field of the planner as the objective function for the
posture generation. In this case, the new contact found for a given
search volume will yield a better node than the contacts found
for the subsequent sub-volumes. This leads to a modification of
Algorithm 2 we named Contacts VBFP, where the line 11: l ←
generateSons(n) is replaced by

l← generateBestSons(n) ∪ generateNextSiblings(n).

The method generateBestSons(n) tries to generates all the nodes
obtained by removing one contact from n, and for each couple of
Scontacts × Ssurfaces, only the first node that would be obtained by
Algorithm 5. We cannot indeed predict the ranking order between
these nodes. generateNextSiblings(n) returns an empty list when n
has been obtained by removing a contact. If n has been created by
adding a contact c , then the method tries to generate the nodes for

A. Escande et al. / Robotics and Autonomous Systems 61 (2013) 428–442 439
Fig. 7. VBFP (black) versus BFP (black and gray). L is the list of leaves in BFP, L′ in VBFP. Starting from node A, only the best son (C) is generated at first with VBFP whereas
BFP would generate all five sons (left). Then (center), C is chosen to be expanded in which case its best sibling (E) replaces it in L′ , and the best son of C is generated. Finally
(right), E being the best leaf in L′ (or L), it is expanded by only its best sons J , and replaced by its best sibling (B) in L′ . The first element of L′ is always the same as the first
one of L, ensuring the correctness of VBFP.
the same couple of Scontacts × Ssurfaces and the sub-volumes issued
from the volume in which c was generated.

We observed that this lazy-generation scheme leads to creating
3–5 times less nodes than in the CBFP algorithm,with a similar gain
in computation time and memory.

8. Results

In this section, we present the output of our planner applied
to a HRP-2 robot in three scenarios of increasing complexity (see
Fig. 8): climbing a ladder, crawling through a narrow tunnel, and
sitting at a table while carrying a glass. The computations are
performed on a single thread on a Pentium 4 at 3.2 GHz, with
2 Go of RAM. 117 pairs of bodies (ri, rj) are considered for auto-
collision, all pairs are considered for robot-environment collision,
and additional analytical constraints on the joint angles arewritten
for collision avoidance at the hips and the neck (they have been
identified empirically).

8.1. Ladder scenario

We begin by taking a situation similar to one in [20], in order
to get a comparison: the robot has to climb a ladder, about 2 m
tall. To get as close as possible to the conditions of [20], we restrict
the robot to use only its feet and one face of each hand, and fix
the orientation of the contacts. We however let the contact occur
at any place on the lower and upper grounds and on the rungs
of the ladder. For this experiment, while all the support surfaces
are horizontal, we use the general stability criterion presented in
Section 6.4, the CoM projection criterion being too conservative
for this case. The robot starts in front of the ladder and the goal
is specified as a region (at the top of the ladder) in which the waist
needs to be.

Our planner finds a path with 35 nodes in about 8.5 min
which is only slightly slower than [20] where the possible contact
placements are given beforehand. A total of 497 nodes were
generated.

8.2. Tunnel scenario

In this scenario, we demonstrate the ability of our planner to
cope with cluttered environments and particularly to enter in and
evolve through a narrow space, which is usually recognized as
difficult for planners: the robot, which is 1.54 m tall and 63 cm
wide has to go through a tunnel 73 cmwide, 54 cm high and 90 cm
long. The entrance is in front of its initial position, 35 cm above the
ground. Ten contact spots are defined on the robot: the feet, the
knees, the elbows, the side of each hand, and the top the pinches.
Four key postures are given to define the guide path: standing up
in front of the tunnel, on its hands and knees at the entrance and
at the exit of the tunnel and standing up after. The goal is specified
as a region in which the waist needs to be.
The solution is found in 56.2 min and consists in 101 nodes, for
a total of 3656 nodes generated. The planning time is divided into
three roughly equal parts: entering the tunnel, going through it and
getting up.

8.3. Table scenario
In this third scenario, the robot has to go and sit at a table while

carrying a glass full of liquid in its right hand. The planning problem
is defined as follow: there are 3 objects in the environment: the
floor, the chair and the table. Twelve contact spots are defined:
the feet, the knees, the thighs, the side of each hand, and the
top the pinches and three environment surfaces are considered
for contact: the floor, the seat of the chair, and the top surface
of the table. We forbid the (hand, floor), (foot, chair) and (foot,
table) contact pairs. An additional task Tglass is added to every
posture generation to keep the glass vertical. Consequently, all
contacts with the right hand are forbidden. The main difficulty
of the planning is that the robot has to enter the narrow space
between the table and the chair, space in which it cannot be in
full upright position. In particular, while the space seems more
open than in the previous scenario, it is more difficult to find a
stable posture when evolving around the chair. The task Tglass adds
complexity to the posture generation and prevents the robot from
using its right hand for locomotion.Wemanually give a rough path
with 4 key postures as depicted in Fig. 9.

The result, depicted in Fig. 8 is a sequence of 69 nodes, obtained
in about 3 h, after 3800 nodes have been generated. The robot
quickly gets to the side of the chair, before taking some time to
put its feet in front of the chair (after about 50 nodes). Once it has
entered this narrow passage, it reaches the goal in about 20 nodes.
When near the chair, the robot takes support on the chair and the
table with its left hand. Experiments on a real HRP-2 robot of this
scenario are reported thoroughly in [23,24].

9. Conclusion

Planning a general multipurpose and multi-contact motion for
humanoid robots is possible by relaxing the contacts to occur
with any part of the robot and any part of the environment. Our
approach consists in building a tree that explores possible con-
tact configurations thanks to a generalized inverse kinematics
that is formulated as a non-linear optimization problem in order
to account for robot limitations in terms of joints limits, static
equilibrium, non-desired collision avoidance, etc. Several complex
scenarios were successfully planned using our planner. Further
extensions of our method are already under implementation and
consist in generalizing it to more generic agents as well as unify-
ing multi-contact locomotion and manipulation in a single plan-
ning framework for all the components (the posture generator
in [47], the planner in [48]). We also considered deformable envi-
ronments [49]. This demonstrates that our algorithm foundations
are viable enough to allow such extensions. As futurework, wewill

440 A. Escande et al. / Robotics and Autonomous Systems 61 (2013) 428–442
Fig. 8. Initial, final and some in between steps for the three scenarios.
need to reconsider the issue of scalability with respect to the num-
ber of agents and the complexity of the situations. The bottleneck
for the planner is posture generation. Several improvements can
bemade on this point to speed up the computations. First, the sons
generation is highly parallelizable: in the Contact VBFP presented
here, all the posture generation problems are independent when

A. Escande et al. / Robotics and Autonomous Systems 61 (2013) 428–442 441
Fig. 9. Key postures to define the rough path p for the table scenario.
expanding a node. We will soon make the necessary code changes
to benefit from the multi-core feature of modern computers. It is
also necessary to reconsider the solverwith respect to our problem.
By taking into account the particularities of the problem we solve,
it is possible towrite a dedicated solver and tune it carefully to con-
verge rapidly toward an existing solution or detect quickly when
there is no solution. We expect a huge speed gain from both the
parallelization and the solver specialization.

Our planner generates contact sets; the motion transition be-
tween these sets is computed in a second step which is not consid-
ered here, but we started investigating two possible approaches:
the first one uses semi-infinite optimization techniques [50,51],
the other one is a closed-loop control approach using multi-
objective optimization [52,53].

References

[1] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa,
Biped walking pattern generation by using preview control of zero-moment
point, in: IEEE International Conference on Robotics and Automation, 2003,
pp. 1620–1626.

[2] T. Takenaka, T. Matsumoto, T. Yoshiike, Real time motion generation and
control for biped robot—1st report: walking gait pattern generation-, in:
IEEE/RSJ International Conference on Robots and Intelligent Systems, St. Louis,
USA, 2009, pp. 1084–1091.

[3] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, M. Diehl, Online
walking motion generation with automatic foot step placement, Advanced
Robotics 24 (5–6) (2010) 719–737.

[4] A. Herdt, N. Perrin, P.-B. Wieber, Walking without thinking about it, in:
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010,
pp. 190–195.

[5] T. Takenaka, T. Matsumoto, T. Yoshiike, S. Shirokura, Real time motion
generation and control for biped robot—2nd report: running gait pattern
generation-, in: IEEE/RSJ International Conference on Robots and Intelligent
Systems, St. Louis, USA, 2009, pp. 1092–1099.

[6] T. Takenaka, T. Matsumoto, T. Yoshiike, Real time motion generation and
control for biped robot—3rd report: dynamics error compensation-, in:
IEEE/RSJ International Conference on Robots and Intelligent Systems, St. Louis,
USA, 2009, pp. 1594–1600.

[7] T. Takenaka, T. Matsumoto, T. Yoshiike, T. Hasegawa, S. Shirokura, H. Kaneko,
A. Orita, Real time motion generation and control for biped robot—4th report:
integrated balance control-, in: IEEE/RSJ International Conference on Robots
and Intelligent Systems, St. Louis, USA, 2009, pp. 1601–1608.

[8] M. Kalisiak, M. van de Panne, A grasp-based motion planning algorithm for
character animation, The Journal of Visualization and Computer Animation 12
(3) (2001) 117–129.

[9] K. Yin, K. Loken,M. van de Panne, SIMBICON: simple biped locomotion control,
ACM Transactions on Graphics (SIGGRAPH) (ISSN: 0730-0301) 26 (2007).

[10] U. Muico, Y. Lee, J. Popović, Z. Popović, Contact-aware nonlinear control of
dynamic characters, ACM Transactions on Graphics (SIGGRAPH) 28 (3) (2009).

[11] I. Mordatch,M. de Lasa, A. Hertzmann, Robust physics-based locomotion using
low-dimensional planning, ACM Transactions on Graphics 29 (3) (2010).

[12] S. Coros, P. Beaudoin, M. van de Panne, Generalized biped walking control,
ACM Transactions on Graphics 29 (4) (2010). Article 130.

[13] J. chi Wu, Z. Popović, Terrain-adaptive bipedal locomotion control, ACM
Transactions on Graphics (SIGGRAPH) 29 (4) (2010) 72:1–72:10.

[14] L. Sentis, M. Slovich, Motion planning of extreme locomotionmaneuvers using
multi-contact dynamics and numerical integration, in: IEEE/RAS International
Conference on Humanoid Robotics, 2011.

[15] K. Yokoi, E. Yoshida, H. Sanada, Unified motion planning of passing under
obstacleswith humanoid robots, in: IEEE International Conference on Robotics
and Automation, 2009.

[16] B. Verrelst, O. Stasse, K. Yokoi, B. Vanderborght, Dynamically stepping over
obstacles by the humanoid robot HRP-2, in: IEEE RAS/RSJ Conference on
Humanoid Robots, Genova, Italy, 2006, pp. 117–123. Oral Presentation.
[17] F. Kanehiro, T. Yoshimi, S. Kajita, M. Morisawa, K. Fujiwara, K. Harada,
K. Kaneko, H. Hirukawa, F. Tomita, Whole body locomotion planning of
humanoid robots based on a 3D grid map, in: IEEE International Conference
on Robotics and Automation, 2005, pp. 1072–1078.

[18] Z. Lu, T. Aoyama, K. Sekiyama, Y. Hasegawa, T. Fukuda, Walk-to-brachiate
transfer of multi-locomotion robot with error recovery, in: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Taipei, Taiwan, 2010,
pp. 166–171.

[19] T. Bretl, Multi-stepmotion planning: application to free-climbing robots, Ph.D.
Thesis, Stanford University, 2005.

[20] K. Hauser, T. Bretl, J.-C. Latombe, Non-gaited humanoid locomotion planning,
in: IEEE/RSJ International Conference on Humanoid Robots, 2005, pp. 7–12.

[21] K. Hauser, T. Bretl, K. Harada, J.-C. Latombe, Using motion primitives in
probabilistic sample-based planning for humanoid robots, in: Workshop on
the Algorithmic Foundations of Robotics, 2006.

[22] A. Escande, A. Kheddar, S. Miossec, Planning support contact-points for hu-
manoid robots and experiments on HRP-2, in: IEEE/RSJ International Confer-
ence on Robots and Intelligent Systems, Beijing, China, 2006, pp. 2974–2979.

[23] A. Escande, A. Kheddar, S.Miossec, S. Garsault, Planning support contact-points
for acyclic motions and experiments on HRP-2, in: International Symposium
on Experimental Robotics, Athens, Greece, 2008.

[24] A. Escande, A. Kheddar, Contact planning for acyclic motion with tasks
constraints, in: IEEE/RSJ International Conference on Intelligent Robots and
Systems, St. Louis, USA, 2009, pp. 435–440.

[25] A. Escande, A. Kheddar, Planning contact supports for acyclic motionwith task
constraints and experiment on HRP-2, in: IFAC 9th International Symposium
on Robot Control, SYROCO’09, Gifu, Japan, 2009, pp. 259–264.

[26] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata,
K. Akachi, T. Isozumi, Humanoid robot HRP-2, in: IEEE International Confer-
ence on Robotics and Automation, New Orleans, LA, 2004, pp. 1083–1090.

[27] T. Siméon, J. Cortès, J.-P. Laumond, A. Sahbani, Manipulation planning with
probabilistic roadmaps, The International Journal of Robotics Research 23
(7–8) (2004) 729–746.

[28] K. Hauser, V. Ng-Thow-Hing, H. Gonzalez-Banos, Multi-modal motion plan-
ning for a humanoid robot manipulation task, in: International Symposium on
Robotics Research, 2007.

[29] J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Boston,
Dordrecht, London, ISBN: 0-7923-9129-2, 1991.

[30] J. Cortés, Motion planning algorithms for general closed-chain mechanisms,
Ph.D. Thesis, 2003.

[31] M. Stilman, Task constrainedmotion planning in robot joint space, in: IEEE/RSJ
International Conference on Robots and Intelligent Systems, 2007.

[32] C. Samson,M. Le Borgne, B. Espiau, Robot Control: The Task FunctionApproach,
Clarendon Press, Oxford, United Kingdom, 1991.

[33] V. Duindam, S. Stramigioli, Modeling and Control for Efficient BipedalWalking
Robots—A Port-Based Approach, in: Springer Tracts in Advanced Robotics,
vol. 53, Springer, ISBN: 978-3-540-89917-4, 2009.

[34] G. van den Bergen, Collision Detection in Interactive 3D Environments, in: The
Morgan Kaufmann Series in Interactive 3D Technology, Morgan Kaufmann
Publishers, 2004.

[35] A. Escande, S. Miossec, A. Kheddar, Continuous gradient proximity distance
for humanoids free-collision optimized-postures, in: IEEE-RAS Conference on
Humanoid Robots, Pittsburg, Pennsylvania, 2007.

[36] O. Lefebvre, F. Lamiraux, D. Bonnafous, Fast computation of robot-obstacle
interactions in nonholonomic trajectory deformation, in: IEEE International
Conference on Robotics and Automation, Barcelona, Spain, 2005.

[37] P.-B. Wieber, On the stability of walking systems, in: The Third IARP
International Workshop on Humanoid and Human Friendly Robotics, AIST,
Tsukuba, Japan, 2002, pp. 53–59.

[38] S. Garsault, Non-gaited dynamic motion with multi-contact transition, Tech.
Rep., Ecole Centrale de Paris, 2008.
URL: http://sylvain.garsault.free.fr/pub/finalReportSGarsault.pdf.

[39] S. Barthélemy, P. Bidaud, Stability measure of postural dynamic equilibrium
based on residual radius, in: RoManSy’08: 17th CISM-IFToMM Symposium on
Robot Design, Dynamics and Control, 2008.

[40] T. Bretl, S. Lall, Testing static equilibrium for legged robots, IEEE Transactions
on Robotics 24 (2008) 794–807.

[41] K. Fukuda, A. Prodon, Double description method revisited, in: Lecture Notes
in Computer Science, vol. 1120, 1995, pp. 91–111.

http://sylvain.garsault.free.fr/pub/finalReportSGarsault.pdf

442 A. Escande et al. / Robotics and Autonomous Systems 61 (2013) 428–442
[42] Z. Qiu, A. Escande, A. Micaelli, T. Robert, Human motions analysis and
simulation based on a general criterion of stability, in: International
Symposium on Digital Human Modeling, Lyon, France, 2011.

[43] J. Yang, T. Marler, H. Kim, J. Arora, K. Abdel-Malek, Multi-objective optimiza-
tion for upper body posture prediction, in: 10th AIAA/ISSMOMultidisciplinary
Analysis and Optimization Conference, Albany, New York, 2004.

[44] C. Lawrence, J.L. Zhou, A.L. Tits, User’s guide for CFSQP version 2.5: a C code for
solving (large scale) constrained nonlinear (minimax) optimization problems,
generating iterates satisfying all inequality constraints, 1997.

[45] F. Bonnans, C. Gilbert, C. Lemaréchal, C.A. Sagastizábal, Numerical
Optimization—Theoretical and Practical Aspects, Springer, 2002.

[46] K. Bouyarmane, A. Escande, F. Lamiraux, A. Kheddar, Collision-free contacts
guide planning prior to non-gaited motion planning for humanoid robots, in:
IEEE International Conference on Robotics and Automation, 2009.

[47] K. Bouyarmane, A. Kheddar, Static multi-contact inverse problem for multiple
humanoid robots and manipulated objects, in: IEEE-RAS International
Conference on Humanoid Robots, Nashville, TN, 2010, pp. 8–13.

[48] K. Bouyarmane, A. Kheddar, Multi-contact stances planning for multiple
agents, in: IEEE International Conference on Robotics and Automation,
Shanghai, China, 2011.

[49] K. Bouyarmane, A. Kheddar, FEM-based static posture planning for a humanoid
robot on deformable contact support, in: IEEE-RAS International Conference
on Humanoid Robots, Bled, Slovenia, 2011.

[50] S. Miossec, K. Yokoi, A. Kheddar, Development of a software for motion
optimization of robots—application to the kick motion of the HRP-2 robot,
2006.

[51] S. Lengagne, P. Mathieu, A. Kheddar, E. Yoshida, Generation of dynamic
motions under continuous constraints: Efficient computation using B-Splines
and Taylor polynomials, in: IEEE/RSJ International Conference on Intelligent
Robots and Systems, Taipei, Taiwan, 2010, pp. 698–703.

[52] M.-X. Liu, A. Micaelli, P. Evrard, A. Escande, C. Andriot, Interactive dynamics
and balance of a virtual characters during manipulation tasks, in: IEEE
International Conference on Robotics and Automation, 2011.

[53] K. Bouyarmane, A. Kheddar, Using a multi-objective controller to synthesize
simulated humanoid robot motion with changing contact configurations, in:
IEEE/RSJ International Conference on Intelligent Robots and Systems, San
Francisco, CA, 2011.
Adrien Escande received his M.S. degree in 2005 from
Ecole desMines de Paris, Paris, France and his Ph.D. in 2008
in robotics from Université d’Evry Val-d’Essonne, Evry,
France after spending three years in the CNRS/AIST Joint
Japanese–French Robotics Laboratory (JRL) in Tsukuba,
Japan. Since then, he has been working as a research
scientist in the Interactive Simulation Laboratory of CEA-
LIST at Fontenay-aux-Roses, France. His current research
interests include whole-body planning and control for
humanoid robots aswell asmathematical optimization for
robotics.

Abderrahmane Kheddar received his ingénieur degree
from the Institut National d’Informatique (INI), Algiers,
and his DEA and Ph.D. in robotics, both from the
University of Paris 6, France. He is presently Directeur
de Recherche at CNRS and the Director of the CNRS-AIST
Joint Robotic Laboratory, UMI3218/CRT, Tsukuba, Japan.
He is also leading a new team called ‘‘Interactive Digital
Humans’’ (IDH) that he created at CNRS-UM2 LIRMM at
Montpellier, France. Prior to that, he was successively
an assistant professor (1998–2002) and a tenured full
professor (2003–2008) at the University of Évry. His

research interests include haptics and humanoids.

Sylvain Miossec is presently an assistant professor at
the university of Bourges, France. Prior to that he was a
research associate at the Centre National de la Recherche
Scientifique (CNRS) working at the AIST/CNRS Joint
Japanese–French Robotics Laboratory (JRL). He obtained
his Masters and Ph.D. from Ecole Centrale de Nantes,
France respectively in 2001 and 2004. He then obtained
a JSPS fellowship for a two years post-doctorate at the JRL
AIST/CNRS, until 2006. His research interests include biped
robots, humanoid robots, optimal motion, walking control
and stability, multi-body simulation.

	Planning contact points for humanoid robots
	Introduction
	Problem overview
	Contact submanifolds
	Movement limitations
	The complexity of contact planning

	Best first planning
	Algorithm
	Features

	Contact planner: specificities and concepts
	Contacts and planning space
	Feasible sequence of contacts sets

	Contact planner: implementation
	Contacts BFP
	Sons generation
	Ordering S
	Generating contacts candidates
	Potential field

	Posture generation
	Feasibility problem
	Positioning constraints
	Collision constraints
	Stability constraints
	Adding a criterion
	Implementation details

	Improving planning
	Advanced contact generation
	Guide path and potential field
	Very best first contact planning

	Results
	Ladder scenario
	Tunnel scenario
	Table scenario

	Conclusion
	References

