Information Fusion in Navigation Systems via Factor
Graph Based Incremental Smoothing

Vadim Indelman®, Stephen Williams®, Michael Kaess®, Frank Dellaert®

@ College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
bComputer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139,
USA

Abstract

This paper presents a new approach for high-rate information fusion in modern
inertial navigation systems, that have a variety of sensors operating at dif-
ferent frequencies. Optimal information fusion corresponds to calculating the
maximum a posteriori estimate over the joint probability distribution function
(pdf) of all states, a computationally-expensive process in the general case.
Our approach consists of two key components, which yields a flexible, high-rate,
near-optimal inertial navigation system. First, the joint pdf is represented us-
ing a graphical model, the factor graph, that fully exploits the system sparsity
and provides a plug and play capability that easily accommodates the addition
and removal of measurement sources. Second, an efficient incremental infer-
ence algorithm over the factor graph is applied, whose performance approaches
the solution that would be obtained by a computationally-expensive batch op-
timization at a fraction of the computational cost. To further aid high-rate
performance, we introduce an equivalent IMU factor based on a recently de-
veloped technique for IMU pre-integration, drastically reducing the number of
states that must be added to the system. The proposed approach is experimen-
tally validated using real IMU and imagery data that was recorded by a ground
vehicle, and a statistical performance study is conducted in a simulated aerial
scenario. A comparison to conventional fixed-lag smoothing demonstrates that
our method provides a considerably improved trade-off between computational
complexity and performance.

Keywords: inertial navigation, multi-sensor fusion, graphical models,
incremental inference, plug and play architecture

1. Introduction

In the past two decades, autonomous mobile robotic systems have been used
in a variety of research, consumer, and military applications. Accurate and reli-

Email addresses: indelman@cc.gatech.edu (Vadim Indelman), swilliams8@gatech.edu
(Stephen Williams), kaess@mit.edu (Michael Kaess), frank@cc.gatech.edu (Frank Dellaert)

Preprint submitted to Elsevier January 5, 2013

able navigation is a key requirement in such systems and has been at the focus
of many recent research efforts. While in early inertial navigation systems, the
inertial measurement unit (IMU) was the prime sensor, modern systems have ad-
ditional sensing capabilities, such as global positioning system (GPS) receivers,
monocular and stereo camera systems, and range sensors. These sensors typi-
cally operate at different frequencies and are often asynchronous. Calculating a
navigation solution thus becomes a matter of information fusion. What makes
the problem even more challenging is the requirement to produce an estimate
in real time.

The information fusion problem can be formulated as calculating the max-
imum a posteriori (MAP) estimate of the posterior probability of the system
states over time, given all available measurements. The optimal solution in-
volves performing a batch optimization each time a new measurement is re-
ceived. This approach, also known as bundle adjustment (BA), is commonly
used in the robotics community for solving the full simultaneous localization
and mapping (SLAM) problem [21, 30, 4, 8, 6]. Recently, batch optimization
has been applied for information fusion in inertial navigation systems [24, 25, 2].
However, since a batch optimization involves recalculating all the variables each
time it is executed, high-rate performance quickly becomes infeasible. Thus, the
systems described in [24, 25, 2] only perform batch optimizations periodically
or entirely offline.

To obtain high-rate performance, standard methods use variants of the
extended Kalman filter (EKF). The EKF obtains real-time performance by
marginalizing out all past states and estimating only the current state. This
approach has been used in a variety of applications, such as estimating the pose
and the velocity of a spacecraft based on previously mapped landmarks [31],
and INS in-flight-alignment [19]. While the Kalman filter provides an optimal
solution in the linear case [7], most sensor models include non-linearities. The
EKF, and even variants such as the iterated EKF that support re-linearization,
are unable to perform a proper re-linearization since past states are no longer
part of the filter.

The augmented-state EKF and fixed-lag smoothers partially overcome this
problem by maintaining some of the past states within the filter. For example,
an augmented-state EKF is used in [24] to incorporate information provided
by multiple observations of visual features into a navigation solution, with the
filter state consisting of the current navigation state and past poses. In [29], the
augmented-state EKF' is applied to fuse visual odometry with inertial naviga-
tion, while [28] uses a fixed-lag smoother for structure reconstruction based on
stereo images that are acquired by an autonomous platform.

However, increasing the state size has a major impact on computational
complexity. Current state-of-the-art techniques require updating all the vari-
ables in the sliding window each time any measurement arrives. In practice,
this is not always required, since some of the state variables remain unchanged
in certain conditions.

Apart from the computational complexity aspect, information fusion using
fixed-lag smoothers is still sub-optimal, approaching the MAP estimate only

for sufficiently large lags. Further, as described in [12], filters and fixed-lag
smoothers may become probabilistically inconsistent when the marginalized
variables were linearized around an operating point that is different in the cur-
rent system. This is also the case with the commonly used navigation-aiding
framework [7], where IMU measurements are processed in real time into a nav-
igation solution outside of the estimator using the most recent estimates of the
navigation solution.

In this paper we present a new approach for information fusion in inertial
navigation systems that addresses the deficiencies of the standard solutions. We
represent the information fusion problem using a graphical model known as a
factor graph [20]. Factor graphs encode the connectivity between the unknown
variable nodes and the received measurements. Incorporating measurements
from different, possibly asynchronous, sensors becomes a matter of connecting
factors defined by these measurements to the appropriate nodes in the factor
graph. Using factor graphs allows a plug and play capability, as new sensors are
simply additional sources of factors that get added to the graph. Likewise, if a
sensor becomes unavailable due to signal loss or sensor fault, the system simply
refrains from adding the associated factors; no special procedure or coordination
is required.

Calculating the MAP estimate is equivalent to performing inference over the
factor graph. Calculating the full navigation solution over all states can be per-
formed efficiently using a recently-developed incremental smoothing technique
[16]. While this seems computationally expensive, the incremental smoothing
approach exploits the system sparsity and graph topology, optimizing only a
small portion of the nodes during each update. This is in contrast to batch
optimization approaches, as well as standard fixed-lag smoothers, which always
recalculate all of the state variables. Thus, the incremental smoothing approach
is suitable for high frequency applications.

To further aid high-rate operation while still allowing re-linearization of the
appropriate IMU measurements, we adopt a recently-developed technique of
IMU pre-integration [22] and introduce the equivalent IMU factor that repre-
sents several consecutive IMU measurements. Thus, instead of adding variable
and factor nodes to the factor graph at IMU rate, they are added at a much
slower frequency that is determined by other available sensors. In contrast to
navigation-aiding techniques, which also employs an IMU integrator, the IMU
measurements are part of the underlying non-linear optimization in the proposed
approach.

The remaining part of this paper is organized as follows. The information
fusion problem is formally defined in Section 2. Section 3 then introduces the
factor graph representation, while Section 4 presents factor formulations for
some of the common sensors in inertial navigation systems. In particular, this
section introduces the equivalent IMU factor. Information fusion via incremental
smoothing is discussed in Section 5, followed by an outline of an architecture
for real time performance in Section 6. Simulation and experiment results are
provided in Section 7, and concluding remarks are suggested in Section 8.

2. Problem Formulation

We assume a robot is equipped with a set of multi-rate sensors, with IMU
sensors typically producing measurements at high rate and sensors such as
monocular or stereo cameras generating measurements at lower rates. Some
sensors may become inactive from time to time (e.g. GPS), while others may
be active only for short periods of time (e.g. signal of opportunity). Our goal
is to calculate the best possible navigation solution by fusing all the available
information sources.

More formally, let = denote the navigation state, comprising position, veloc-
ity and orientation of the robot, and denote by ¢ any calibration parameters.
In this paper we assume these represent the IMU calibration parameters (e.g.
accelerometer and gyroscope biases), however any additional calibration pa-
rameters, such as camera calibration, can be included as well. Letting z; and c;
represent, respectively, the navigation state and the calibration parameters at
time instant ¢;, we define the sets of all navigation states, X}, and all calibration
states, C), up to the current time, t;, as

Xp={e}l, |, Cr={a},. (1)

In practice, due to the typical slow dynamics of the calibration variables, these
variables may be introduced at a much lower frequency. In such case, Cx may be
defined as Cy = {ci . }Zil, where ny < k is the number of calibration variables
in Cy, and i¢ € [1,k].

In situations where observed landmarks are explicitly represented and esti-
mated as part of the system state (e.g. using camera or range sensors), the jth
observed landmark is denoted by /;, and the set of all landmarks observed up
to time ¢y is denoted by Lj. Also, we denote by Vj the set of all variables up
to time ¢

Vi = { Xk, Ck, Ly} . (2)

Using these definitions, the joint probability distribution function (pdf) is
given by

where Zj represents all the measurements received up to the current time t.
Denoting the set of measurements obtained at time ¢; by Z;, Zj is defined as:

. k
Zy = {Zi}izl : (4)
The maximum a posteriori (MAP) estimate is given by

Vy, = arg max p Vil Zk) , (5)

and, in the context of navigation, we are mainly interested in the optimal current
navigation solution z7.

3. Factor Graph Formulation in Inertial Navigation Systems

The joint pdf (3) can always be factorized in terms of a priori informa-
tion and individual process and measurement models. Let p (V) represent all
available prior information. Such a factorization can be written as':

k
p(Vk|Zk):p(V0)H p(wilwi, i1, 207 p(eilein) H p(Zj\V;]> ;

i=1 2;€Z\2IMU

where we used V? C V; to represent the variables involved in the general mea-
surement model?® p (ZJ|V3) . For example, if z; represents an observation of

the landmark [acquired at vehicle state x;, then V{ would be {z;,1}, while in
case of a GPS measurement VZ is simply {x;}. The notation z/MV is used to
distinguish IMU measurements, that are described by a motion model, from
other measurements.

The above factorization can be represented in a graphical model known as
a factor graph [20]. A factor graph is a bipartite graph Gy = (F, Vi,) with
two types of nodes: factor nodes f; € Fj and variable nodes v; € Vj,. Edges
e;jj € & can exist only between factor nodes and variable nodes, and are present
if and only if the factor f; involves a variable v;.

Each factor represents an individual term in the factorization (6) of p (X, Ck, Li| Zk),
and therefore one can write

p (Vi) Hfi Vi), (7)

where, as earlier, Vi represents a subset of variable nodes (V}, C V).

Each factor f; represents an error function that should be minimized. The
explicit expression of such a function depends on the specific term in the fac-
torization (6) that is represented by the factor f;. Denoting this error function
by err (V,i, zi), the factor f; is defined as

Vi) =d (erri (V,i, zz)) , (8)

where the operator d(.) denotes a certain cost function.
For Gaussian noise distributions, the general factor f; (8) assumes the fol-
lowing form:

) = ex (=g llerr (201,) ®

1 Using the definition (1) of Cy,. _
2Note that causality is enforced by the definition of VZ, so that the measurement model

p (zj \VZ) for a measurement z; € Z; involves variables only up to time ¢;.

which defines the cost function d (.), and calculating the MAP estimate (5) be-
comes equivalent to minimizing the following non-linear least-squares function:

> llerr: Vi), - (10)

Here ||a\|§ = aT¥71a is the squared Mahalanobis distance and X is the covari-
ance matrix.
Specifically, a factor that represents a measurement model is defined as

7 =exp (=5 00 - =13,). (1)

where h; (.) is the non-linear measurement function that predicts the sensor
measurement given the variables V},, and z; is the actual measurement. A factor
that accommodates an implicit measurement function h; is defined as

) : (12)

where V;! and V;* are two different subsets of Vj and V;' UV;? = Vi. Finally, a
factor that represents a motion model, that predicts the values of variables V;?
based on the values of variables V,, is defined as

, 1 . ,
fi(Vg) = exp <—2 hi(Vit, i) — Vi

1 R) = e (—3 vt - e,). (13)

Calculating the MAP estimate (5) is equivalent to performing inference over the
factor graph. While, in general, this can be an expensive operation, we show in
Section 5 that using incremental smoothing, a recently developed approach [16]
in the SLAM community, the involved computational complexity is small and
high-rate performance is possible in typical navigation applications.

Before discussing the inference engine, we first present factor formulations
of some of the common sensors in modern navigation systems. In particular, we
introduce the equivalent IMU factor that accommodates chunks of consecutive
IMU measurements to alleviate the necessity of adding navigation states into the
optimization at IMU rate. This is essential to maintain high-rate performance.

4. Factor Formulations for Common Sensors

This section presents factor formulations for different measurement models,
covering some of the common sensors in typical navigation applications. The
considered sensors are IMU, GPS, and monocular and stereo cameras.

4.1. Prior Factor

The available prior information, p (Vy), can be factorized further into indi-
vidual priors on the appropriate variables, each of which can be represented by
a separate prior factor. A prior factor for some variable v € V) is a unary factor
defined as ,

Frrer (v) = d(v). (14)

For a Gaussian distribution, the prior information is given in terms of a mean i,
and a covariance X, in which case the prior factor becomes exp (—% lv — g ||22v) i

In the general case, prior information may also relate between different variables
in Vo.

4.2. IMU Factor

The time evolution of the navigation state z can be conceptually described
by the following continuous non-linear differential equations (cf. Appendix A):

:t:hc (x»cvfbvwb)a (15)

where f® and w? are the specific force and the angular acceleration, respectively,
measured by the inertial sensors in the body frame3. The IMU calibration
parameters represented by ¢ (cf. Section 2) are used for correcting the IMU
measurement f°,w® according to the assumed IMU error model. This model
of IMU errors is usually estimated in conjunction with the estimation of the
navigation state. Linearization of (15) will produce the well known state space
representation with the appropriate Jacobian matrices and a process noise [7],
which is assumed to be zero-mean Gaussian noise.

In the general case, the time propagation of ¢ can be described according to

some non-linear model of its own (e.g. random walk):
¢=gc(c). (16)

Throughout this paper, the term bias vector (or bias node) is often used when
referring to the IMU calibration parameters ¢, although in practice this variable
can represent any model of IMU errors.

A given IMU measurement z,ﬁM v = { fb,wb} relates between the naviga-
tion states at two consecutive time instances ¢ and ;1. Different numerical
schemes, ranging from a simple Euler integration to high-order Runge-Kutta
integration, can be applied for solving these equations. However, the factor
graph framework allows the adoption of a simple Euler integration prediction
function with an associated integration uncertainty. The underlying non-linear
optimization will adjust individual state estimates appropriately. The discrete
representation of the continuous formulation (15)-(16) is

Tpy1 = h (g, ek, 21MY)

crr1 = g (cx)- (a7)

3For simplicity it is assumed that the IMU and the body frames coincide.

If desired, more sophisticated schemes can be used as well.

Conceptually, each of the equations in (17) defines a factor connecting related
nodes in the factor graph: an IMU factor f/™V connecting the navigation nodes
Tk, 741 and the bias node ¢y, and a bias factor f** connecting the bias nodes
¢ and cg41. In practice, consecutive IMU measurements will be combined into
a single factor, as explained in the next subsection. However, it is still useful to
write down explicit expressions for the conventional IMU factor f/MU.

A conventional IMU factor f/MU for a given IMU measurement zi MV is
defined as follows. The IMU measurement z,ﬁM U and the current estimate of
Tk, cr are used to predict the values for xy, 1. The difference between this
prediction and the current estimate of x; is the error function represented by

the factor:

szU (1, Thy k) = d (1 — b (Tg, cky 28)) (18)

When adding the new variable node x4 to the graph, a reasonable initial value
for xj41 is required. This value can be taken, for example, from the prediction
h (&g, ¢k, z) where Iy, ¢ are the most recent estimates of zy, cx.

In a similar manner, the bias factor associated with the calculated model of
IMU errors is given by

£ (ergrs er) = d (cer — g (cr)) (19)

with ¢x41 and ¢ represented in the factor graph as variable nodes. Note that
due to the typically slow dynamics of the IMU calibration parameters c;, the
factor ¢ and the actual calibration nodes can be added to the factor graph
at a significantly lower frequency than IMU rate [14].

Figure la illustrates a factor graph in a basic scenario of processing three
consecutive IMU measurements. The shown factor graph contains prior, IMU
and bias factors.

In practice, introducing new variables to the optimization at IMU frequency
is not a good idea. As discussed in Section 5, high-rate performance will become
infeasible in the presence of measurements of additional sensors, since the non-
linear optimization will need to repeatedly re-linearize many variables.

Instead, consecutive IMU measurements can be combined into an equiva-
lent IMU factor, relating between two distant navigation and calibration nodes,
thereby avoiding introducing new variables into the optimization at IMU rate.

4.3. Equivalent IMU Factor

In this section we adopt a recently-developed technique [22] for IMU mea-
surements pre-integration and introduce the equivalent IMU factor.

The idea is to integrate consecutive IMU measurements between two time
instances ¢; and ¢; into a single component, denoted by Az;_,;, comprising the
accumulated change in position, velocity and orientation. Thus, Az;_,; relates
between the navigation states at the two time instances, x; and z;, and the
calibration parameters c¢; that are used for correcting the IMU measurements.
Following [22], we refer to Ax;_,; as the pre-integrated delta and summarize the
equations for its calculation in Appendix B.

/~1’/ ior /'Pr:m

f bias

(a) (b)

Figure 1: (a) Factor graph representation in a basic scenario of three IMU
measurements. Navigation and IMU calibration nodes x; and ¢; are added to
the factor graph at IMU rate. Given ¢t; and IMU frequency 1/At, node indices
correspond to the time instances ¢1,t; + At, t1 + 2At and t; + 3At. (b) Factor
graph representation using an equivalent IMU factor, which accommodates all
the consecutive IMU measurements between t; and some ty. Navigation and
calibration nodes are introduced only when a new factor f#7%¥ is added, at
a much lower rate than IMU rate. Different notations are used in (a) and
(b) to distinguish between the IMU-rate nodes and the nodes added using an
equivalent IMU factor (x;,c; and z;, ¢;).

A high-rate navigation solution, x;, can be calculated based on Az;_,; and
the current estimates of x; and ¢;. Additionally, at chosen time instances,
the pre-integrated delta, Awz;_,;, can be used within an equivalent IMU factor
fFauv capturing the error between the predicted and actual navigation state
at tjl

f-Equiv (Qij, Zi, Ci) =d (.%‘j — pFauiv (LUZ‘, Ci, Al‘lﬁj)) R (20)

where hP?%" represents the non-linear function that predicts x; given x;, ¢; and
Az;_,;. An explicit expression for hF9%¥ is detailed in Appendix B.

The factor fF9%" represents all the IMU measurements between ¢; and t;,
yet incorporating it into the factor graph involves adding only the variable ;.
This is in contrast to adding variables at IMU rate in the case of a conventional
IMU factor.

Figure 1b illustrates a factor graph with a single equivalent IMU factor and a
bias factor for some two time instances t; =t and t; = to. When to = t; +3At
with 1/At denoting the IMU frequency, the two factor graphs in Figures la-1b
accommodate the same number of IMU measurements.

Since the non-linear cost function (5) is optimized by repeated linearization
(cf. Section 5), the computational cost of re-linearizing each factor is of prime
importance. A straightforward approach for calculating Axz;_,; involves inte-
grating the IMU measurements while expressing them in the navigation frame.
However, linearizing fF9*" in such approach requires recalculating Ax;_,; from
scratch whenever the rotation estimate changes. Clearly, this is an expensive
operation that should be avoided.

To resolve this issue, [22] proposed to express the different components in
Ax;_,; in the body frame of the first time instant (i.e. ¢;), instead of the nav-

igation frame. The predicting function A®7%% is adjusted accordingly so that
hEquiv (wi,¢i, Az, ;) predicts xj. Consequently, Az;_,; does not depend on
any particular values of z; and z;, and therefore the equivalent factor can be
re-linearized without recalculating Awx;_, ;.

Remark 1 As mentioned, calibration parameters do not change significantly
over time and therefore it makes sense to introduce calibration nodes only
when an equivalent IMU factor is added, or at some lower frequency. The
factor fF depends only on ¢; (and not c;) due to the simple Euler
integration scheme that was also applied in the case of a conventional
IMU factor (cf. Section 4.2).

Remark 2 At this point it is useful to state the approximations involved with
the equivalent IMU factor. These involve assuming that the gravity vector
and the rotational rate of the navigation frame with respect to an inertial
navigation system are constant between t; and ¢; (cf. Appendix B). In ad-
dition, in order to avoid re-calculating Ax;_,;, the effect of re-linearization
of calibration parameters ¢; on Axz;_,; is accounted by considering a first
order approximation. See [22] for further details.

4.4. GPS Measurements

The GPS measurement equation is given by

Z;?PS _ hGPS (mk) _|_nGPS’ (21)
where n¢P5 is the measurement noise and h¢*? is the measurement function,
relating between the measurement Z]?P S to the robot’s position. In the presence
of lever-arm, rotation will be part of the measurement equation as well [7]. The
above equation defines a unary factor

FETS (an) = d (2575 = hOT5 () (22)

which is only connected to the node zj that represents the navigation state
at time t;. The GPS factor f&FS can be added to the graph, in conjunction
with the equivalent IMU factor fF9% that uses the current pre-integrated delta
Az;_ (here i denotes the most recent navigation node in the graph).

Examples of factor graphs with GPS measurements and measurements from
other sensors, operating at different rates, are shown in Figures 2a-2c. Prior
factors on navigation and calibration nodes are shown as well. GPS pseudo-
range measurements can be accommodated in a similar manner.

4.5. Monocular and Stereo Vision Measurements

Incorporating vision sensors can be done on several levels, depending on the
actual measurement equations and the assumed setup.

10

fGI’S]cGI’S fG!’S

f]’um

Figure 2: (a) and (b): Factor graphs that involve GPS, equivalent IMU, bias and
prior factors. (c) Factor graph that also accommodates factors for monocular
or stereo camera observations. (d) Factor graph with equivalent IMU, visual
odometry, bias and prior factors. (e) An equivalent factor graph to (d) when
using conventional IMU factors, assuming visual odometry measurements are
obtained every 50 IMU measurements and bias nodes are added at the same
frequency as in (d). The factor graph (e) contains many more variable nodes
and thus optimization will be substantially slower than when using an equivalent
IMU factor (cf. Section 5.2). Different notations are used in (e) to distinguish
the IMU-rate nodes from the nodes added using an equivalent IMU factor (x;, c;
and x;, ¢;).

11

4.5.1. Monocular Camera

Assuming a monocular pinhole camera model [10] with a known calibration
matrix K, an image observation is predicted by the non-linear function 7 defined
as

m(z,)=K[R t]l, (23)
where [represents the coordinates of the observed landmark and x is the naviga-
tion state. Both the landmark coordinates and the predicted image observation
are given in homogeneous coordinates. If the landmark is expressed in the
global system, the rotation matrix R and the translation vector ¢ represent the
transformation between the camera and the global frame. Therefore, they can
be calculated from the current estimate of the navigation state x assuming the
transformation between the body and camera frame is known.

When observing known landmarks, Eq. (23) defines a unary factor on the
node z. The more challenging problem of observing unknown landmarks, also
known as full SLAM or BA, requires adding the unknown landmarks into the op-
timization by including them as variable nodes in the factor graph. A projection
factor is then defined as

fPTOj (IJ) id('zfﬂ(mal))v (24)

where z represents the actual image observation.

Alternatively, to avoid including the unknown landmarks into the optimiza-
tion, one can use multi-view constraints [10, 23], such as two-view [5] and three-
view constraints [13], instead of the projection equation (23).

4.5.2. Stereo Camera

A stereo camera rig is another commonly used setup. Assuming a known
baseline, one can incorporate the observed landmark [as a variable into the
optimization and add a factor that represents the projection of the observed
landmark onto the image plane of the two cameras. Such a factor is defined as

fStereo (l‘, l) =~ d (ZR R~ (l‘, l)) d (zL — L (z, l))) (25>

where the superscripts L and R represent the left and right cameras, respectively.

Alternatively, it is possible to first estimate the relative transformation, Ta,
between two different stereo frames at time instances t; and ¢; using all of the
landmark observations in those frames. Such a transformation can be used to
predict the robot pose at t; based on x;, with the corresponding visual-odometry
binary factor fVO (z;,z;) [14].

Figure 2c illustrates a factor graph in a basic multi-rate scenario. The factor
graph includes either projection (24) or stereo (25) factors, as well as GPS,
equivalent IMU, bias and prior factors.

5. Information Fusion via Incremental Smoothing

So far, the information fusion problem was formulated using a factor graph
representation and factors for some common sensors were defined. This sec-
tion discusses incremental smoothing, an inference algorithm over factor graphs

12

that produces nearly optimal MAP estimates of (3), with low computational
complexity.

We start with describing a conventional batch optimization and then proceed
to incremental smoothing. In Section 5.3 we also analyze the relation to fixed-lag
smoothing, EKF and the general navigation-aiding framework.

5.1. Batch Optimization

We solve the non-linear optimization problem encoded by the factor graph
by repeated linearization within a standard Gauss-Newton style non-linear op-
timizer. Starting from an initial estimate f/k of the set of all variables Vg,
Gauss-Newton finds an update A from the linearized system

argmAinHJ(f)k)A—b(vk)HQ, (26)

where J (Vk) is the sparse Jacobian matrix at the current linearization point Vy
and b(V;,) is the residual given all measurements thus far Zj, (cf. Section 2).
The Jacobian matrix is equivalent to a linearized version of the factor graph,
and its block structure reflects the structure of the factor graph. After solving
equation (26), the linearization point is updated to the new estimate Vi + A.

Solving for the update A requires factoring the Jacobian matrix into an
equivalent upper triangular form using techniques such as QR or Cholesky.
Within the factor graph framework, these same calculations are performed us-
ing variable elimination [11]. A variable ordering is selected and each node is
sequentially eliminated from the graph, forming a node in a chordal Bayes net
[27]. A Bayes net is a directed, acyclic graph that encodes the conditional densi-
ties of each variable. Chordal means that any undirected loop longer than three
nodes has a chord or a short cut.

The Bayes net is equivalent to the upper triangular matrix R that results
from the Jacobian matrix factorization (e.g. J = QR), and thus represents the
square root information matrix. Given a Bayes net, the update A is obtained
by back-substitution.

Each node in the Bayes net represents a conditional probability. When
a variable node v is eliminated from the factor graph, all the factors f; (VZ)
involving that node (i.e. v € V*) are identified and re-factorized as

Hfi (V') =p(v]S) f(9), (27)

where S denotes the set of variables involved in the factors f; (Vi), excluding
v: S ={vj|Fi: v; € V', v; #v}. The conditional p (v|S) is then added to the
Bayes net, while the new factor f(S) is added to the factor graph. The Bayes
net graphical model expresses the conditioning relations between the different
variable nodes with directed edges (see illustration in Figures 3a-3b and an
example below). Further details can be found in [15].

While the elimination order is arbitrary and any order will form an equiv-
alent Bayes net, the selection of the elimination order does affect the structure

13

of the Bayes net and the corresponding amount of computation. A good elim-
ination order will make use of the natural sparsity of the system to produce a
small number of edges, while a bad order can yield a fully connected Bayes net.
Heuristics do exist, such as approximate minimum degree [3], that approach the
optimal ordering for generic problems.

Example As a basic example, consider the factor graph given in Figure
2a, which was already discussed in Section 4.5. The corresponding Jacobian
matrix J and the upper triangular matrix R, obtained from a QR factorization
J = @R, are of the following form:

Tryp €1 T2 C2

XX X X X
J = , R= X X X (28)
X X X
X X
X X

Non-zero entries are denoted by x. Each row in J represents a single linearized
factor. For example, the third row represents the linearized equivalent IMU
factor and therefore it involves the variables: x1,c¢; and x5. The matrix R
represents the square root information matrix.

Sequential elimination of the variables from the factor graph, assuming the
variable elimination ordering x1, ¢1, 2, c2, leads to the Bayes net shown in Fig-
ure 3a. The Bayes net represents the matrix R: each node represents a condi-
tional probability, as detailed in the figure, and the overall graphical structure
encodes a factorization of the joint pdf p (x1,x2,c1, c2):

p(z1,22,¢1,¢2) = p(c2) p(z2|ca) p(c1|xa, c2) p(x1]c1, x2) . (29)

The arrows in Figure 3a express the above factorization. For example, the
conditional p (ci|xa,co) is represented by the two arrows: from zs to ¢; and
from c¢g to c¢;.

5.2. Incremental Smoothing

In the context of the navigation smoothing problem, each new sensor mea-
surement will generate a new factor in the graph. This is equivalent to adding a
new row (or block-row in the case of multi-dimensional states) to the measure-
ment Jacobian of the linearized least-squares problem.

The key insight is that optimization can proceed incrementally because most
of the calculations are the same as in the previous step and can be reused. When
using the algorithm of Section 5.1 to recalculate the Bayes net, one can observe
that only part of the Bayes net is modified by the new factor.

Therefore, instead of recalculating the Bayes net from scratch, we focus
computation on the affected part of the Bayes net. Informally, once the affected
part of the Bayes net has been identified, it is converted back into a factor

14

p(ziler,z2) plazle) p(ziler, @2) plaa|ca,m3) plas|es)
ol o
p(ciza, c2) p(c2) pleilrz,e2) plealzs,cz) p(es)

(a) (b)

Figure 3: (a) Bayes net that corresponds to eliminating the factor graph shown
in Figure 2a using elimination order x1,cy,z2,c2. (b) Adding new GPS and
accumulated IMU measurements results in a factor graph that is shown in Figure
2b, with new nodes z3 and c3. Incremental smoothing allows processing only
part of the Bayes net, indicated in red color, instead of re-calculating it from
scratch.

graph, the new factor is added, and the resulting (small) factor graph is re-
eliminated. The eliminated Bayes net is then merged with the unchanged parts
of the original Bayes net, creating the same result as a batch solution would
obtain. A formal exposition is given in the incremental smoothing algorithm
iSAM2 [16] that we apply here.

The affected part of the Bayes net, that we denote by a BN, can be identified
following Algorithm 1 (see also example below). In practice, the incremental
smoothing algorithm identifies a BN more efficiently (the reader is referred to
[16] for further details).

Algorithm 1 Identification of affected parts in the Bayes net

1: Input: Bayes net, new factors

2: Initialization: aBN = ¢

3: Locate all the variable nodes that are involved in the new factors

4: for each such node v do

5. Add v to aBN

6: Locate all paths in the Bayes net that lead from the last eliminated node
to the node v

7. for each such path do

8: if a node v’ is on the path and v" ¢ a BN then
9: Add v’ to aBN

10: end if

11: end for

12: end for

To deal with non-linear problems efficiently, iSAM2 combines the incremen-
tal updates with selective re-linearization by monitoring the validity of the lin-
earization point of each variable. A variable is marked for re-linearization if

15

its A from the previous factorization is above a specified threshold. Different
thresholds are used for each variable type.

As long as only sequential IMU measurements are processed, regardless of
whether the conventional or equivalent IMU factors are used, the resulting factor
graph and the Bayes net will have a chain-like structure (cf. Figure 1). Only a
small part of the Bayes net is modified each time a new IMU factor is added. For
the examples given in Figure 1, the Bayes net can be updated, i.e. re-factoring
the Jacobian into a square root information matrix, by modifying only 4 of its
nodes, regardless of the actual size of the graph [14].

The effectiveness of the equivalent IMU factor over the conventional IMU
treatment becomes apparent when additional sensors are available. The affected
part of the Bayes net that must be recomputed is far larger when using a con-
ventional IMU factor, since the navigation (and calibration) variables are added
at IMU frequency. In contrast, the equivalent IMU factor only requires new
variables to be added to the optimization (i.e. adding new variable nodes into
the factor graph) when a measurement from an additional sensor is received.
As a result, fewer variables in the Bayes net must be recalculated, leading to a
significant improvement in computational complexity.

Figures 2d and 2e show an example of factor graphs when using visual odom-
etry factors f¥© and either conventional or equivalent IMU factors. Assuming
visual odometry measurements are obtained every 50 IMU measurements, the
two factor graphs represent the same amount of information. However, updating
the Bayes net with a new visual odometry factor involves modifying approxi-
mately 50 nodes when using a conventional IMU factor and only 4 nodes in the
case of the equivalent IMU factor.

Example To illustrate that only part of the Bayes net, and equivalently
the square root information matrix, changes when new measurements are incor-
porated, we continue the example from the previous section and assume that a
new GPS measurement is received at time t3. To incorporate this measurement
into the factor graph (i.e. into the optimization), new navigation and IMU cal-
ibration nodes x3 and c3 are introduced, as well as GPS, bias and equivalent
IMU factors. The equivalent IMU factor, in this case, accommodates all the
IMU measurements between the time of the previous GPS measurement, ts,
and t3. The new factor graph is shown in Figure 2b, with the new added factors
JEY (25,29, ¢2), f7% (c2,¢3) and fOPS ().

The updated Jacobian J’, evaluated about the same linearization point as
in the previous case, and its factorization into an upper triangular matrix R’

16

are

r1 €1 T2 Co T3 C3

i X i Tr1 €1 X2 C2 I3 C3
X X X X
X X X X X X
J = X X , R = X X X ,

X X X X

X X X X X

X X X

X

where the new or modified non-zero entries are marked in bold and an underline.
As seen, the Jacobian has three new rows that correspond to the new factors,
and two new variables x3 and c3. Referring to the matrix R’, the first two
block-rows remain unchanged, and therefore there is no need to recalculate these
entries. The corresponding Bayes net is given in Figure 3b, with the modified
conditionals denoted in red.

Identifying the affected part in the Bayes net from the previous step (Figure
3a), can be done as explained in Section 5.2: The new factors involve existing
variable nodes x5 and c;. The node ¢y is also the last-eliminated node. The
paths from the last-eliminated node to the nodes x5 and co include only the
two nodes x2,co. Therefore, the affected parts in the previous Bayes net are
only the conditionals p (¢z) and p(z2|cz), represented by the nodes zo and co.
Calculating the new Bayes net will involve modifying these conditionals and
adding new conditionals for the new variable nodes x3 and c3. The conditionals
p(x1]e1, 22) and p (¢1]xa, ¢2) remain unchanged.

5.83. Relation to Fized-Lag Smoother, EKF and Navigation-Aiding

In this section, we discuss the conceptual differences of incremental smooth-
ing with fixed-lag smoothing, EKF and the navigation aiding framework. The
following two aspects are analyzed: computational complexity and accuracy.

5.8.1. Fized-Lag Smoother

To maintain a constant and affordable computational cost, fixed-lag smoother
approaches marginalize out variables outside of the smoothing lag. All the vari-
ables within the smoothing lag are re-calculated each time a new measurement
is obtained, which corresponds to performing a batch optimization over the vari-
ables within the smoothing lag. At each iteration, the Jacobian of the linearized
fixed-lag system is re-factorized from scratch into an upper triangular matrix.
The latter is then used for calculating the A by back-substitution, followed by
updating the linearization point (cf. Section 5.1).

In contrast, incremental smoothing re-uses calculations by incrementally up-
dating the appropriate part of the Bayes net, representing the square root in-
formation matrix of the entire system (i.e. factorization of the Jacobian matrix
without marginalizing any variables). Thus, each time a new measurement

17

(factor) is received, incremental smoothing exploits sparsity and identifies what
specific variables should be re-calculated, rather than recalculating all variables
within some sliding window.

In terms of performance, fixed-lag smoother based approaches are expected
to produce inferior results to incremental smoothing when the smoothing lag
is not large enough to accommodate all the variables that are updated by an
incoming measurement.

Marginalizing out a variable involves discarding any measurements (factors)
that involve that variable (node) and representing them as a single Gaussian
evaluated at the time of marginalization. This Gaussian is a linear factor that
cannot be re-linearized as we no longer have access to the marginalized vari-
able. Since the linear factor cannot be re-linearized, the result of the non-linear
optimization will be sub-optimal and, without proper treatment of the linear
components, may become inconsistent [12].

Incremental smoothing, on the other hand, uses the non-linear factor graph,
which captures all the available information to perform inference. Actual per-
formance depends on the specific values for linearization thresholds, which act
as tuning parameters. Our observation is that setting these thresholds to rea-
sonable values for each variable type produces results that approach the optimal
MAP estimation produced by a batch optimization, as demonstrated in Section
7.

5.3.2. EKF

The relation of incremental smoothing to different variations of the well-
known EKF can be inferred from the tight connection of the latter to a fixed-
lag smoother. In particular, a fixed-lag smoother is equivalent to an iterated
augmented-state EKF when the state vector includes all the variables within
the smoothing lag and both the prediction and update steps are iterated. The
more basic version, the augmented-state EKF without iterations, is expected to
produce inferior results since it only involves a single linearization. Finally, a
simple EKF marginalizes out all past variables, which corresponds to a fixed-lag
smoother with zero lag.

5.8.3. Relation to Navigation-Aiding Techniques

Navigation-aiding techniques often separate the navigation information fu-
sion problem into two processes: i) A high-rate process in which incoming IMU
measurements are integrated into the navigation solution using the previous
estimate of the navigation solution, and ii) A lower-rate process in which an
error-state filter is used for calculating corrections to the navigation solution
based on measurements from additional sensors. While such an architecture
produces a navigation solution in real time and is capable of incorporating dif-
ferent asynchronous sensors, the information fusion process (and therefore the
navigation solution) is sub-optimal, regardless to the actual estimator being
used: Since IMU measurements are incorporated outside of the estimator, the
non-linear factors that represent these measurements cannot be re-linearized
during the estimation process. As a consequence, the optimization will fail

18

in achieving MAP estimates. This observation is particularly important when
using low-quality IMU sensors.

6. Architecture for Real Time Performance

Although the computational complexity of incremental smoothing is signif-
icantly lower than that of a batch optimization, the actual processing time of
incorporating a new measurement depends on the size of the Bayes net that
needs to be recalculated (cf. Section 5.2). However, in practice, a navigation
solution is required in real time. This is already possible when processing only
IMU measurements: these are accumulated in the IMU pre-integrated compo-
nent Ax;_,;, which can be used to generate a navigation solution in real time
via the predicting function h#7“% (#;, é;, Az;_,;). Yet, when measurements from
additional sensors are obtained, processing time, while still being small, does
not guarantee real time performance. For example, in the scenarios consid-
ered in the results section, processing time typically fluctuates between 5 — 45
mili-seconds, with a few instances around 200 mili-seconds (cf. Figure 5).

Real time performance is possible, however, by parallelization. A high-
priority process is used to pre-integrate each incoming IMU measurement at
time t; into Az;_,;. Based on the most recent estimates Z;,¢; of x;,c;, a nav-
igation solution is calculated in real time using h®9" (2, é&;, Azx;_;). When a
non-IMU measurement becomes available at some time instant ¢;, incremental
smoothing can be performed in a lower-priority process. This involves gen-
erating a factor representing the appropriate measurement model, as well as
creating equivalent IMU and bias factors. These factors, and the new naviga-
tion and calibration nodes z;, c;, are added to the factor graph. The estimates
of these variables (i.e. &;,¢;) are initialized by appropriate predicting functions.
In particular, z; is predicted by R4 (2;,¢;, Ax;,;), yielding #;. Incremen-
tal smoothing is engaged and ¢; is marked as the new starting pre-integration
time, followed by an initialization of the IMU pre-integration component Ax;_,;
(cf. Appendix B). Navigation solution continues being calculated in real time
based on £; and Ax;_,j, with index £ denoting current time. Once incremental
smoothing is complete, the updated estimates of x; and c¢; replace £; and ¢;,
without the need to modify Az;_.

This architecture is summarized in Algorithm 2. Note that the algorithm
also supports cases in which new non-IMU measurements are obtained before
incremental smoothing has finished its operation.

7. Results

In this section the presented method is evaluated both in a statistical study,
using a simulated environment, and in an experiment. An aerial scenario is
considered in the former, while the experiment data was collected by a ground
vehicle. The method is compared, in terms of estimation accuracy and com-
putational complexity, to a batch estimator and to a fixed-lag smoother with

19

Algorithm 2 Architecture for real time performance

1: Initialization: New factors Fe,, = {}, New variables Vye,, = {}

2: Initialization: Set Z,,é; according to available priors p(zo) and p(co),
Initialize Az;_;

3: while measurement z do

4: if 2z is an IMU measurement then

5: Update Azx;_,; with z by running Algorithm 3

6: Produce a navigation solution as R4 (%, ¢;, Az, ;)

7. else

8: Calculate predictions Z;,¢; of z;,¢; based on Z;,¢; and Az,

9: Add zj, ¢ to Vypew

10: Create an appropriate factor f* for the measurement z

11: Create an equivalent IMU factor qu"i”(xi,ci,xj) and a bias factor
fbias(ci’ Cj)

12: Add the factors f#, fEauiv fbias to F

13: if incremental smoothing process is available then

14: Engage incremental smoothing algorithm (cf. Section 5.2) with the

new factor and variables nodes Fje, and Vyew

15: Set Frew = {}, and Vypew = {}

16: end if

17: Initialize Az;_,;

18: Set T; = .’fj and ¢; = éj

19: end if

20: if incremental smoothing is done then

21: Retrieve updated estimates Z, ¢ of most recent navigation and calibra-
tion nodes.

22: Set ; =% and ¢; = ¢

23: end if

24: end while

20

== Ground truth
= Inertial

Height [m]
- n n w
o o o o
S 3 S 3

o
=)

200

200 o
East [m] ~400 North [m]

Figure 4: Ground truth trajectory used in statistical study. Inertial navigation
solution for the first few seconds is shown as well. Beginning of trajectory is
denoted by a mark.

different lag sizes. All methods were implemented within the GTSAM?* opti-
mization library and were run on a single core of an Intel i7-2600 processor with
a 3.40GHz clock rate and 16GB of RAM memory.

7.1. Simulation Results

The proposed method was examined in a Monte-Carlo simulation of an aerial
vehicle. A ground truth trajectory was created, simulating a flight of an aerial
vehicle at a 20 m/s velocity and a constant height of 200 meter above mean
ground level. The trajectory consists of several segments of straight and level
flight and maneuvers, as shown in Figure 4.

Based on the ground truth trajectory, ideal IMU measurements were gen-
erated at 100 Hz, while taking into account Earth’s rotation and changes in
the gravity vector (cf. Appendix A). For each of the 100 Monte-Carlo ruus,
these measurements were corrupted with a constant bias and zero-mean Gaus-
sian noise in each axis. Bias terms were drawn from a zero-mean Gaussian
distribution with a standard deviation of ¢ = 10 mg for the accelerometers and
o = 10 deg/hr for the gyroscopes. The noise terms were drawn from a zero-
mean Gaussian distribution with ¢ = 100 ug/v/Hz and o = 0.001 deg/v/hr for
the accelerometers and gyroscopes. Initial navigation errors were drawn from
zero-mean Gaussian distributions with ¢ = (10, 10, 15) meters for position (ex-
pressed in a north-east-down system), o = (0.5,0.5,0.5) m/s for velocity and
o = (1,1,1) degrees for orientation.

4http://tinyurl.com/gtsam.

21

In addition to IMU, the aerial robot was assumed to be equipped with a
monocular camera and a 3-axes magnetometer, operating at 0.5Hz and 2Hz,
respectively. Ideal visual observations were calculated by projecting unknown
short-track landmarks, scattered on the ground with +50 meters elevation, onto
the camera. A zero-mean Gaussian noise, with ¢ = 0.5 pixels, was added to all
visual measurements. Landmarks were observed on average by 5 views, with the
shortest and longest landmark-track being 2 and 12, respectively. Loop closure
measurements (i.e. landmark re-observations) were not included. Magnetometer
measurements were created by contaminating the ground truth angles with a
o = 3 degrees noise in each axis.

Incoming IMU measurements were accumulated and incorporated into a fac-
tor graph using an equivalent IMU factor (20), each time a measurement from
the camera or the magnetometer arrived. Projection and magnetometer factors
were used to incorporate the latter into the optimization. The projection factor
is defined by Eq. (24), while the magnetometer factor is a simple unary factor
that involves only the orientation variable, and can be defined in a similar man-
ner as the GPS factor (22). No measurement delays were assumed. A random
walk process was used for the bias factor (19), with new IMU calibration nodes
added to the factor graph each time an equivalent IMU factor was added.

Figures 5-8 compare the performance and the computational cost of the
proposed method to a batch optimization and to a fixed-lag smoother with
2,5,10,30 and 50 second lag size. Landmarks are kept within the smoothing
lag as long as they are observed by at least one of the robot’s poses in the lag,
and are marginalized out when this is no longer the case.

Performance of each method is shown in Figure 6 in terms of the root mean
squared error (RMSE) for each component of navigation state: position, veloc-
ity, orientation, accelerometer and gyroscope biases. In addition, Figure 7 shows
the root mean squared difference between the different methods (incremental
smoothing and fixed-lag smoothers) and the MAP estimate that is obtained
by a batch optimization. Figure 8 provides further comparison between the
proposed approach and a batch optimization, including estimated covariances.

As seen, incremental smoothing yields very similar results, in all states, to
those obtained by a batch optimization (i.e. MAP estimate), while the computa-
tional cost is very small, typically within the 5—45 milli-seconds range (cf. zoom
in Figure 5b). Lower timing values (~ 5 ms) refer to the cost of incorporat-
ing magnetometer factors, while higher values (~ 45 ms) are related to adding
also camera observations into the optimization (equivalent IMU and bias factors
are added in both cases). The two spikes around ¢ = 26 and ¢t = 30 seconds
correspond to the first maneuver phase. During this phase, due to increased
observability, additional variables are estimated, including accelerometer bias
in x and y axes, as well as roll and pitch angles. The underlying optimization
(i.e. smoothing) involves re-linearization of many past variables, whose estima-
tion is improved as well, resulting in increased computational complexity. Note
that real time performance can be obtained following the architecture outlined
in Section 6.

Referring to fixed-lag smoothers one can observe the trade-off between lag

22

Batch

16 Incr. Smoothing
- - —lag20

~ — —Llag5.0

1470 — — —Lag10.0

Lag 30.0

- - —Lag50.0

°
o

Processing time [sec]
Processing time [sec]
o
&

o

o
°
S

o

Time. [sseoc] Time [sec]
(a) (b)

Figure 5: (a) Computational cost in a typical run. (b) Zoom in. For clarity,
the presented processing time of all methods, except of incremental smoothing,
has been smoothed. An original processing time of incremental smoothing is
presented.

size and the computational cost: increasing the smoothing lag size leads to im-
proved performance at the cost of higher processing time (cf. Section 5.3): on a
statistical level, the difference between the MAP estimate and the solution ob-
tained by a fixed lag smoother decreases when increasing the smoothing lag (cf.
7). As expected, the solution is identical to the MAP estimate as long as the lag
is not full, while afterwards the solution becomes sub-optimal. In particular, a
2-second lag produces considerably worse results than incremental smoothing,
while still being more computationally expensive. When using a 50-second lag,
performance is nearly identical to the MAP estimate obtained by a batch opti-
mization, as well to incremental smoothing, however the computational cost is
very high (cf. Figures 5, 6b and 7).

7.2. Ezxperiment Results

To test the proposed method on real-world data, we make use of the KITTI
Vision Benchmark Suite [9]. These datasets were captured from the autonomous
vehicle platform “Annieway” during traverses around the city of Karlsruhe, Ger-
many. This platform consists of a car chassis outfitted with a stereo camera and
a differential GPS/INS system. The differential GPS/INS data provides highly
accurate ground truth position and orientation data. Additionally, raw IMU
measurements are provided at 100 Hz, and raw camera images from the stereo
rig are available at 10Hz.

As in the simulated scenario, incoming IMU measurements were accumulated
using an equivalent IMU factor (20), and only incorporated into the factor graph
when a stereo image pair was processed. A random walk process was used for the
bias factor (19), with new IMU calibration nodes added to the factor graph each
time an equivalent IMU factor was added. To process the raw stereo images, a

23

40 T)
B
E sof- i il
= ¢
.
Sa0f]
10
0
20 T)
st I D
b= e B
S 10
) = Batch
50 50 == |ncr. Smoothing 150
40 - = =Lag5.0
-t
_ e - - -Llag10.0
Es0f [, Lag300 [T 7T 777
z » - - —Lag50.0
T 20 - i
s ———
10
5 100 150
Time [sec]
(a) Position
2 T)
7 -
E -
£ 1F a7 ombeiy! 1
s ey oam .
. s S|
o 50 100 150
1 0 T)
— ny
z u,
£ i
=05 ! '.I|'|‘H'q. 1
E N ! ‘s Pra L TP, -
ki CRu) ot s e e
[’ 0
o 50 100 150
_—]
gos i
= 1 1
EMMe -
2 o2r s Lse]
0 0 00
: 50 0 150
Time [sec]

(c) Velocity

> o

X Axis [mg]
o

Y Axis [mg]
B

2 Axis [mg]

50 100
Time [sec]

(e) Accelerometer bias

150

A 6 [deg] A ¢ [deg]

A [deg]

X Axis [deg/hr]
3

4 2 po
S oS &

Y Axis [deg/hr]

® ® o _a

Z Axis [deg/hr]

IS

Time [sec]

(b) Position - zoom

100
Time [sec]

(d) Orientation

_ra

" TN e e
0 50 100

|‘_‘— 1

]
[50 100

R P

0 50 100

Time [sec]

(f) Gyroscope bias

Figure 6: RMSE errors in 100 Monte-Carlo runs: comparison between batch
optimization, incremental smoothing, fixed-lag smoother with 2,5,10,30 and

50 second lags.

Incremental smoothing produces nearly identical results as

the MAP estimate obtained by a batch optimization, while maintaining small
processing time (cf. Figure 5b). Increasing lag size improves performance of
fixed-lag smoothers, however has major impact on computational complexity.
Performance of fixed-lag smoothers approaches batch optimization using a 50
seconds lag (cf. Figures 6b and 7).

North m]

'
North m]
om0 ®
hY

)
@
3
2
3
o
g
)
o
3
3
3
@
3

East [m]
!
¢
'
0
]
|
i}
]
|
|
it
]
1
|
|
|
|
i
1
|
'

L
East [m]
o N s o
N,
K

0 50 = Incr. Smoothing 150
- - -Lag20
- - -Lag5.0
- - - -Lag10.0
| - Lag 30.0
- - - Lag50.0

o
o
3
=
8
@
g

Height m]
©
5
Height m]

oM s P ®

Time [sec] Time [sec]

(a) Position (b) Position - zoom

Figure 7: Root mean square difference with respect to a batch optimization in
100 Monte-Carlo runs: comparison between incremental smoothing and fixed-
lag smoother with 2,5, 10,30 and 50 second lags. While the smoothing lag is not
full, fixed lag smoothers produce identical results to the MAP estimate (batch
optimization), which start to differ afterwards. On a statistical level, the larger
the smoothing lag, the smaller is the difference with a batch optimization.

standard stereo visual odometry system was used to detect and match features
both between the stereo image pairs and across pairs of images through time.
The generated landmark tracks were typically between 2 and 5 frames long, with
the longest track lasting 41 frames. The landmark observations were converted
into stereo projection factors (25) and added to the factor graph at the frame
rate of 10Hz. The KITTI data provided stereo calibration information, so no
additional calibration nodes were required for the stereo factors. Only sequential
feature tracks were used in this test; no long-term loop closure constraints were
incorporated. Figure 9 shows several typical camera images with the tracked
features indicated in red.

Figure 10 shows the computed trajectories of full batch optimization, the
proposed incremental smoothing method, and fixed-lag smoothers with lag sizes
of 0.1, 0.5, 1.0, 2.0, and 10.0 seconds. As can be seen, the proposed incremen-
tal smoothing method (green) tracks the MAP estimate (blue) closely over the
entire trajectory. The fixed-lag smoothers, on the other hand, show a consider-
able amount of drift. This is shown in more detail in Figure 11, which shows
the root mean squared difference of the position, velocity and orientation of the
incremental smoother and various fixed-lag smoothers with respect to the full
batch optimization. As can be seen from this figure, the incremental smooth-
ing approach produces results very close to the batch estimate, with the most
dramatic differences in the position estimates. In terms of position errors, the
incremental smoothing approach produces a maximum error of 2.5m, versus
17m to 38m for the various fixed-lag smoothers.

In terms of timing performance, the proposed incremental smoother requires

25

East [m]

Height m]

A6 [deg] A ¢ [deg]

Ay deg)

0 50 100 150
‘ ‘
I——
Incr. Batch
L Incr. Smoothing |
= = =Incr. Batch 1o est. bound
| = = Incr. Smoothing 1o est. bound
0 50 100 150
P
0 50 0 150
Time [sec]
(a) Position
0 50 100 150
0 50 100 150
0 50 150
Time [sec]

(¢) Orientation

North [ms]

East [m/s]

0.6
0.4
0.2

0

Height [ms]

Y Axis [mg] X Axis [mg]
-

Z Axis [mg]
o

L&_‘__ -
0 50

100 150
Time [sec]
(b) Velocity
:‘__L
0 50 100 150
0 50 100 150
0 5 100 150

Time [sec]

(d) Accelerometer bias

X Axis [deg/hr]

100

Y Axis [deg/hr]
® ©
b
]
il
]
1]

0 50 100 150
_10 - -
£ =~ ——
g s i T 1
s —————
'£ 6 4
<
N

4 . .

0 50 100 150

Time [sec]

(e) Gyroscope bias

Figure 8: Further comparison between incremental smoothing and batch opti-
mization. RMSEs and covariance estimates are nearly identical.

26

Figure 9: Typical camera images from the test KITTI dataset. Features tracked
by the visual odometry system are indicated in red.

27

— Ground Truth

Batch

Incr. Smoothing
—Lag00.1s
= Lag 00 5s
— Lag01.0s

Lag 02.0s
— Lag 10.0s

Figure 10: Trajectories for the ground truth, full batch optimization, incremen-
tal smoothing, and fixed-lag smoothers with lag sizes of 0.1, 0.5, 1.0, 2.0 and
10.0 seconds.

28

20

Error [m]
&

o
N
3
5
&
2
3

80 100 120 140 160
Time [sec]
(a) Position
25
2
z N
= 15)
E P
s
g !
05
0
Time [sec]
(b) Velocity
20
Incr. Smoothing
- - -lag0.1s
15H = = - Lag 0.5s
= — = =Llag1.0s
8 Lag 2.0s
T 10{ = = = Lag 10.0s
I3
fir
5
S ~ vi-
NP) BT L LL T~ e
0 20 40 60

80
Time [sec]

(c) Orientation

Figure 11: Root mean square difference of position, velocity and orientation with
respect to full batch optimization: comparison between incremental smoothing
and fixed-lag smoothers with 0.1, 0.5, 1.0, 2.0 and 10.0 second lags.

29

Batch
Incr. Smoothing
12} = = - LagO.1s
- - - Lag0.5s
- - -Lag1.0s
10 Lag 2.0s
- - -Lag100s

Soe

Processing Time [sec]

\ . '
i I) , a
Nag ',l,,-l.-_'.."."-l-.'."‘\ ﬁ\“"l Pamtanartern M ger et et
2. LT T omy PR gy Ay am o A e
) 20 40 60 80 100 120 140 160 0 20 40 60 8 100 120 140 160
Time [sec] Time [sec]

(a) Overview (b) Detail

Figure 12: (a) Computational cost of processing the KITTI dataset. (b) Zoom
in. For clarity, the presented processing time of all methods, except of incre-
mental smoothing, has been smoothed.

less computation than any of the tested fixed-lag smoothers. Figure 12 shows
the required processing time of the incremental smoother and the fixed-lag
smoothers. During each update of the fixed-lag smoothers, multiple nonlinear
optimization steps may be required before convergence, leading to large fluc-
tuations in the frame-to-frame processing time. To compensate for this affect,
the timing results shown in Figure 12 have been averaged over 10 consecutive
frames so that the general timing trend is revealed. As shown, the required
processing time of the incremental smoother is similar to or less the processing
time of the shortest lag smoother, 0.1s lag version, while producing estimates
superior to the 10.0s lag smoother.

7.3. Loop Closures

In the previous sections, we demonstrated the ability of incremental smooth-
ing to produce a high quality navigation estimate at a high update rate. One
further aspect of the incremental smoothing method is that an estimate for
the whole trajectory is available at every time step. This allows additional ca-
pabilities, perhaps the most compelling of which is the ability to incorporate
loop closure constraints at arbitrary locations in the past trajectory. Fixed-lag
smoothers can only handle loop closures that occur within the smoother lag. If
loop closure handling is desired, this pushes the fixed-lag design to use larger
and larger lags, increasing the computational requirements of every update. In
contrast, the incremental smoothing approach only consumes additional com-
putation resources during updates that contain loop closure constraints.

The ability of incremental smoothing to close loops and fully smooth the
entire trajectory are briefly highlighted using the same ground-based dataset
from the KITTI Vision Benchmark Suite [9]. In the previous section, results
were shown using the first 160s of this dataset, which forms a single, large loop.

30

Total RMS Error [m]

/

y 4 R
v . i
I I I I I I 1] g
140 145 150 155 160 165 170 175 180 3 und Truth
Time [sec] without Laop Closures
2 with Loop Closures

(a) Intermediate causal position errors ” 5 528

Total AMS Error [m]

I I I I L L |
140 145 150 155 160 165 170 175 180
Time [sec]

(b) Final smoothed position errors (c) Final smoothed
trajectory

Figure 13: A comparison of the trajectories generated for the KITTI dataset
with and without loop closure constraints: (a) position errors of the intermediate
causal solution relative to the ground truth, (b) position errors of the final
smoothed solution relative to the ground truth, and (c) the final smoothed
trajectory.

Between 160s and 170s, the vehicle re-traverses a section of roadway. Approx-
imately 50 landmarks were identified as re-observations of previous landmarks
during this re-traverse, and these loop closures were incorporated into the in-
cremental smoother accordingly. Figure 13 shows the position error from the
ground truth trajectory with and without the addition of these loop closures.
Figure 13a shows the intermediate causal results from the incremental smoother.
It can be clearly seen that the first loop closure is added shortly after 160s; before
this time the two incremental smoothers are operating with identical measure-
ments. Figure 13b shows the fully smoothed results from the final time at 180s.
The incremental smoother adjusted the past trajectory in response to the loop
closures, resulting in significantly lower position errors.

However, because a loop closure can involve an arbitrarily large number of
past states, the computational requirements of incorporating the loop closure
will be unknown at design time. Thus, approaches that process all measure-
ments in sequence, such as incremental smoothing, may not be appropriate
when real-time operation is paramount and large loop closures are possible.
Several parallel processing data fusion techniques have been introduced recently
[18, 25, 26|, including a factor-graph based architecture [17] that utilizes incre-
mental smoothing internally.

31

8. Conclusions

This paper presented a new approach for high-rate information fusion in
modern navigation systems based on the available sensors, which typically op-
erate at different frequencies and can be asynchronous. The information fusion
problem was formulated using a graphical model, a factor graph, that repre-
sents a factorization of the corresponding joint probability distribution function
given all the measurements thus far. Such a representation provides a plug
and play capability, since measurements from new sensors are easily incorpo-
rated into the factor graph using appropriate factors, while sensors that become
unavailable are trivially handled. While calculating the maximum a poste-
riori (MAP) estimate involves computationally expensive batch optimization,
a recently-developed incremental inference algorithm, incremental smoothing,
was used to produce near-optimal estimates at a fraction of the computational
complexity. This algorithm exploits the system sparsity and graph topology to
identify the variables that should be optimized when a new measurement be-
comes available. Thus, only a small portion of variables is recalculated, leading
to high-rate performance, as opposed to re-optimizing all the variables in the
state vector during every update, as is performed in batch optimization, fixed-lag
smoothing and popular variations of the extended Kalman filter. The calculated
estimates approach the MAP solution since re-linearization of appropriate vari-
ables is possible for any measurement model at any time as no marginalization
of past variables occurs. To maintain high-rate performance over time, con-
secutive IMU measurements were represented by a single non-linear factor, an
equivalent IMU factor, that is based on a recently-developed technique for IMU
pre-integration, and allows a significant reduction in the number of variables in
the optimization.

The proposed method was studied both in a simulated environment and in
an experiment. Statistical results, based on a synthetic aerial scenario that
involved IMU, magnetometer and monocular camera sensors, showed that the
performance of the developed method is very close to a batch optimization,
with a much higher computational cost required by fixed-lag smoothers to obtain
similar levels of accuracy. The method was validated in an experiment using real
IMU and imagery data that was recorded by an autonomous ground vehicle. The
obtained performance approached batch optimization while preserving small
computational cost.

In general, loop closure measurements are not intended to be processed using
the method presented in this paper, since high-rate performance cannot be guar-
anteed. However, a typical loop-closure scenario is considered to demonstrate
the flexibility of the proposed incremental smoothing methodology. Ongoing
research focuses on incorporating loop closure information in a parallel process
to maintain high-rate updates [17].

32

Acknowledgements

This material is based upon work supported by the DARPA All Source Posi-
tioning and Navigation (ASPN) Program under USAF/ AFMC AFRL Contract
FA8650-11-C-7137. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of the US government/Department of Defense. The authors would
like to acknowledge Richard Roberts, College of Computing, Georgia Institute
of Technology, for his assistance and expertise with the GTSAM library.

Appendix A: INS Kinematic Equations

This appendix provides the inertial navigation equations leading to Eq. (15).
Assuming some general frame a and denoting by b and i the body and inertial
frames, the time derivative of the velocity, expressed in frame a, is given by [7]:

o = RS+ g = 2000 — (05,08, +01,) p", (30)

where R} is a rotation matrix transforming from body frame to frame a, 1o
is the specific force measured by the accelerometers, p® is the position vector,
evolving according to

pt = v (31)

The matrix Qf, is defined as
o = [Wialx (32)

with wf, being the rotational rate of frame a with respect to the inertial frame
i, expressed in frame a, and [], is the skew-symmetric operator, defined for
any two vectors ¢; and g2 as [q1], g2 = ¢1 X g2. The vector g is the position-
dependent gravity acceleration.

The time-evolution for the rotation between frame b and a is given by

= RyQY, (33)

with Qb, = [wb] . and w? denoting the rotation rate measured by the gyroscopes.

Egs. (30)-(33) can always be written in the form of Eq. (15), although dif-
ferent expressions are obtained for each choice of the frame a (such as inertial
frame, tangent frame, etc.).

Appendix B: Equivalent IMU Factor Equations

This appendix presents the equations for calculating the pre-integrated delta
components from consecutive IMU measurements between some two time in-
stances ¢; and t;, and provides expressions for the predicting function pEauv,

33

The original formulation of these equations appears in [22], where it was as-
sumed that the robot operates in small areas and uses a low-cost IMU, and
therefore, Earth curvature and Earth rotation are neglected.

Here, we extend the formulation given in [22] by taking these two neglected
aspects into account. Since the pre-integrated delta components may represent
non-negligible rotational motion, we use the underlying Lie algebra (cf. e.g.,
[1]), with the operators Exzpmap and Logmap representing the exponential and
logarithm maps over SE (3).

Pre-Integration of IMU Measurements

We assume the starting pre-integration time is #; and use the notations
Apf; i Avf; j,Rgi_ to represent the position, velocity and orientation compo-
nents, respectively, calculated by pre-integrating the IMU measurements from
time ?; to some time ¢;. In order to avoid recalculating these components when
re-linearizing (cf. Section 4.3), Lupton and Sukkarieh [22] perform the integra-
tion in the body frame of the starting pre-integration time ¢;, rather than in the
global frame. The body frame at t; is denoted by b;. Finally, R’ represents a
rotation from system a to system b.

The pre-integrated delta components are initialized as: Apf’;i =0, Av

0and R = I. Let Ay, = {Api?;j,mbi R;;;}.

— 77

b _
=

Given the previous pre-integrated components Apgg > Avib; o RZ;, with £; >
t;, and the calibration parameters at the starting time ¢; (denoted by c¢;), the
equations for adding a new IMU measurement at time ¢;; = t;+A¢, comprising

the specific force f; and the angular velocity w;, are given in Algorithm 3.

Algorithm 3 Pre-Integration of an IMU measurement f;,w;

1: Input:
IMU measurement f;,w;
Calibration parameters ¢;
Previous pre-integrated delta components Az;_,;

Orientation: RZ;H = RZ; Expmap (w;)
Output:
Pre-integrated delta components Ax;_,;11:

2: Correct IMU measurements with the calibration parameters c;
3: Position: Ap}' . = Apli . + Av)’ At
T b; _ b; b;
4: Velocity: Av;® oy = Av” o+ Ry fiAt
5:
6:

. b; b; b;
AxiﬁjJrl - {Api*j+1’Avi—>j+l7Rb;+1}

Prediction Function hFav
The function h”9%" is used to predict the navigation state z;, given: a)

the pre-integrated delta components Awx;_,; between the time instances ¢; and

34

tj, and b) the navigation state z; and the calibration parameters ¢;. Thus,
thuiv — thuiU (xi’ ¢, sz%j)

We use the notations piL ’, UiL * and Ri ‘ to represent position, velocity and
orientation components in the navigation state x;. L; denotes the LLLN® frame
at time t¢;, with the origin defined at the initial position of the robot. The

rotation matrix RbLf represents a rotation from the body to LLLN frame at ¢;.
: : b; b; bi
Recall that the pre-integrated delta components Az;_,; = {Api_,j, AU ij }
are expressed in the body frame at ¢;.
The navigation state x;, comprising the position, velocity and orientation
L;

L.
terms p,”, v;"

; and Rbij can be calculated as follows.

L; L; Q i i i 1 i i Q 2
ij = RL: {pf + Rbi Ap?—m’ JrviL (tj - ti) + §9L -2 I:wlL/IM:l y UiL } (tj - ti)

of = rp (ot mpants, o g -2 [l] b6 -mf o

Rfjf = Ri: {RbL:Expmap(Ago)} (36)

where
Ap = Logmap (R?j) - R%lszLl (t; —ti), (37)

and ¢’ is the gravity vector, which is assumed to be constant between ¢; and t;.
The vector wZLLL1 represents the rotational rate of the LLLN frame with respect
to the inertial frame 7 (cf. Appendix A). Finally, it is often reasonable to assume
the distance travelled between ¢; and t; is not too large so that EJ ~1.

[1] M. Agrawal. A Lie algebraic approach for consistent pose registration for motion
estimation. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2006.

[2] Mitch Bryson, M. Johnson-Roberson, and Salah Sukkarieh. Airborne smoothing
and mapping using vision and inertial sensors. In IEEE Intl. Conf. on Robotics
and Automation (ICRA), pages 3143-3148, 2009.

[3] T.A. Davis, J.R. Gilbert, S.I. Larimore, and E.G. Ng. A column approximate
minimum degree ordering algorithm. ACM Trans. Math. Softw., 30(3):353-376,
2004. ISSN 0098-3500.

[4] F. Dellaert and M. Kaess. Square Root SAM: Simultaneous localization and
mapping via square root information smoothing. Intl. J. of Robotics Research, 25
(12):1181-1203, Dec 2006.

SLLLN denotes the local-level local-north coordinate system [7]. For long-term navigation,
it is better to represent the position term in a more appropriate coordinate system, such as
ECEF or LLH, as commonly done in the inertial navigation literature.

35

(5]

[6]

7l
(8]

[

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

18]

[19]

D. Diel, P. DeBitetto, and S. Teller. Epipolar constraints for vision-aided in-
ertial navigation. In Proceedings of the IEEE Workshop on Motion and Video
Computing (WACV/MOTION’05), Washington, DC, USA, 2005.

R.M. Eustice, H. Singh, and J.J. Leonard. Exactly sparse delayed-state filters for
view-based SLAM. IEEE Trans. Robotics, 22(6):1100-1114, Dec 2006.

J.A. Farrell. Aided Navigation: GPS with High Rate Sensors. McGraw-Hill, 2008.

J. Folkesson, P. Jensfelt, and H.I. Christensen. Graphical SLAM using vision and
the measurement subspace. In IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), Aug 2005.

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the
KITTI vision benchmark suite. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), Providence, USA, June 2012.

R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000.

P. Heggernes and P. Matstoms. Finding good column orderings for sparse QR
factorization. In Second SIAM Conference on Sparse Matrices, 1996.

G.P. Huang, A.I. Mourikis, and S.I. Roumeliotis. An observability-constrained
sliding window filter for SLAM. In IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), pages 65-72, 2011.

V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein. Real-time vision-aided lo-
calization and navigation based on three-view geometry. IEEE Trans. Aerosp.
Electron. Syst., 48(3):2239-2259, July 2012.

V. Indelman, S. Wiliams, M. Kaess, and F. Dellaert. Factor graph based incre-
mental smoothing in inertial navigation systems. In Intl. Conf. on Information
Fusion, FUSION, 2012.

M. Kaess, V. Ila, R. Roberts, and F. Dellaert. The Bayes tree: An algorithmic
foundation for probabilistic robot mapping. In Intl. Workshop on the Algorithmic
Foundations of Robotics, Dec 2010.

M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert. iSAM2:
Incremental smoothing and mapping using the Bayes tree. Intl. J. of Robotics
Research, 31:217-236, Feb 2012.

M. Kaess, S. Wiliams, V. Indelman, R. Roberts, J.J. Leonard, and F. Dellaert.
Concurrent filtering and smoothing. In Intl. Conf. on Information Fusion, FU-
SION, 2012.

G. Klein and D. Murray. Parallel tracking and mapping for small AR workspaces.
In IEEE and ACM Intl. Sym. on Mized and Augmented Reality (ISMAR), pages
225-234, Nara, Japan, Nov 2007.

X. Kong, E. M. Nebot, and H. Durrant-Whyte. Development of a nonlinear psi-
angle model for large misalignment errors and its application in INS alignment
and calibration. In IEEE Intl. Conf. on Robotics and Automation (ICRA), pages
1430-1435, 1999.

36

[20]

[21]

22]

23]

24]

[25]

[26]

[27]

28]

[29]

(30]

31]

F.R. Kschischang, B.J. Frey, and H-A. Loeliger. Factor graphs and the sum-
product algorithm. IEEE Trans. Inform. Theory, 47(2), February 2001.

F. Lu and E. Milios. Globally consistent range scan alignment for environment
mapping. Autonomous Robots, pages 333-349, Apr 1997.

T. Lupton and S. Sukkarieh. Visual-inertial-aided navigation for high-dynamic
motion in built environments without initial conditions. IEEE Trans. Robotics,
28(1):61-76, Feb 2012.

Y. Ma, S. Soatto, J. Kosecka, and S.S. Sastry. An Invitation to 3-D Vision.
Springer, 2004.

A.I. Mourikis and S.I. Roumeliotis. A multi-state constraint Kalman filter for
vision-aided inertial navigation. In IEEFE Intl. Conf. on Robotics and Automation
(ICRA), pages 3565-3572, April 2007.

A.I. Mourikis and S.I. Roumeliotis. A dual-layer estimator architecture for long-
term localization. In Proc. of the Workshop on Visual Localization for Mobile
Platforms at CVPR, Anchorage, Alaska, June 2008.

R.A. Newcombe, S.J. Lovegrove, and A.J. Davison. DTAM: Dense tracking and
mapping in real-time. In Intl. Conf. on Computer Vision (ICCV), pages 2320—
2327, Barcelona, Spain, Nov 2011.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

G. Sibley, L. Matthies, and G. Sukhatme. Sliding window filter with application
to planetary landing. J. of Field Robotics, 27(5):587-608, 2010.

J.P. Tardif, M. George, M. Laverne, A. Kelly, and A. Stentz. A new approach to
vision-aided inertial navigation. In IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), pages 4161-4168, 2010.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT press,
Cambridge, MA, 2005.

N. Trawny, A. I. Mourikis, S. I. Roumeliotis, A. E. Johnson, and J. F. Mont-
gomery. Vision-aided inertial navigation for pin-point landing using observations
of mapped landmarks: Research articles. J. of Field Robotics, 24(5):357-378, May
2007.

37

