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h i g h l i g h t s

• We propose an online learning strategy for locomotion in modular robots.
• The strategy is designed to be minimalistic and distributed.
• We experimentally study the strategy in simulation and on physical modular robots.
• Our findings include the fact that the strategy is morphology independent and can adapt to module faults and self-reconfiguration.
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a b s t r a c t

In this paper, we present a distributed reinforcement learning strategy for morphology-independent life-
long gait learning formodular robots. All modules run identical controllers that locally and independently
optimize their action selection based on the robot’s velocity as a global, shared reward signal.We evaluate
the strategy experimentally mainly on simulated, but also on physical, modular robots. We find that the
strategy: (i) for six of seven configurations (3–12modules) converge in 96% of the trials to the best known
action-based gaits within 15min, on average, (ii) can be transferred to physical robots with a comparable
performance, (iii) can be applied to learn simple gait control tables for both M-TRAN and ATRON robots,
(iv) enables an 8-module robot to adapt to faults and changes in its morphology, and (v) can learn gaits
for up to 60 module robots but a divergence effect becomes substantial from 20–30 modules. These
experiments demonstrate the advantages of a distributed learning strategy for modular robots, such as
simplicity in implementation, low resource requirements, morphology independence, reconfigurability,
and fault tolerance.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Self-reconfigurablemodular robots have a flexiblemorphology.
The modules may autonomously or manually connect to form
various robot configurations. Each module typically has its own
micro-controller and can communicate locally with connected,
neighbor modules. These characteristics entail that conventional
centralized control strategies are often not suited for modular
robots. Instead, we apply distributed control strategies which in
general may have several advantages over centralized strategies
in terms of ease of implementation, robustness, reconfigurability,
scalability, and biological plausibility.

In this paper we focus on online learning suitable for modular
robots; see Fig. 1. Such a learning strategy must require a minimal
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amount of resources and ideally be simple to implement on a
distributed system. Furthermore, the number of different robot
configurations is in general exponential with the number of
modules. Even with few modules, it is intractable to manually
explore the whole design space of robot morphologies and
controllers by hand. Further, modular robots may decide to
self-reconfigure or be manually reconfigured, and modules may
realistically break down or be reset. Hence, the learning strategy
must be robust and able to adapt to such events. Therefore, we
are exploring morphology-independent learning, where we do
not tie the learning strategy and underlying gait generator to a
specific robot morphology. This strategy is different from most
relatedwork onmonolithic robots,where the learning space can be
reduced, e.g., from kinematic models or by exploiting symmetries.

We anticipate that such attractive features can be obtained
by utilizing a simple, distributed learning strategy. We let each
module locally optimize its behavior independently and in parallel
with the others based on a single, broadcast reward signal which
indirectly is used to optimize the global gait of the robot. The
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Fig. 1. Illustration of concept. The minimal strategy demonstrated in this paper
is: (i) distributed, since the modules learn independently and in parallel, and
(ii) morphology-independent, since the robot may self-reconfigure, modules may
break down, be removed or added to the robot.

learning is life-long in the sense that there is no special learning
phase followed by an exploitation phase. We hypothesize that a
distributed strategy may be more robust and flexible since it can
be indifferent to the robot’s morphology and can adapt online to
module failures or morphology changes. Ultimately, we anticipate
that by studying distributed learning, we may gain insights into
how adaptive sensory-motor coordination, such as locomotion
patterns, can emerge and self-organize in animals.

1.1. Summary of contributions

This paper contributes an experimental study of a distributed
online learning strategy for modular self-reconfigurable robots.
The proposed strategy is minimalistic and distributed, and we
present experiments both in simulation and on physical robots,
that demonstrate that the strategy is morphology independent,
fault-tolerant, generalizes to several module types, and is able to
learn effective locomotion gaits in a matter of minutes. We also il-
lustrate the limitations of the strategy, how it is not appropriate
for all robot morphologies, and how it has limited scalability. This
paper provides a comprehensive report of our previous work [1,2]
and in addition presents amore exhaustive survey of related work,
including more analysis of the strategy, and additional experi-
ments with gait-table learning, tolerance of module loss, and scal-
ability analysis which are previously unpublished.

1.2. Outline

The paper is organized as follows. First, we review related work
in Section 2. Thenwe describe the learning strategy and how it can
be applied to learn both action-based controllers as well as gait
control tables (Section 3). The experimental platforms and the ex-
perimental setups are described in Sections 4 and 5 respectively.
Further, a number of experiments are presented in Section 6. Fi-
nally, we discuss the results obtained in Section 7 and give conclu-
sions in Section 8.

2. Related work

2.1. Self-reconfigurable modular robots

The concept of modular self-reconfigurable robots was intro-
duced in the late 80’s by Fukuda and Nakagawa [3]. Compared to
conventional robots the motivations for such robots was: optimal
shape in a given situation, fault tolerance and the ability to self-
repair [4]. Since then more than two dozen systems have been de-
signed and implemented, and the field is still growing as indicated
in recent surveys [5–8].

Noteworthy systems developed during the first decade of re-
search includes: the mobile CEBOT [4], chain-style modular robots
[9–11], planar self-reconfigurable systems [12–14] and 3D self-
reconfigurable systems [15–17].

Recent systems which are able to self-reconfigure in 3D and
form mobile robots include M-TRAN III [18], SuperBot [19],
CKBot [20], Roombots [21], ATRON [22], Replicator-Symbrion [23],
Sambot [24], UBot [25], Cross-Ball [26] and SMORES [27].

2.2. Locomotion strategies for self-reconfigurable modular robots

In the context of modular robots, locomotion was first studied
by Yim [28] using the Polypod robot which could be configured as
a snake-like chain, hexapod, and a rolling track. Since then numer-
ous types of gaits have been implemented on various robot config-
urations. Especially chain- and hybrid-style systems have proven
appropriate for constructing various different robot morphologies
that are able to perform locomotion. Moreover, by utilizing self-
reconfiguration the robots can transform between different mor-
phologies as first demonstrated by Kurokawa et al. [29]. Below we
review some of the more generic locomotion strategies proposed.

Gait control tables is a generic strategy which was first used
to control Polypod robots [30]. A gait control table is a two-
dimensional table of actuator actions (e.g., a goal position or to act
as a spring), where the columns are identified with a actuator id
and the rows are identified with a condition for transition to the
following row (e.g., a time-stamp or a sensor condition). To pro-
duce periodic locomotion gaits, the table is evaluated in a cyclic
fashion.

Hormone-based control is a strategy, proposed by Shen et al.
[31], which enable information to be distributed between the
modules. Digital hormones represent information that propagates
through the configuration of modules. Using digital hormones
modules can detect topological changes, coordinate and synchro-
nize actions for locomotion or self-reconfiguration [32].

Role-based control was originally developed to control locomo-
tion of CONRO robots [33]. Eachmodule, dependent on its position
in the configuration tree, automatically selects a role. This allows a
CONRO robot to shift from one locomotion style to another when
it is manually reconfigured [34].

Phase automata was a generalization of role-based control
developed to control the locomotion of the later Polybot system
[35,36]. Phase automata patterns are state machines that define
the actions of a module in a given state [37]. The shift from one
state to another is event (time or sensor) driven.

Central Pattern Generators (CPGs) are a biologically inspired
strategy which is a popular approach to locomotion control also
for monolithic robots [38]. Genetically optimized CPGs were
used to control M-TRAN walkers and snakes by Kamimura et al.
[39,40]. Similarly, CPGs controlling the YaMoR modular robot
were genetically evolved and online optimized in order to achieve
locomotion by Marbach and Ijspeert [41]. CPGs were also use to
control a simulated quadruped with 390 Catom modules [42].
Moreno and Gomez [43] combined CPGs with hormone-based
control to integrate sensor feedback in the control system.

Cluster-flow locomotion is a radically different mode of
locomotion based on continuous self-reconfiguration of the mod-
ules to move the collective ensemble. Such cluster-flow loco-
motion can be realized as a highly scalable emergent behavior
arising from simple, distributed, rule-based control, as demon-
strated on the sliding cubemodel [44–46] and on the ATRONmod-
ules [47]. For the M-TRAN system, cluster-flow locomotion has
been realized based on a two-layer centralized planner by Yoshida
et al. [48,49] and Kurokawa et al. [18], who demonstrated dis-
tributed cluster-flow on physical MTRAN modules. Related work
on the Slimebot demonstrates a similar form of locomotion where
self-reconfiguration is an emergent process that arises from local
module oscillation, resulting in phototaxis [50].
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2.3. Adaptive self-reconfigurable modular robots

Thepolymorphic andmetamorphic nature of self-reconfigurable
modular robots gives unique constraints and opportunities for uti-
lizing adaptive strategies, such as evolutionary and learning, for lo-
comotion control.

Sims [51] pioneered the field of evolutionary robotics by
co-evolving the morphology and control of simulated modular
robots. Later works succeeded in transferring co-evolved robots
from simulation to hardware [52,53]. For M-TRAN robots evo-
lutionary algorithms were utilized to produce locomotion and
self-reconfiguration [54], and Kamimura et al. [40] evolved the
coupling parameters of central pattern generators for straight
line locomotion. Similarly, Handier and Hornby [55] evolved a si-
nusoidal gait for a quadruped modular robot. Pouya et al. [56]
used particle swarm optimization to optimize CPG-based gaits for
Roombot robots that both contained rotating and oscillating actu-
ators. Evolutionary algorithms have also been used to optimize re-
active locomotion controllers based on HyperNEAT [57], chemical
hormonesmodels [58] and fractal genetic regulatory network [59].
For co-evolution of morphology and control, Brunete et al. [60]
represented the morphology of a heterogeneous snake-like micro-
robot directly in the chromosome, Faíña et al. [61] represented a
legged robot morphology as a tree, and Bongard and Pfeifer [62]
evolved a genetic regulatory that would direct the growth of the
robot instead of a direct representation.

Although appealing, one challenge with evolutionary ap-
proaches is to bridge the reality gap [63] and once transferred the
robot is typically no longer able to adapt.

To address this limitation, evolutionary optimization of gaits
can be performed directly on the physical robot [64–66]. However,
sequential evaluation of a population of gaits is not fitting for life-
long learning since it requires a steady convergence to a single gait.

Instead, life-long learning strategies can be utilized. Marbach
and Ijspeert [41] used a life-long strategy, based on Powell’s
method, which performed a localized search in the space of se-
lected parameters of central pattern generators. Parameters were
manually extracted from the YaMoR modular robot by exploiting
symmetries. Follow-upwork by Sproewitz et al. [67] demonstrated
online optimization of 6 parameters on a physical robot in roughly
25–40 min. As is the case in our paper, they try to realize simple,
robust, fast, model-less, life-long learning on a modular robot. The
main difference is that we seek to automate the controller design
completely in the sense that no parameters have to be extracted
from the symmetric properties of the robot.

Further, our approach utilizes a form of distributed rein-
forcement learning. A similar approach was taken by Maes and
Brooks [68] who performed distributed learning of locomotion on
a 6-legged robot. The learning was distributed to the legs them-
selves. Similarly, in the context of multi-robot systems, distributed
reinforcement learning has been applied for learning various col-
lective behaviors [69].

The strategy proposed in this paper is independent from the
robot’s morphology. Similarly, Bongard et al. [70] demonstrated
learning of locomotion and adaptation to changes in the config-
uration of a modular robot. They took a self-modeling approach,
where the robot developed a model of its own configuration by
performing basic motor actions. In a physical simulator a model
of the robot configuration was evolved to match the sampled sen-
sor data (from accelerometers). By co-evolving the model with a
locomotion gait, the robot could then learn to move with different
morphologies. Our work presented here is similar in purpose but
different in approach: Our strategy is simple, model-less and com-
putational cheap to allow implementation on resource constrained
modular robots.

In recent work we have studied distributed and morphology-
independent learning based on a CPG architecture optimized

Algorithm 1 Normal Learning Strategy.
Initialize Q [A] = R, for all A evaluated in random order
loop

Select Action A with max Q [A] with prob. 1 − ϵ, otherwise
random action
Execute Action A for T seconds
Receive Reward R
Update Q [A]+ = α · (R − Q [A])

end loop

online by a stochastic approximation method [71,72]. Our paper
utilizes a strategy which has a simpler implementation and is
appropriate for optimization of discrete control parameters. The
CPG-based strategy is more complex and allows optimization
of continuous control parameters. Both strategies illustrate the
advantages of utilizing a distributed adaptation and control
strategy in modular robots.

3. A strategy for learning locomotion gaits

In this section we describe the basic reinforcement learning
strategy and propose a heuristics for accelerated learning. Further,
we explain how the strategy can be applied to optimize gait control
tables.

3.1. Normal learning strategy

We utilize a simple stateless reinforcement learning strategy
that is executed independently and in parallel by each module of
the robot (see Algorithm 1). Eachmodulemust select which action,
A, to perform amongst a small fixed set, S = {Ax, Ay, Az, . . .}, of
possible actions. In the initialization phase each module executes
each of these actions in random order and initializes the expected
reward, Q [A], with the global reward, R, received after performing
action A. Note that the time it takes to perform this initialization
is independent of the number of modules since the robot will not
try every possible combination of module actions. After this phase,
in a learning iteration, each module will perform an action, A, and
then receive a global reward, R, for that learning iteration. The
discounted expected reward, Q [A], is estimated by an exponential
moving average with a smoothing factor, α, which suppresses
noise and ensures that if the reward of an action changeswith time
so will its estimation. Each module independently selects which
action to perform based on an ϵ-greedy selection policy, where
a module selects the action with highest estimated Q [A] with a
probability of 1− ϵ and a random action otherwise. The algorithm
can be categorized as temporal difference learning (TD(0)) with
discount factor γ = 0 and with no representation of the sensor
state [73].

3.2. Accelerated learning strategy

We observe that for a locomotion task, the performance of a
module is tightly coupled with the behavior of the other modules
in the robot. Therefore, the best action of a module changes over
time in response to the other modules changing their actions.
The learning speed is limited by the fact that it must rely on
randomness to select a fitter but underestimated action a sufficient
number of times before the reward estimation becomes accurate.
Let us now assume that the robot performs an action, A, and
receives a reward, R, which is fixed and noise free. Then, we
can compute the number of iterations, kema, required for the
exponential moving average of Q [A] to estimate R with a give
precision e:

kema =
log(e)

log(1 − α)
(1)
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Algorithm 2 Accelerated Learning Strategy.
Initialize Q [A] = R, for all A evaluated in random order
loop

if max(Q ) < R then
Repeat Action A

else
Select Action A with max Q [A] with prob. 1 − ϵ, otherwise
random action

end if
Execute Action A for T seconds
Receive Reward R
Update Q [A]+ = α · (R − Q [A])

end loop

where e is the final estimation error in percent relative to initial
error. By Taylor expansion we obtain:

kema ≈
− log(e)

α
. (2)

Taking into account the ϵ-greedy selection policy, assuming that
Q [A] is underestimating R, the number of required learning
iterations, klearn becomes:

klearn ≈
− log(e)

ϵ · α
. (3)

Since ϵ, α < 1 we can expect a slow convergence to R. Therefore,
to accelerate the convergence we tested a simple heuristics (see
Algorithm 2): If the received reward, R, after a learning period
is higher than the highest estimation of any action, max(Q ),
the evaluated action may be underestimated and fitter than
the current highest estimated action. Therefore, we repeat the
potentially underestimated action, A, to accelerate the estimation
convergence. In the accelerated case the number of required
learning iterations then becomes:

klearn = kema ≈
− log(e)

α
. (4)

For example, with α = 0.1 and ϵ = 0.2, the number of learning
iterations to reach an estimation within 5% of the correct reward
is klearn ≈ 148 and klearn ≈ 28 for the normal and accelerated
learning strategy respectively. In general, the acceleration heuristic
will speed up the estimation of a fitter but underestimated action
by a factor of 1/ϵ. However, note that the acceleration heuristic
is trading off exploration for exploitation, which may cause the
strategy to stay longer in local optima. In Section 6 we will
experimentally compare the two strategies.

3.3. Learning strategy: applied to gait control tables

In Algorithms 1 and 2 each module learns to always perform
a single action such as rotating clockwise. To enable a more
versatile learning strategy that may work on any module type, we
combine this strategy with gait control tables [10]. As explained
in Section 2.2, gait control tables are a generic strategy that can be
used to realize locomotion onmostmodular robots. In ourworkwe
optimize gait control tables that contain actuator set-points and
which transition to the next row based on fixed time intervals.

To learn the set-points in a gait-table, we let each module learn
the set-points of its own columns in the gait-table. Each module
runs one parallel learning process per entity in its column. Each
learning process selects a set-point, A, amongst a set of predefined
set-points, S. The learning processes learn independently and in
parallel based on a shared reward signal. This extended strategy
is illustrated in Fig. 2. To utilize this approach for a given system
we must define the set of set-points that can fill the table and the
number of rows in the table, the number of columns is indirectly
automatically adjusted when adding or removing modules.

Fig. 2. Illustration of gait-table based learning strategy for a single module.
Independent and parallel learning processes learn each entry, A ∈ S, in the gait-
table. Therefore, each module learns its own column of the gait-table.

4. Hardware and simulation platforms

4.1. The ATRON self-reconfigurable modular robot

The ATRON self-reconfigurable robotic system is a homoge-
neous modular system, which means that all modules are identi-
cal in both hardware and typically also in software [22]. We have
manufactured 100 ATRON modules; a single module is shown in
Fig. 3(a). Modules can be assembled into a variety of robots: Robots
for locomotion (e.g. snake-like chain, wheeled robot, and legged
robot as shown in Fig. 3(b)), robots for manipulation (e.g. small
robot arms) or robots that achieve some functionality from their
physical shape, such as structural support (see Fig. 3(c)) [74,75].
By self-reconfiguring, a group of modules can change their shape,
for example from a wheeled robot to a snake-like robot to a legged
robot.

An ATRON module has a spherical exterior composed of two
hemispheres, which can actively rotate relative to each other (see
Fig. 3(a)). On each hemisphere, a module has two actuated male
connectors and two passive female connectors. Rotation around
the center axis is, for self-reconfiguration, always done in 90° steps.
This moves a module, connected to the rotating module, from one
lattice position to another. A 360° rotation takes approximately 6 s.
Encoders sense the rotation of the center axis. Male connectors are
actuated and shaped as three hooks, which grasp on to passive
female connector bars. A connection or a disconnection takes
about two seconds. Located next to each connector are an infrared
transmitter and receiver, which allow modules to communicate
with neighbor modules and sense distance to nearby objects.
Connector positions and orientations are such that the ATRON
modules sit in a global surface-centered cubic lattice structure.
Furthermore, each module is equipped with tilt sensors that allow
the module to know its orientation relative to the direction of
gravity.

4.2. Unified simulator for self-reconfigurable robots

Simulation experiments are performed in an open-source
simulator named Unified Simulator for Self-Reconfigurable Robots
(USSR) [76]. We have developed USSR as an extendable physics
simulator for modular robots. The simulator is based on Open
Dynamics Engine [77] which provides simulation of collisions and
rigid body dynamics. Through socket connections USSR is able to
runmodule controllers which can also be cross-compiled for some
of the physical platforms.

USSR includes implementations of several existing modular
robots, e.g., ATRON and M-TRAN as utilized in this paper. The
ATRON module is modeled in the simulator and the model
parameters, e.g., strength, speed, weight, etc., have been calibrated
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Fig. 3. (a) A single ATRONmodule: on the top hemisphere the twomale connectors are extended, on the bottomhemisphere they are contracted. (b) Different configurations
of ATRON modules. (c) Meta-modules for self-reconfiguration.

Table 1
Learning parameters.

Exp. type Robot α 1 − ϵ T (s)

Action-based ATRON 0.1 0.8 7
Gait-table ATRON 0.1 0.96 7
Gait-table M-TRAN 0.0333 0.96 1.5

to match the existing hardware platform to ease the transfer
of controllers developed in simulation to the physical modules.
The M-TRAN module fills two cells in a cubic lattice and has six
connector surfaces. Each module has two actuators which can
rotate in the interval ±90°. We have implemented a model of
the M-TRAN III module in the USSR simulator based on available
specifications [18]. However, we do not have access to the physical
M-TRAN modules. Therefore, although the kinematics is correct,
specific characteristics might be somewhat different from the
real system. We accept this, since our purpose is to evaluate the
learning strategy on a different system than the ATRON, not to find
efficient transferable locomotion gaits for M-TRAN robots.

5. Experimental setups

5.1. Learning parameters and reward signal

In the physical and the simulated experiments, described in
Section 6, each module runs identical learning controllers with
parameters set as indicated in Table 1. In some experiments we
compare with randomly moving robots, i.e. we set 1 − ϵ = 0 in
Algorithm 1.

Each module, part of a robot, shares and optimizes its behavior
based on the same reward signal. The reward signal is a measure-
ment of the velocity, which we estimate as the distance moved by
the robot’s center of mass in T s:

R = |pt+T − pt |/T . (5)

Generally, to reduce noise in the reward signal, T must be a multi-
ple of a full gait period, i.e., the time it takes amodule to rotate 360°
or oscillate back and forth. Here, T is selected to be a single full gait
period, which we found gave sufficiently high signal-to-noise ratio
to achieve convergence in the presented experiments. α balances
the amount of noise in the reward signal against convergence time,
and ϵ controls the exploration/exploitation trade-off. The learning
parameters in Table 1 were tuned in simulation for reliable and
fast convergence. Note that the relationship between experimen-
tal time, iteration time, T , and number of iterations, k, is simply:
time = k ∗ T .

5.2. Action space

To utilize the learning strategy we must define a set of actions
or gait-table set-points. We select actions/set-points that are

module-type specific but somewhat generic with respect to robot
morphology.

In the action-based experiments we utilize ATRON modules
that always perform one of the following three actions:

• HomeStop (rotates to 0° and stop).
• RightRotate (rotate clockwise 360°).
• LeftRotate (rotate counter-clockwise 360°).

Therefore the basic action set for ATRON is:

S = {HomeStop, RightRotate, LeftRotate}.

After a learning iteration, a module should ideally be back at
its home position to ensure repeatability. Therefore, the modules
will synchronize their progress to follow the rhythmof the learning
iteration based on the shared reward signal.

In the gait-table experiments, to study how the strategy works
on a system with a different kinematics, we will use joint-limited
ATRON modules that are limited to rotate within a ±90° interval.
In effect, the gait-table-based learning strategy must find gaits
based on oscillations to move the robots, instead of gaits based
on continuous rotations. For each robot morphology we define an
initial pose that the actuation is performed relative to. The gait-
table has five rows, so each module must learn five angle values
from the set-point set:

S = {−60, −30, 0, 30, 60} degrees.

Fig. 18 shows examples of ATRON gait-tables.
The M-TRAN module has two actuators. Therefore we let each

actuator be controlled by independent gait-tables. Each gait-table
has five rows, where an entry can contain one of three set-points:

S = {−30, 0, 30} degrees.

In general, selecting an initial pose and the set-point sets is a
tradeoff between high potential to move and being stable so that
the robot does not fall over while learning. Section 7 discuss such
assumptions and limitations in more detail.

5.3. Physical setup

The ATRONmodules are not equippedwith a sensor that allows
them to measure their own velocity or distance traveled. Instead,
we have constructed a setup, which consists of an arena with an
overhead camera connected to a server (see Fig. 4). The server
tracks the robot, computes the robot’s velocity, and sends the
reward signal wirelessly to the robot.

The accelerated learning algorithm, as specified in Algorithm 2,
is running on the physical modules. At a frequency of 10 Hz each
module sends a message containing its current state (paused or
learning), time-step and reward to all of its neighbors through its
infra-red communication channels. The time-step is incremented
and the reward is updated from the server side every T = 7 s.
When a new update is received, a module performs a learning
update and start a new learning iteration. The state can from the
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Fig. 4. Experimental setup of online learning.

0.0 cm/s

2.2 cm/s

(a) Quadrupedal. (b) Path through control space.

(c) Normal learning. (d) Accelerated learning.

Fig. 5. Typical simulated learning examples with and without the acceleration heuristic. (a) Eight module quadrupedal robot (four active modules). (b) Contour plot with
each point indicating the velocity of a robot performing the corresponding controller (average of 10 trials per point). The arrows show the transitions of the preferred
controller of the robot. (c) And (d) shows the corresponding rewards received by the robots during 1 h. The horizontal lines indicate the expected velocity based on the same
data as the contour plot.

server side be set to paused or learning. The robot is paused by
the server when it moves beyond the borders of the arena and is
then manually moved back onto the arena before the learning is
continued. In the presented results, the paused time intervals have
been removed.

6. Experiments

6.1. A typical ATRON robot

In this experiment we study how the normal and accelerated
action-based learning strategy behaves on a typical modular robot.
We consider a simulated quadrupedal consisting of 8 ATRONmod-
ules. To facilitate the analysis we simplify and control the exper-
imental variables and the initial conditions: (i) we disable four of
the modules (i.e., they are stopped in the home position) and only

allow the four modules acting as legs to be active, as indicated in
Fig. 5(a). (ii) Also, we force the robot to start learning from a com-
pletely stopped state by initializing Q [A] to 0.1 for the HomeStop
action and to 0.0 for the other actions. Note, that these two sim-
plifications will prolong the convergence time (robot will seldom
move initially) andmake the robot less able to locomote (only four
of eight modules are active). The motivation is that the result of
each trial will be less dependent on starting conditions and the gait
learning analysis will be simpler. Therefore, we can compare the
two strategies more directly and analyze their behavior. The other
experiments described in this paper do not make these simplifica-
tions.

First, consider the two representative learning examples given
in Fig. 5. The contour plot in Fig. 5(b) illustrates the fitness land-
scape (found using systematic search) and how an example robot
controller transitions to gradually improve itself. The controller
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Fig. 6. The velocity of a quadrupedal robot with four active modules as a function
of time. Each point is the average of 10 trials. The horizontal bars indicate average
convergence time and standard deviation. Note that accelerated learning converges
significantly faster (P = 0.0023) for this robot.

eventually converges to one of the four optimums, which corre-
sponds to the symmetry axes of the robot (although in one case the
robot has a single step fallback to another controller). The graphs
in Fig. 5(c) and (d) show how the velocity of the robots jumps in
discrete steps, that correspond to changes in the preferred actions
of modules.

Fig. 6 compares the convergence speed and performance of
the learning with and without the acceleration heuristic. The
time to converge is measured from the start of a trial until the
controller transitioned to one of the four optimal solutions (found
with systematic search). In all 20 trials the robot converged, in
4 trials the robot had short fallbacks to non-optimal controllers
(as in Fig. 5(c)). On average accelerated learning converged faster
(19 min or 1146 iterations) than normal learning (32 min or 1898
iterations). The difference is statistically significant (P = 0.00231).
Note that accelerated learning on average reaches a higher velocity,
but not due to the type of gaits found. Rather, the faster velocity
is due to the acceleration heuristics, which tends to repeat good-
performing actions at the cost of random exploration. This can also
be seen by comparing the amount of noise in Fig. 5(c) with (d).

As summarized in Table 2, the learning strategy behaves in
roughly the same way independently of the acceleration heuristic.
A typical learning trial consists of 4–5 controller transitions,

1 Using Student’s t-test.

Table 2
Average number of controller transitions to reach optimal solution, with standard
deviations in parentheses. To measure the number of controller transitions, very
brief transitions of one or two learning steps (7–14 s) are censored away. The results
are based on 10 trials of quadrupedal with 4 activemodules learning tomove. Note,
that there is no significant difference in the type of controller transitions. Also, 1-
step transitions are by far the most common, which indicates that the search is
localized.

Normal Accelerated

Transitions per trial 4.4 (1.17) 4.0 (0.94)
1-step transitions (%) 87 90
2-step transitions (%) 13 6
3-step transitions (%) 0 4
4-step transitions (%) 0 0

where a module changes its preferred action before the controller
converges. In about 90% of these transitions it will only change the
action of one module. This indicates that at a global level the robot
is performing a localized random search in the controller space.
Although the individual modules are not collectively searching in
any explicit manner, this global strategy emerges from the local
strategy of the individual modules.

6.2. Morphology independence

In this simulated experiment, we perform online learning with
seven different simulated ATRON robots to study the degree to
which the learning strategy ismorphology independent (see Fig. 7).
In each trial, the robot had 60min to optimize its velocity. For each
robot type 10 independent trials were performed with the normal,
accelerated and random strategy. Results are shown in Fig. 8.

Compared to randomly behaving robots, both normal and ac-
celerated learning improves the average velocity significantly. We
observe that each robot always tends to learn the same, i.e., sym-
metrically equivalent gaits. There is no difference in which types
of gaits the normal and accelerated learning strategy finds. Over-
all, the learning of locomotion is effective and the controllers are
in most cases identical to those we would design by hand using
the same action primitives. A notable exception is the snake robot
which has no known good controller given the current set of ac-
tion primitives. The other robots converged within 60 min to best-
known gaits in 96% of the trials (115 of 120 trials). Convergence
time was on average less than 15 min for those robots, although
single trials would be caught in suboptimal solutions for extended
time periods. We found no general trend in the how the morphol-
ogy affects the learned gaits. For example, there is no trend that
smaller robots or larger robots are faster, except that wheeled lo-
comotion is faster than legged locomotion.

(a) Two-wheeler. (b) Snake-4. (c) Bipedal. (d) Tripedal. (e) Quadrupedal.

(f) Crawler. (g) Walker.

Fig. 7. Seven learning ATRON robots consisting of 3–12 modules.
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Fig. 8. Velocity at the end of learning in simulation. Each bar is the average velocity
(reward) from the 50th to the 60th minute of 10 independent trials. Error bars
indicate one standard deviation of average robot velocity. Note that both normal
and accelerated learning has an average higher velocity than randommovement.

6.3. Physical ATRON robots

In this section we present experiments with physical ATRON
robots to investigate if the accelerated learning strategy can suc-
cessfully be transferred from simulation to physical robots. The
learning strategy is executed by the modules and only the reward
signal is computed externally. We utilize two different robots,
a three-module two-wheeler and an eight-module quadrupedal,
which has a passive ninth module used only for wireless commu-
nication. For each robot, we report on five experimental trials, two
extra experiments (one for each robot) were excluded due to me-
chanical failures during the experiments. An experimental trial ran
until the robot had converged to a near optimal gait (which were
known from the equivalent simulation experiments) and stayed

unchanged for several minutes. Since not all physical experiments
are of equal duration, we extrapolate some experiments with the
average velocity of its last 10 learning iterations to generate the
graphs of Fig. 9(a) and (c). In total, we report on more than 4 h of
physical experimental time.

6.3.1. Two-wheeler
Table 3 shows some details for five experimental trials with

a two-wheeler robot. The time to converge to driving either for-
ward or backward is given (i.e., the fastest known gaits for the
two-wheeler). For comparison the equivalent convergence time
measured in simulation experiments is also given. In three of the
five experiments, the robot converges to the best-known solution
within the firstminute. Aswas also observed in simulation trials, in
the other two trials the robot was stuck for an extended period in
a suboptimal behavior before it finally converged. We observe that
the physical robot on average converges a minute slower than the
simulated robot, but there is no significant difference (P = 0.36)
between simulation and physical experiments in terms of mean
convergence time. Fig. 9 shows the average velocity (reward given
to the robot) as a function of time for the two-wheeler in both sim-
ulation and on the physical robot. The found gaits are symmetri-
cally identical, however the physical robot moves faster than in
simulation due to simulator inaccuracies.

6.3.2. Quadrupedal
Pictures from an experimental trial are shown in Fig. 10, where

a 9-module quadrupedal (8 active modules and 1 for wireless
communication) learns to move. Table 3 summarized the result
of five experimental trials. In all five trials, the robot converges
to a best-known gait (symmetrically identical gaits to those found
in simulation). The average convergence time is less than 15 min,
which is slower than the average of 12 min it takes to converge

(a) Physical two-wheeler. (b) Simulated two-wheeler.

(c) Physical quadrupedal. (d) Simulated quadrupedal.

Fig. 9. Average velocity of five trials as a function of time for both physical and simulated experiments for a two-wheeler and a quadrupedal. Points are the average reward
in a given timestep and the lines indicate the trend.
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Fig. 10. Pictures from learning experiment with quadrupedal walker. A 7 s period is shown. The robot starts in its home position, performs a locomotion period, and then
returns to its home position. In each of the five experiments, the quadrupedal converged to symmetrically equivalent gaits. All five gaits were equivalent to the gaits found
in simulation.

(a) Snake. (b) Quadrupedal.

(c) Millipede-2. (d) Millipede-3.

Fig. 11. Convergence graphs for the four different robots assembled from joint-limited ATRONmodules. As a baseline the average velocity of randommoving robots is also
shown. Each graph is the average of 10 trials. Error bars indicate standard deviation.

Table 3
Results of online learning on two-wheeler and quadrupedal robots.

Exp. Two-wheeler Quadrupedal
Conv. time (s) Exp. time (s) Conv. time (s) Exp. time (s)

1 28 629 1680 2401
2 35 707 1232 2157
3 567 967 448 1891
4 28 695 700 2236
5 798 1020 336 2468

Total 1456 4018 4396 11153
Phy. mean 291 804 879 2231
Sim. mean 225 – 701 –

in simulation. The difference is, however, not statistical significant
(P = 0.29). Fig. 9 shows the average velocity versus time for both
simulated and physical experiments with the quadrupedal. We
observe that the measured velocity in the physical trials contains
more noise than the simulated trials. Furthermore, the physical
robot also achieves a higher velocity than in simulation (due to
simulator inaccuracies). Another observation we made was that
the velocity difference between the fastest and the second-fastest
gait is smaller in the physical experiments than in simulation,

which together with the extra noise may explain why the physical
trial on average converges almost 3min slower than in simulation.

6.4. Gait-table learning with ATRON modules

In this experiment we apply the accelerated learning strategy
on gait-control tables for an ATRON snake (chain with seven
modules), millipede-2 (two leg pairs, 10 modules), millipede-3
(three leg pairs, 15 modules) and a quadrupedal (8 modules). We
do this to study if the learning strategy can be utilized to optimize
gait-tables while still being morphology independent.

Fig. 11 shows the convergence as the average velocity achieved
over time compared with randomly moving robots. Note that
a robot tends to quickly learn a better than random gait, and
that this gait gradually improves over time. Compared to blind
random search the convergence speed is similar but the learning
strategy finds significantly better gaits, e.g., on average 9.9 cm/s
and 13.3 cm/s respectively for themillipede-3 robot. Although the
robotsmoves slower than if they could performunlimited rotation,
the gaits found are quite efficient. Also note that in the case of the
snake robot, the action-based learning strategy fails to converge
since the robot entangles itself, while this gait-table based strategy
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(a) Mini. (b) Caterpillar. (c) Walker.

Fig. 12. Three M-TRAN robots consisting of 4, 6, and 8 modules.

(a) Mini. (b) Caterpillar.

(c) Walker.

Fig. 13. Average velocity as a function of time for three M-TRAN robots. Each graph is the average velocity of 10 independent trials. Average velocity of randomly moving
robots is shown for comparison. Error bars indicate one standard deviation.

converges to undulation-style gaits. All the 40 experimental trials
converged to good performing gaits. Divergence happens in a few
cases, e.g., when a snake robot rolls upside down during learning
and then had to learn to move from this state.

Some typical gaits found: The snake is moving with a side-
winding gait, with a traveling wave down the chain. The snake lifts
parts of its body off the ground as it moves. A typical quadrupedal
gait could use a back foot partly as a wheel, partly as a foot. Its side
legs moves back and forward for movement, while the front leg is
used just for support. The millipede-2 has a trot style gait, where
the diagonal opposite legs move together. The millipede-3 uses a
similar gait with each leg oscillating back and forward with some
unrecognizable scheme of synchronization between the legs.

6.5. Gait-table learning with M-TRAN

In this experiment we apply the gait-table-based learning
strategy on three simulated M-TRAN robots (see Fig. 12): A 6-
module caterpillar (12 DOF), a 4-module mini walker (8 DOF) and
an 8-module walker (16 DOF). We perform the study to see if the
learning strategy can be utilized on a different modular robotic
platform than ATRON.

Fig. 13 shows convergence graphs for the three robots. Notice
that the performance of the gaits quickly becomes better than
random and that the gaits gradually improve over time. The
learning succeeds in finding efficient gaits for all three robots.
Because of the short learning iteration (T = 1.5 s), even a pose
shift can be measured as quite high velocity. Therefore, randomly
moving robots incorrectly seems to move quite fast, but this does
not affect the learning strategy since it quickly converges to gaits
with movement in a specific direction. We observe that the large
learning space leaves room for incremental learning.

A major challenge with learning M-TRAN gaits is that the robot
often falls over while learning. This happened in 23%, 8% and 47%
of the two hour trials with the mini walker, caterpillar and walker
respectively. These trials were censored away in the presented
results, which is based on 10 completed trials per robot.

Some typical learned gaits: Typical gaits for the mini walker
consist of hopping movement, with two modules producing
movement and two modules creating stability. For the caterpillar,
the learning typically finds gaits either with a horizontal traveling
wave down the chain of modules or gaits that use the head and tail
modules to push on the ground. Successful gaits for thewalker take
relatively short steps, since the robot would otherwise fall over. In
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Fig. 14. Procedure for testing adaptation to self-reconfiguration and module fault.
Initially the robot is of a crawler type, it then self-reconfigures to a quadrupedal,
then a module fails and finally the module again becomes functional.

Fig. 15. Learning during robot self-reconfiguration and module fault. In each case,
the learning enables the robot to adapt to the new situation by changing the
locomotion gait. The graph is the average of 10 trials, with standard deviation as
error bars. The bottom line is 10 trials of the equivalent robot moving randomly.

one example trial thewalker used three legs to producemovement,
while the fourth leg is kept lifted off the ground in front of the
robot.

6.6. Self-reconfiguration and module fault

In this experiment, we study if the accelerated action-based
learning strategy is able to adapt to changes in the robot
morphology due to self-reconfiguration andmodule faults. Initially
we let a crawler type robot (8 modules) learn tomove (see Fig. 14).
At learning iteration 250 (after 29 min), the robot is programmed
to self-reconfigure into a quadrupedal type robot. Afterwards, the
learning is continued without resetting the learning system. After
an additional 250 iterations, we simulate a module failure by
stopping a legmodule in a non-home position. 250 iterations later,
we reactivate themodule and let the learning continue for another
250 iterations.

Fig. 15 shows the average results of 10 trials. After both the self-
reconfiguration and the module fault, we observe a drop in fitness
as expected. In both cases, the learning system is able to adapt to
its changed morphology and regain a higher velocity. In the case
where a leg module is reactivated there is no initial drop in fitness,
but afterwards the robot learns again to use its leg and the average
velocity increases.

6.7. Gait-table learning with module loss

In this experiment we study if a gait-table controlled ATRON
quadrupedal robot is able to adapt to the loss of a module used
as a lower limb. The gait-table is optimized using the accelerated
learning strategy. First the quadrupedal learns to move for 1000
iterations. Then the robot disconnects a specific module thereby
disabling its movement, as illustrated in Fig. 16. The robot is then
given additional 1000 iterations to learn to move with this new
morphology.

Fig. 16. Procedure for testing adaptation of gait-table to module loss. Initially the
robot is of a quadrupedal type, it then disconnects a module as shown.
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Fig. 17. Learning after loss of module using an ATRON quadruped controlled with
a gait-table. The graph is the average of 10 trials, with standard deviation as error
bars. The bottom line is 10 trials of the equivalent robot moving randomly.

Fig. 17 shows the average velocity of 10 independent trials. For
the first 1000 iterations the robot gradually increases its velocity.
Then the module is disconnected and we observe a drastic drop in
velocity to the level of a randomly moving robot. The robot slowly
adapts to its new morphology and regains the majority of its lost
velocity. Fig. 18 shows two gait-tables from a typical trial. The first
gait-table shown is just before the module is disconnected and the
other gait-table is at the end of the trial. We observe that the two
gait-tables contains mainly different joint values (77%) which may
indicate that the two robots required quite different gait patterns
for effective locomotion.

6.8. Scalability

Weperformed simulated experimentswith a scalablemillipede
ATRON robot to study the scalability of the learning strategy (see
Fig. 19). In the following experiments, we vary the number of legs
from 4 to 36 in steps of 4 with 10 learning trials per robot.

For this specific experiment we define the time of convergence
as the time at which 85% of the leg modules have learned to con-
tribute to the robot movement. That is, the leg module rotates ei-
ther left or right dependent on its position in the robot and the
direction of locomotion. The time to converge is shown in
Fig. 20(a). As expected, an increase in the number of modules also
increases the convergence time, the relation is approximately lin-
ear for this robot in the interval shown. The increase in conver-
gence time is rather slow, for each module added the convergence
time is prolonged with 52 s (based on a least square fit):

convergenceTime = 52 · #modules + 182 s. (6)

Beyond this interval of up to 60 modules, divergence becomes
the dominating factor, i.e., the robot forgets the already learned
behavior.

We measure learning divergence as a major drop in number of
leg modules contributing to moving the millipede. The frequency
of diverges of each robot is shown in Fig. 20(b). We observe that
the divergence frequency increases with the number of modules.
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(a) Before module loss. (b) After module loss.

Fig. 18. Typical trial of gait-table learning with module loss experiment. (a) Gait-table for the eight modules (m0. . .m7) just before m4 is disconnected (iteration 1000). (b)
Gait-table at end of trial (iteration 2000), 27 of 35 joint values in the table have changed as a result of the optimization (shaded cells).

Fig. 19. Example of millipede robot with 8 leg pairs and 40 modules used to study
scalability. Given the basic actions of ATRON, the best know controller rotates the
legs as indicated.

The reason behind this is that as the number of modules increases,

the effect that any individual module has on the robot decreases.
Therefore, for a given module the estimates for each of its actions
will almost be identical and a small disturbance can cause the di-
vergence effect. This decrease of the signal-to-noise ratio is illus-
trated in Fig. 21 for a 6-legged and 20-leggedmillipede. The graphs
show the result of using a simple, regressing controller on the
robots: Initially the robot is moving with the best know controller.
Then, every 200 s, one of the leg modules reverses its action from
rotating left to right and vice versa. This causes the robot to slow
down its movement until it is almost fully stopped. For the small
robot, the difference in velocity from one module change to the
other is large and a module can easily detect the difference. For
the large robot, this difference is small compared to noise, which
explains why the divergence effect increases with the number of
modules.

7. Discussion

Adaptive robots often utilize a centralized learning strategy. In
this paper the learning is distributed to the individual modules

(a) Convergence. (b) Divergence.

Fig. 20. (a) Convergence time versus number of modules. (b) Divergence versus number of modules. The robots are millipedes with 4–24 legs. Error bars indicate one
standard deviation.

(a) 6-leg millipede. (b) 20-leg millipede.

Fig. 21. Divergence in large-scale robots. If the number of modules are low a single module may have a large effect on the overall velocity compared to noise, the opposite
is the case for many module robots.
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which optimize the behavior independently and in parallel based
only on a simple centralized reward signal. In Section 6.1 we
observed that a centralized strategy similar to localized random
search emerged from these distributed adaptive modules. The
extent to which this emergent phenomenon can be utilized in
other learning scenarios than locomotion is an open research
question.

A robot controller is typically designed specifically for a robot’s
morphology. The proposed strategy does not make any assump-
tions about how themodules are connected to forma specific robot
configuration. Combinedwith thedistributed implementation, this
makes the strategy morphology independent and it will automati-
cally adapt to a large class of different morphologies, as was exper-
imentally demonstrated in Section 6.2. For the same reasons the
strategy is also able to adapt to dynamic changes in its morphol-
ogy, e.g., due to self-reconfiguration, module failure or loss, as the
experiment in Sections 6.6 and 6.7 demonstrated.

The strategywill, however, generally notwork onmorphologies
that fall over or self-collide while learning. Currently, the strategy
makes no attempt to deal with these issues and it is up to the robot
designer to select a morphology and initial pose that minimize
the risk of such issues. Higher level strategies could be developed
to increase the system’s robustness to such events. For example,
Morimoto and Doya [78] demonstrated a robot able to learn
to stand up after falling over. Similarly, for fault-tolerant self-
reconfiguration, distributed strategies have been developed to deal
with internal collisions, unreliable communication, and hardware
failures [79,80].

No single optimization strategy will be universally good for all
problems [81], therefore the strategy must be selected to match
the problem of interest. The strategy proposed in this paper is
minimalistic to facilitate a simple distributed implementationwith
low resource requirements. Clearly, lessminimal strategies that for
example utilize gradient information in the optimization process
might in some cases converge faster and find gaits with a higher
velocity. We have demonstrated such a distributed strategy in
recent work which is based on a stochastic optimization of central
pattern generator parameters [71,72].

Ideally, a control strategy should generalize and be applicable
to more than a single robotic platform. We demonstrated in a
number of experiments that the proposed strategy could not only
be applied to freely rotating ATRON robots, but also to joint-
limited ATRON and M-TRAN robots by optimizing gait control
tables (Sections 6.4 and 6.5). Gait control tables are highly portable
to both modular and monolithic robots. However, the strategy can
only fill the tablewith values from a small fixed set of possible joint
positions. This can in practice limit the usability of the strategy,
and methods that will optimize floating point values may be more
suitable for gait-control-table optimization.

The problem of transferring a robot controller from simulation
to the physical robot needs special attention due to the difficulty
of accurately simulating the complex interactions between the
robot and its environment [82,63]. The proposed strategy ismodel-
less, online adaptive, and does not currently utilize direct sensor
feedback, which makes the transference problem less problematic
as we demonstrated with ATRON robots in Section 6.3. However, if
the strategy should be applied to robots learning in natural terrain
with onboard sensors for measuring velocity, special attention
must be given to the signal-to-noise ratio of the reward signal.

In this paper the reward signal is measured externally (in the
simulator or using overhead camera) and globally distributed to
themodules. To increase autonomy onboard sensors could be used
to estimate the robot’s velocity, e.g., an inertial measurement unit
(IMU) or an optical flow sensor. However, whether such sensors
are sufficiently reliable for the presented learning strategy is an
open question. To realize a fully distributed learning system, each

module must optimize their behavior based on a local reward
signal based on local sensors, such a system was demonstrated by
Varshavskaya et al. [83] for learning cluster walking behavior for
self-reconfigurable robots.

In practical robotic applications, a learning strategy must
converge fast and reliably. For the ATRON robots we studied in
Section 6.2, we found that the non-snake robots would converge
to best-known gaits in 96% of the cases within on average 15 min.
For the gait-table experiments the convergence time were more
often around 60 min. We anticipate that this might be sufficiently
reliable and fast enough for some practical applications but
probably not all. Research still remains in exploring how to best
improve these characteristics.

Scalability in terms of the number of modules is of special
concern in distributed robotics. We found, for an example ATRON
robot, that learning convergence time would only grow slowly,
approximately linearly, with the number of modules. However,
divergence would become increasingly frequent with the number
of modules, and beyond 50 modules it would be more likely to
happen than not during a two-hour trial (Section 6.8). The scale
effects were due to a decrease in the signal-to-noise ratio which
will have a negative effect on all learning algorithms.We anticipate
that additional inspiration from the neuroscience of biological
organisms might enable us to form hypothesis about how to cope
with this scalability issue.

The module loss experiment, presented in Section 6.7, is com-
parable in form and complexity to the experiments by Bongard
et al. [70] on self-repair based on self-modeling. Both experiments
utilize an 8 DOF walking quadruped robot controlled by a gait-
table. Further, in both experiments, damage is induced by remov-
ing a lower limb to study the process of self-repair. However, the
underlying mechanisms are very different resulting in different
trade-off between the two methods. In [70], to recover from dam-
age, a self-model (with 16 open parameters) and a gait-table is
optimized using only 16 physical actions and ≈300 k simulated
actions. In our experiment the strategy requires ≈1 k physical ac-
tions and no simulated actions. Therefore, compared to the self-
modeling strategy, the advantages of our distributed strategy is
that it is simple, computationally minimal, does not require a sim-
ulation systemandmakes fewer assumptions about the robotmor-
phology. The advantages of the self-modeling strategy is that it re-
quires much less physical actions and that the self-model can also
be used for predictive purposes (e.g. to predict if a given actionwill
make the robot fall over). None of the strategies can be considered
a stand-alone control system, and it is highly dependent on the ap-
plication which would be more appropriate. How to best combine
the two strategies is an open question.

8. Conclusion

In this paper, we studied a distributed and morphology-
independent strategy for adaptive locomotion in modular self-
reconfigurable robots. We described a simple reinforcement
learning strategy and proposed a heuristic for accelerating the
learning.

We applied the strategy to optimize both simple actions
and gait-control tables. We presented simulated and physical
experiments for a range of different robots constructed from
ATRON and M-TRAN robots. In simulation we studied a learning
quadrupedal robot and found that from its independently learning
modules, a higher-level learning strategy emerged, which was
similar to localized random search. We performed experiments in
simulation of ATRON modules, which indicate that the strategy
is sufficient to learn quite efficient locomotion gaits for a large
range of different morphologies up to 12-module robots. A typical
learning trial converged in less than 15 min depending on the size
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and type of the robot. Further, we performed experiments with
physical ATRON robots online learning tomove. These experiments
validated our simulation results. Moreover, we experimentally
found that the strategy was able to optimize gait control tables
for both joint-limited ATRON and M-TRAN modules. However,
as anticipated, the increased size of the learning space came at
the cost of prolonged time to learn a gait. Yet, even the most
complex gaits are typically learnedwithin onehour. In addition,we
presented simulated experiments with faults, self-reconfiguration
and module loss that illustrated the advantages of utilizing a
distributed and configuration-independent learning strategy. We
observed that the modules after self-reconfiguration were able to
learn to move with a new morphology and adapt to module faults
and loss. In simulation, we studied the scalability characteristics
of the learning strategy and found that it could learn to move a
robot with up to 60 modules. However, the effects of divergence
in the learning would eventually become dominant and prevent
the robot from being scaled further up. We also found that the
convergence time increased slowly, approximately linearly, with
the number of modules within the functional range.

In conclusion, we found that learning can effectively be
distributed by introducing independent processes that learn in
parallel for online, locomotion-gait learning in modular robots.
Furthermore, this approach has several advantages compared to
centralized methods, such as simplicity in implementation, low
resource requirements, morphology independence, adaptability to
self-reconfiguration, and inherent fault tolerance.
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