R2P: An open source hardware and software modular approach to

robot prototyping

Andrea Bonarini, Matteo Matteucci, Martino Migliavacca*, Davide Rizzi

Department of Electronics and Information, Politecnico di Milano, Italy

1. Introduction

The development of new robotic applications is challenging,
as competences from many domains are required; mechanical,
electronic, and software components are involved in every robot
and the overall success of a robotic application depends on the
interplay of all these components. Therefore, a robot prototype
becomes a precondition for any robot development aimed both at
the validation of some research result or at the development of a
new robotic product. However, the time and effort needed to set
up a prototype, together with the complexity of such a task for

* Corresponding author.

E-mail addresses: bonarini@elet.polimi.it (A. Bonarini),
matteucci@elet.polimi.it (M. Matteucci), migliavacca@elet.polimi.it,
martino.migliavacca@gmail.com (M. Migliavacca), davide.rizzi@mail.polimi.it
(D. Rizzi).

non-technical domain experts, often prevent the development of
interesting ideas and an effective time to market.

On the other hand, for the vast majority of robotic applications,
it is possible to identify a reasonably small set of common func-
tionalities, which can be implemented in a standard way by mod-
ular components. Modularity enables the re-use of components in
different products and prototypes, thus enlarging the share set, re-
ducing costs, in terms of both time and money, and improving reli-
ability too. Standardized components have been widely recognized
as fundamental in cost effective prototyping, design, and mass pro-
duction. For instance, in the automotive field, the car platform is
often designed to share mechanical and electronic parts among
different models so that car manufacturer can reduce costs and
leverage on platform sharing [1]. In software engineering, software
components, generally organized in libraries or frameworks, are
re-used among different projects and by several software produc-
ers [2].

http://dx.doi.org/10.1016/j.robot.2013.08.009
mailto:bonarini@elet.polimi.it
mailto:matteucci@elet.polimi.it
mailto:migliavacca@elet.polimi.it
mailto:martino.migliavacca@gmail.com
mailto:davide.rizzi@mail.polimi.it

In recent years, several development frameworks [3-7] have
been proposed to assist researchers in the design of robotic ap-
plications. However these frameworks are focused on high-level
software development, with desktop-level computers as reference
platforms, and they do not take into account embedded firmware
development on resource-constrained platforms or the reuse of
hardware components as a whole. To the best of our knowl-
edge, the only middlewares targeted to embedded robotic devel-
opment are COSMIC [8], which later evolved in FAMOUSO [9], and
Aseba [10]. FAMOUSO is focused on asynchronous, event driven,
communication, and it is mainly targeted at the development of
multi-robot systems. Despite being a complete framework for such
applications, it does not suit the requirements of a distributed ar-
chitecture where also periodic, hard real-time, communication is
needed, e.g., to implement distributed control loops. Aseba is a de-
velopment suite which includes a graphical IDE, an easy to use
scripting language and deployment tools, but it focuses on the con-
trol of swarms of small robots rather than on the implementation
of modular architectures for robots, and, like for FAMOUSO, it is not
focused on real time applications [10]. Nevertheless, both projects
are software frameworks, and they do not provide any hardware
modularity.

On the other side, some modular hardware platforms, such as
Arduino [11] or Lego NXT [12], are often used to build simple
robots. These platforms feature a generic control board, running
a low-cost microcontroller, and a set of simple sensors and actua-
tors which can be attached to the corresponding expansion ports.
The user is also provided with a sample code to interface with the
supported devices, allowing an easier development with respect
to bare-metal systems. Such platforms are generally targeted at
toy-like robotics, where small actuators and simple sensors are
involved. The centralized approach and the communication bus
exploited make it impossible to connect devices farther than a
few dozen centimeters. Moreover, the programming approach fol-
lowed by most simple platforms, i.e., a single loop (the superloop),
is not suitable for complex applications and it does not guarantee
real-time execution.

Some modular mobile robotic platforms have been proposed
too, such as the E-puck educational robot [13], the Khepera
robot [14] and others [15,16]; all of them offer a mobile wheeled
base to which accessories and custom boards can be added. Target
applications are mainly related to swarm robotics, where many,
small, robots are involved. However, such platforms aim only at
controlling the mobile base they are designed for and do not allow
to build different, general purpose, robots.

More powerful, modular solutions that provide hardware de-
vices, software components, and tools for control and application
development are adopted in the industrial automation field, e.g.,
Programmable Logic Controllers (PLC), but characteristics in terms
of performance, costs and energy consumption are not compatible
with requirements of most mobile robot applications and, in gen-
eral, of affordable robot prototyping.

To fill the gap between toy-like, often closed, robot platforms
and full-fledged industrial devices, we have developed Rapid Robot
Prototyping (R2P [17]), an open source, modular, hardware and
software framework, where off-the-shelf modules (such as sen-
sors, actuators, and controllers) can be combined together in a
plug-and-play way to implement complex robotic applications.
R2P relies on the principle that the functionalities identified in
a robot application can be implemented by modules not only at
the software level, as it is common in most frameworks, but also
at the hardware level. Basic functionalities such as motor con-
trol, distance measurement, inertial navigation are implemented
by specific, standardized hardware modules, with corresponding
firmware, that can be plugged on a common bus and interact in
real-time. This makes it possible to develop and re-use modules

which have been widely tested and can be replicated in different
applications, bringing at a hardware level the principles of modu-
larity that have become common practice in fields such as automo-
tive and software development.

R2P is not designed for a specific domain: target platforms go
from simple mobile robots, including toy-like ones, up to mobile
and service robot platforms, as well as unmanned aerial or land
vehicles. R2P does not provide mechanical components, while it is
focused on the electronics needed by common robotic applications,
and on the tools needed to develop the embedded software which
controls the robot. As a consequence, R2P modules can also be
exploited to control existing mechanics, e.g., a robotic arm or an
autonomous wheelchair, relying on off-the-shelf hardware devices
and a simple-to-use programming environment. The real limits
of R2P, at the actual stage of development, are imposed by the
modules already available; moreover, as R2P is an open source,
modular, framework, it could be extended with additional modules
to cover other application fields.

Section 2 of this paper describes the top down approach
adopted to develop the prototype of a robotic application and un-
derlines the typical issues we might have to face. In Section 3 we
introduce the internals of R2P design together with some details
about its implementation, while Section 4 describes some of the
hardware modules we have developed and released in open source.
In Section 5 a case study is presented using available modules to
build an omnidirectional base, and some results about R2P perfor-
mance are reported. Section 6 concludes this paper, summarizing
the advantages of R2P in robot development.

2. Robot development: from the idea to the prototype

The design of a new robotic application usually starts with the
identification of its functional specifications: what do we need to
have our robot achieving its tasks? Once required functionalities
are identified, it starts an often painful process aimed at the iden-
tification of appropriate hardware and software solutions, their in-
tegration, and the set-up of a prototype to test the overall idea.
Available components usually drive the design of the prototype
and this is far away from the user-centered design approach [18],
now common in most real market applications, where users and
domain experts are deeply involved in the development process.

In the first phases of prototype development, components are
chosen from a vast range of possibilities offered by markets that are
still not directly oriented to robot development. From one side, we
have the so-called industrial components, providing often ex-
pensive, yet robust, solutions; from the other side we have the
low-end hobbyist components, often much cheaper, but less per-
forming. Components are then selected considering both their
characteristics and the possibility to put them together, facing
problems that start from power supply and go up to physical and
logical interfacing. In the following paragraphs, we present a re-
view of classical issues we usually face in the process of prototyp-
ing a robotic application.

Wiring. Usually, to build a robot prototype, we integrate devices
from different vendors, which need different power supplies and
exploit different physical connectors. Additionally, all the devices
rely on different data connections and adopt different communica-
tion protocols, so we need a separate data cable for each of them.
This, in turn, means that we have a lot of wiring on the robot,
adding complexity and points of failure to the system.

Firmware development. In order to manage the various electronic
devices present on the robot, embedded boards are often consid-
ered. In general, they are equipped with a microcontroller that
takes care of low level communication with other devices, pro-
cesses data from sensors, runs on board control loops, and pos-
sibly communicates with an external computer. Working on

S'® 0 O O el
Wl [}
Proximity Motor 1 Motor 2 Motor 3 Power '8 8 Qv
- Obstacle - Motor - Motor - Motor - Battery Z||= =
detection controller controller controller Monitor L@ 8
- Collision - Inverse - Forward o|| © w
avoidance kinematics kinematics E E L
o
ollo
A [" ~ L) " " [~ Embrl/O || & ||» o
—/ U O (VM)
S W U N S—
' ~
® Publish/Subscribe
h 4 X Sync Middleware
Gateway \
»> /teleop RTCAN
'))) ((‘. « fodometry (
= /proximity ChibiOS/RT + HAL
<« /battery

(a) The architecture of a robot prototype built exploiting R2P framework.

\')

«=e= CAN Bus + Power

Hardware

RJ45 Connector

(b) Firmware structure of a basic R2P
module.

Fig. 1. R2P prototyping environment.

embedded hardware is often a difficult task for non-experienced
developers, as most people that still have a computer programming
background are not familiar with firmware development (i.e., con-
figuring hardware registers, handling interrupts, and other specific
knowledge). The synchronization of the various tasks running on
the robot is another critical challenge, which results in a huge ad-
ditional effort for developers of robotic systems. To these extents,
a Real Time Operating System (RTOS) can support developers to
write firmware code easier, and in a more reliable way. An addi-
tional support comes from a Hardware Abstraction Layer (HAL),
which abstracts the hardware implementation of different, low-
level peripherals (e.g., analog to digital converters, timers, commu-
nication interfaces), relieving the developer from configuring the
corresponding registers on the microcontroller and making easier
the port of existing code to different platforms.

Communication protocol. Communication handling is another key
aspect, as several devices need to exchange data in a reliable way
to run a robotic system. Hardware components on a generic robot
have different communication requirements which the communi-
cation protocol must consider. For instance, a first source of com-
munication in a distributed robotic system are control loops, which
need to exchange data between sensors and actuators. These data
transfers are, generally, periodic, deterministic and known at de-
sign time. Periodic communication are best handled in a time-
triggered way, to schedule transmission occurrences, preventing
collisions and reducing the jitter. Besides the sensors used in con-
trol loops, in a robotic system, we find other kinds of data sources;
for instance, proximity sensors and bumpers produce useful data
when triggered by some event, like approaching an obstacle, and
the most important factor is to react to new readings as quickly
as possible. If sensor readings are transmitted periodically, the
only way to reduce the worst case latency is to increase the up-
date frequency, which leads to a waste of bandwidth when data
are not relevant. Using event-triggered transmissions saves band-
width and, generally, reduces latency. Mixing time-triggered and
event-triggered traffic on the same communication channel is not
trivial, and communication errors can compromise the entire sys-
tem functionality.

Software modularity. A modular implementation of software com-
ponents supports massive reuse of existing code through differ-
ent projects, which dramatically boosts the development time of
new applications, as shown by many software development frame-
works for robotics [3-6]. This effective approach is commonly

followed to develop high-level software, but firmware running
on resource-constrained, low-cost microcontrollers, which cannot
run such frameworks, is often coded from scratch. As a conse-
quence, low-level code reuse is difficult, requiring adaptations and
customizations from project to project.

Development tools. The development of a robotic application from
scratch, using components from different vendors, may require
distinct tools, and this adds complexity to the process. Moreover,
when a prototype is ready and needs testing, developers often
need to write their own debugging tools, which may require as
much resources as the prototype development itself. Also when
the debugging phase is ended and only the high level behavior of
the system needs to be tuned, common deployment techniques
of embedded applications, like firmware flashing, slow down the
refinement process, unless developers create specific tools, with
additional efforts.

3. R2P: rapid robot prototyping

In R2P, we consider a robot as a distributed system of hardware
devices (e.g., sensors, actuators, controllers) and software compo-
nents (e.g., sensor filtering and conditioning, control loops, plan-
ning algorithms), implementing the basic functionalities required
by its specific application. R2P provides the user with a set of hard-
ware modules, and the corresponding firmware, that implement
such basic functionalities. These modules can easily be combined
as they are to develop a complex robotic system, and, at the same
time, they are open to further developments, where improvements
of the single module can be done without the need to reimplement
the whole system.

3.1. Physical connection: single power and data link

The first element to be defined to connect hardware modules
is the physical connection. We decided to use a single connector
to transport both power and data, to make the prototype building
process as easy and fast as possible. Power supply requirements
are usually not consistent among different electronic devices, then
a compromise must be reached. To this extent, modules can be
divided in two categories: modules requiring only little power, e.g.,
most of the sensors, and modules requiring much higher power,
e.g., motor drivers. We decided to restrict the R2P bus to operate
at 5V, which suits most of the requirements of todays electronic

Fig. 2. A set of R2P modules connected together: the daisy-chain connection
schema reduces wiring and eases the addition of new modules.

devices, while modules that require a higher power supply must
rely on an auxiliary connection and power source. To reduce wires
and connections in the system, a daisy chain wiring schema is
exploited, where each module has two ports to connect to the
previous and the next component (see Fig. 2). The bus is designed
to handle up to 20 hardware modules, each consuming 200 mA
maximum, over an up to two meter long cable. If more modules
are present, or the bus length increases, an additional power supply
module has to be added to the chain.

We have reviewed different communication standards to
exchange data between modules [19], and we chose the CAN bus,
which shows some features that best suit a modular architecture:

e it is a bus, so many devices can be connected on a single line;

e it is widely adopted in many fields, including automotive, so
that most of today microcontrollers have an integrated CAN
controller;

e it provides hardware bus arbitration, which makes the commu-
nication protocol simple;

e CAN controllers can filter messages at the hardware level, thus
reducing processing requirements;

e CAN transceivers are quite rugged, so they ideally suit the needs
of fault tolerance intrinsic in prototyping, and work reliably in
harsh environments.

The CAN bus has a maximum data rate of 1Mbps, which is
enough for a distributed system of smart devices where only high
level processed data must be sent over the network, and raw data
are processed locally on the modules [19]. Devices with higher
traffic requirements, such as a camera streaming images for remote
control, must rely on a different connection (e.g., Ethernet or USB).
With reference to the last example, we would like to stress that
the distributed philosophy of R2P would suggest the use of smart
cameras that can elaborate images on board and share only high
level information.

We chose a standard RJ45 Ethernet patch cable as physical
connection, as it matches CAN bus specifications [20] to guarantee
1 Mbps operation in harsh environments and it is easily available.
A pin header footprint is also present on each board, as it provides
space saving and a simple connection alternative when modules
are close and RJ45 jack/plug pairing space is a problem.

3.2. RTOS and hardware abstraction layer

The use of an operating system, in addition to the real-time re-
lated aspects, greatly helps in writing software even for small em-
bedded systems. A reliable RTOS relieves developers from a huge
programming effort, so that they can concentrate on debugging
and improving the high level code and functionalities, without
worrying about low level core functionalities. In addition, software
written to run above an OS is also more portable between differ-
ent hardware and operating systems, as long as the OS provides a
common interface, as it usually does.

We have evaluated several open source real-time operating sys-
tems and finally we have chosen ChibiOS/RT [21] for its portability,
rich features set, extremely high efficiency and because it was the
only offering a complete Hardware Abstraction Layer (HAL). Any-
way, a deep review of the available open source real-time op-
erating systems is out of the scope of this paper. ChibiOS/RT is
designed for deeply-embedded, real-time applications where ex-
ecution efficiency and compact code are important requirements.
Its kernel size, with all features enabled, is about 8 Kb on ARM
Cortex-M3 platforms. With a context switch time of about 1 uS
on a 72 Mhz Cortex-M3 platform, it is also the best performing
RTOS we have tried. ChibiOS/RT exposes a rich set of primitives,
like threads, virtual timers, semaphores, mutexes, messages, mail-
boxes, event flags, queues and I/O streams. Writing software on top
of these features is simple also for users without any embedded
programming background, while writing firmware for a microcon-
troller from scratch requires experience and know how, besides a
deep understanding of the specific hardware.

ChibiOS/RT also provides a Hardware Abstraction Layer (HAL)
supporting a variety of abstract device drivers on various plat-
forms. A Hardware Abstraction Layer (HAL), which gives consistent
and reliable access to the peripherals of the microcontroller, can
help most of the developers, so that they can interface with the
hardware without needing specific knowledge. ChibiOS/RT HAL
supports modular, portable code that relies on common low level
functions and drivers, as it decouples the firmware code from the
specific hardware, and simplifies software that needs to interface
with external devices. In R2P, the HAL API can also be accessed from
scripts running on the Embrl/O Virtual Machine, described in Sec-
tion 3.5.1, making hardware interfacing simple also for novice pro-
grammers.

3.3. Real-time communication protocol

To handle the communication between R2P hardware modules,
we developed RTCAN [22], a real-time CAN bus protocol targeted
at robotics applications. RTCAN design comes from the analysis of
existing CAN bus protocols, to identify the advantages of different
proposed approaches with respect to the requirements of robotic
systems, which have been pointed out in Section 2; a detailed de-
scription of the motivation which lead us to the development of a
new protocol, and of its internals, is provided in [22]. RTCAN sup-
ports both the time-triggered and the event-triggered transmis-
sion paradigms, exploiting the best of the two, to satisfy the needs
of robot designers: limited transmission jitter for control loops, low
delivery latency to quickly react to events, and scheduling flexibil-
ity to easily add features, i.e., networked nodes, to an existing sys-
tems.

3.3.1. RTCAN message types
To support the communication requirements of robotic sys-
tems, RTCAN defines three distinct message types:

e Hard real-time messages (HRT) are periodic messages, e.g., from
distributed control loops; they are deterministic, their dead-
lines are absolute in time and should never be missed. Control
loops are highly affected by the presence of jitter [23], which in-
troduces variable delay and, thus, may induce overshoots of the
control action and instability. To guarantee the correct execu-
tion of critical activities, critical messages need to be delivered
on time and with low jitter.

e Soft real-time messages (SRT) are event-triggered messages,
e.g., new sensor readings; they are not periodic neither deter-
ministic, but they need to be transmitted with the lowest possi-
ble latency. Deadlines are relative and, if missed, the system can
still operate. SRT message transmission must not interfere with
the exchange of HRT critical messages. To reduce the latency of
non-deterministic messages, while optimizing the bus exploita-
tion, they have to be scheduled with some best-effort policy.

012345678 910111213141516 17 18 1920 21 22 23 24 25 26 27 28

HRT | 000000 Message ID Fragment #
SRT | Laxity Message ID Fragment #
NRT | 111111 Message ID Fragment #

Fig. 3. RTCAN priority and message ID encoded into the CAN bus 29-bit Extended
ID.

e Non real-time messages (NRT), e.g., logging messages, do not
expire in time; they can be delivered without any latency con-
straint, exploiting free resources when available.

3.3.2. Bus access arbitration

The CAN bus features a carrier-sense multiple-access (CSMA)
media access control (MAC), which is based on the ability of
CAN controllers to detect the bus status while transmitting. CAN
transceivers have open collector outputs, and data is transmitted
through a binary model of dominant and recessive bits where
dominant is a logical 0 and recessive is a logical 1. The controller
reads back the bus status while it transmits the arbitration field of a
CAN frame, and, if a dominant bit is recognized while it was trying
to transmit a recessive one, it knows that the arbitration is lost
and the node becomes a receiver. This allows automatic bus access
arbitration, given that all the competing messages have unique
values in the arbitration field and that the transmissions start
during the same bit time. As a consequence, the CAN bus is well
suited for fixed-priority event-triggered communication, where
high-priority messages win arbitration on low-priority ones; the
drawback is that delivery latency depends on bus load, as the
transmission of a message can always be preempted by a higher-
priority request.

To extend CAN bus applications to distributed control systems,
where temporal determinism and low jitter are mandatory, several
protocols to handle time-triggered traffic on the CAN bus have
been presented and reviews are available [24-26]. Temporal
determinism is guaranteed by pure time-division multiple-access
(TDMA) approaches: bus access is assigned by means of time slices
associated with transmission occurrences. RTCAN follows a pure
TDMA approach for HRT messages, which reserve bus access in a
calendar, while SRT and NRT messages are transmitted exploiting
the hardware CSMA arbitration of CAN controllers.

3.3.3. RTCAN communication cycle

The key aspect to effectively combine TDMA and CSMA ap-
proaches is temporal isolation: event-triggered transmission re-
quests should not compromise time-triggered traffic. To this
extent, RTCAN relies on periodic messages, named sync messages,
sent by a master node to align the local clocks on all nodes. The in-
terval between two sync messages defines a communication cycle,
which is in turn divided in several time slots. Each time slot can be
reserved for the time-triggered transmission of an HRT message (or
a part of it, if fragmentation is needed) or can be available for SRT
and NRT messages. Time slots are reserved by a centralized sched-
uler running on the master node, which communicates to all other
nodes the reservation plan for the beginning cycle in the payload of
the sync message. The reservation plan is a simple bit mask where
a 1 denotes a slot reserved to transmit an HRT message, and a 0
means that the slot is free for the CSMA arbitration of other mes-
sages. An example of RTCAN communication cycle is reported in
Fig. 4, with the corresponding reservation mask; in this example
each node registers 3 HRT messages with different periods, which
are inserted in the reservation calendar by the scheduler. Time slots
length is application dependent: it should be at least as long as an
empty CAN 2.0B frame, and no longer than a full one (from 64 to
128 bit-times, plus the overhead of bit stuffing imposed by the CAN

bus). The maximum number of time slots within each cycle is lim-
ited by the 8 bytes payload of CAN frames, which gives a temporal
horizon of 64 time slots for the reservation mask. The choice of slots
per cycle determines the maximum throughput: smaller slots give
higher bandwidth if many small messages are sent on the bus, but,
as the reservation mask is limited in size, the frequency of the sync
messages must be increased wasting some bandwidth.

3.3.4. HRT message scheduling

HRT messages are time-triggered, they must always be deliv-
ered in time with the lowest possible jitter. In RTCAN, HRT mes-
sages are periodic, future transmission occurrences are known
a-priori, and the scheduling process reduces to admission control
and phase displacement, assigning the first transmission slot to
each message, to avoid temporal overlaps.

Admission control is done by checking that the requested
transmission period is not relatively prime to other scheduled
transmission periods. Then, an initial phase displacement, which
determines the time slot for the first transmission, is assigned by
the scheduler to the HRT message. Messages sent at higher rate,
i.e., with lower period, limit the number of available phase dis-
placements, thus reducing the number of schedulable messages.
This simple approach to HRT messages scheduling restricts the
range of concurrent scheduled periods, but removes transmission
jitter (besides variable latency of the communication media, which
is negligible on the CAN bus). Moreover, having control loops run-
ning at periods which are relatively multiple is common on robotic
systems; then such a limitation is, generally, not a problem. Fig. 4
reports an example of RTCAN calendar, where slots have been re-
served to three HRT messages with different periods.

Given the initial phase displacement, each node can compute
the next reserved time slot for an HRT message simply adding the
period. In other words, the scheduler and the admission control
are centralized on the master node, but the reservation calendars
are local. Only the master node needs to know all HRT message
reservations, updating the global calendar to generate the reser-
vation mask sent with the sync message; this is required to avoid
event-triggered transmission attempts in reserved time slots. Us-
ing a centralized scheduler also facilitates online dynamic schedul-
ing, preserving flexibility.

3.3.5. SRT and NRT message arbitration

SRT messages are triggered by events, their delivery latency
should be low but they must not interfere with HRT communica-
tion. They are sent only in slots marked as available in the reser-
vation mask, and compete for the bus using the CAN hardware
arbitration. In order to reduce latency, while enhancing resource
exploitation, deadline-based dynamic schedulers are preferable
with respect to fixed priority schedulers or Rate Monotonic sched-
ulers [27,28]. The scheduling policy we have adopted for soft real-
time messages is inspired by Earliest Deadline First (EDF) and Least
Laxity First (LLF) schedulers: an SRT message increases its prior-
ity while it is approaching its deadline [29,30]. To exploit the CAN
bus carrier-sense multiple-arbitration, the laxity of the message
is encoded in the first bits of the CAN frame arbitration field, as
shown in Fig. 3. In this way messages near their deadline have
higher chances to be transmitted with respect to messages with
far deadlines thanks to the hardware arbitration. Laxity can be en-
coded linearly or using a logarithmic scale, resulting in a finer res-
olution for nearer deadlines, and a coarser resolution for further
deadlines [31]. The remaining bits of the arbitration field include
an ID to identify RTCAN messages, and a fragment counter used to
handle messages longer than the payload of a CAN frame, as ex-
plained in Section 3.3.6.

NRT messages are handled as SRT ones, but their transmission
priority is always lower (the laxity bits are all recessive) and it is
never increased; thus they always lose the arbitration against SRT
messages.

voir [sToal T Tl T Tl T Tl T ol T T T T Wl TT T 11 [T 115
vz [T Tal T Tal T Tal T el T Tal T T 1T Tal T 11 J-[TTT]
s [T Jmel [l T Tl T el T Tl T 1T Tl T [l T

Fig. 4. The HRT calendar returned by the scheduler and the respective reservation mask. Hy messages have a 1 ms transmission period, Hg 5 ms and Hc 10 ms. S is the sync
message from the master node. Empty slots are available to transmit SRT and NRT messages.

3.3.6. Fragmentation

Fragmentation is handled by RTCAN as well; payloads longer
than 8 bytes, which is the maximum payload of CAN frames, are
fragmented and transmitted in sequence. A fragment counter in
the CAN arbitration field identifies fragmented messages, and they
are concatenated during the reception. This simple approach ex-
ploits the CAN bus guarantee that packets are received in the same
order as they are transmitted. All RTCAN messages can be frag-
mented: HRT ones will span over more reserved time slots, while
SRT ones must deliver the last fragment before their deadline.

RTCAN is focused on real-time communication and not on fault
tolerance; receive errors (e.g., overruns or checksum mismatches)
are not handled by RTCAN: the message is just signed as corrupt
and retransmission requests are eventually handled by higher
layer protocols.

3.4. Publish/subscribe middleware

The modular, distributed, approach to robot prototyping
proposed by R2P extends also to the firmware running on the
hardware modules. Most software development frameworks foster
separation of concerns and software decoupling, to support an
easier design and maintenance of applications and to enable code
reuse through different projects. R2P brings these concepts to
embedded software development, featuring a lightweight publish/
subscribe middleware which is in charge of handling message
passing between both local and remote software components.
Fig. 5 reports an example of firmware developed with R2P and its
middleware; please refer to the use case presented in Section 5 for
details about the specific application.

3.4.1. Nomenclature

R2P hardware boards are called modules, while nodes are
the software components which perform computation. Data is
exchanged among nodes by messages, which are simple data
structures encoding some information. Nodes send messages by
advertising a publisher about a specific topic, which identifies the
data content. On the other side, nodes can declare a subscriber on
the same topic, and the middleware manges the association with
the corresponding publisher.

3.4.2. Software nodes

Nodes perform simple tasks, each of which satisfies a specific
functional requirement. They are identified by a string, which is
unique for nodes within a single module. The overall system is
then composed of several nodes, running on the same module or
distributed on a network of modules. Each node subscribes the
topics it needs to operate and defines the topic on which it will
publish data, as explained in the following section. To support safe
operation of robots, nodes may implement also special methods
to handle system status changes (e.g., run, stop, fail). Thanks to
this loosely-coupled communication paradigm, nodes can easily be
modified, updated, and replaced without affecting the rest of the
system: the only requirement is to subscribe and publish the same
topics.

ROS
teleop

Odometry

Proximity
visualizer

Battery

visualizer gauge

"~../teleop':/odometry ‘,‘Yproximity ,,4'/‘battery

“-a] ROS
gateway

/battery
Obstacle Battery
detection monitor
Jodometry

Motor Motor Motor
controller 1 controller 2 controller 3

/encoderl \/encoder2 //encoder3

Forward
Kinematics

Fig. 5. Example of firmware architecture. Ellipses represent R2P nodes, while
arrows show the topics. Circles are ROS nodes running on the remote PC.

3.4.3. Message topics

Nodes exchange data by sending and receiving messages on a
given topic. The content of messages is specified by standard C
data structures, composed of typed fields, and their definition is
common to all nodes. Topics are declared by publishers, which also
specify the data type of published messages. Each topic is strictly
related to a single message type: defining a topic also determines
the data type published on it. In other terms, following the pub-
lish/subscribe paradigm, communication is addressed by data con-
tent, not by source or destination. Topics are identified by simple
strings, and they are uniquely identified on the network as mod-
ule_name/node_name/topic.

3.4.4. Publishers and subscribers

Publishers and subscribers handle message passing between
nodes producing data and nodes consuming data. When a pro-
ducer node advertises a publisher on a given topic, the middleware
broadcasts the advertisement to all nodes. In the same way, con-
sumer nodes register their subscribers to the middleware, which
associates them with the respective publishers. To obtain asyn-
chronous operations, subscriptions can be queued, to be decoupled
from the advertisement, and they will become active when a pub-
lisher on the same topic is advertised. After at least one subscrip-
tion has been registered, producers can start publishing messages.

Incoming messages can be handled by subscribers both declar-
ing callbacks, which are invoked on each message reception, or
through polling. To avoid continuous polling, a node can suspend
its execution, possibly specifying a timeout.

Publishers and subscribers are also in charge of allocating
memory to store messages, as, on resource-constrained devices,
dynamic memory allocation functions (e.g., malloc() and new())
are generally not supported. To this extent, each publisher in the
R2P middleware manages a memory pool. Subscribers declare a
queue for incoming messages, and the memory reserved to the
corresponding buffer is yield to the publisher, which adds it to
the memory pool. Messages are then stored in the shared memory
area: they are passed by reference and the allocated memory is
available again when all subscribers consumed and released the
message. This mechanism has two advantages: distinct subscriber
queues guarantee that slow, low-priority, consumers do not
prevent publishers from delivering messages to other nodes, while
the shared memory pool avoids message copying, which would
introduce latency.

node .advertise (&proximity_pub);
node.advertise (&obstacle_pub);

while (node.run()) {
measure = adcConvert(...);

proximity = proximity_pub.alloc();
if (proximity) {
proximity->distance = measure;
proximity_pub.publish(distance);
}

obstacle = obstacle_pub.alloc();
if (obstacle && (measure < TRESHOLD)) {
obstacle->distance = measure;
obstacle_pub.publish(obstacle);
}
}

Listing 1: Publisher code sample

In a modular, distributed, hardware and software architecture
like R2P, publishers and subscribers can be deployed either on a
single module or across a network of modules, depending on the
application. From the user point of view, there is no difference
between local and remote messaging. If a local publisher has
remote subscriptions, a remote subscriber is created, in charge of
transmitting messages on a specific transport, e.g., the CAN bus. In
the same way, the subscribing module initializes a remote publisher
that locally publishes messages received on the transport. The
transmission queue on the remote publisher is still defined by
the subscriber; if more remote subscriptions are instantiated, the
longer queue determines the actual buffer length.

R2P middleware syntax follows the coding style common to
many publish/subscribe frameworks, helping users in writing
embedded software in the same way they are used to do on
computer systems. The code snippets in Listings 1 and 2 are relative
to the use case presented in Section 5. Listing 1 shows the code
run by a publisher node, which publishes proximity measures on
the /proximity topic, and only the measures which are under a
given threshold on the obstacle topic. Memory is allocated to the
new message, if available, which is then filled and published. As
an example of subscriber, refer to Listing 2, which shows a node
subscribing to two different topics. The node waits for messages
from any of the topic it is subscribed to, and its execution will
be restored by the middleware on new receptions or, eventually,
after a timeout. Whenever a message is received on the /obstacle
topic, a routine checks if it is on the current path of the robot
and, eventually, the velocity set point is overridden. The resulting

velocity is then published to the other nodes. When the node has
consumed a message, the message is released and the memory is
available again for future allocation.

node .subscribe (&obstacle_sub);
node .subscribe (&velocity_sub);
node .advertise (&velocity_pub);

while (node.run()) {
node .wait ();

new_cmd = velocity_sub.get();

if (new_cmd) {
current_cmd->release ();
current_cmd = new_cmd;

}

obstacle = obstacle_sub.get ();
if (obstacle) {
avoidCollision(current_cmd, obstacle);

}

velocity = velocity_pub.alloc();
if (velocity) {
velocity->setpoint = current_cmd->setpoint;
velocity_pub.publish(velocity);
X
}

Listing 2: Subscriber code sample

3.4.5. Real-time support

R2P software nodes are implemented by threads, and they
are scheduled for execution by the underlying RTOS. Execution
priorities are assigned to nodes, in order to prevent critical tasks
from being blocked by less important ones. Developers can take
advantage of the many features offered by the RTOS to synchronize
local nodes, manage mutual access on hardware resources, and so
on.

To extend real-time support to distributed communication, the
middleware defines 3 classes of publishers:

e Synchronous real-time publishers are time-triggered and they
publish periodic messages, e.g., from distributed control loops;
users specify the update rate and provide a callback to get the
content of the message, which is automatically updated and
broadcast. If the memory pool is empty, then messages cannot
be published, the publishing node is signaled.

e Asynchronous real-time publishers are sporadic, i.e., event-
triggered; a deadline can be specified, defining the time limit by
which messages must be delivered to subscribers. If a deadline
is missed, the publishing node is signaled.

e Non real-time publisher, which do not expire in time, e.g.,
logging messages. If the message queue is full, the node is
suspended, waiting for the next available slot.

Local and remote subscribers do not differentiate between
synchronous, asynchronous and non real-time publishers, but a
node can specify a timeout when waiting for messages, thus
noticing missed deadlines.

3.4.6. Software deployment

An easy software deployment process is mandatory when
multiple hardware modules are distributed through the system,
each running its own firmware. R2P provides users with a dynamic
loader for software nodes: each board is flashed with a static
firmware, composed of the RTOS, RTCAN, the middleware and the
core libraries, while the user application can be dynamically loaded
and updated at run-time by means of uploading middleware
nodes. Nodes are firstly compiled on the host machine and

partially linked to object files common to all R2P modules; at
the moment of loading on the target module, code sections are
relocated to the correct addresses and the linking is finalized. All
the linking and relocation process is implemented with common
GNU ELF tools, avoiding any specific, non-standard, techniques.
The dynamic loader allows users to easily deploy, configure and
update their applications, without needing physical access to the
hardware modules. Advanced developers can still access the on-
board standard programming interface to directly flash custom
firmwares.

3.5. Development tools

R2P also offers tools to support the development of the software
that runs the robot. These tools support writing the firmware
code in an easy and fast way, and speed up the deployment and
debugging phases.

3.5.1. Embrl/O scripting language

An optional component, integrated in our framework to make
the development of embedded firmware even easier, is Embrl/O,
a small virtual machine that can run scripts on the embedded
target. Embrl/O is a port of the Embryo Virtual Machine [32]
to embedded platforms, with custom additions to interface with
hardware devices and events. Scripts are written in the PAWN
language [33], which is a typeless, 32-bit extension language with a
C-like syntax focused on fast execution speed, stability, simplicity,
and a small footprint.

#include <hw>
#include <mw>

Omessage ("SPEED_TOPIC") {
new speed;

speed = getMessage ("SPEED_TOPIC");
setSpeed (MOTOR_LEFT, speed);
setSpeed (MOTOR_RIGHT, speed);

}

Omessage ("STEER_TOPIC") {
new steer, left_speed, right_speed;

steer = getMessage("STEER_TOPIC");
left_speed = getSpeed(MOTOR_LEFT);
right_speed = getSpeed (MOTOR_RIGHT) ;
speed = (left_speed + right_speed) / 2;
setSpeed (MOTOR_LEFT, speed - steer);
setSpeed (MOTOR_RIGHT, speed + steer);

}

Q@inputPin (EMERGENCY_BUTTON) {
setSpeed (MOTOR_LEFT, 0);
setSpeed (MOTOR_RIGHT, 0);

}

main() {
print ("Hello world from EmbrI/0 script!\n");

while(1) {
togglePin(LED1) ;
delayMs(500) ;
}
}

Listing 1: Sample Embrl/O script to control a differential drive robot

In Embrl/O we have extended the syntax of the original lan-
guage adding a custom notation for the identification of event han-
dlers functions. Users can thus specify how to react to events such
as hardware interrupts (e.g., a new reading from the A/D converter)
or software notifications (reception of a new message from the
middleware). To improve execution speed, Embrl/O scripts are not
interpreted on the target device, but compiled to Embrl/O opcodes

on a host computer. On the virtual machine each opcode is an in-
dex in a table that contains a jump address for every instruction,
maximizing execution speed. Compiled scripts are then dynami-
cally loaded to the target module through the R2P network and
executed on the system without any need to reprogram the cur-
rent firmware. To save RAM memory, the script code is saved to
the flash memory of the microcontroller in a reserved area.

Each virtual machine is a ChibiOS/RT thread, so multiple scripts
can run at the same time, while task scheduling still relies on
the underlaying RTOS. The execution overhead of Embrl/O scripts
is significantly small compared to other scripting solution, e.g.,
Embedded LUA [34] and Python-on-a-Chip [35], as the virtual
machine is register based and optimized for performance, resulting
in smaller code size and faster execution [36]. Nevertheless,
Embrl/O should be used only to write the high-level code that
controls the behavior of the robot, while resource consuming tasks
should rely on software modules which can be called by scripts,
but are implemented in native language. A simple script to control
a differential drive robot is reported in Listing 1.

3.5.2. uROSnode

Among the many available software frameworks to develop
robotic applications [4-7], the Robot Operating System (ROS) is cur-
rently the most widely adopted in academia and research laborato-
ries. ROS is an open source project which provides communication
primitives, libraries, visualizers, package management, and more,
to help software developers create robot applications. To support
the integration of R2P modules within an ROS system, we devel-
oped wROSnode, a lightweight, open source, ROS client library tar-
geted at resource-constrained devices. Thanks to wROSnode, R2P
nodes and topics are listed as native ROS components, and the
other way around, allowing ROS users to write their applications
as they are used to do in standard ROS systems. On the other hand,
the network of resource-constrained R2P devices can easily be in-
terfaced to a computer running ROS and it can exploit its resources
for complex, resource-consuming tasks which cannot be executed
on embedded microcontrollers.

3.5.3. Graphical IDE

An easy-to-use, but powerful, graphical integrated develop-
ment and debugging environment is the last tool we need in a rapid
prototyping framework for robotic applications.

We are developing an Eclipse-based graphical IDE that covers
all the development steps of a complex system: writing firmware
for the hardware components, deploying it to the modules, setup
the publish/subscribe network, scripting high level behavior and
debugging the whole system. The IDE runs on a computer that
is connected to the R2P network through a gateway module (see
Section 4), and installed hardware modules are displayed on the
user screen. By means of point and click operations, the user can
inspect and debug the system, configure module parameters, and
set up the network by connecting publishers and subscribers in a
simple way such as drawing a line from a module to another.

The IDE also offers tools to modify and update firmware on a
module, to set up the network that defines topics, and to connect
publishers and subscribers, or to write high level scripts and inject
them into modules. In this way, it is possible to change high level
control policies modifying a simple high-level script and test it
with a mouse click, directly observing how the real system reacts
and thus speeding up the definition of the robot behavior.

3.6. Open source development

Open source software has been around since decades, showing
how software projects can take advantage of community-driven
development. Everyone can contribute, adding features and fixing
bugs, to actively improve the project. In the last years, users
became more and more attracted by open source projects,

especially hobbyists and people involved in education, having the
possibility to see how the software works under the hood and to
hack the code to suit their needs. Recently, the open source concept
has been extended to hardware too, with successful projects like
Arduino [37], dedicated fairs all over the world, and the Open
Source Hardware Association, founded in 2011 [38]. This approach
then gained popularity as a development strategy of big companies
too, e.g., Google chose Arduino as the platform to develop new
Android compatible devices [39]. Open source hardware started to
gain interest also as a business model, where earnings come from
services and from selling ready to use products while being open
source gives visibility and attracts users [40,41].

R2P is fully open source, both in hardware and in software,
and it wants to take advantage of community-driven development
to became a mature and widespread project. R2P repository is
currently hosted on Github.! Besides from releasing the sources
of our hardware modules and their firmware code, we share also
software components, like filtering algorithms and control loop
implementations, which can easily be integrated in user’s projects
thanks to the approach presented in Section 3.4. Common topic
definitions will be hosted on a website, in order to encourage
users to use the same conventions, which is mandatory if we want
to decouple software implementations from their functionalities
exploiting the middleware. Hardware modules are flashed by
default with a set of commonly used software components, but
users can connect to the community website and download
algorithms shared by others to access new functionalities.

4. R2P hardware modules

A brief overview of the main R2P modules follows; notice that
these are just few modules out of a possibly huge catalog that could
be realized and shared with the R2P community, thanks to the open
source approach proposed by R2P both for software and hardware
development. All R2P modules feature an STM32 ARM Cortex-M3
microcontroller with 72 Mhz clock, 20 KB of RAM and 128 KB of
Flash memory, a CAN transceiver and a voltage regulator.

PSU module. The PSU module powers all the modules connected to
the bus. Input voltage ranges from 5.5 to 36 V DC. A DC-DC con-
verter produces a 5 V regulated output with a maximum current
supply of 4 A and short circuit protection. Both battery voltage and
current drain can be published over the network to monitor power
consumption and to estimate remaining battery life.

DC Motor Controller module. The high-power DC Motor Controller
module can drive DC motors up to 36 V, delivering a continuous
20 A current. It features closed loop control, with position feedback
from a quadrature encoder and current measurement from the on-
board Hall-effect sensor. The DC Motor Controller module accepts
position, speed, and torque setpoints, and publishes position and
speed messages, with data from the encoder, or the measured
current drawn. The PCB layout of the DC motor controller module
is shown in Fig. 6(b).

IMU module. The IMU module is a 10-DoF Inertial Measurement
Unit featuring MEMS accelerometer, gyroscope, magnetometer
and pressure sensor. An additional serial port to acquire GPS
coordinates from an external GPS receiver is also provided. The
on-board sensor fusion algorithm produces heading, attitude and
position messages. The PCB layout of the IMU module is shown in
Fig. 6(a).

Proximity module. The proximity module interfaces with proximity
sensors such as the Sharp IR rangers or MaxBotix ultrasonic sensors.
Each module connects to up to 4 sensors. Calibration and data
filtering algorithms run on the microcontroller, which publishes
distance measurements.

1 http://github.com/openrobots-dev.

(a) R2P IMU module.

(b) R2P DC motor controller
module.

Fig. 6. PCB layout of two R2P modules with dimension expressed in millimeters.

Analog and Digital Input/Output module. A generic analog and digital
input/output module has been designed, too: it can be used to
interface the R2P network with generic sensors and switches or
to connect existing electronic devices. It features input protections
and implements most common integrated circuits buses (e.g., SPI
and I2C), as well as analog input and outputs, to easily integrate
custom devices into the framework.

Smart Camera module. The smart camera module has a VGA CMOS
sensor and a powerful ARM microcontroller with DSP capabilities
to run vision algorithms on board. At present, it can run algorithms
to recognize colored blobs and human faces, and to implement
image segmentation and optical flow [42]. It can publish the image
analysis results on the CAN bus.

Optical Odometry module. To add position feedback to existing
robots, we have designed an optical odometry module that ex-
ploits cheap mice sensors pointed to the ground to measure move-
ments [43,44]. With this board, precise trajectory control can be
added without intrusive modification to the hardware, exploiting
movement estimations published on the CAN network.

Gateway module. Finally, the gateway module features an Ethernet
port and a more powerful, Ethernet-enabled, microcontroller to
handle the TCP/IP stack. R2P messages are forwarded from the CAN
bus to the IP network, and the other way around. The gateway
module runs wROSnode which enables a direct integration of R2P
modules with ROS systems.

5. Case study: the Triskar2 robot

We used the Rapid Robot Prototyping framework to actuate
and control the mobile robot Triskar2, shown in Fig. 7. Triskar2 is
an omnidirectional robot, with three omni wheels driven by three
70 W DC motors. It is built from standard, modular, aluminum
profiles, allowing an easy attachment of additional elements. The
platform is 60 cm in diameter, weights about 20 Kg, with batteries,
and is designed to carry a payload up to 50 Kg at a maximum
speed of 2 m/s. Triskar2 is built with R2P modules, which also run
the low-level embedded software for motion control; high level
behavior comes from an ROS application, which directly interfaces
with the mobile platform. We designed Triskar2 as versatile and
fast-to-implement mobile base for assistive robots, robots able to
interact with people, robogames, and, in general, indoor robots.

5.1. Hardware modules

The architecture of Triskar2, with the R2P modules used to drive
the robot, is shown in Fig. 1(a). We started from the functional
requirements of the platform: it must provide precise motion, with

http://github.com/openrobots-dev

Fig. 7. The Triskar2 omnidirectional robot.

low-level obstacle avoidance, accepting commands from an ROS
application running on the on-board computer.

First of all, we used a PSU module to power the other R2P
modules from the 24 V batteries. To drive the electrical motors we
used three DC Motor Control modules, which also acquire actual
motor speeds by the optical encoders attached to motor shafts. To
detect approaching obstacles, four Sharp IR proximity sensors are
attached to a R2P Proximity module, which reads the output of
the sensors and converts it to distance measurements. Finally, a
Gateway module is in charge of proxying messages from the ROS
application to the R2P network, and the other way around. Thanks
to their simple wiring and daisy-chain connections, mounting the
R2P modules on the robot frame was a straightforward process that
required few hours.

5.2. Software architecture

The architecture of the embedded control software is reported
in Fig. 5. Motion commands are sent by an ROS node running on
the on-board computer on the /teleop topic, which is subscribed by
the Gateway module running uROSnode and forwards messages on
the corresponding R2P topic. For low-level collision avoidance, the
obstacle detection node subscribes for both proximity measures
and velocity commands; if an obstacle is detected on the requested
path, the command is overridden and the filtered setpoint is pub-
lished on the /velocity topic. At this point, the kinematics node re-
ceives the requested motion, applies the inverse kinematics model,
and computes wheel speed set points in a 100 Hz loop. Finally, each
motor board executes a motor controller node, which drives the
motors by the closed-loop PID controller running at 200 Hz. The
actual wheel speed is published by the motor controllers and sub-
scribed by the odometry node, which computes the robot trajec-
tory by applying forward kinematics. An additional node monitors
the battery level, to estimate the remaining battery life. The /prox-
imity, /trajectory and /battery topics are subscribed by the gateway
module, which forwards them to the ROS network.

Software nodes have been deployed on the modules as shown
in Fig. 1(a). Some nodes have to be on a particular board (e.g., those
that are directly connected to the hardware like motor controller
nodes), while others can run on any connected module. For exam-
ple, in our tests, the inverse kinematics model to compute wheel
speeds was run on the Motor 1 module, while the odometry node
was deployed on Motor 2. In this way, we can balance processor
load and reduce latency, easily moving nodes from a hardware
module to another.

5.3. Benchmarks

We have run some benchmarks to evaluate communication
performance, which is a key element in a distributed architecture

like R2P. For a more detailed analysis of the results please refer
to [22].

First of all, we evaluated RTCAN performance in terms of jitter
of HRT messages and of delivery latency of SRT messages. Fig. 8(a)
reports the distribution of transmission jitter for HRT messages
from the inverse kinematics node, which have a period of 10 ms.
Results show that the jitter is bounded to 43 WS, enabling to
run distributed control loops. For SRT messages, we evaluated the
delivery latency of messages from the obstacle detection node,
which are event-triggered and have a 10 ms deadline. Fig. 8(b)
reports the distribution of delivery latency: 95 of messages are
received within 5 mS, allowing for fast event response.

As R2P fosters the development of modular, reusable, embed-
ded software, where basic functionalities are implemented by
nodes exchanging messages through the middleware, also locally,
we evaluated its messaging performances. The benchmark con-
siders the complete life of a message, from its allocation by the
publisher node to the consumption by all the subscribed nodes.
The graph shown in Fig. 9 reports the measured throughput and
the delivery latency, with respect to the number of subscribers,
for local subscriptions. We measured a maximum throughput of
86,600 msg/s, which lowers increasing the number of subscribers
with a quadratic shape; this is due to the publishing time which in-
creases linearly with the number of subscribers. The overhead in-
troduced by the middleware is less than 7 1S, while the remaining
time is due to thread scheduling and context switch by the RTOS.
Locally, thanks to memory sharing, the maximum throughput does
not depend on message size. For remote subscribers, performance
highly depends on the communication channel; using RTCAN, peri-
odic messages are sent as HRT RTCAN messages, and thus the jitter
is almost the same as for local subscriptions, while the delivery la-
tency is degraded by the message transmission time over the CAN
bus.

6. Conclusion

Robotics is an active research and engineering field that, against
all the expectations and forecasts (e.g., [45]), and unlike other
recently wide spread technologies (e.g., hand held computers,
smart phones, digital cameras) is struggling to generate many
products for the real life market. One of the main problems is the
wasteful effort required to build working hardware prototypes,
which subtracts precious resources, in terms of time and money,
for the true development of new ideas.

In this paper, we have presented R2P, an open source modu-
lar hardware and software architecture for rapid prototyping of
robots, which consists of a set of easy-to-use hardware compo-
nents, a software development IDE, and deployment tools. R2P
aims at supporting the development of robotics applications, by re-
ducing the time and efforts needed to build a working prototype.
R2P includes features which make it interesting for a wide range
of users, such as researchers, designers, students and robotic en-
thusiasts in general. Research groups, like university laboratories,
and R&D departments, can take advantage of such a framework, re-
ducing the time to implement a working robot prototype which is
necessary to validate any innovative idea. Working with a toolkit
of robotic components that can be assembled in hours, instead of
weeks, leaves much more time to work on specific application is-
sues. With R2P, robot designers can face the implementation of a
robot prototype also if they do not master all the technical knowl-
edge otherwise needed. This makes it possible to include in the
robot application development team, with an operative role, also
users and domain experts, otherwise excluded, with evident posi-
tive effects on the generation of new, interesting applications. Stu-
dents and people involved in education can exploit plug-and-play
hardware modules and easy-to-use software tools, like a script-
ing language and a visual development environment, which enable

40 .

30+ .

20 q

10+ q

0 L \
-10 -5 0 5 10

b 20 — T T T T 1

0 2 4 6 8 10

Fig.8. RTCAN performance: distribution of HRT messages transmission jitter, expressed in s (a), and distribution of SRT messages transmission latency, expressed in ms (b).

90000 90
80000 | {80
% 70000 470
@ 60000 - 160 o
1S S
= 50000 | {50 <
> o
;g 40000 | 140 §
3 30000 - 130 3
e
F 20000 | {20
10000 - {10
0 ! ! ! ! !

10 12 14 16 18 20

Subscribers

0 2 4 6 8

Fig. 9. R2P middleware performance: maximum message throughput, in red,
and delivery latency, in blue, with respect to the number of subscribers. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

robotics-based activities at school. Finally, robotic enthusiasts can
rely on an open source low-cost framework that can boost the de-
velopment of new ideas and foster users entrepreneurship, leading
to innovative products as shown by success business stories like
Arduino [40,37].

Acknowledgments

This work has been partially supported by the research grant
“Robotics for the Masses” from ST Microelectronics and Regione
Lombardia, and by the Italian Ministry of University and Research
(MIUR) through the PRIN 2009 grant “ROAMFREE: Robust Odome-
try Applying Multi-sensor Fusion to Reduce Estimation Errors”.

References

[1] M. Muffatto, Introducing a platform strategy in product development,
International Journal of Production Economics 6061 (1999) 145-153.

[2] G. Heineman, W. Councill, Component-Based Software Engineering: Putting
the Pieces Together, Addison Wesley Professional, 2001.

[3] B.P.Gerkey, R.T. Vaughan, A. Howard, The player/stage project: tools for multi-
robot and distributed sensor systems, in: Proceedings of the 11th International
Conference on Advanced Robotics, 2003, pp. 317-323.

[4] H. Bruyninckx, Open robot control software: the OROCOS project, in:
Proceedings 2001 ICRA, IEEE International Conference on Robotics and
Automation, 2001, pp. 2523-2528.

[5] M. Quigley, K. Conley, B.P. Gerkey, J. Faust, T. Foote,]. Leibs, R. Wheeler, A.Y.
Ng, ROS: an open-source robot operating system, in: ICRA Workshop on Open
Source Software, 2009.

[6] A. Huang, E. Olson, D. Moore, LCM: lightweight communications and
marshalling, in: IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS), 2010, pp. 4057-4062.

[7] J. Kramer, M. Scheutz, Development environments for autonomous mobile
robots: a survey, Autonomous Robots 22 (2) (2007) 101-132.

[8] J. Kaiser, C. Mitidieri, C. Brudna, C.E. Pereira, COSMIC: a middleware for event-
based interaction on CAN, in: 9th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), 2003, pp. 669-676.

[9] M. Schulze, S. Zug, A middleware based framework for multi-robot develop-
ment, in: Proceedings of the 3rd IEEE European Conference on Smart Sensing
and Context (EuroSSC), Zurich, Switzerland, 2008, pp. 29-31.

[10] S. Magnenat, P. Rtornaz, M. Bonani, V. Longchamp, F. Mondada, ASEBA: a
modular architecture for event-based control of complex robots, PIEEE/ASME
Transactions on Mechatronics (2011) 321-329.

[11] Arduino, http://www.arduino.cc.

[12] Lego NXT, http://mindstorms.lego.com.

[13] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat,
J.-C. Zufferey, D. Floreano, A. Martinoli, The e-puck, a robot designed
for education in engineering, in: Proceedings of the 9th Conference on
Autonomous Robot Systems and Competitions, vol. 1, 2009, pp. 59-65.

[14] R.M.Harlan, D.B. Levine, S. McClarigan, The khepera robot and the krobot class:
a platform for introducing robotics in the undergraduate curriculum, in: ACM
SIGCSE Bulletin, vol. 33, ACM, 2001, pp. 105-1009.

[15] A.B. Holger, H. Kenn, T. Walle, Robocube a “universal” “special-purpose”
hardware for the robocup small robots league, in: 4th International Sym-
posium on Distributed Autonomous Robotic Systems, Springer, 1998.

[16] Lego NXT, http://[www.arexx.com/rp6/.

[17] A. Bonarini, M. Matteucci, M. Migliavacca, D. Rizzi, R2p: an open source
modular architecture for rapid prototyping of robotics applications, in:
Proceedings of 1st IFAC Conference on Embedded Systems, Computational
Intelligence and Telematics in Control (CESCIT’12), 2012.

[18] D.A.Norman, The Design of Everyday Things, Basic Books, New York, NY, 2002.

[19] A. Bonarini, M. Matteucci, M. Migliavacca, R. Sannino, D. Caltabiano, Modular
low-cost robotics: what communication infrastructure?, in: Proceedings of
18th World Congress of the International Federation of Automatic Control
(IFAC), 2011, pp. 917-922.

[20] Robert Bosch GmbH, CAN Specification 2.0B,
http://www.semiconductors.bosch.de/media/pdf/canliteratur/can2spec.pdf,
1991.

[21] ChibiOS/RT Real Time Operating System, http://www.chibios.org.

[22] M. Migliavacca, A. Bonarini, M. Matteucci, Rtcan: a real-time can-bus protocol
for robotic applications, in: Proceedings of the 10th International Conference
on Informatics in Control, Automation and Robotics (ICINCO 2013), 2013.

[23] P. Pérez, G. Benet, F. Blanes, J. Simd, Communication jitter influence on
control loops using protocols for distributed real-time systems on CAN bus, in:
Proceedings of 5th IFAC International Symposium SICICA, 2003, pp. 237-243.

[24] L. Almeida, P. Pedreiras, J.A.G. Fonseca, The FTT-CAN protocol: why and
how, in: IEEE Transactions on Industrial Electronics, IEEE Press, 2002,
pp. 1189-1201.

[25] T. Nolte, M. Nolin, H. Hansson, Server-based scheduling of the can bus, in: Pro-
ceedings of the 9th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA’03), IEEE Press, 2003, pp. 169-176.

[26] J. Coronel, F. Blanes, G. Benet,]J. Simd, P. Pérez, M. Albero, CAN-based
distributed control architecture using the SCOCAN communication protocol,
in: 10th IEEE Conference on Emerging Technologies and Factory Automation
(ETFA), 2005.

[27] G.C. Buttazzo, Rate monotonic vs. EDF: judgment day, Real-Time Systems 29
(2005) 5-26.

[28] C. Lu, J. Stankovic, S. Son, G. Tao, Feedback control real-time scheduling:
framework, modeling, and algorithms, Real-Time Systems 23 (2002) 85-126.

[29] M.A. Livani,]. Kaiser, EDF consensus on CAN bus access for dynamic real-time
applications, in: IPPS/SPDP Workshops, 1998, pp. 1088-1097.

[30] J. Kaiser, M.A. Livani, Invocation of real-time objects in a can bus-system,
in: Proceedings of the The 1st IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, IEEE Press, 1998, pp. 298-307.

[31] M.D. Natale, Scheduling the can bus with earliest deadline techniques, in:
Real-Time Systems Symposium, 2000, Proceedings, The 21st IEEE, 2000, pp.
259-268.

[32] Embryo Virtual Machine, http://trac.enlightenment.org/e/wiki/Embryo.

[33] Pawn Scripting Language, http://www.compuphase.com/pawn/pawn.htm.

[34] Embedded LUA, http://www.eluaproject.net/.

[35] Python-on-a-Chip, http://code.google.com/p/python-on-a-chip/.

http://refhub.elsevier.com/S0921-8890(13)00153-X/sbref1
http://refhub.elsevier.com/S0921-8890(13)00153-X/sbref2
http://refhub.elsevier.com/S0921-8890(13)00153-X/sbref7
http://refhub.elsevier.com/S0921-8890(13)00153-X/sbref10
http://www.arduino.cc
http://mindstorms.lego.com
http://refhub.elsevier.com/S0921-8890(13)00153-X/sbref14
http://refhub.elsevier.com/S0921-8890(13)00153-X/sbref15
http://www.arexx.com/rp6/
http://refhub.elsevier.com/S0921-8890(13)00153-X/sbref18
http://www.semiconductors.bosch.de/media/pdf/canliteratur/can2spec.pdf
http://www.chibios.org
http://refhub.elsevier.com/S0921-8890(13)00153-X/sbref24
http://refhub.elsevier.com/S0921-8890(13)00153-X/sbref25
http://refhub.elsevier.com/S0921-8890(13)00153-X/sbref27
http://refhub.elsevier.com/S0921-8890(13)00153-X/sbref28
http://refhub.elsevier.com/S0921-8890(13)00153-X/sbref30
http://trac.enlightenment.org/e/wiki/Embryo
http://www.compuphase.com/pawn/pawn.htm
http://www.eluaproject.net/
http://code.google.com/p/python-on-a-chip/

[36] Y. Shi, K. Casey, M.A. Ertl, D. Gregg, Virtual machine showdown: Stack versus
registers, ACM Transactions on Architecture and Code Optimization 4 (2008)
1-36.

[37] M. Banzi, Getting Started with Arduino, Make:Books, Sebastopol, CA, 2008.

[38] Open Source Hardware Association, http://www.oshwa.org.

[39] Android Accessory Development Kit 2012, http://developer.android.com/
tools/adk/adk2.html.

[40] C.Thompson, Build it. share it. profit. can open source hardware work?, Wired
Magazine 16.11.

[41] R.G. Abbondandolo, Open source hardware fostering user entrepreneurship:
empirical evidence from Arduino users, Master Thesis, Economics and
Management of Innovation and Technology, Bocconi University, 2011.

[42] V. Rana, M. Matteucci, D. Caltabiano, R. Sannino, A. Bonarini, Low cost
smartcam design, in: Proceedings of 6th IEEE Workshop on Embedded
Systems for Real-tme Multimedia (ESTIMedia 2008), IEEE Computer Press,
2008, pp. 27-32.

[43] A. Bonarini, M. Matteucci, M. Restelli, A kinematic-independent dead-
reckoning sensor for indoor mobile robotics, in: Proceedings of IEEE/RS]
International Conference on Intelligent Robots and Systems (IROS), 2004, pp.
3750-3755.

[44] B. A, M. Matteucci, M. Restelli, Automatic error detection and reduction
for an odometric sensor based on two optical mice, in: Proceedings of
the International Conference on Robotics and Automation (ICRA2005), IEEE
Computer Press, 2005, pp. 1675-1680.

[45] B. Gates, A robot in every home, Scientific American (1) (2007) 58-65.

http://refhub.elsevier.com/S0921-8890(13)00153-X/sbref36
http://refhub.elsevier.com/S0921-8890(13)00153-X/sbref37
http://www.oshwa.org
http://developer.android.com/tools/adk/adk2.html
http://developer.android.com/tools/adk/adk2.html
http://developer.android.com/tools/adk/adk2.html
http://developer.android.com/tools/adk/adk2.html
http://developer.android.com/tools/adk/adk2.html
http://developer.android.com/tools/adk/adk2.html
http://developer.android.com/tools/adk/adk2.html
http://developer.android.com/tools/adk/adk2.html
http://refhub.elsevier.com/S0921-8890(13)00153-X/sbref42
http://refhub.elsevier.com/S0921-8890(13)00153-X/sbref44
http://refhub.elsevier.com/S0921-8890(13)00153-X/sbref45

	R2P: An open source hardware and software modular approach to robot prototyping
	Introduction
	Robot development: from the idea to the prototype
	R2P: rapid robot prototyping
	Physical connection: single power and data link
	RTOS and hardware abstraction layer
	Real-time communication protocol
	RTCAN message types
	Bus access arbitration
	RTCAN communication cycle
	HRT message scheduling
	SRT and NRT message arbitration
	Fragmentation

	Publish/subscribe middleware
	Nomenclature
	Software nodes
	Message topics
	Publishers and subscribers
	Real-time support
	Software deployment

	Development tools
	EmbrI/O scripting language
	uROSnode
	Graphical IDE

	Open source development

	R2P hardware modules
	Case study: the Triskar2 robot
	Hardware modules
	Software architecture
	Benchmarks

	Conclusion
	Acknowledgments
	References

