
https://dx.doi.org/10.1016/j.robot.2013.08.010
c©2020 This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Optimal routing strategies for autonomous underwater vehicles in time-varying
environment

Mike Eichhorn

Institute for Ocean Technology, National Research Council Canada Arctic Avenue, P.O. Box 12093 St. John’s, Newfoundland A1B 3T5,
Canada

Abstract

This paper presents a mission system and the therein implemented algorithms for path planning in a time-varying
environment based on graph methods. The basic task of the introduced path planning algorithms is to find a time-
optimal path from a defined start position to a goal position with consideration of the time-varying ocean current for
an autonomous underwater vehicle (AUV). Building on this, additional practice-oriented considerations in planning
are discussed in this paper. Such points are the discussion of possible methods to accelerate the algorithms and the
determination of the optimal departure time. The solutions and algorithms presented in this paper are focused on path
planning requirements for the AUV “SLOCUM Glider”. These algorithms are equally applicable to other AUVs or aerial
mobile autonomous systems.

Keywords: Path planning, Geometrical graph, Graph methods, Time-varying environment, AUV, AUV “SLOCUM
Glider”, Autonomous systems

1. Introduction

This paper is an abridgement of a research fellowship
and has been previously published in parts in [1–4]. The
following sections review the important results of the study
for path planning in a time-varying environment for the
autonomous underwater vehicle (AUV) “SLOCUM Glider”.

Path planning represents an important characteristic
of autonomous systems. It reflects the possibility for a
planned behaviour during a mission using all current and
future information about the area of operation. This plan-
ning task will be complicated because of the unknown, in-
accurate and varying information. The path planning al-
gorithms presented in this paper are designed considering
the mission requirements for the AUV “SLOCUM Glider”.
These gliders have a low cruising speed (0.2 to 0.4 m s−1)
in a time-varying ocean flow over a long operation range
for periods up to 30 days.

There exists a variety of solutions for the path plan-
ning in a time-varying environment, especially for mobile
autonomous systems. A generic algorithm was used for an
AUV in [5] to find the path with minimum energy cost
in a strong, time-varying and space-varying ocean current
field. This approach finds a robust solution which will not
necessarily correspond with the optimal solution. In [6],
an adaptive genetic algorithm is presented for determin-
ing routes for a large-scale sea area under real-time re-

Email address: mike.eichhorn@tu-ilmenau.de,

Mike_Eichhorn@gmx.de, mike.eichhorn@ieee.org. (Mike
Eichhorn)

quirements. The defined fitness function allows the gener-
ation of a time-optimal, obstacle-free route with few way-
points. The mixed integer linear programming (MILP)
will be used for handling multiple AUVs [7] or UAVs (Un-
manned Aerial Vehicles) [8]. As the computing time of
MILP increases exponentially with the problem size, this
approach has limitations in real-sized applications. A solu-
tion with a non-linear least squares optimization technique
for a path planning of an AUV mission through the Hudson
River was presented in [9]. The optimization parameters
are a series of changeable nodes (xi, yi, zi, ∆ti), which
characterize the route. The inclusion of the time inter-
vals ∆ti allows a variation of the vehicle speed during the
mission and thus the integration of energy considerations
in the optimization. This approach runs the risk of find-
ing only a local minimum. In [10] a solution with optimal
control to find the optimal trajectory for a glider in a time-
varying ocean flow was presented. This approach applied
the Nonlinear Trajectory Generation (NTG) algorithm in-
cluding an ocean current flow B-spline model, a dynamic
glider model as well as a defined cost function which is
a weighted sum of a temporal and an energy cost. The
inclusion of energy requirements using priori known wind
information in a graph based path planning for UAVs was
discussed in [11]. In [12], the level set method for time-
optimal path planning in a time-varying flow field is used.
In this case, a wave front, starting from the start posi-
tion is generated. It consists of particles, which describe
the most distant position from the vehicle, which can be
achieved at a defined time. When the wave front reaches

Preprint submitted to Robotics and Autonomous Systems August 6, 2020

ar
X

iv
:2

00
8.

02
11

5v
1

 [
cs

.R
O

]
 4

 A
ug

 2
02

0

https://dx.doi.org/10.1016/j.robot.2013.08.010
http://creativecommons.org/licenses/by-nc-nd/4.0/

the target position the optimal route will be determined
by backtracking the particles. The accuracy of the nu-
merical solution found and the computing time correlate
with the defined points to describe the individual wave
front lines at certain discrete times. In [13] a modified
A*-algorithm was used to find a time optimal path us-
ing Regional Ocean Model (ROM) data. This algorithm,
called Constant-Time Surfacing A*(CTS-A*), considered
the specific glider dynamics under the influence of ocean
currents. An A*-algorithm was used in [14] to find a min-
imum risk path for gliders using historical data from the
Automated Information System (AIS) for automatically
identifying and locating vehicles.

The chosen pre-defined mesh structure to define the
connectivity relations of the several vertices in a geomet-
rical graph has an important influence to find the optimal
path in a current field using graph algorithms. This is
confirmed in [15] which is a continuing work of [16]. Both
works use an A* algorithm to find an optimal path in a
spatial variability and time-invariant ocean current field.
The influence of the mesh structure on the determined
path is discussed in Section 2.1.

The planning algorithms presented in Sections 2.2.1 -
2.2.3 are based on a modified Dijkstra Algorithm (see [17]),
including the time-variant cost function in the algorithm
which will be calculated during the search to determine the
travel times (cost values) for the examined edges. This
modification allows the determination of a time-optimal
path in a time-varying environment. In [18] this principle
was used to find the optimal link combination to send a
message via a computer communication network with the
shortest transport delay.

The presented methods to accelerate the path planning
algorithms result from trying to determine real mission
plans for the AUV “SLOCUM Glider” to collect oceano-
graphic data along the Newfoundland and Labrador Shelf
[3]. The number of edges in the geometrical graph ranges
from one hundred thousand to one million for a real mis-
sion of duration of 10 days, whereby the sum of the cost
function calculations is very time-intensive. This cost func-
tion calculations to detect the travel time for an edge are
described in Section 3 in detail.

Because the required geometrical graph is not complete
as not all vertices are connected by an edge within the
graph, the found path has to be smoothed for a real glider
mission. This path post processing is a necessary step in
real applications (see [19, 20]). The path smoothing for
time varying conditions will be discussed in Section 4.

A fast working algorithm is also a precondition for the
detection of an optimal departure time, which is described
in Section 5. A symbolic wavefront expansion (SWE) tech-
nique for a UAV in time-varying winds was introduced in
[21] to find the time optimal path and additionally the
optimal departure time. The path planning algorithms in
this paper use a similar principle as is used in the SWE to
calculate the time-varying cost function for the several ver-
tices. This includes the arrival time at the several vertices

in the cost function calculation during the search. To find
the optimal departure time, the SWE and the approach de-
scribed in this paper use separate solution methods. The
reasons are the accurate and fast determination of the op-
timal departure time, as well as the possible inclusion of
uncertainties in the path planning as a result of forecast
error variance, accuracy of calculation in the cost functions
and a possible use of a different vehicle speed in the real
mission than planned [22].

Section 6 shows the results of the presented algorithms
using a simple mathematical model of the Gulf Stream
and real netCDF files for a 10-day forecast. Conclusion
and future research topics are in Section 7.

2. Graph Algorithm

2.1. Generation of the geometrical graph

The geometrical graph is a mathematical model for the
description of the area of operation with all its characteris-
tics. Therefore defined points (vertices) within the opera-
tional area are those passable by the vehicle. In this paper
these points define positions in the 2D Euclidean space
whereby the geometrical graph is planar. The passable
connections between these points are recorded as edges in
the graph. Every edge has a rating (cost, weight) which
can be the length of the connection, the evolving costs for
passing the connection or the time required for traversing
the connection. There exist many approaches to describe
an obstacle scenario with as few of the vertices and edges
as possible, and, to decrease the computing time (visibil-
ity and quadtree graph [23]). In the case of the inclusion
of an ocean current, the mesh structure of the graph will
be a determining factor associated with its special change
in gradient. In other words, the defined mesh structure
should describe the trend of the ocean current flow in the
operation area as effectively as possible. A uniform rect-
angular grid structure is the easiest way to define such a
mesh. In the simplest case the edges are the connections
between neighbouring obstacle-free sectors; see Fig. 1(a).
To achieve a shorter and smoother path for mobile robots
additional edges to other sectors are implemented in [24];
see Fig. 1(b). The analyses of the found paths in a current
field show (see also [1, 2]) that is it important to define a
great number of edges with different slopes; see Fig. 1(c).
A further increase of the number of radiated edges leads
to increasing lengths which is not practical to describe the
change in gradient of the current flow.

a) b) c)8 edges 16 edges 32 edges

Fig. 1. Rectangular grid structure a) 1-sector, b) 2 sector,
c) 3 sector

2

2.2. Graph-based Search-Algorithm

The developed search algorithms are all based on the
Dijkstra Algorithm [17] which solves the single-source short-
est paths problem on a weighted directed graph. The exact
solution by using a Dijkstra algorithm in a time-varying
environment requires the inclusion of the time information
as an additional dimension in the graph. For instance a
2D geometrical graph acquires additional layers for each
defined discrete point of time. That will lead to very large
graphs with many vertices and edges as a result of using
small time intervals. To get around this, the algorithms
include the time-variant cost function which will be cal-
culated during the search to determine the travel times
for the examined edges. The basic algorithm, named TVE
(time-varying environment) algorithm, uses only this mod-
ification. This algorithm is described in detail in [1, 2].
Its operation is similar to the A*TVE algorithm, which is
presented in the next section, using the cost function d [u]
instead of the estimated costs f [u] in the priority queue
Q. Methods to accelerate the processing time of the TVE
algorithm will be presented in the next sections.

2.2.1. A*TVE algorithm

A possible method to accelerate the TVE algorithm
is the inclusion of an A* algorithm [25]. The A* algo-
rithm utilizes the Dijkstra algorithm and uses a heuristic
function h(u) to decrease the processing time of the path
search. As a heuristic function in the A*TVE algorithm,
the travel time ttravel from the current vertex u at position
xu to the goal vertex g at position xg following a straight
line based on [13] will be used. Here the travel time will
be calculated using the maximum possible speed, as deter-
mined by the addition of the vehicle speed through the wa-
ter vveh bf and the maximum current velocity vcurrent max

in the operational area over the full mission time:

h (u) = ttravel =
‖xu − xg‖

vveh bf + vcurrent max
(1)

Table 1 shows a comparison between the A* algorithm
(left column) and the A*TVE (time-varying environment)
algorithm (right column). The syntax of the pseudo-code
is adapted from [26]. The input parameter G contains the
graph structure with the vertex list and the edge list (V
and E), s and g are the source and goal vertex and t0
includes the starting mission time. The parameter d in-
cludes the cost list for the several vertices, f includes the
estimated costs from the source vertex s to the goal vertex
g of the path through the several vertices using the sum of
the known cost value d [v] from the source s to the vertex
v and the value h(v) of Eq. (1), and π includes the pre-
decessor of each vertex which is used to encode the short-
est paths tree [26]. Q is a priority queue that supports
the INSERT, EXTRACT-MIN and the DECREASE-KEY
operations. The operation EXTRACT-MIN removes the
vertex u which the least cost value f [u] in the priority
queue Q. The operation DECREASE-KEY assigns a new

cost value f to the vertex v in the queue Q. The color list
defines the current state of the vertex in the priority queue
Q. The allowable states are WHITE, GRAY and BLACK:
WHITE indicates that the vertex has not yet been dis-
covered, GRAY indicates that the vertex is in the priority
list, and, BLACK indicates that the vertex was checked.
The shaded text fields in Table 1 highlight the differences
between the algorithms. There are the following three dif-
ferences:

1. The new algorithm does not need the weight list w of
the edges to begin the search. The algorithm needs a
start time t0 when the vehicle begins the mission.

2. The examination of the edge (u, v) is only necessary
for d [u] < d [v]. It is clear if d [u] ≥ d [v] then dv >
d [v], independent of the calculated weight of function
wfunc. The parameter dv includes the calculated cost
value for vertex v by sum of cost value for vertex u and
the calculated weight of function wfunc.

3. The algorithm calculates the weight for the edge w(u, v)
in a function wfunc during the search. (see Section 3.2,
a detailed description about these calculations will be
presented in Section II.b in [2]) This function calculates
the travel time to drive along the edge from a start
vertex u to an end vertex v using a given start time.
The start time to be used will be the current cost value
d [u], which describes the travel time from the source
vertex s to the start vertex u.

Table 1
Pseudo-code of the A* and A*TVE algorithms

A*(G, s, g, w)

for each vertex u V

 d[u]

 f[u]

 [u]

 color[u] WHITE

color[s] GRAY

d[s] 0

f[s] h(s)

INSERT(Q, s)

while (Q≠Ø)

 u EXTRACT-MIN(Q)

 if (u = g)

 return (d,)

 color[u] BLACK

 for each v Adj[u]

 dv = w (u, v) + d[u]

 if (dv < d[v])

 d[v] dv

 f[v] dv + h(v)

 [v] u

 if (color[v] = GRAY)

 DECREASE-KEY(Q,v,f[v])

 else

 color[v] GRAY

 INSERT(Q, v)

 return (d,)

A*TVE(G, s, g, t0)

for each vertex u V

 d[u]

 f[u]

 [u]

 color[u] WHITE

color[s] GRAY

d[s] t0

f[s] t0 + h(s)

INSERT(Q, s)

while (Q≠Ø)

 u EXTRACT-MIN(Q)

 if (u = g)

 return (d,)

 color[u] BLACK

 for each v Adj[u]

 if (d[u] < d[v])

 dv = wfunc(u, v, d[u]) + d[u]

 if (dv < d[v])

 d[v] dv

 f[v] dv + h(v)

 [v] u

 if (color[v] = GRAY)

 DECREASE-KEY(Q,v,f[v])

 else

 color[v] GRAY

 INSERT(Q, v)

return (d,)

3

2.2.2. Optimal navigation formula from Zermelo

The use of the TVE algorithm to find a time opti-
mal path for the AUV “SLOCUM Glider” in time varying
ocean flows allows a further possibility to reduce the com-
puting time of the search. This approach uses the optimal
navigation formula from Zermelo [27]:

dθ

dt
= −uycos2θ + (ux − vy) cosθsinθ + vxsin2θ (2)

with θ as the heading and ux, uy, vx and vy as the partial
derivatives of the ocean current components u and v. The
idea to develop this formula came to Zermelo’s mind when
the airship ”Graf Zeppelin” circumnavigated the earth in
August 1929 [28]. This formula describes the necessary
condition for the control law of the heading θ, to steer
a vehicle in a time-optimal sense through a time-varying
current field. The gradient of the resulting optimal tra-
jectory in a fixed world coordinate system is the vehicle
velocity over the ground vveh og. This vector is the re-
sult of a vector addition of the current vector vcurrent and
the vveh bf vector with vehicle speed through the water
vveh bf as norm and heading θ as direction. The direction
of this vector vveh og is the course over the ground (COG)
φ. These relationships are illustrated in Fig. 2. The idea
of how to use the optimal navigation formula in the search
algorithm as well as the several necessary program steps
will be described subsequently.

Assuming that the search algorithm will find the time-
optimal path, then the several segments (edges) of this
path will match well with the optimal trajectory, which
is calculated with optimal control by solving the optimal
navigation formula from Zermelo. This assumption means
that during the path search only vertices should be consid-
ered where the connections (edges) comply with the opti-
mal navigation formula. This compliance is required where
the transition that is the change of direction between two
adjacent edges is matched with Eq. (2).

The determination of the optimal path direction φopt
on position xstart required a simulation of the optimal tra-
jectory by starting on the middle position of the previous
edge by xstart intern (see section II.D in [4]). The calcu-
lated path direction φopt will be used to select possible
successor edges with the end vertex v under consideration
of an angle range ±∆φmax (see Fig. 3). This range con-
siders the maximal possible angle between two adjoined
edges and the fact that the path direction φopt is only an

vveh_og

 v
cu

rr
en

t

x

y

vveh_bf

opt

Optimal

trajectory

v

u

Fig. 2. Illustration of the velocities and the angles in glider steering

x

y

xpre

xstart

xstart_intern

Optimal

trajectory

opt

 max

 max

Fig. 3. Resultant angle range to define the examined successor
vertices using optimal navigation formula from Zermelo

average value along the path and is predetermined through
the given numbers of possible edges from the differences in
slopes according to the chosen mesh structure (see Fig. 1).

This approach incorporates a pre-selection of promis-
ing successor vertices with the goal to decrease the number
of cost function calls wfunc during the search. Fig. 3 shows
the principle idea of the approach using a 3-sector rectan-
gular grid structure which is described in Section 2.1. By
using such a structure, 31 successor vertices are possible
from which the approach selects only five. This occurs in
the best case (for all examined vertices v is d [u] < d [v])
with a resulting reduction of the called wfunc to 83 % using
this ZTVE algorithm.

2.2.3. The use of both methods

The use of both methods together, the A* algorithm
(Section 2.2.1) and the optimal navigation formula from
Zermelo (Section 2.2.2) in the TVE algorithm combines
the two acceleration mechanisms and produces a larger
reduction in the computing time than with either method
alone. Table 2 shows this algorithm, named ZA*TVE,
with a few explanations. The modifications to the TVE
algorithm are highlighted. The letters which appear in
the explanation column refer to the used method (A*: A*
algorithm; Z: Zermelo’s formula). According to Eq. (2),
the function CAL-OPTDIR calculates the optimal path
direction φopt on position u to the time d [u] using the
direction of the edge with the predecessor vertex π[u] as
start vertex and the current examined vertex u as the end
vertex which should reflect the average optimal COG.

At this point additional acceleration possibilities should
be discussed briefly. The first possibility includes the se-
lective reduction of the search area to decrease the number
of examined vertices during the search. To do this a first
search run uses a graph with a large grid size and/or a
simple grid structure (see Section 2.1). Around the found
path a new geometrical graph will be generated, similar to
a pipe. This graph will have a fine grid size and/or a com-
plex grid structure and will be used in a second run to find
the optimal path. A modification of the upper approach is
the use of a simple cost function in the first search run and
the use of an accurate glider-model in the cost function for
the second run.

4

Table 2
Pseudo-code of the ZA*TVE algorithm

ZA*TVE(G, s, g, t0, max)

for each vertex u V

 d[u]

 f[u]

 [u]

 color[u] WHITE

 color[s] GRAY

d[s] t0

f[s] t0 + h(s)

INSERT(Q, s)

while (Q≠Ø)

 u EXTRACT-MIN(Q)

 if (u = g)

 return (d,)

 color[u] BLACK

 if (u≠s)

 opt=CALC-OPTDIR([u],u,d[[u]],d[u])

 for each v Adj[u]

 if (d[u] < d[v])

 path = CALC-PATHDIR(u,v)

 if ((u=s) OR (|optpath|max))

 dv = wfunc(u, v, d[u]) + d[u]

 if (dv < d[v])

 d[v] dv

 f[v] dv + h(v)

 [v] u

 if (color[v] = GRAY)

 DECREASE-KEY(Q,v,f[v])

 else

 color[v] GRAY

 INSERT(Q, v)

return (d,)

Explanations

A* (initialize heuristic vector)

A* (calculate heuristic for vertex s)

discover vertex s

A* examine vertex u

A* (path found)

A* (program termination)

Z (calculate optimal course)

examine edge (u,v)

Z (calculate edge direction)

Z (select possible successor edges)

calculate cost function

A* (calculate heuristic function)

A* (change heuristic for v in Q)

discover or reopen vertex v

3. Calculation of the cost value

This section describes the necessary equations and al-
gorithms to determine the travel time tipath for the several
path segments using information about the ocean current.

3.1. Travel time calculation

The travel time can be calculated for the ith edge by
formation of the quotient of the distance spath and the
speed vpath ef , with which the vehicle travels on the path
in relation to a fixed world coordinate system:

tipath =
sipath
vipath ef

(3)

This speed vpath ef depends on the vehicle speed through
the water vveh bf (cruising speed), the magnitude and the
direction of the ocean current vector as well as the di-
rection of the path v0

path. This speed can be determined
by the intersection point between a line and a circle (2D)
and/or sphere (3D) [29] based on Fig. 4 according to the
following relation:

line: x (vpath ef) = vpath efv
0
path

circle/spheres: v2veh bf = ‖x− vcurrent‖2
(4)

disc =
(
v0
path

T · vcurrent

)2
+ v2veh bf − vcurrent

T · vcurrent

(5)

 v
cu

rr
en

t

x

y

vveh_bf

Path

vpath

Intersection

point

vpath_efvpath
0

Fig. 4. Definition of the velocities

If the discriminant disc in equation Eq. (5) becomes
negative, vpath ef has not a real solution, so that the value
will be defined as NaN (Not a Number):

vpath ef =

{
v0
path

T · vcurrent +
√
disc , for disc > 0

NaN , otherwise.
(6)

It means that the vehicle can no longer be held in that
path, the path is not feasible; see Fig. 5 (a). If the speed
vpath ef is negative the vehicle is still on the path, but
moving backwards; Fig. 5 (b). Both cases must be consid-
ered by setting a large numerical value for the edge weight.
Thus, such paths are excluded in the search and it does not
come to a situation that the vehicle encounters a strong
backwards current and leaves the path.

3.2. Travel time calculation in time-varying ocean flow

The determination of the travel time according to equa-
tion Eq. (3) works only if the ocean current is constant
along the path, or through an appropriate choice of the
mesh sizes of the graph for a location-varying ocean cur-
rent. In the case of a time-varying ocean current or a too
coarse mesh structure used in conjunction with a location-
varying ocean current, the speed vpath ef will be changed
depending on the current vcurrent along the path element.
The used algorithm to solve this problem is based on a
step size control for efficient calculation of numerical solu-
tions of differential equations [30]. The step size h is here
not the time as used in numerical solvers but is a segment

v c
u
rr

e
n
t

x

y

Path

vpath
|vveh_bf|

vcurrent

x

y

V
veh_bf

Path

vpath

0

vpath_efvpath

Fig. 5. a) Negative discriminant b) vpath ef < 0

5

of the path element. So the path element will be shared
within many segments, for which Eq. (3) using Eq. (6)
can be solved. The current vcurrent in Eq. (6) is the arith-
metic mean of the two velocities at the begin and the end
of the several shared element. Detailed information about
the algorithm is described in Section III.B [2].

3.3. Glider dive profile cost function

The glider dive profile is specified by its locomotion
principle. By changing its buoyancy, the glider is able
to descend (dive) and ascend (climb). The result is a saw-
tooth vertical profile as shown schematically in Fig. 6. The
exact simulation of such a dive profile is computationally
time-intensive and so is impractical because of the number
of edges in the geometrical graph, which range from one
hundred thousand to one million. Conversely, the knowl-
edge of the glider’s behaviour in every passable depth is
necessary for the planning and makes it possible that the
mission planning can avoid regions with an adverse surface
or seabed current.

To include the depth-varying ocean current informa-
tion in the cost function (presented in Section 3.1) the
path element is divided into several path segments. The
number of the segments nsegments is defined by the step
size h. This number shall consider the changeable ocean
current conditions along the path at every passable depth.
In each segment the glider dives from the “climbto” depth
zclimb−to until the “diveup” depth zdive−up; see Fig. 6. The
calculated travel time ttravel for the segment will corre-
spond approximately to the travel time which the glider
needs to travel along every segment of the saw-tooth pro-
file. Fig. 6 shows the simplified dive profile in comparison
to the real saw-tooth profiles. The details of the algorithm
to calculate the travel time are included in [3].

3.4. Ocean current determination

The cost function to calculate the travel time operates
like a numerical simulation (see Section 3.1 and 3.2). This
simulates the vehicle driving along the path from a de-
fined start position xstart at start time tstart to the end

xstart_2D xend_2D

zclimb-to

zdive-to

ssegment

nsegments=3real dive

profile

approximated

simulation

Fig. 6. Simplified dive profile along a path element

position xend under consideration of the local ocean cur-
rent. During such a simulation the cost function requires a
large amount of local ocean current information, which is
generated in the ocean current model. Thereby the Carte-
sian position x, the depth z and the time t are passed
from the cost function to the ocean current model. The
model returns a two dimensional ocean current vector vc =
[u v]. To determine the travel time, accurate ocean cur-
rent information along the path element is required. This
ocean current information will be provided in this research
project through the DFO’s (Department of Fisheries and
Oceans) Canada-Newfoundland Operational Ocean Fore-
cast System (C-NOOFS) in the form of netCDF files, gen-
erated in a numerical model. At present it is not possible
to directly couple the search algorithm and the numerical
model because of time and computational constraints.

3.4.1. Preparation of the netCDF-Files

The Network Common Data Format (NetCDF) is a
binary data format for array-oriented scientific data [31]
which is commonly used for climatology, meteorology and
oceanography applications. The C-NOOFS provides the
ocean current data at various depths (0 to 5700 m) for the
entire Northwest Atlantic with a resolution of approx. 6
km in the region of interest, every 6 h for a 10-day forecast
in geographical coordinates. To use these data in the ocean
current model, they need to be extracted out of the region
of interest in a Cartesian coordinate system as reference.
These modifications can be addressed by using the FIMEX
(File Interpolation, Manipulation and EXtraction) library
[32].

3.4.2. Multi-dimensional interpolation scheme

Since the ocean current data coming from the fore-
casting system as data files will be provided only at dis-
crete times and positions with a coarser time and length
scale than is required to generate an efficient path, a multi-
dimensional interpolation scheme will be utilized to gen-
erate the desired data. Fig. 7 shows the scheme for the
ocean current component v in overview. The first interpo-
lation step uses a two-dimensional interpolation function
from the FIMEX library to extract the ocean current infor-
mation for the several depth layers. A Nearest-Neighbour,
a Bilinear and a Bicubic interpolation method are avail-
able. The interpolations via the depth and time dimen-
sions occur separately using one-dimensional interpolation
functions. Nearest-Neighbour, Linear, Cubic and Akima
interpolation are possible. The first two methods require
two fields (for time t) or layers (for depth z), the other
methods require minimal three, optimal five fields or lay-
ers in order to generate the ocean current component v at
the defined position xi, at the depth zi and at the time
ti. The implementation of the Akima interpolation [33]
can make allowance for an abrupt change of ocean current
conditions in case of tides or of different depth streams.

6

Select the netCDF

fields of interest

according to time ti

xy

z

t

Interpolate the current

component v[zn...n+2] in

the depth layers of

interest according to

depth zi in all netCDF

fields of interest at the

position xi

tn tn+1 tn+2

xy

z

xi

zi

zn

zn+1

zn+2

xi

zi

xi

zi

Interpolate the current

component v[tn..n+2] for

the depth zi in all

netCDF fields from the

interpolated current

component v[zn...n+2]

ti

z

v[tn]

zn zn+1 zn+2zi

v

zzn zn+1 zn+2zi

v

zzn zn+1 zn+2zi

v

v[tn+1]
v[tn+2]

Interpolate the current

component v[i] for the

time ti from the

interpolated v[tn..n+2]
ttn tn+1 tn+2ti

v

v[i]

Fig. 7. Steps to interpolate an ocean current component v [i] at
position x[i], depth zi and time ti from the netCDF fields

4. Path smoothing

The required geometrical graph for the search algo-
rithm is not complete as not all vertices are connected by
an edge within the graph (see Section 2.1). A complete di-
rected graph on n vertices has n(n-1) edges, which would
evolve into a very large graph and a long computing time
for the path search. So, the search algorithm can con-
sider in its search only the edges which are included in the
non-complete graph. The paths found are characterized
by many several path segments with change of directions.
The run of such a path is stair- or wiggle-shaped, which
a glider cannot follow. Therefore a method to smooth
the candidate path will be presented as follows. Table 3
includes the details of the algorithm to smooth the path
under consideration in the time-varying environment. The
candidate path is described by a list of waypoints WP. The
algorithm verifies the start point WP [istart] of the list with
the subsequent waypoints WP [ipath] of a direct connec-
tion (III), with the goal of a quicker arrival at this point
by using the several path elements (IV). Verification of
the arrival time TT [end] of the goal point WP [end] from
the tested waypoint WP [ipath] using the existing subse-
quent waypoints (V) also occurs. This second verification
through the time-varying environment is necessary and en-
sures that the merge of path elements indeed leads to a
quicker arrival at a local waypoint, but leads to a later ar-
rival time at the goal point. This is possible even though
the ocean current situation is changing dynamically. The
merging begins by the third waypoint (II) and will be
executed until one of the two verifications is satisfied or
the goal point is reached. In the case of a positive veri-
fication (merge = false), the present waypoint WP [ipath]
will be stored in the new waypoint list and a new merge
will begin at the precedent waypoint (VI). The result is a

waypoint list WPsmooth with fewer waypoints in the ver-
ified waypoint list WP. If obstacles are encountered, the
function TRAVELTIME also calculates the intersections
of the obstacles with the several path elements. In case of
a collision situation, the resulting time value has a large
numerical value. The above described procedure will be
repeated until the number of waypoints is constant be-
tween two sequent loops (I). Fig. 8 shows an example for
a better understanding.

Table 3
Algorithm for path smoothing in time-varying environment

SMOOTHING (WP, t0)

TT[1] = t0

for (i = 2) to (i = length(WP))

 TT[i] =TT[i–1]+ TRAVELTIME(WP[i-1], WP[i], TT[i–1])

while (length(WP) ≠ length(WPsmooth)) AND (length(WP) > 2) I

 istart = 1

 usmooth = 1

 TTsmooth = Ø

 WPsmooth = Ø

 TTsmooth[usmooth++] = TT[1]

 WPsmooth[usmooth++] = WP[1]

 ttravel_1 = TT[2] – TT[1]

 for (ipath = 3) to (ipath = length(WP)) II

 merge = true

 ttravel_2 = TRAVELTIME(WP[ipath–1], WP[ipath], TT[ipath–1])

 ttravel_sum = TRAVELTIME(WP[istart], WP[ipath], TT[istart]) III

 if (ttravel_sum = ∞)

 merge = false

 else

 if (ttravel_1 + ttravel_2) < ttravel_sum IV

 merge = false

 else

 tend = TT[istart] + ttravel_sum V

 for (iend = ipath + 1) to (iend = length(WP))

 tend = tend + TRAVELTIME(WP[iend–1], WP[iend], tend)

 if (tend > TT[end])

 merge = false

 else

 TT[end] = tend

 if (merge = true)

 ttravel_1 = ttravel_sum

 TT[ipath] = TT [istart] + ttravel_sum

 else

 TT[ipath – 1] = TT[istart] + ttravel_1

 TT[ipath] = TT[istart] + ttravel_1 + ttravel_2

 istart= ipath – 1

 ttravel_1 = ttravel_2

 TTsmooth[usmooth++] = TT[istart] VI

 WPsmooth[usmooth++] = WP[istart]

 if (merge = false)

 TT[end] = TT[end–1]+ TRAVELTIME(WP[end–1],WP[end],TT[end–1])

 TTsmooth[usmooth++] = TT[end]

 WPsmooth[usmooth++] = WP[end]

 TT = TTsmooth

 WP = WPsmooth

return WP

7

t0=0

WPsmooth[1]

TTsmooth[1] = 0

WP[2]

TT[2] = 2
WP[3]

TT[3] = 5

WP[4]

TT[4] =8.5 WP[5]

TT[5] = 10.5

2
3

3.5 2

WP[1]

TT[1] = 0

ttravel_1 = 2 ttravel_2 = 3

ttravel_sum = 4

ttravel_1 = 4 ttravel_2 = 4

WP[3]

TT[3] = 4

ttravel_sum = 8.1

1. while loop circle

istart = 1 ipath = 3

merge = true

1. while loop circle

istart = 1 ipath = 4

merge = false

WPsmooth[1]

TTsmooth[1] = 0

ttravel_1 = 4

1. while loop circle

istart = 3 ipath = 5

merge = true

WPsmooth[2]

TTsmooth[2] = 4

ttravel_2 = 2.1

ttravel_sum = 6

ttravel_1 = 4

2. while loop circle

istart = 1 ipath = 3

merge = true

WPsmooth[2]

TTsmooth[2] = 9.8

ttravel_2 = 6

ttravel_sum = 9.8

WP[1]

TT[1] = 0

Result

WP[2]

TT[2] = 9.8

Initialization

WPsmooth[2]

TTsmooth[2] = 4

4

WPsmooth[3]

TTsmooth[3] = 10

WPsmooth[1]

TTsmooth[1] = 0

WPsmooth[1]

TTsmooth[1] = 0

WP[5]

TT[5] = 10

Fig. 8. Several steps to smooth a path

5. Detection of the optimal departure time

A practice-relevant requirement for optimal path plan-
ning for the AUV “SLOCUM Glider” is the determination
of the optimal departure time. So is it very difficult to
start a glider mission near the coast in the presence of
strong tides. Through the low cruising speed (0.2 to 0.4 m
s−1) and a false chosen start time in combination with a
strong flowing tide, it is possible that the glider will make
poor forward progress or drift back to the shore. Another
scenario is a bad weather situation or a temporary adverse
ocean current condition in the region of interest.

5.1. Idea

The function to describe the relationship between the
travel time ttrav and departure time tdep consists of an
independent single pair of variants. This means that to
determine the travel time for a certain departure time, the
knowledge of travel times with a lesser departure time is
not necessary. Because of this, it is possible to reproduce
the principle run of the curve ttrav = f(tdep) using a smaller
number of defined departure times tdep i, distributed in the
time window of interest, to find the corresponding travel

times ttrav i. In an additional step the region of the global
minimum can be localized, to detect the optimal depar-
ture time using a root-finding algorithm. The algorithmic
details will be described in the next section.

5.2. Algorithm

The detection of the optimal departure time occurs in
three steps. Fig. 9 displays an overview of the scheme
to determine the optimal departure time. The first step
creates supporting points for the curve ttrav = f(tdep) at
intervals of ∆tdep. The choice of the interval width is based
on the run of the curve and should reflect the positions of
the local minima.

These supporting points will be provided in a second
step to create the approximated run of the curve using an
interpolation method. The studies in this research field
favour the Akima interpolation [33]. This method pro-
vides the best fitting to the real curve and tries to avoid
overshoots, which would indicate a nonexistent minimum.
The determination of the interval wherein the global min-
imum of the approximated curve lies is the precondition
for the last step.

Here a one-dimensional root-finding algorithm will be
used to find the optimal departure time. Thereby a path
search using the ZA*TVE algorithm will be running along-
side every function call to find the travel time for the
given departure time. For root-finding algorithms, root-
bracketing algorithms will be used. These algorithms work
without derivatives and find the root through iterative de-
creasing of the interval until a desired tolerance is achieved,
wherein the root lies. Golden section search [34], Fibonacci
search [35] and Brent’s algorithm [36] were tested. Brent’s
algorithm has the best performance and will be favoured.

optimal departure time

T
ra

v
e

l
T

im
e

T
ra

v
e

l
T

im
e

T
ra

v
e

l
T

im
e

Departure Time

Departure Time

Departure Time

minimal value

· Define mesh points tdep_i along

the departure time line at inter-

vals of Dtdep.

· Find the optimal travel time

ttrav_i for the several departure

times tdep_i using the ZA*TVE

algorithm.

Dtdep

· Determine a curve based on the

supporting points [tdep_i,ttrav_i]

using a interpolation method.

· Find the minimal travel time in

the curve using the interpolated

pair of variates.

· Determine the interval wherein

the minimum lies.

· Find the minimal departure

time in the determined interval

using a root finding algorithm.

· The necessary function values

will be determined with the

ZA*TVE algorithm.

Fig. 9. Steps to find the optimal departure time

8

5.3. Possible Modifications and critical notes

The above described algorithm calls the search algo-
rithm multiple times, which correlates directly with the
processing time. A possibility to reduce the processing
time will be discussed briefly. Because the localized global
minimum in the second step represents only the rough po-
sition, the supporting points used in the interpolation do
not have to be accurate. This means that in order to de-
tect these points a graph with a larger grid size and/or a
simpler grid structure can be used. The result is a gen-
erated graph with fewer edges to be examined during the
search, which leads to a more rapid calculation of the ap-
proximated travel time for the given departure time.

The multiple calls of the search algorithm can be cal-
culated independently at the same time on separate pro-
cessor cores of a multi-core computer. The analyses of
the possibilities for parallelization and the programmable
implementation are current work fields [22].

Use of this approach in a real application requires recog-
nition of the fact that only a limited extent of the forecast
window will be available. So, the possible mission window
is narrowed down to the period between the considered de-
parture time and the forecast horizon. In the application
presented in [3] the forecast window for the ocean currents
is 10 days. This means that if one starts a mission on the
ninth day only a one day mission can be planned. Another
aspect is the delayed supply of the data of interest in the
case of a later start time.

6. Results

6.1. The selected test function for a Time-Varying Ocean
Flow

The function used to represent a time-varying ocean
flow describes a meandering jet in the eastward direction,
which is a simple mathematical model of the Gulf Stream
[5, 37]. This function was applied in [2, 3] and [4] to test
the TVE algorithm and its modifications and in [22] to
show the influence of the methods to realize fast search
algorithms and to find suboptimal paths using uncertain
information. The stream function is

φ(x, y) = 1− tanh

 y −B(t) cos (k (x− ct))(
1 + k2B(t)

2
sin2 (k (x− ct))

) 1
2

(7)

which uses a dimensionless function of a time-dependent
oscillation of the meander amplitude

B(t) = B0 + ε cos(ωt+ θ) (8)

and the parameter set B0= 1.2, ε = 0.3, ω = 0.4, θ = π/2,
k = 0.84 and c = 0.12 to describe the velocity field:

u(x, y, t) = −∂φ
∂y

v(x, y, t) =
∂φ

∂x
(9)

The dimensionless value for the body-fixed vehicle veloc-
ity vveh bf is 0.5. This test function makes it possible to
show very transparently how a path planning algorithm
works with uncertain information. The exact time optimal
solution was found by solving a boundary value problem
(BVP) with a collocation method bvp6c [38] in MATLAB.
The three ordinary differential equations (ODEs) include
the two equations of motion:

dx
dt = u+ vveh bf cos θ
dy
dt = v + vveh bf sin θ

(10)

and the optimal navigation formula from Zermelo in Eq.
(2).

6.2. Comparison between the methods to accelerate the TVE
algorithm

This section presents the results of the methods to ac-
celerate the TVE algorithm which are described in Section
2.2.1 - 2.2.3 using the time-varying ocean flow test function
of the previous section. For the test cases, five different
start positions were distributed in the whole area of oper-
ation as shown in Fig. 10. All the graph-based methods
use the same graph and hence produce identical paths.
Fig. 10 shows the five paths found using optimal control
and the graph methods. For the graph methods, the rect-
angular 3-sector grid structure with a grid size of 0.4 was
used (see Fig. 1(c)). Fig. 11 shows the necessary num-
ber of cost function calls (CFC) using the several methods
for the five start positions. All these results are included
in Table 4. The examination of the current model calls
should reflect their ratio to the cost function calls, which
is important in the case of computing intensive ocean cur-
rent calculations. Using the A*TVE algorithm (see Sec-
tion 2.2.1, the number of function calls correlates directly
with the distance between the start and the goal position.

This is reasonable since the algorithm includes only a
subset of the vertices in the path search, in fact, only the
preferred vertices with a short distance to the goal point.

-8 -6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

x

y

 SP1

 SP2 SP3

 SP4

SP5

Optimal Control

Graph Methods

Fig. 10. Time optimal paths through a time-varying ocean field
using Optimal Control and the Graph Methods for different start
positions

9

Table 4
Results of the different search methods

Method

SP1

No. of CFC/

No. of CMC

SP2

No. of CFC/

No. of CMC

SP3

No. of CFC/

No. of CMC

SP4

No. of CFC/

No. of CMC

SP5

No. of CFC/

No. of CMC

TVE
12124/

80838

12126/

80726

12147/

81635

12147/

83886

12112/

83757

A*TVE
7629/

46916

6718/

38564

4042/

24668

2860/

16673

638/

5559

ZTVE
3076/

27734

2953/

26842

2763/

25211

2817/

25449

2824/

25295

ZA*TVE
1883/

17502

1678/

15630

934/

8467

627/

5097

141/

1409

0

2000

4000

6000

8000

10000

12000

SP1 SP2 SP3 SP4 SP5

C
o

s
t

F
u

n
ct

io
n

 C
a

ll
s

TVE A*TVE ZTVE ZA*TVE

Fig. 11. Cost function calls for the various methods with different
start positions

-8 -6 -4 -2 0 2 4 6 8
-4

-3

-2

-1

0

1

2

3

4
ITVE algorithm 12124 visited edges

x

y

-8 -6 -4 -2 0 2 4 6 8
-4

-3

-2

-1

0

1

2

3

4
ZTVE algorithm 3076 visited edges

x

y

-8 -6 -4 -2 0 2 4 6 8
-4

-3

-2

-1

0

1

2

3

4
ZA*TVE algorithm 1883 visited edges

x

y

-8 -6 -4 -2 0 2 4 6 8
-4

-3

-2

-1

0

1

2

3

4
A*TVE algorithm 7629 visited edges

x

y

Fig. 12. Visited edges using the several methods

The inclusion of Zermelo’s optimal navigation formula in
the search algorithm (ZTVE) (see Section 2.2.2 results in
a decrease of the number of cost function calls to about
one quarter of the calls using the ITVE algorithm. With
both methods used together (ZA*TVE), the two merged
acceleration mechanisms provide a further decrease of the
number of cost function and current model calls. The use
of the ZA*TVE algorithm allows a decrease of the num-
ber of cost function calls (CFC) by about a factor of 5,
and, by a factor of 9 for the current model calls (CMC)
in comparison to the TVE algorithm. This improvement
makes the practical use of the ZA*TVE algorithm possi-
ble for the case of (i) the computationally-intensive ocean
current calculations, or, (ii) to determine the optimal de-
parture time. Fig. 12 shows the visited edges (blue lines)
using the several search methods started from start posi-
tion SP1.

6.3. Possible missions and path smoothing algorithm

This section presents the results using the path smooth-
ing algorithm presented in Section 4 by means of a selec-
tion of the possible missions along the Newfoundland and
Labrador Shelf. Table 5 includes the results of the travel
time and the length of the paths found, the smoothed
path, and straight line to the goal point. Furthermore,
the number of waypoints for the generated (unsmoothed)
path and the smoothed path are shown. Fig. 13 shows the
mission paths. The trajectories of the unsmoothed and
the smoothed path of the missions are similar, so that the
two lines are superimposed. The length of the straight line

10

Table 5
Results of the path smoothing algorithm by using different missions

Mission

Travel Time

Unsmoothed

Path
d:h:min:s

Travel Time

Smoothed

Path
d:h:min:s

Travel Time

Straight

Line
d:h:min:s

Travel Time

Straight Line

without Current
d:h:min:s

Path Length

Unsmoothed

Path
km

Path Length

Smoothed

Path
km

Path Length

Straight

Line
km

No. of

Waypoints

Unsmoothed
Path

No. of

Waypoints

Smoothed
Path

Mission 11 08:19:06:06 08:17:34:14 NaN 08:02:26:40 215.87 215.41 210.00 64 19

Mission 12 08:05:21:12 08:05:03:13 09:04:53:02 08:02:57:13 229.40 229.26 210.55 47 26

Mission 13 05:11:44:13 05:11:38:42 06:05:45:51 08:02:57:13 228.30 228.01 210.55 54 31

Mission 14 04:10:26:36 04:10:03:30 04:23:12:36 08:02:26:40 214.24 213.44 210.00 65 30

Mission 21 07:23:58:18 07:23:47:35 08:19:10:56 08:02:57:13 226.91 226.51 210.55 46 23

Mission 22 08:04:14:05 08:03:16:06 08:12:01:05 08:02:26:40 216.49 215.30 210.00 52 14

Mission 23 05:23:38:22 05:23:25:01 07:06:46:35 08:02:57:13 224.86 224.86 210.55 50 41

Mission 24 04:09:37:18 04:09:02:41 NaN 08:02:57:13 222.19 221.09 210.55 49 25

Mission 31 08:12:03:13 08:11:46:59 10:07:59:45 08:02:57:13 229.71 229.41 210.55 46 30

Mission 32 07:09:42:55 07:09:27:14 NaN 08:02:57:13 221.54 221.18 210.55 38 16

Mission 33 08:03:48:33 08:02:24:53 08:12:11:46 08:02:26:40 213.25 211.74 210.00 68 19

Mission 34 07:12:12:10 07:12:03:51 07:23:04:58 08:02:57:13 221.01 220.50 210.55 39 23

for all missions is 210 km. The utilization of the Labrador
Stream in Mission M13, M14, M23 and M24 brings a re-
markable decrease of the mission endurance in comparison
to the other missions. The number of waypoints in the
missions can be decreased on average more than half us-
ing the smoothing algorithm, which improves the resulting
path with respect to travel time. This is possible because
new connections (edges) will be created which were not
available in the geometrical graph during the search. An
additional decrease of the waypoint list is possible, when

 M11

 M12

 M13

 M14

 M21

 M22

M23

 M24

 M31

M32

M33

M34
0 100 200 km50

Ocean currents on 2010-02-01 0300 0 m

 57

 W 54

 W 51

 W

 48

 N

 50

 N

 52

 N

 54

 N

Unsmoothed Path

Smoothed Path

Fig. 13. Time optimal path for different missions along the New-
foundland and Labrador Shelf

longer travel times to the goal point are accepted (see Ta-
ble 3, Marker V). The direct course to the goal point leads
to longer travel times or is impassable in the case of an
adverse ocean current.

7. Conclusion and future work

In this paper algorithms for path planning in a time-
varying environment based on graph methods are pre-
sented. Using the ocean current information in a geomet-
rical graph, the position of the vertices and their possi-
ble connections (edges) are very important. This choice
should consider the trend of the current flow and the pos-
sibility of optimal connections from one vertex to another
in a given current field. Methods to accelerate the process-
ing time of the basic TVE algorithm are described in the
first part of the paper. The algorithms of the cost function
for every connection are presented in the middle part of
this paper. This requires the use of a fast calculation for
the precise travel time from one vertex to another. In the
last part of this paper, an algorithm to detect the optimal
departure time is described. Current and future research
topics are the analyses of possibilities for parallelization
and the inclusion of inaccuracies in path planning as a re-
sult of forecast error variance, accuracy of calculation in
the cost functions and a different observed vehicle speed
in the real mission than planned [22]. The presented path
planning algorithms are aimed at saving time. It is also
possible, however, to include the energy consumption in
the cost function as shown in [5, 10]. An additional re-
search topic is the inclusion of a glider model which sim-
ulates the energy consumption in a glider [39], to extract
energy information for the cost function.

Acknowledgments

This work was financed by the German Research Foun-
dation (DFG) within the scope of a two-year research fel-
lowship (DFG-Number: EI 813/1-1). I would like to thank
the National Research Council Canada Institute for Ocean
Technology and in particular Dr. Christopher D. Williams
for support during this project.

11

References

[1] M. Eichhorn, A New Concept for an Obstacle Avoidance System
for the AUV SLOCUM Glider Operation under Ice, in: Oceans
’09 IEEE, Bremen, Germany, 2009.

[2] M. Eichhorn, Optimal Path Planning for AUVs in Time-Varying
Ocean Flows, in: 16th Symposium on Unmanned Untethered
Submersible Technology (UUST09), Durham, NH, USA, 2009.

[3] M. Eichhorn, C. D. Williams, R. Bachmayer, B. deYoung, A
Mission Planning System for the AUV SLOCUM Glider for the
Newfoundland and Labrador Shelf, in: Oceans ’10 IEEE, Sydney,
Australia, 2010.

[4] M. Eichhorn, Solutions for Practice-oriented Requirements for
Optimal Path Planning for the AUV SLOCUM Glider, in:
Oceans ’10 IEEE, Seattle, USA, 2010.

[5] A. Alvarez, A. Caiti, R. Onken, Evolutionary Path Planning for
Autonomous Underwater Vehicles in a Variable Ocean, IEEE
Journal of Oceanic Engineering 29 (2) (2004) 418–428.

[6] H.-j. Wang, J. Zhao, X.-q. Bian, X.-c. Shi, An Improved Path
Planner based on Adaptive Genetic Algorithm for Autonomous
Underwater Vehicle, in: IEEE International Conference on
Mechatronics & Automation, Niagara Falls, Canada, 2005.

[7] N. K. Yilmaz, C. Evangelinos, P. F. J. Lermusiaux, N. M. Pa-
trikalakis, Path planning of autonomous underwater vehicles
for adaptive sampling using mixed integer linear programming,
IEEE Journal of Oceanic Engineering 33 (4) (2008) 522–537.

[8] A. Richards, J. P. How, Aircraft Trajectory Planning With Col-
lision Avoidance Using Mixed Integer Linear Programming, in:
American Control Conference, Anchorage, Alaska, USA, 2002.

[9] D. Kruger, R. Stolkin, A. Blum, J. Briganti, Optimal AUV path
planning for extended missions in complex, fast flowing estuarine
environments, in: IEEE International Conference on Robotics
and Automation, Rom, Italy, 2007.

[10] W. Zhang, T. Inanc, S. Ober-Blöbaum, J. E. Marsden, Op-
timal Trajectory Generation for a Glider in Time-Varying 2D
Ocean Flows B-spline Model, in: IEEE International Conference
on Robotics and Automation, Pasadena, CA, USA, 2008, pp.
1083–1088.

[11] G. P. Kladis, J. T. Economou, K. Knowles, J. Lauber, T.-M.
Guerra, Energy conservation based fuzzy tracking for unmanned
aerial vehicle missions under a priori known wind information,
Engineering Applications of Artificial Intelligence 24 (2) (2011)
278–294.

[12] T. Lolla, M. P. Ueckermann, K. Yigit, J. P. J. Haley, P. F. J.
Lermusiaux, Path Planning in Time Dependent Flow Fields using
Level Set Methods, in: 2012 IEEE International Conference on
Robotics and Automation, RiverCentre, Saint Paul, Minnesota,
USA, 2012.

[13] E. Fernandez-Perdomo, J. Cabrera-Gamez, D. Hernandez-Sosa,
J. Isern-Gonzalez, A. C. Dominguez-Brito, A. Redondo, J. Coca,
A. G. Ramos, E. A. l. Fanjul, M. Garcia, Path Planning for
gliders using Regional Ocean Models: Application of Pinzon path
planner with the ESEOAT model and the RU27 trans-Atlantic
flight data, in: Oceans ’10 IEEE, Sydney, Australia, 2010.

[14] A. A. Pereira, J. Binney, B. H. Jones, M. Ragan, G. S.
Sukhatme, Toward Risk Aware Mission Planning for Au-
tonomous Underwater Vehicles, in: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), San Fran-
cisco, CA, USA, 2011.

[15] B. Garau, M. Bonet, A. Alvarez, S. Ruiz, A. Pascual, Path Plan-
ning for Autonomous Underwater Vehicles in Realistic Oceanic
Current Fields: Application to Gliders in the Western Mediter-
ranean Sea, Journal of Maritime Research 6 (2) (2009) 5–22.

[16] B. Garau, A. Alvarez, G. Oliver, Path Planning of Autonomous
Underwater Vehicles in Current Fields with Complex Spatial
Variability: an A* Approach, in: 2005 IEEE International Con-
ference on Robotics and Automation, Barcelona, Spain, 2005.

[17] E. W. Dijkstra, A Note on Two Problems in Connexion with
Graphs, Numerische Mathematik (1) (1959) 269–271.

[18] A. Orda, R. Rom, Shortest-Path and Minimum-Delay Algo-
rithms in Networks with Time-Dependent Edge-Length, Journal

of the Association for Computing Machinery 37 (3) (1990) 607–
625.

[19] K. Yang, S. Sukkarieh, 3D Smooth Path Planning for a UAV in
Cluttered Natural Environments, in: IEEE/RSJ International
Conference on Intelligent Robots and Systems, Nice, France,
2008.

[20] H.-j. Wang, W. Xiong, Research on global path planning based
on ant colony optimization for AUV, Journal of Marine Science
and Application 8 (1) (2009) 58–64.

[21] M. Soulignac, P. Taillibert, M. Rueher, Time-minimal Path
Planning in Dynamic Current Fields, in: IEEE International
Conference on Robotics and Automation, Kobe, Japan, 2009.

[22] M. Eichhorn, U. Kremer, Opportunities to Parallelize Path
Planning Algorithms for Autonomous Underwater Vehicles, in:
Oceans ’11 IEEE, Kona, HI, USA, 2011.

[23] M. Eichhorn, An Obstacle Avoidance System for an Au-
tonomous Underwater Vehicle - Taipei, Taiwan, in: Proceed-
ings of 2004 International Symposium on Underwater Technol-
ogy, 2004, pp. 75–82.

[24] T. Ersson, X. Hu, Path Planning and Navigation of Mobile
Robots in Unknown Environments, in: Intelligent Robots and
Systems IEEE/RSJ International Conference, Vol. 2, Mauri, HI,
USA, 2001, pp. 858–864.

[25] P. E. Hart, N. J. Nilsson, B. Raphael, A Formal Basis for the
Heuristic Determination of Minimum Cost Paths, IEEE Transac-
tions on Systems Science and Cybernetics 4 (2) (1968) 100–107.

[26] J. G. Siek, L.-Q. Lee, A. Lumsdaine, The Boost Graph Library -
User Guide and Reference Manual, 1st Edition, Addison-Wesley,
New York, 2002.

[27] E. Zermelo, Über das Navigationsproblem bei ruhender oder
veränderlicher Windverteilung, Z. Angew. Math. Mech. 11 (2)
(1931) 114–124.

[28] H.-D. Ebbinghaus, V. Peckhaus, Ernst Zermelo - an approach
to his life and work, Springer, Berlin, Heidelberg, 2007.

[29] P. J. Schneider, D. H. Eberly, Geometric Tools for 3D Graphics,
Morgan Kaufmann Publishers, San Francisco, 2003.

[30] W. Hundsdorfer, J. Verwer, Numerical solution of time-
dependent advection-diffusion-reaction equations, Springer,
Berlin, Heidelberg, 2003.

[31] Unidata, NetCDF (network Common Data Form) Webpage,
2011.
URL http://www.unidata.ucar.edu/software/netcdf/

[32] N. M. Institute, FIMEX Website, 2011.
URL https://wiki.met.no/fimex/start

[33] H. Akima, A New Method of Interpolation and Smooth Curve
Fitting Based on Local Procedures, Journal of the Association
for Computing Machinery 17 (4) (1970) 589–602.

[34] J. Kiefer, Sequential minimax search for a maximum, Proceed-
ings of the American Mathematical Society 4 (1953) 502–506.

[35] D. E. Ferguson, Fibonaccian searching, Communications of the
ACM 3 (12) (1960) 648.

[36] R. P. Brent, Algorithms for minimization without derivatives,
Prentice-Hall, Englewood Cliffs,NJ, 1973, p. Chapter 5.

[37] M. Cencini, G. Lacorata, A. Vulpiani, E. Zambianchi, Mixing
in a Meandering Jet: A Markovian Approximation, Journal of
Physical Oceanography 29 (1999) 2578–2594.

[38] N. Hale, D. R. Moore, A Sixth-Order Extension to the MAT-
LAB Package bvp4c of J. Kierzenka and L. Shampine - techni-
cal report, Tech. rep., Oxford University Computing Laboratory
(April 2008).

[39] H. C. Woithe, I. Chigirev, D. Aragon, M. Iqbal, Y. Shames,
S. Glenn, O. Schofield, I. Seskar, U. Kremer, Slocum Glider En-
ergy Measurement and Simulation Infrastructure, in: Oceans ’10
IEEE, Sydney, Australia, 2010.

12

http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/
https://wiki.met.no/fimex/start
https://wiki.met.no/fimex/start

	1 Introduction
	2 Graph Algorithm
	2.1 Generation of the geometrical graph
	2.2 Graph-based Search-Algorithm
	2.2.1 A*TVE algorithm
	2.2.2 Optimal navigation formula from Zermelo
	2.2.3 The use of both methods

	3 Calculation of the cost value
	3.1 Travel time calculation
	3.2 Travel time calculation in time-varying ocean flow
	3.3 Glider dive profile cost function
	3.4 Ocean current determination
	3.4.1 Preparation of the netCDF-Files
	3.4.2 Multi-dimensional interpolation scheme

	4 Path smoothing
	5 Detection of the optimal departure time
	5.1 Idea
	5.2 Algorithm
	5.3 Possible Modifications and critical notes

	6 Results
	6.1 The selected test function for a Time-Varying Ocean Flow
	6.2 Comparison between the methods to accelerate the TVE algorithm
	6.3 Possible missions and path smoothing algorithm

	7 Conclusion and future work

