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Abstract. The paper focuses on a closed-loop hybrid controller (kinematic and
dynamic) for path following approaches with industrial forklifts carrying heavy
loads at high speeds, where aspects such as vehicle stability, safety, slippage and
comfort are considered. The paper first describes a method for generating Double
Continuous Curvature (DCC) paths for non-holonomic wheeled mobile robots,
which is the basis of the proposed kinematic controller. The kinematic controller
generates a speed profile, based on “slow-in” and “fast-out” policy, and a curva-
ture profile recomputing DCC paths in closed-loop. The dynamic controller de-
termines maximum values for decelerations and curvatures, as well as bounded
sharpness so that instantaneous vehicle stability conditions can be guaranteed
against lateral and frontal tip-overs. One of the advantages of the proposed me-
thod, with respect to full dynamic controllers, is that it does not require dynamic
parameters to be estimated for modelling, which in general can be a difficult
task. The proposed kinematic-dynamic controller is afterwards compared with
a classic kinematic controller like Pure-Pursuit. For that purpose, in our hybrid
control structure we have just replaced the proposed kinematic controller with
Pure-Pursuit. Several metrics, such as settling time, overshoot, safety and com-
fort have been analysed.

Keywords: Path Following, Vehicle Stability, Continuous Curvature Paths, Kinematic
and Dynamic Control, Hybrid Control.

1 Introduction

Safe and comfortable driving implies taking into account aspects such as normal and
tangential accelerations and their corresponding derivatives, the jerks. It is well known
that safety and comfort increase when generating continuous curvature paths. These
kind of solutions can be applied on the industry in situations such as transportation of
goods and materials in hostile environments in the safest possible manner. This is the
case where the kind of material that is being transported must be handled with caution,
because it is fragile, hazardous or explosive or because the area where the vehicle moves
contains potentially danger aspects such as explosive area or gas pipelines.
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Path following problems have been studied intensively in the past and can be applied
on different approaches, covering a wide spectrum of applications such as vision-based
line following, path generation for overtakes, lateral tracking, parking, etc. One classic
approach is to generate a path that converges to a ground painted line, based on direct
data from a vision system (vision-based control). Another classic application is to es-
timate the road profile and to provide a curvature control law that keeps the vehicle
within the lane bounds.

The main contribution of this paper is to provide a new closed-loop hybrid con-
troller (kinematic and dynamic), where aspects such as vehicle stability, safety, slippage
and comfort are considered. In particular, the kinematic controller generates generic
continuous-curvature paths, coined as Double Continuous-Curvature paths (DCC), used
in path following problems for non-holonomic vehicles. The controller applies a cur-
vature profile to steer the vehicle to converge to a path. Through the paper, it will be
shown that the proposed continuous-curvature method uses combinations of clothoids,
line segments and arcs to cope with generic curvature profiles. The method can ge-
nerate paths between two arbitrary configurations (current pose and target) composed
by positions, orientations and curvatures. The type of provided solutions gets benefit
from higher comfort and safety and constitutes a set of “natural” paths with the shortest
possible length. In addition, a speed profile is also proposed to cope with human-like
driving based on “slow-in” and “fast-out” policy. In addition, the dynamic controller
guarantees dynamic stability conditions in order to avoid lateral and frontal tip-overs
using only odometry and inertial data. For that purpose, lower and upper bounds on
sharpness and maximum curvature constrain generated trajectories. Compared to stan-
dard dynamic controllers, one of the advantages of the proposed method is that it does
not require to estimate complex parameters such as inertial, torques and frictions. In
this work we use a clothoid-based approach because they have an explicit relation with
jerks (at constant velocity), so designing clothoid-based paths implies planning paths
with limited jerks, which also has direct impact on comfort and safety. Other curves
such as Bézier or Splines can also provide smooth curvature profiles, but their deriva-
tives are not limited, unless explicitly stated.

In Girbés et al. (2011a,b), the authors already introduced the DCC path generation
method which constitutes the mathematical background for this paper. The new con-
tribution of the paper with respect to our previous work (Girbés et al., 2011a,b) is to
provide necessary conditions for vehicle stability with an industrial forklift carrying a
heavy load at high speeds and to provide an exhaustive analysis to evaluate the perfor-
mance of the new method with respect to classic ones. Moreover, we provide several
examples and videos showing the advantages of the proposed method.

1.1 Related work

During the last years, path following problems, whose goal is to generate a path and
follow it with a kinematic control law, have been studied intensively because they can
be applied in vehicle applications such as: parking (Laumond et al., 1994; Jiang et al.,
1999), overtaking and lane changing (Papadimitriou and Tomizuka, 2003; Montés et al.,
2007; Wilde, 2009), vision-based line following (Manz et al., 2010; Girbés et al., 2010),
etc. In that sense, the well-known Pure-Pursuit method determines appropriate vehicle’s



curvature and velocity that guarantee convergence to a specific path or trajectory based
on current robot pose (Wallace et al., 1985; Ollero and Heredia, 1995; Ollero, 2001).
However, applications such as path following or kinematic control differ from motion
planning and obstacle avoidance methods, since they do not generally take obstacles
into account, neither solve the global path planning problem. For a complete reference
on motion planning and obstacle avoidance methods see Minguez et al. (2008).

Most kinematic controllers are based on current robot and target poses, but they do
not take into account curvature continuity, which might affect seriously to comfort when
transporting people, and safety when transporting dangerous goods. These aspects can
affect load stability in transportation systems and they can even affect wheels slippage
and therefore odometry errors. In order to generate continuous-curvature paths in mo-
bile robotics, some researchers use clothoids to generate paths in navigation problems
(Fraichard and Mermond, 1998; Scheuer and Xie, 1999; Yang and Sukkarieh, 2008;
Labakhua et al., 2008) because of their “nice” geometric properties including a close
relation between physical phenomena (normal acceleration and jerks) with the clothoid
scaling parameter. In Scheuer and Fraichard (1996), Elementary paths were first intro-
duced, a combination of two symmetrical clothoids with the same homothety factor.
These ideas were extended in Scheuer and Fraichard (1997a), by introducing the con-
cept of Bi-Elementary paths, combinations of two Elementary paths. In Bi-Elementary
paths the initial and final configurations are not necessary symmetric, but the loci of
the intermediate configuration is restricted to a circle with specific orientations to en-
sure that each Elementary path contains symmetrical clothoids. Obviously, the solution
space is significantly limited in those cases and Elementary and Bi-Elementary paths
might not be appropriate to solve specific problems, specially the obstacle avoidance
problem or the line following problem with bounded sharpness and curvature. Dubins’
curves (Dubins, 1957) were the inspiration in Scheuer and Fraichard (1997b) to create
the SCC-paths (Simple Continuous-Curvature paths) and thus simplify the problem of
finding optimal paths for vehicles that can go only forward, while keeping curvature
continuity. They replaced the circular arcs of Dubins’ paths to the called CC-turns, in
order to perform paths defined as a combination of clothoids, circular arcs and line seg-
ments. The authors of Fraichard and Scheuer (2004) used RS-paths (Reeds and Shepp,
1990) to extend SCC-paths by creating continuous-curvature paths that ensure continu-
ity for vehicles moving both forward and backward.

In order to increase driving safety and comfort, many studies have been done to
determine appropriate values for super-elevation and side friction factor for horizontal
road alignment (Krammes and Garnham, 1998; Marchionna and Perco, 2007). These
studies also stablish appropriate values for clothoid sharpness in transition curves. More-
over, in mobile robotics some efforts have been done to improve stability and to avoid
robot tip-over by providing the ability of load reconfiguration for robots with manipu-
lators carrying loads. For instance, there are some analysis of the stability of vehicles
carrying heavy loads, establishing dynamic models and guidelines to follow in order
to avoid accidents (Korayem et al., 2004, 2010; Xinye et al., 2010). Other works use
mobile manipulators so that the center of gravity can be repositioned to avoid roll-over
when travelling on slopes or on uneven terrains (Beck et al., 2009; Valls et al., 2010;
Liu and Liu, 2010).



2 Smooth Curvature Path Generation

2.1 Problem Statement
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Fig. 1. VehicleR in tricycle configuration with back steering wheel.

LetR be a non-holonomic wheeled robot moving on a 2D plane with extended state
space qR(t) = (xR(t), yR(t), θR(t), κR(t))

T ∈ <2×S×< containing the robot Carte-
sian positions xR(t) and yR(t), the robot orientation θR(t) and the curvature κR(t),
which is the inverse of the radius of the robot instantaneous center of rotation (see Fig-
ure 1).

The kinematic model forR is:

q̇R(t) =

 ẋR(t)
ẏR(t)

θ̇R(t)
˙κR(t)

 =

 vR(t) cos θR(t)
vR(t) sin θR(t)
vR(t)κR(t)
vR(t)σ(t)

 (1)

being vR(t) the robot linear velocity and σ(t) the sharpness of the path.
We assume that R is moving with bounded curvature κR(t) ∈ [−κmax, κmax] and

sharpness σ(t) ∈ [−σmax, σmax]. Curvature bounds are due to mechanical constraints,
where for a forklift with tricycle configuration and back orientable wheels the following
expression stands κmax = tanΦmax/L, being L the distance between front and rear
wheels and Φmax the maximum angle of stering wheels. On the other hand, sharpness
upper and lower bounds are introduced based on the ideas suggested by Marchionna and
Perco (2007) to increase safety and satisfy comfort limits, improve road appearance, etc.

The goal is to generate a continuous-curvature path Q connecting the current robot
pose qR(t) to target configuration qT (t) = [xT (t), yT (t), θT (t), κT (t)]

T , while taking
curvature and sharpness upper-bounds into account. Notice that κR and κT can be any
arbitrary value in the range±κmax, unlike SCC-paths in Scheuer and Fraichard (1997b)
or CC-paths in Fraichard and Scheuer (2004) that connect two configurations in the
plane with null curvature only.
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Fig. 2. Standard Double Continuous-Curvature Path definition and its curvature profile.

2.2 Double Continuous-Curvature Paths

A Double Continuous-Curvature (DCC) path is composed by clothoids, circular arcs
and line segments, providing a set of general solutions, that guarantee continuity in cur-
vature and a bounded curvature derivative. DCC paths were introduced in Girbés et al.
(2011a), and they are based on the following sequence: line-clothoid-arc-clothoid-line-
clothoid-arc-clothoid-line. DCC are indeed based on two Continuous-
Curvature turns (like CC-turns in Scheuer and Fraichard (1997b) and Fraichard and
Scheuer (2004)) connected with straight line segments. The first line-segment and CC-
turn path (noted with subscript A) start at configuration qA=[xA, yA, θA, κA]

T , with
κA=0, while the second CC-turn and line segment (noted with subscript B) finish at
posture qB=[xB , yB , θB , κB ]

T , with κB=0. The configuration joining both CC-turns
is qC=[xC , yC , θC , κC ]

T , with κC=0 at the beginning of the common straight line
segment.

Figure 2 shows an example of a DCC path together with its curvature profile. There
are four clothoids named as A1, A2, B1 and B2 with lengths lA1, lA2, lB1 and lB2,
respectively. There are also two circular segments ΩA and ΩB with lengths lΩA and
lΩB , and three line segments with lengths lA, lC and lB . Particular solutions can be
derived using only four clothoids, obtaining similar solutions to Bi-Elementary paths
in Scheuer and Fraichard (1997a). In this sense, it is interesting to remark that, the
proposed formulation is a generalization of other continuous curvature paths given in
the literature based on clothoids or circles. In addition, our proposed method is not
forcing the same sharpness for the different clothoids namely σA1, σA2, σB1, σB2 ∈
[σmin, σmax], opening a wider spectrum of possibilities, being sA = sign(σA1) =
− sign(σA2) and sB = sign(σB1) = − sign(σB2) curvature’s signs of each CC-turn,
with opposite signs for clothoids belonging to the CC-turn. The attached Video 1 in
Table 1 in Appendix C demonstrates the type of solutions provided with the proposed
method.



Let Q ∈ <2 × S × < be a standard DCC path defined by a set of parameters as
follows:

Q(λ, θC , lA, lA1, lΩA , lA2, lC , lB1, lΩB , lB2, lB , σA1, σA2, σB1, σB2, sA, sB) (2)

where λ ∈ [0, λB ] is the free variable describing all possible configurations from qA =
Q(0, . . .) to qB = Q(λB , . . .) + qA with λB = lA + lA1 + lΩA + lA2 + lC + lB1 +
lΩB + lB2 + lB .

In Appendix B one can find specific details on how to compute DCC paths as a
composition of all its parameters. Since σA1, σA2, σB1, σB2, sA and sB are design pa-
rameters, it is easy to see that, in order to satisfy curvature continuity and first derivative
constraints, most of the parameters of a DCC path are dependent and therefore Q can
be re-defined as:

Q(λ, θC , lA, lB , lC) (3)

where,

lA1= |κAσ−1A1 |, lA2= |κAσ−1A2 |, lΩA= |θΩAκ
−1
A | (4)

lB1= |κBσ−1B1|, lB2= |κBσ−1B2|, lΩB = |θΩBκ−1B | (5)

with θΩA=δA−θA1−θA2, θA1=
κ2
A

2σA1
, θA2=

κ2
A

2σA2
and δA=sA(θC − θA). Similarly,

θΩB = δB−θB1−θB2, θB1=
κ2
B

2σB1
and θB2=

κ2
B

2σB2
and δB=sB(θB−θC). Curvatures

of arc segments will be selected upon the following criteria:

κA = min(
√
σA1δA,

√
σA2δA, κmax) (6)

κB = min(
√
σB1δB ,

√
σB2δB , κmax) (7)

It can be shown that the selected values for θA1, θΩA , θA2, θB1, θΩB and θB2 guar-
antee appropriate changes on the orientation and curvature. Indeed, our approach se-
lects the minimum admissible arc angle so if δA > δA,min ≡ min(|κ

2
max

σA1
|, |κ

2
max

σA2
|) or

δB > δB,min ≡ min(|κ
2
max

σB1
|, |κ

2
max

σ2
|) then the corresponding arc segments will cover

the remainder angle. Otherwise, the DCC path will not include arc segments and the
clothoid-pairs segments will compensate such angles with appropriate curvature values
at a maximum sharpness. In Section 2.4 we discuss that this is one of the most remark-
able aspects of the proposed method compared to SCC-paths. However, this implies to
solve an optimization problem, where the aim is to find Q∗ such as:

Q∗ = argmin
Q
|lA|+|lA1|+|lΩA |+|lA2|+|lC |+|lB1|+|lΩB |+|lB2|+|lB | (8)

with,

Q(λ, θC , lA, lB , lC) =
{

θC∈S,
lA,lB ,lC∈<

∣∣∣∃λB , qB = Q(λB , θC , lA, lB , lC) + qA

}
(9)

which can be solved using Simplex (Nelder-Mead) method as optimization method and
the initialization of the starting value for θC is described in Appendix B.



For a given θC , lengths of the line segments appear as a linear combination on the
Cartesian elements of (9):[ xB

yB

]
=
[
P′x
P′y

]
+
[
cos θA cos θB cos θC
sin θA sin θB sin θC

]
·
[
lA
lB
lC

]
+
[ xA
yA

]
, lA ≥ 0, lC ≥ 0 (10)

whereP ′x andP ′y represent the Cartesian coordinates of the remainder of terms that do
not depend on line segment lengths and are known for a given θC . In order to solve (10),
one can find many feasible solutions. Our heuristic criterion is to consider lA = 0, since
it is not needed in path following problems but formally introduced for path generation
problems. Therefore, computation of lC and lB is straight forward once θC is given:[

lB
lC

]
=
[
cos θB cos θC
sin θB sin θC

]−1
·
[
xB−xA−P′x
yB−yA−P′y

]
(11)

2.3 DCCs with non-zero curvature profiles

A standard DCC path is defined for κA = 0 and κB = 0, however in a navigation
problem may be situations in which κR 6= 0 and κT 6= 0, as shown in Figure 3. In these
cases qR 6= qA and qT 6= qB to satisfy curvature continuity in coherence with the
actual robot curvature. From now on, we will focus on the case where κT = 0, although
with a similar procedure, we can also target configurations with non null curvatures.
Without loss of generality, we assume that the robot is located within clothoid A1
segment and therefore the start configuration of a DCC path is a priori unknown (see
Figure 3). In that sense, the robot configuration can be expressed as:

qR = ∆qA1,R ⊕ qA (12)

where,

∆qA1,R =
[
R(θA)

[ xA1,R
sA·yA1,R

]
sA·θA1,R κA1,R

]T
(13)

where all possible cases of xA1,R, yA1,R and θA1,R can be computed from Fresnel
integrals as follows (see Appendix A).

Henceforth, we will use notation ∆qA1,R to refer to the clothoid segment at the
robot configuration, while ∆qA1 to refer to the complete clothoid segment. Figures
3(a), 3(c) and 3(e) depict a case in which robot and target’s signs of curvature (sR =
sign(κR) and sT = sign(κT )) are the same as the signs of the generated standard DCC
path (sA and sB), while Figures 3(b), 3(d) and 3(f) show a situation where they are
different. These examples are for a given pair of configurations qR and qT , which give
sA > 0 and sB < 0, although other combinations are possible and can be handled using
the same policy.

By marginalising out qA from Eq. (12) we can obtain the appropriate starting point
of the DCC path qA = qR 	∆qA1,R.

2.4 Comparing DCCs with SCCs and Dubins’ paths

The proposed DCC paths might be identical to SCC paths in Scheuer and Fraichard
(1997b) if the solution implies arc segments with large deflection angles. However,
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Fig. 3. DCC paths and curvature profiles for two given robot and target configurations, (a) when
sR= sA and (b) when sR 6= sA. Robot configuration qR along clothoid A1, (c) for DCC in (a),
and (d) for DCC in (b). Target configuration qT along clothoid B2, (e) for DCC in (a), and (f)
for DCC in (b).

DCCs are better suited for the path following problem as depicted in the blue line of
Figure 4(a), where DCC paths can prodive solutions where the lB < 0. We name this
case as relaxed solution, because the final negative length segment is never applied
(the path is recomputed on next update as described in Section 3). It can be shown
that this kind of converge-to-line solutions provide less oscillatory behaviour in path
following problems than the solutions proposed by SCCs (see green dash-dotted line
of Figure 4(a)) or even Dubins’ paths, which applying maximum curvature are still not
able to reach the goal without making a big turn (red dashed line in Figure 4(a)).

Another advantage of DCC paths with respect to SCCs is that the proposed solu-
tions can provide even shorter paths for cases with small deflection angles. That is,
cases where the optimization procedure of DCC provides a solution with the maximum
admissible sharpness, while the solution provided by SCCs adapts the sharpness so that
deflection angle is satisfied. This case is depicted in Figure 4(b), where it can be appre-
ciated that the DCC method finds a solution with the maximum sharpness and because
of that the overall path length of DCC is shorter.
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Fig. 4. Comparison of Dubins (red dashed), SCC (green dash-dotted) and DCC (blue) paths.

One important drawback of SCCs in the context of path following problems is that
they can not guarantee smooth curvature changes if κR 6= 0. The problem arises from
the fact that the sharpness that will be used in their clothoid segments can not be known
a priori, so they can not either compute the starting point of the clothoid unless κR = 0.
For instance, if we apply the method described in Section 2.3, the SCC method would
fail to pass even through the robot configuration qR or even to have the appropriate
curvature for L = 0, as shown in Figure 5.
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SCC path

DCC path
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qR

κmax

κmax

0
L0

Real path applied

σDCC=σmax
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κR
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Fig. 5. Example of path following problem in which SCCs cannot guarantee curvature continuity,
while DCC paths always do.

Regarding the computational cost, SCC and DCC paths are equivalent when opti-
mization procedure is not necessary, being the average time in such cases around 20µs
in our implementation of the methods. However, when an optimization is performed,
DCC’s processing time depends on the number of iterations required, although it has
good convergence rates, being at most five times slower than SCC, i.e. at most 100µs.
These results have been obtained in our implementation with ROS Fuerte in Ubuntu
12.04 (precise), using a computer with processor Intel Core i7-2670QM 2.20GHz and
8GB RAM.



3 Smooth Curvature Hybrid Controller: Dynamic Stabilization of
Industrial Forklifts

It is well-known that closed-loop structures increase control robustness to achieve a
specific target even with noises, unmodelled dynamics and disturbances. In this sense,
this section describes the application of DCC paths to the kinematic control problem
with dynamic target selection, which is the case of pure-pursuit framework or carrot-
like planners. This situation is highlighted in Figure 6, where a vehicle is following a
meta-path (grey dashed path proposed, let’s say, by a global planner) build up from a set
of way-points (blue points). It first follows a preliminary path (red path) during a certain
amount of time so it tries to converge to the meta-path based on a Look-Ahead (LA)
distance criterion. On next position update, the robot might be shifted from the original
path due to unmodelled dynamics or disturbances (in Figure 6 the update period is
extremely large on purpose to highlight errors), so we need to recompute a new path
based on the actual robot position (green path). Again, on next update, we need to
recompute the path in order to provide a third path based on new position update (blue
path). In this section we make explicit time t dependency for dynamic variables of such
robot configuration (including its speed and curvature), target selection, etc.

LAqR(t)

qT(t)

WPi

WPi+1 WPi+2

WPi+3

Fig. 6. Target re-computation based on Look-Ahead distance (Pure-Pursuit framework) with
odometry errors, where dashed line is the planned path and continuous line is the real path.

At this point, we want to remark the differences between target configurations, way-
points and goals within the context of this paper. Target configurations qT (t) are ob-
tained from the set of way-points W as explained herein after. On the contrary, way-
points constitute the global path to be followed based, for instance, on a global planner
method such as “wavefront planner” to lead the robot to the goal configuration qG.
Therefore, qT (t) is obtained from a given sequence of way-points to be reached based
on a LA distance. This can be formulated as the configuration within two consecutive
waypoints WPi = [xWPi , yWPi , θWPi ]

T and WPi+1 = [xWPi+1 , yWPi+1 , θWPi+1 ]
T with

θWPi=arctan(
yWPi+1

−yWPi
xWPi+1

−xWPi
):

qT (t) = [λ∗(WPi+1 −WPi) + WPi, θWPi , 0]
T (14)

λ∗ = arg min
λ≥λ⊥

∣∣∣‖λ(WPi+1 −WPi) + WPi − [xR, yR]
T ‖2 − LA

∣∣∣ (15)
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Fig. 7. Closed-loop Hybrid Controller, including a kinematic and a dynamic controller.

λ⊥ = arg min
0≥λ≥1

‖λ(WPi+1 −WPi) + WPi − [xR, yR]
T ‖2 (16)

Equation (14) defines the target configuration between waypoint segments, with λ∗

being the value in which the circle around the robot position with radius LA intersects
with the waypoint segment (15). If they do not intersect then the value is selected upon
the projection of the robot pose along segment (16).

Our approach to perform a kinematic control of the vehicle is based on a cascade-
loop structure, as shown in Figure 7. The controller includes speed and curvature con-
trollers that require speed and curvature profiles obtained from a speed reference gener-
ator and DCC path generator, respectively. Speed reference generator simply provides
a constant acceleration profile as will be explained later, while the latter has been al-
ready described in Section 2. In addition to this, overall closed-loop structure includes
a vehicle stability controller derived in Section 3.2 which requires an Extended Kalman
Filter (EKF) to estimate the vehicle configuration from inertial and odometry sensors.
Target selection is based on LA criteria, as mentioned before. In this paper, we use in-
ertial data not only to feed EKF estimation but for the dynamic stabilization controller
(body accelerations) as described in Section 3.2. Here, EKF estimation does not include
steroceptive sensors like ranger finders or cameras for simplicity, and no map is built
because these aspects are out of the scope of the paper. Indeed, the implementation of
EKF is based on package “robot pose ekf” in the ROS Navigation stack . The update
frequencies of DCC path and speed profile generators, vehicle stability control and tar-
get selection are set to 20 Hz, while the update frequencies of the speed and curvature
controllers and EKF are 100 Hz.



3.1 Kinematic Controller

The curvature controller defines a piecewise-function based on the travelled distance
along the computed DCC path. We assume that the vehicle is always located on the first
clothoid A1 and it has already travelled lA0 from DCC’s origin qA as a consequence of
the method described in Section 2.3. Thus, the distance along the DCC path is computed
as lR(t) =

∫ t
0
vR(t)dt+lA0. The curvature controller uses the estimated state from EKF

to compute the relative travelled distance since DCC path last update. Based on DCC
path definition, we define the following piecewise-function:

κR(t) =



0 if 0≤lR(t)≤l1
sA(lR(t)−l1)σA if l1<lR(t)≤l2

lA1σA if l2<lR(t)≤l3
lA1σA−sA(lR(t)−l3)σA if l3<lR(t)≤l4

0 if l4<lR(t)≤l5
sB(lR(t)−l5)σB if l5<lR(t)≤l6

lB1σB if l6<lR(t)≤l7
lB1σB−sB(lR(t)−l6)σB if l7<lR(t)≤l8

0 if l8<lR(t)

(17)

with l1= lA, l2= l1+lA1, l3= l2+lΩA , l4 = l3+lA2, l5= l4+lC , l6= l5+lB1, l7= l6+lΩB ,
l8 = l7+ lB2 and l9 = l8+ lB . For a demonstration of the kinematic controller with an
industrial forklift, see Video 2 of Table 1 in Appendix C.

Speed profile generator is also defined as a piece-wise function considering times
for speeding up and down based on path speed and acceleration profiles (including nom-
inal speeds and speeds at turns). When approaching a curve, human use to instinctively
apply a “slow-in” and “fast-out” policy, which implies to reduce velocity, i.e. vturn,
just before entering into a curve and then progressively increases the velocity up to a
nominal value, i.e. vpath. The following function defines the proposed speed profile,
which includes a constant acceleration apath for speeding up and a constant decelera-
tion abrake for slowing down:

vR(t) =


vpath if t≤t1

vturn
t−t1
t2−t1

−vpath
t−t2
t2−t1

if t1≤t≤t2
vturn if t2≤t≤t3

vpath
t−t3
t4−t3

−vturn t−t4
t4−t3

if t3≤t≤t4

(18)

with t1 the time instant when the vehicle is separated a distance∆x =
v2path−v

2
turn

2·abrake +LA
to the next waypoint. ∆x − LA is indeed the required distance to reduce the velocity
from vpath to vturn with constant deceleration abrake, which requires total amount of
t2− t1. In addition to this, t3 is the time instant when the convergence criteria indicates
that the vehicle has converged to the line between current waypoint and next waypoint
and t4 is the required time to accelerate from vturn to vpath with constant acceleration
apath.

3.2 Dynamic Controller

In order to increase driving safety and comfort and reduce slippage, many studies have
been carried out to determine appropriate values for super-elevation and side friction
factor in horizontal road alignment (Krammes and Garnham, 1998; Marchionna and



Perco, 2007). These studies also establish appropriate values for clothoid sharpness in
transition curves, according to κR(t) ∈ [−κmax, κmax] and σ(t) ∈ [−σmax,−σmin]∪
[σmin, σmax], to guarantee specific vehicle dynamic properties. In fact, in order to en-
sure appropriate curve visibility and comfort, one of the most accepted criteria in clo-
thoid sharpness design (Marchionna and Perco, 2007) is related to the maximum curva-
ture, such κ2max ≡ σmin < σ < σmax ≡ 9 · κ2max. The clothoid sharpness is selected
according to the following formula:

σ = (1− α) · σmin + α · σmax (19)

where α is a design parameter.
The heuristic criteria used in the computation of α has the purpose of reducing the

sharpness when the vehicle is following a straight line with high speeds, while letting
it turn by increasing sharpness when necessary. Such α parameter is obtained using the
following formula α = H · sinβmin v

2
turn

vRLA
, with H a time horizon (in our case H = 1s)

and βmin = min(β, π/2), being β = arctan( yT−yRxT−xR ) − θR. Notice that α depends
on vturn and LA, which are included because vehicle’s behaviour is sensitive to these
parameters.

At this point, several criteria can be considered such as vehicle stability carrying a
heavy load, horizontal alignment, slippage avoidance and/or maximum curvatures due
to mechanical constraints:

κmax = min(κmax,stab, κmax,horiz, κmax,slip, κmax,mech, . . .) (20)

σmax = min(σmax,stab, σmax,horiz, σmax,slip, σmax,mech, . . .) (21)

σmin = max(σmin,stab, σmin,horiz, σmin,slip, σmin,mech, . . .) (22)

where in our notation subscript name is a short name for the criterion that can be used.
Focusing on stability criterion, Figure 8 defines main geometric parameters involved

in lateral and frontal tip-overs. It also shows a picture with the real forklift were values
for these parameters have been taken from. Our notation considers sub-index B for body
and sub-index L for load.

Let first compute vectors for body and load positions, velocities and accelerations
for a given configuration (see Figure 8(d)). Let −→pR = [xR, yR, 0]

T ∈ <3 be the vehicle
Cartesian coordinates where control over its position is to be performed. The position
for the body center of mass −→pB and load center of mass −→pL is:

−→pB = −→pR − LB
−→
t +0−→n +hB

−→z (23)
−→pL = −→pR + LL

−→
t +0−→n +hL

−→z (24)

being {−→t ,−→n ,−→z } a base of orthonormal vector corresponding to the tangential, normal
and binormal directions of the vehicle reference frame. Velocities and accelerations can
be easily derived:
−→vB=vBt

−→
t +vBn

−→n =vR ·
−→
t −LB ·vR ·κR ·−→n (25)

−→vL=vLt
−→
t +vLn

−→n =vR ·
−→
t +LL ·vR ·κR ·−→n (26)

−→aB=aBt
−→
t +aBn

−→n =
(
v̇R+LB ·v2R ·κ2

R

)−→
t +

(
v2R ·κR−LB (v̇R ·κR+vR ·κ̇R)

)−→n (27)

−→aL=aLt
−→
t +aLn

−→n =
(
v̇R−LL ·v2R ·κ2

R

)−→
t +

(
v2R ·κR+LL (v̇R ·κR+vR ·κ̇R)

)−→n (28)
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Fig. 8. Different views of the industrial forklift carrying a load. CS stands for Coordinate System,
while subscripts B, L, R and W refer to Body, Load, Robot and World respectively.

being
−̇→
t = vR · κR · −→n , −̇→n = −vR · κR ·

−→
t and −̇→z = 0 for a planar motion.

From equilibrium condition, we can get the limit of lateral tip-over stability. As
shown in Figure 8(c), the sign criteria for the equilibrium problem is different depending
on the turning direction (left and right tip lines), which turns in fact into the following
inequalities depending on the case:

DB·mB·g+DL·mL·g−hL·mL·aLn−hB·mB·aBn > 0 if κR>0m−1 (29)

DB·mB·g+DL·mL·g+hL·mL·aLn+hB·mB·aBn > 0 if κR<0m−1 (30)

with g the gravitational acceleration, mB and mL the masses of body and load, DB =
B
2 ·

L−LB
L and DL = B

2 ·
L+LL
L represent distances of the supporting triangle formed

with the two front wheels and the rear wheel, LB and LL are longitudinal distances
from vehicle coordinate system to base and load’s centres of gravity respectively, hB
and hL are heights for base and load’s centres of gravity with respect to the floor, B is
the front wheel separation and L is the wheel base, i.e. the axle distance.

Assuming that an inertial sensor (IMU) is located in the vehicle body’s CoG and
from Eq. (28), we can marginalize out κR from aLn component and substitute in the



marginalization of aLn in Eqs. (29) and (30). Thus, we can find out maximum normal
load acceleration and as a consequence it is also possible to compute the maximum
allowed curvature that guarantees instantaneous lateral stability:

κmax,stab =

∣∣∣∣∣ (DL·mL+DB·mB)·g− sign(κR)·(hB·mB·aBn+vR·κ̇R·LL)

hL ·mL · (v2R + LL · v̇R)

∣∣∣∣∣ (31)

where aBN is taken from the IMU’s measurement.
Similar to horizontal alignment criteria Krammes and Garnham (1998), the maxi-

mum sharpness from the lateral stability criteria is obtained by the following expression:
σmin,stab = κ2max,stab and σmax,stab = 9 · σmin,stab.

In order to avoid frontal tip-overs due to excessive braking, we also analyse condi-
tions for tangential equilibrium equations when braking:

LB ·mB · g − LL ·mL · g − hB ·mB · aBt − hL ·mL · aLt > 0 (32)

Taking into account Eq. (32) and (28), we can similarly proceed to derive a frontal
stability condition which implies to compute maximum allowed deceleration:

abrake ≤
(LB ·mB − LL ·mL) · g + hB ·mB · aBt

hL ·mL
+ v2R · κ2

R · LL (33)

4 Simulation Results

In order to validate our proposal, we have simulated a forklift and an environment us-
ing ROS-Gazebo with parameter values corresponding to the real forklift shown in Fig-
ure 8(d): body mass mB = 1500kg, load mass mL = 1000kg, with LB = 1.0m,
DB = 0.12m, hB = 0.42m, LL = 1.01m, DL = 0.924m, hL = 2.75m. Simulation
step time has been set to tsim = 10−3s and control period TR = 0.01s, that is, the
sampling time in which DCC paths are recomputed. Additional parameters are: gravity
acceleration g = 9.81m/s2, variables related with joints and constraints for dynamic
simulations based on ODE (Open Dynamics Engine), such as constraint force mixing
cfm = 0.0001 and error reduction parameter erp = 0.4 as global parameter settings
and damping damp = 0.1 and friction fric = 10.0 for every joint. On the other hand,
a tricycle kinematic model of the vehicle has been used, with a rear steering wheel and
two front driving wheels: front wheel separation B = 1.04m, wheel base or axle dis-
tance L = 1.3m and wheel diameter D = 0.44m. From the robot configuration we
can set the maximum mechanical curvature as κmax,mech = R−1min = tan(Φmax)/L =
0.7692m−1, where Rmin is the minimum radius of curvature, L is the wheel base and
Φmax = π/4rad is the maximum steering angle of the rear wheel.

First, we show the advantages of using the proposed hybrid-controller described in
previous section. For that purpose, we have implemented components of Figure 7 in
ROS and will be separately tested first. The implementation allows activation and deac-
tivation of nodes and re-parametrization based on “dynamic reconfigure” ROS package.
The EKF implementation is based on the “robot pose ekf” ROS package, where only
odometry and inertial values are considered1.

1 We are not concerned about the dead-reckoning problem, since it is out of our scope.
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Fig. 9. (Up) Sequences explaining experiments performed in the stability controller analysis, (a)
lateral test and (b) frontal test. (Down) Stability controller analysis, (c) lateral stability with
vturn = vpath and (d) frontal stability. Solid blue line corresponds to stability controller set
to ON with vpath = 3m/s, dashed red line is for the OFF state (where it starts failing) and
dash-dotted green line corresponds to the maximum velocity case vpath = vmax = 6m/s.



In our first simulation scenario, the vehicle is moving almost at constant velocity
vpath = 3m/s, but it needs to make a 90o turn (see Figure 9(a)). Thus, the aim of this
test is to compare the behaviour of the vehicle when speed profile generator and frontal
stability nodes are not active and when they are. If lateral stabilization node is off, that
is, minimum and maximum sharpness and maximum curvatures are not recomputed
based on IMU measurements, the DCC path generator cannot perform successfully
when carrying heavy loads. Indeed, the vehicle starts turning at t ≈ 11s with vR =
3m/s and it tips over around t ≈ 14s, as shown in Figure 9(c) (dashed red line). It
has to be mentioned that vpath = 3m/s and LA = 3m is the limit situation where
the vehicle starts tipping over. However, if we activate the lateral stabilization node, it
can be clearly seen that the vehicle does not tip over (blue solid line in Figure 9(c)).
This can be proved even at the maximum velocity taken from real vehicle specifications
vmax = 6m/s, where our stabilization controller still performs successfully, as depicts
Figure 9(c) (green dash-dotted line). Full simulations can be seen in Video 4 in Table 1
in Appendix C.

Similarly, we can analyse the effect of enabling or disabling the frontal stabiliza-
tion module, in which maximum allowed decelerations are recomputed. In this case,
the simulation scenario includes the vehicle moving straight forward during a certain
amount of time with vpath = 3m/s and then it performs a brake, that is, it sets velocity
to zero (see Figure 9(b)). Figure 9(d) shows the case in which a constant deceleration
is taken as the maximum vehicle deceleration with abrake = 2m/s2 for the case where
the vehicle is carrying a load, where it is clearly shown that the vehicle destabilized
during braking until it dumped frontally at t ≈ 15s (dashed red line). In addition to
this, Figure 9(d) also clearly shows that with frontal stabilization on, the vehicle can
successfully perform the brake (solid blue line). We can also see in Figure 9(d) that the
stabilization controller still performs successfully at the maximum velocity case (dash-
dotted green line). Full simulations can be seen in Video 5 in Table 1 in Appendix C.

In addition to this, Figure 10 shows a scenario where the vehicle is following a path
with a squared side of 30m. Two different kinematic controllers are tested: blue line
corresponds to our DCC path generator method, while dashed-dotted line corresponds
to Pure-pursuit (PP) method (Wallace et al., 1985; Ollero and Heredia, 1995; Ollero,
2001) a well known algorithm commonly used as a curvature controller which pro-
poses circular arcs to reach targets. In both cases, lateral and frontal stabilization nodes
are active and the unique difference is on how the curvature profile is computed for a
given target. What we are interested to highlight is that if the vehicle has not properly
converged after performing a turn with the appropriate heading direction, well-known
policies such as “slow-in” and “fast-out” can potentially cause oscillation problems.
This is the case of PP method in Figure 10, in which the angular rate increases as a con-
sequence of increasing the velocity. This also may cause additional inconvenience such
as increased odometry errors due to oscillatory behaviour. This error is computed as the
accumulate value of error between the relative ground-truth pose (provided by Gazebo)
and the relative estimated pose. Video 3 of Table 1 in Appendix C shows an illustrative
example of problems caused due to over-oscillation in an factory environment.

Moreover, we analyse the main characteristics of the proposed method against the
PP method. Again, without loss of generality, the following analysis has been deve-
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Fig. 10. DCC (blue) vs. PP (dashed red), following a square path of 30m side, with LA = 4.5m,
vpath = 6m/s and vturn = 3m/s.

loped for the case in which the initial robot configuration is qR = (0, 0, 0, 0, 0)T , with
vR = 0m/s, and the path to follow is a straight line ρl = x cosφl + y sinφl with
ρl = 20m and φl = 0rad (i.e. line x = 20m), which represents one of the most difficult
cases for both algorithms since it represents a 90o turn. Our purpose is to analyse the
sensibility of several metrics (described below) for each method against Look-Ahead
distance LA parameter and the robot velocity vR. Initially, the robot accelerates in a
straight movement until it reaches the path reference speed and when the robots is at a
distance LA to the path begins to twist until converges to the line. All simulations have
been carried out with a forklift carrying a heavy load at a height of hL = 1.75m.

To evaluate the performance, several metrics have been used to characterize the
resulting path {[xR,0, yR,0]T , . . . , [xR,N , yR,N ]T }, where N is the number of points
of the simulation. In particular, we consider the following metrics: overshoot δ =

max{xR,i−ρlLA }, settling time ts such that
∣∣∣xR,i−ρlLA

∣∣∣ < 0.05 and mean error

e =
∑
i

∣∣ρl − (xR,i cosφl − yR,i sinφl)
∣∣, with xR,i and yR,i the i-th position of the

simulated path. In addition to this, we also consider additional metrics taking into ac-
count comfort and safety, so we evaluate the mean normal acceleration aN =

∑
i

∣∣aN,i∣∣,
the mean curvature κ =

∑
i

∣∣κR,i∣∣ and the maximum curvature κmax = max{κR,i},
being aN,i the normal acceleration along the path measured with the IMU and κR,i the
robot curvature along the path obtained from odometry data. Such metrics values are
reflected on Figure 11(a), for different values of LA parameter and Figure 11(b) shows
path trace for specific values of LA parameter. It can be appreciated that as long as the
LA parameter is smaller, the PP method presents an oscillatory behaviour. In all pre-
sented cases, the convergence time for the DCC method is smaller than the PP method
as well as the mean error. Also the mean normal acceleration and curvature are lower
because we have, in general, lower oscillatory effect. Our maximum curvature is always
higher, which implies that we are being less conservative than PP method, which im-
plies that our controller is able to bring the vehicle to the limit conditions while taking
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Fig. 11. DCC (blue) vs. PP (dashed red), for different values of LA, with vR = 3m/s.

into account stabilization conditions. Figure 12 shows the results for different veloc-
ity conditions, where similar conclusions can be drawn. Our method performs better in
terms of settling time, mean error, mean normal acceleration and curvature and max-
imum curvature. Here the effect is contrary to the LA parameter, that is, PP method
produces higher oscillations with increasing velocity values.

5 Conclusions

The paper has introduced a closed-loop hybrid control for autonomous-guided indus-
trial vehicles (AGVs), where vehicle stability, safety, slippage and comfort have been
taken into account. From a theoretical point of view, the paper has described a complete
method for generating continuous-curvature paths for non-holonomic wheeled mobile
robots, and introduces a hybrid controller composed by both a kinematic and a dynamic
controller.

The method computes Double Continuous-Curvature (DCC) paths from any arbi-
trary starting and target configurations, based on clothoids, as a reference to the kine-
matic controller. A heuristic criterion has been implemented to find the shortest path
joining both configurations. Target configurations are obtained from a sequence of way-
points taken from a global path planner or a vision-based line following system.

The kinematic controller computes trajectories from a combination of DCC paths
and speed profiles, based in a “slow-in” and “fast-out” policy. A closed-loop feedback
structure is implemented in order to improve robustness, recomputing curvatures and
speed profiles, based on sensor data.
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Fig. 12. DCC (blue) vs. PP (dashed red), for different values of vR, with LA = 6m

Moreover, the proposed control structure includes a dynamic controller to guarantee
vehicle stability conditions. The dynamic controller establishes bounds for DCC paths
so that vehicle stability, safety and comfort are satisfied. The dynamic controller also
includes a closed-loop feedback structure, where odometry and IMU data are used to
stabilize the vehicle against tip-overs.

The method has been validated in different simulated scenarios, using an industrial
forklift carrying heavy loads at high speeds. In simulations, lateral and frontal tip-overs
have been analysed showing that our method is able to control the vehicle carrying a
load of 1000kg at 2.75m height and 6m/s speed, the maximum vehicle speed for the
considered forklift. Without the dynamic controller the vehicle tips over at 3m/s speed.

The paper also provides an exhaustive analysis to evaluate the performance of the
new DCC kinematic method with respect to the conventional Pure-Pursuit (PP) method.
It is interesting to remark that the PP method tends to oscillate the closer the target is
selected (short Look-Ahead distances). These oscillations may cause unstability and
eventually frontal or lateral tip-overs, as well as crashing when moving in narrow cor-
ridors.

In addition, several metrics have been considered for evaluation of the performance,
such as overshoot, settling time, safety and comfort. It is shown that the proposed me-
thod achieves better results. The set of attached videos also illustrates the advantages of
the proposed method.
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A Clothoid-based curve properties

Definition Cornu’s Spiral or Clothoid is defined by the Fresnel integrals in <2 as fol-
lows:

C(γ) =
[
Cx(γ)
Cy(γ)

]
= K

[∫ γ
γi
cos(π2 ξ

2)dξ∫ γ
γi
sin(π2 ξ

2)dξ

]
(34)

where K is the homothety factor, i.e.: the scale of the spiral, and γ ∈ [γi, γf ] comprises
the integration interval between the initial and final configurations. Unfortunately, there
is no closed-form solution to compute Fresnel integrals, however some interesting geo-
metric properties of clothoids can be analytically computed.

Property Let [C(γi), C(γf )] be a clothoid segment, the so called clothoid parameter
A and its homothety factor are related by K =

√
πA. For given curvature range κ ∈

[κi, κf ] and sharpness σ the integration parameter is γ = sσκK/π, with sσ = sign(σ).
The cartesian coordinates are x = Cx(γ) and y = sσCy(γ). The tangent angle τ with



respect to the abscissa axis X of C(γ) is τ = sσ
π
2 γ

2. The curvature κ and length L
of the clothoid C(γ) increase proportionally with γ for a given homothety factor, being
the expression κ = sσπ

γ
K for curvature and L = Kγ for length. with respect to the

origin. It is straight forward to see that both, curvature and length are related by the
clothoid parameter as κ = L

A2 , which implies that constant changes on the curvature
are proportional to changes on the length of the curve.

Property Let C(γ) be point on a clothoid curve with a constant velocity v and the
sharpness σ ≡ A−2, the curvature derivative of C(γ) is constant and given by κ̇ = vσ.
Clothoid derivatives can be analytically computed Schot (1978). The tangential and
normal components of acceleration are at = 0 and an = v2κ, respectively, while the
tangential and normal components of rate of acceleration (jerk) are jt = −v3κ2 and
jn = v2κ̇ = v3σ respectively.

B Clothoid-based Double Continuous Curvature Paths

The end configuration of a DCC path qB can be computed as follows:

qB = ∆qlA⊕∆qA1⊕∆qΩA⊕∆qA2⊕∆qlC⊕∆qB1⊕∆ΩB⊕∆qB2⊕∆qlB⊕qA (35)

where,

∆qlA = [ lA cos θA lA sin θA 0 0 ]
T (36)

∆qA1 =
[
R(θA)

[
xA1

sA·yA1

]
sAθA1 sA|κA|

]T
(37)

∆qΩA =

[
κ−1
A R(θA+sAθA1)

[
sin θΩA

sA(1−cos θΩA )

]
sAθΩA 0

]T
(38)

∆qA2 =
[
R(θA+sA(θA1+θΩA ))

[
xA2

sA·yA2

]
sAθA2 −sA|κA|

]T
(39)

∆qlC = [ lC cos θC lC sin θC 0 0 ]
T (40)

∆qB1 =
[
R(θC)

[
xB1

sB ·yB1

]
sBθB1 sB |κB |

]T
(41)

∆qΩB =

[
κ−1
B R(θC+sBθB1)

[
sin θΩB

sB(1−cos θΩB )

]
sBθΩB 0

]T
(42)

∆qB2 =
[
R(θC+sB(θB1+θΩB ))

[
xB2

sB ·yB2

]
sBθB2 −sB |κB |

]T
(43)

∆qlB = [ lB cos θB lB sin θB 0 0 ]
T (44)

The Cartesian coordinates xA1, yA1, xA2, yA2, xB1, yB1, xB2 and yB2 are computed
from Fresnel’s integrals for their corresponding curvature κA or κB .

Cartesian elements of qB can be written as:

Px + X1 cos θC + X2 sin θC = lA cos θA + lB cos θB + lC cos θC (45)
Py −X2 cos θC + X1 sin θC = lA sin θA + lB sin θB + lC sin θC (46)



where,

Px =xB−xA−xA1 cos θA−xB2 cos θB+sAyA1 sin θA−sByB2 sin θB+

+ κ−1A sin(θA+θA1)−sBκ−1B sin(θB−sBθB2)
(47)

Py =yB−yA−sAyA1 cos θA+sByB2 cos θB−xA1 sin θA−xB2 sin θA−
−sAκ−1A cos(θA+θA1)+sBκ

−1
B cos(θB−sBθB2)

(48)

X1 =−xB1−xA2+κ
−1
A sin θA2

(
cos2 θA+sA sin2 θA

)
+κ−1B sin θB1 (49)

X2 =sByB1−sAyA2−κ−1A cos θA2

(
sA cos2 θA+sin2 θA

)
+κ−1B sB cos θB1 (50)

There are four unknowns and just two equations in (45) and (46), thus multiple so-
lutions are possible. Since DCC path are applied within the path following problem, we
force lA = 0, otherwise convergence in path following problems can not be guaranteed.
Therefore, the problem reduces to determine lB , lC and θC . In that case (45) and (46)
can be rewritten as:

Px +
√
(X1 − lC)2 + X 2

2 cos(θC − α) = lB cos θB (51)

Py −
√
(X1 − lC)2 + X 2

2 sin(θC − α) = lB sin θB (52)

with tanα = X2

X1−lC . Equations (51) and (52) can be merged to provide a family of
solutions for θC depending on the value lC :

θC = arcsin

(
Px sin θB − Py cos θB√

(X1 − lC)2 + X 2
2

)
+ arctan

(
X2

X1 − lC

)
− θB (53)

In order to provide the shortest path lC must satisfy the following:

lC =

{
max

(
0,X1+

√
(Px sin θB−Py cos θB)2−X 2

2

)
if |Px sin θB−Py cos θB |< |X2|

0 otherwise
(54)

The angle θC is the analytic solution for the optimization problem stated in Section
2.2 when the solution implies arc segments. This value is used in any-case as starting
point of the optimization procedure because it provides deflection angles which are
“close” to the optimal ones.

C Index of Multimedia Data



Item # Type File

1 Video Multimedia #1. DCC Generation.avi
2 Video Multimedia #2. Line Following Real Forklift.avi
3 Video Multimedia #3. PPvsDCC - Factory Crash.avi
4 Video Multimedia #4. PPvsDCC - Lateral Stability Effect.avi
5 Video Multimedia #5. PPvsDCC - Frontal Stability Effect.avi

Table 1. Multimedia Data files relation.


