
Planning manipulation movements of a dual-arm
system considering obstacle removing

Carlos Rodŕıguez, Andrés Montaño and Raúl Suárez

Institut d’Organització i Control de Sistemes Industrials (IOC)
Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.

Abstract

The paper deals with the problem of planning movements of two
hand-arm robotic systems, considering the possibility of using the
robot hands to remove potential obstacles in order to obtain a free
access to grasp a desired object. The approach is based on a varia-
tion of a Probabilistic Road Map that does not rule out the samples
implying collisions with removable objects but instead classifies them
according to the collided obstacle(s), and allows the search of free
paths with the indication of which objects must be removed from the
work-space to make the path actually valid, we call it Probabilistic

Road Map with Obstacles (PRMwO). The proposed system includes
a task assignment system that distributes the task among the robots,
using for that purpose a precedence graph built from the results of
the PRMwO. The approach has been implemented for a real dual-
arm robotic system, and some simulated and real running examples
are presented in the paper.

Keyword: Motion planning, Grasping, Dual-arm, Manipulation.

1 Introduction

Manipulating objects with more than one hand is a problem of significant
relevance in a human environment, and so it is in an environment where
several robot arms interact, both in industrial and service robotics. Manip-
ulating objects involves several associated problems, among which there are
two main ones: the determination of a proper grasp configuration for the
available hand or gripper (considering, for instance, aspects like the shape of
the object and the task to be performed with the grasped object), and the
determination of collision free paths to reach the grasp configuration and to
move an object from its initial configuration to a desired one; grasping and
path planning are already classic problems in robotics.

1

In this work we deal with the problem of finding collision free paths under
the following assumptions: two robots (hand-arm systems) are available in
a common workspace to grasp and move objects, the final goal is to grasp a
particular object, there may be other removable objects in the environment
acting as obstacles, and the two robots can be used to remove these obstacles
if it is necessary. Note that this is a frequent problem in everyday life for the
humans, and so will be for humanoids robots.

The proposed approach solves the problem of finding the robot move-
ments to grasp and manipulate the desired object determining at the same
time which are the objects acting as obstacles that must be removed. The ap-
proach allows the consideration of different grasping configurations for each
object and selects the one that allows a real solution to the stated problem.

After this introduction the paper is organized as follows. Section 2
presents a review of related works and Section 3 presents the proposed ap-
proach, giving first an overview, Section 4 presents the description of the
approach including the proper algorithms. Then, Section 5 deals with the
implementation and presents some application examples and, finally, Sec-
tion 6 summarizes the work and presents some topics deserving future work.

2 Related Work

The existence of more than one robot arm performing manipulation tasks
in a common workspace is becoming quite frequent, either because two or
more fixed or mobile robots have access to the same workspace or due to the
increasing number of multi-arm robots, particularly with anthropomorphic
features. Planning manipulation movements for these systems is a research
topic of increasing interest [1], and is closely related with the grasping prob-
lem [2, 3]. Robots sharing the workspace can cooperatively work acting as
a close kinematic chain, like for instance assembling a nut and a bolt [4]
or a peg-in-hole task [5], in both cases with each part being manipulated
by a different arm, or cooperating with open chain coordinated movements,
like in the problem considered in this paper where the robots must work
coordinately in order to properly remove obstacles to make a desired object
reachable.

Motion planning for multiple robots in a shared physical space usually
implies complex problems in high dimensional spaces, and the approaches to
deal with them can be classified into centralized and decoupled [6]. In the

2

centralized approaches multiple arms are considered as a single multi-body
robot with the number of degrees of freedom (DOF) of the whole system,
and the planning algorithms simultaneously find a coordinated and collision
free path for each robot. In the decoupled approaches each arm is treated
as a single independent system and the motion planning process has two
phases, first a path for each arm is independently determined and, then,
it is required a coordination method to avoid potential collisions between
the robots when they simultaneously execute their movements. Even when
centralized approaches are complete, they have to deal with a higher number
of DOF which implies a planning space of higher dimension, and therefore
they are, in general, computationally more expensive. On the other side, the
decoupled approaches decompose the problem into smaller subproblems (i.e.
one for each robot) but, as a drawback, they need the additional coordination
phase.

Several techniques have been developed for robot motion planning. Among
the most effective are the sampling-based techniques, which are classified
into deterministic and probabilistic depending on the way the samples are
generated [7]. Typical examples of the deterministic approaches are visibility
graph [8], retraction algorithm [9], A* algorithm [10], Dijkstra algorithm [11],
and potential fields [12]. Among the most relevant probabilistic approaches
are the Rapidly-exploring Random Trees planners (RRT) [6] and Probabis-
tic Road Map planners (PRM) [13]. These original probabilistic approaches
have some problems when there are narrow passages and in order to over-
come them several variations were developed, like a multi-resolution PRM
planner [14], a dynamics domain RRTs [15], a retraction base RRTs [16], a
adaptive workspace biasing [17], and a sampling method based on Principal
Component Analysis [18]. In order to speed up the query path planning, some
variants of PRM planners build a roadmap without checking for collisions,
then, once a potential solution path was found the existence of collisions is
verified and if they occur the corresponding nodes and edges are removed
from the roadmap and a new search is started; the process is repeated until
a collision free path is found (e.g. the Lazy PRM planner [19]). Some ex-
tensions of PRMs include the use of object symmetries in order to improve
the performance of the planner [20], and the consideration of scenarios where
there are obstacles with known collision free paths around them which have
to be connected to the general roadmap, to yield a solution path that skirts
the obstacles [21]. The paths obtained with the described planners can be op-
timized using post processing methods, which search for an optimal subset of

3

samples in the configuration space that replace some samples from the initial
path [22]. The motion planning problem is in a close relation with the task
planning problem, which is usually in a higher level of abstraction that may
include the use of semantic knowledge to improve the planning capabilities
by integrating spatial knowledge with other sources of knowledge [23].

The planners mentioned above have been designed to avoid collisions
with any obstacle, either fixed or removable, while the problem of motion
planning considering removable obstacles is still an open problem in robotics.
A relevant pioneering works considering removable obstacles have shown that
motion planning among obstacles is an NP-hard problem [24] and proposed
a grid based 2-D planner to heuristically try to minimize the cost of pushing
obstacles out of the way [25].

Approaches to this motion planning problem were particularly developed
in the context of humanoid robots, with different proposals depending on
whether there is an a priori full knowledge of all the obstacles in the envi-
ronment, including whether they are fixed or not. An example of a work
considering a fully known environment can be found in [26], where the prob-
lem is solved as follows. The initial configuration, the goal configuration and
the configurations describing the position of the obstacles are considered as
nodes of a graph, a collision free path is searched between every pair of these
configurations and when it is found the corresponding nodes are connected
in the graph, and finally, the task solution path is found searching the graph
for a branch from the initial to the final configuration; every intermediate
node in this branch represents an obstacle that must be removed to execute
the task. When the objects in the environment are not completely known,
the planner works while the environment is being explored to distinguish
fixed and removable obstacles. The classification of the objects as fixed or
removable can be done through the object recognition and checking in the
database for proper label [27, 28], or, by trying to push the objects and clas-
sifying them according to some sensor inputs (e.g. measurements of force
sensors on board of the robot) [29]. In all these works the obstacles that do
not a allow a robot path towards the goal are pushed out of the path by the
robot itself.

In another type of problem the desired object is known but it position is
not, thus the robot must execute pick and place tasks to remove the visible
obstacles and look for the desired object. An example can be found in [30]
that presents a motion planner based on a vision system, the planner consid-
ers the visibility and the accessibility to the objects to compute the occluded

4

space where the target could be, and decides then which obstacle must be
removed to look for the desired object.

In the context described above, the approach proposed in this paper to
plan the robot paths, and if necessary determine a sequence of robot actions
to remove obstacles, belongs to the decoupled category, uses a motion planner
based on a PRM, and requires the knowledge of the environment.

3 Overview of the Proposed Approach

3.1 Problem Statement

Consider two robots (hand-arm systems) Ri, i = 1, 2, in a shared workspace
where there is an object of interest O0 to be grasped and some other remov-
able objects Oj, j = 1, ..., n, which can be grasped and removed from the
scene by the robots themselves and that may act as obstacles that do not
allow access to O0. In this context the problem to be solved is: find a geo-
metric path Pi,0 for a robot Ri in order to grasp the desired object O0 and,
if necessary, a set of geometric paths Pl,j, l = 1, 2 to remove all the obstacles
Oj in Pi,0 using both robots in a coordinated way.

3.2 Contributions and limitations of the approach

The main contributions of this work are, on one side, a path planner able to
find paths in environments where there are removable obstacles such that it
can returns either directly a collision free path or a path that would be free
of collisions if some particular removable obstacles (returned together with
the path) are previously removed. A second aspect is the reasoning about
the actions to be done by each robot, using for this a precedence graph where
the target and the obstacles are represented as nodes and the links indicate
the obstacles to be removed in order to be able to do each particular action.
The path planner and the reasoning with the graph are simultaneously used
until a solution is found, with the solution including an assignment of robot
actions to remove (if necessary) obstacles in order to arrive to a desired target
and the corresponding collision free paths for the robots to do such actions.

On the other hand, as potential limitations of the approach it can be
mentioned that the environment must be known in advance, including the
distinction between fixed and removable obstacles, and that, in the current

5

implementation, the grasping configurations for each removable object with
the used hand are also known (they are provided with the object model, and
any number of grasping configurations can be considered).

3.3 Approach overview

This subsection presents an overview of the proposed approach with the aim
of introducing the main ideas and features, a detailed description is presented
in Section 4.

Figure 1 shows a schema with the main blocks of the work, which also
indicates the associated algorithms described later in Section 4. The main
steps are the following. A graph is built with the root node representing
the goal object (block 1), then a motion planner is used to look for a robot
path to reach and grasp the goal object, considering each available robot
and different grasping configurations (block 2 and 3). If a collision free path
(a solution) is found (block 4) it is directly returned, otherwise the graph
is expanded adding child nodes representing the objects that are obstacles
for the goal abject accessibility (block 5). The object represented by each of
the new child nodes is now selected as a goal object to be removed (block 6)
in order to clean the path to the object represented by the parent node,
and the procedure enters in a loop through blocks 2 to 6. The loop lasts
until any of the two circumstances occurs: a) the last added nodes represent
objects that can be removed from the environment without any obstacles,
allowing free access to the objects represented by the parent nodes, and so
on until the original goal object (the root node), meaning that a solution
was found, or, b) the last added nodes represent objects that can not be
removed, either because they are not reachable due to kinematic constrains
of the hand-arm systems or because objects already represented in the graph
have to be removed, meaning that there is no solution and the goal object
can not be reached.

The core of the approach is the generation of the robot paths, which
is done as follows. A PRM is used to find a path Pi,0 for each robot Ri

to grasp the object of interest O0, but, as a difference with the typical use
of PRMs a sample of a robot configuration that implies a collision of the
robot with any removable object Oj in the environment is not neglected,
instead it is considered for the PRM in an usual way but associating to it
a list with the collided obstacles. The same is done when a local planner
checks the validity of a local segment connecting two samples for the PRM

6

Create graph with goal object
as root node

Select grasp configurations
of the object to be grasped

Run the motion planner
PRMwO (i.e. find the robot

path to grasp and move the
object)

Update the node information
and expand the graph
(adding as children the

objects acting as obstacles)

Check for a solution in the
graph (assignmnent of robot

actions, including the
geometric paths to reach the
goal and remove obstacles if

necessary)

Select a new terminal node
from the graph (i.e. an object

to be removed)

• Environment
• Goal Object

Return:
the assignment of robot actions
and the geometric paths

Yes

No
Is there a
solution?

For each
robot

Are there
new nodes in

the graph?

No

Yes

Return:
“problem without solution”

Algorithm 4

Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 5

Algorithm 8 Algorithm 6

Algorithm 7

1

2

3

46

5

Figure 1: Schema of the proposed approach for the planning of manipulation
movements, i.e. the assignment of robot actions and the geometric path of
each robot.

7

construction, if there are collisions with any removable object Oj it is just
added to a list of obstacles associated with the segment. We refer to this as
Probabilistic Road Map with Obstacles (PRMwO). Using the PRMwO as a
regular PRM, it is possible to obtain paths Pi,0 for each robot Ri to grasp
the object of interest O0 and, at the same time, an associate set SOi,0 with
the obstacles that must be removed from the environment in order to make
Pi,0 be free of collisions. The same procedure is generically applied to look
for a path Pi,j for the robot Ri to grasp and remove any removable object
Oj returning the corresponding set of obstacles SOi,j.

Note that the collision check performed for the configurations of a robot
path must be done considering the arm and the hand when the robot is going
toward the object to be grasped, and considering the arm, the hand and also
the grasped object when this is removed from the scene. The hand can have
any initial configuration.

When the PRMwO is used to search a solution to grasp and remove an
object Oj the search can finish once a first path Pi,j with an associate set
of obstacles SOi,j 6= ∅ was found, starting then the search of valid robot
paths to remove the objects in SOi,j , or the search can continue looking
for a path Pi,j with SOi,j = ∅ (i.e. look for a path that does not require
removing any obstacle). The balance between these two cases depends on
the particular problem, practical criteria to stop the search procedure are:
select the first path found without caring about the number of obstacles,
predefine a maximum number of samples in the PRMwO, or predefine a
maximum searching time.

After finding a path Pi,0 with associate obstacles SOi,0, i = 1, 2, for the
object of interest O0, the same procedure is applied to search for paths Pi,j

with SOi,j, i = 1, 2 ∀Oj ∈ SOi,0, and iteratively continues ∀Ol ∈ SOi,j and
so on until an appropriate set of paths without obstacles is found (i.e the
robots can start removing objects without any obstacles), or a loop is found
(i.e one object is an obstacle to grasp another one and viceversa).

The objects can be grasped in different ways with a set of different hand
configurations, which are taken as different goals when the PRMwO is built.
This increases the probability of finding valid paths to grasp each object.
When a predetermined grasping configuration is not actually reachable for
the current pose of the object it will be properly disregarded during the
planning process, this may happen due to hand or arm kinematic constraints
or due to collisions with fixed obstacles. The grasping configurations for each
object can be obtained using different procedures (see for instance [31, 32]).

8

This problem is outside the scope of this work and therefore we assume
here that the set of possible grasping configurations of an object has been
computed in advance and it is provided with the model of the object.

The other key point of the approach is the representation of the infor-
mation obtained in the iterative search of robot paths described above in an
AND/OR precedence graph G. Each node of G represents an object Oj and
the edges starting at Oj link Oj with the nodes representing all the objects
Ol ∈ SOi,j (i.e. the obstacles to be removed to make Pi,j be collision free).
When SOi,j has more than one element it generates AND edges, meaning that
all the objects in SOi,j have to be removed in order to be able to grasp Oj

with Ri (i.e. be able to execute Pi,j without collisions). On the other hand
the edges generated by SO1,j and SO2,j are type OR, meaning that only the
objects in SO1,j have to be removed if Oj is to be grasped with R1 or only the
objects in SO2,j have to be removed is Oj is to be grasped with R2. G has a
tree structure with the root node representing always the target object O0.
Fig. 2 shows an example of precedence graph G (a more detailed description
of the elements of the graph G will be given in Subsection 4.2).

Going from the final nodes of G towards the root it is possible to deter-
mine: the set of objects Oj that must be removed in order to get a path
free of collisions up to the object of interest O0, the robot Ri to be used to
remove each object, and the corresponding geometric path Pi,j. Fig. 3 shows
an example of the set of actions SA assigned to the robots, i.e. a description
of which objects are going to be manipulated by each robot.

After having assigned the robot actions to each robot and determined the
corresponding geometric paths free of collisions, a final step to optimize the
performance of the robots consists in a temporal coordination of the robot
movements, i.e. in order to optimize the time needed to remove the obstacles
and reach the desired goal a robot can execute the assigned movements in
parallel with another robot as long as the priorities in the sequence of ac-
tions are properly satisfied. This coordination of the robots adjusting the
temporal evolution along the geometric paths has been already developed
and implemented, but it is a complementary module outside the scope of
this work and therefore it is not described in this paper (see [33] for details).

The following section presents a detailed description of the approach de-
scribing the used algorithms.

9

(a) (b)

(c) (d)

Figure 2: Example of precedence graph G: (a) a root node is added represent-
ing the desired object O0; (b) using R1 to grasp O0 produces SO1,0 = {O1}
and using R2 produces SO2,0 = {O2}, then O1 and O2 are added as child
nodes of O0 with edges for R1 and R2 acting as OR edges; (c) removing O1

with R1 returns SO1,1 = {O3, O4} then O3 and O4 are added as child nodes
of O1 with two edges for R1 acting as AND edges, while removing O1 with
R2 returns SO1,1 = {O5} and then O5 is added as a child node of O1, in
this case with an edge for R2 acting as OR edge; (d) on the other branch,
removing O2 with R1 returns SO1,2 = {O6} then O6 is added as child node
of O2 with an OR edge for R1 and trying to remove O2 with R2 does not
return any valid path (for instance, because there is no kinematic solution
for R2 grasping O2) and therefore no child nodes with edge for R2 are added
to G. This procedure is iteratively executed until there are terminal nodes
in G representing objects that can be removed without additional obstacles
and therefore the assignment of robot actions can be determined to remove
current obstacles and arrive to O0.

10

Figure 3: Example of the assignment of robot actions to each robot: one
valid solution is removing O5 with R1, O1 with R2 and finally O0 with R1.

4 Detailed description of the approach

The concepts introduced in the previous section are formalized here and the
developed procedures are described in detail.

4.1 Determination of the geometric paths of the robots

In order to determine the geometric paths of a robot it is necessary to know
which is the grasping configuration of the hand. As it was mentioned in
Subsection 3.3, it is assumed that a set grasping configurations in the ob-
ject reference frame is provided with the model of each object for the used
hand. Figure 4 shows an example illustrating four different cylindrical grasp
configurations of the Schunk Anthropomorphic Hand (SAH) and the Schunk
Dexterous Hand (SDH2) grasping a soda can. A given grasping configu-
rations of the hand is related to the object reference frame, but since the
position of the object in the work environment is known, the position of the
arm wrist for the grasping configurations can be easily obtained. A grasp
configuration with a description of the hand joints and the wrist position
is represented as ck, and a set of these configurations for an object Oj is
represented as SCj .

Now, given an object Oj to be grasped by a robot Ri the procedure to

11

Figure 4: Examples of grasping configurations of two hands (SAH and SDH2)
grasping a soda can (the finger positions are the same for all the grasping con-
figurations, but the hand positions with respect to the can reference system
is different).

Algorithm 1: findPath

input : Ri, co, SCj

output: Pi,j, SOi,j

1 Pi,j = ∅;
2 SOi,j = ∅;
3 SCi,j ← selectGrasps(Ri, SCj);
4 max = number of removable objects in the workspace;
5 for each ck ∈ SCi,j do

6 Pauxi,j
, SOauxi,j

← PRMwO(Rj , co, ck);
7 if range(SOauxi,j

) < max then

8 Pi,j ← Pauxi,j
;

9 SOi,j ← SOauxi,j
;

10 max← range(SOauxi,j
);

11 return Pi,j, SOi,j ;

12

Algorithm 2: selectGrasps

input : Ri, SCj

output: SCi,j

1 SCi,j = ∅ ;
2 for each ck ∈ SCj do

3 if ck is reachable by Ri (i.e. inverse kinematics of Ri

has a solution for ck) then
4 Add to ck the arm configuration;
5 SCi,j ← SCi,j ∪ ck

6 return SCi,j ;

look for a geometric path Pi,j is shown in Algorithm 1. It requires as input
the involved robot Ri, its current configuration co, and the set of grasping
configurations SCj for Oj , and returns a geometric path Pi,j and the set
of obstacles SOi,j to be removed to make Pi,j collision free. Algorithm 1
performs the following actions. First, the subset of grasping configurations
SCi,j that are kinematically reachable by Ri are selected from SCj (Step 3).
This is done by the function selectGrasps detailed in Algorithm 2, that simply
solves the inverse kinematics of Ri for each configuration ck ∈ SCj , when
there is a solutions adds the arm configuration to ck, and returns the set SCi,j

of configurations with a kinematic solution for Ri. Then, a path Pi,j (with the
associate set of obstacles SOi,j) is searched for each reachable configuration
ck ∈ SCi,j, and the path with smaller number of obstacles in SOi,j is selected
(Steps 5 to 9). Pi,j and SOi,j are generated with the function PRMwO
detailed in Algorithm 3.

The function PRMwO requires as input the robot Ri to be used, its
initial configuration co and a grasping configuration cg of the object Oj to
be grasped, and returns a geometric path Pi,j for Ri to grasp and remove
Oj and the set of associate obstacles SOi,j that must be removed in order
to make Pi,j be collision free. Algorithm 3 performs the following actions.
First, the set of vertices SV of a PRM is initialized with the configurations
co and cg (step 1), and then a searching loop is executed until the initial
and final configurations are connected in the PRM or a predefined maximum
number of configuration samples has been generated (step 3). Within this
loop, each iteration starts with the generation of a random configuration

13

Algorithm 3: PRMwO

input : Ri, co, cg
output: Pi,j, SOi,j

1 SV = {co ,cg};
2 k = 0;
3 while (k < km) ∨ (co and cg are not connected) do
4 generate a new configuration c;
5 SO(c) ← collisionCheck(c);
6 if there are not fixed obstacles in SO(c) then

7 associate SO(c) to c;
8 add c to SV ;
9 find the nearest neighbor cnn ∈ SV to c;

10 generate the segment s = ccnn;
11 SO(s) ← localPlanner(s);
12 if there are not fixed obstacles in SO(s) then

13 associate SO(s) to s;
14 add s to PRM;

15 else

16 reject s;

17 else

18 reject c;

19 k = k + 1;

20 Pi,j ← find the path with minimum number of vertices in the PRM;
21 SOi,j ← collect the obstacles SO(ci) and SO(si) associate with each

vertice ci and segment si contained in Pi,j;
22 return Pi,j, SOi,j;

14

sample c in the C-space of Ri (step 4), and the function collisionCheck is
run to test whether Ri located at c implies a collision with any fixed or
removable object, with another robot, or with itself (step 5); if there are
collisions the collided obstacles are added to the set of obstacles SO(c). If
SO(c) contains only removable obstacles, then SO(c) is associate with c and
it is added to SV (steps 7 and 8). The nearest neighbor cnn to c in SV is
determined and used to generate the segment s between c and cnn, and the
function localPlanner is used to check for the existence of collisions when Ri

is moved along s, and, as in the case of the sample c, if there are collisions
the collided obstacles are added to a set of obstacles SO(s) (Steps 9 to 11). If
the obstacles in SO(s) are all removable objects then SO(s) is associate to s

and s is added to the PRM, otherwise s is rejected (steps 12 to 16). If SO(c)

contains fixed obstacles, then c is directly rejected (step 18). Finally, when
co and cg are connected by the PRM, the path Pi,j with minimum number
of vertices between them is searched in the roadmap and the set SOi,j that
contains the obstacles associated with every node ci and segment si included
in Pi,j is computed (steps 20 and 21). The algorithm returns Pi,j and SOi,j.

4.2 Assignment of robot actions

As it was conceptually described in Subsection 3.3 the assignment of robot
actions is determined using a precedence graph G. Each node of G repre-
sents a removable object, and, for simplicity, we will refer to each node using
the name of the represented object (i.e. the “node Oj” represents the ob-
ject “Oj”). Each node has an associate flag for each robot available in the
workspace that eventually could grasp it. The flag of the node Oj associate
with the robot Ri is indicated as fi,j. Each flag fi,j has the following possible
states:

• Empty (∅), when a path for Ri to grasp Oj was not computed yet.

• Null (N), when Ri cannot grasp Oj (i.e. when it does not exist a
kinematic solution for Ri to grasp Oj, this is, selectGrasp(Ri, SCj) = ∅).

• Free (F), when a path for Ri to grasp Oj was found and it has no
obstacles (i.e. SOi,j = ∅).

• Blocked (B), when a path for Ri to grasp Oj was found but there are
some obstacles along it (i.e. SOi,j 6= ∅).

15

Figure 5: Graphical representation of a node of G representing the object Oj

and two flags f1,j and f2,j for the robots R1 and R2 respectively.

• Discarded (D), when a path for Ri to grasp Oj was found but there
are some obstacles along it (i.e. SOi,j 6= ∅) and at least one object
Oh ∈ SOi,j was already included in the same branch of G and Oj

should be removed from the scene to reach Oh.

For the case of two robots, the nodes of G will be graphically represented as
shown in Figure 5 with the state of the two flags fi,j shown in the two lower
quarters of a circle.

The main procedure for the assignment of robot actions is presented in
Algorithm 4, it requires as input the desired object O0 and a description of
the workspace W (that includes the models of the non removable objects,
the models, the positions and a set of grasping configurations of the remov-
able objects, and the models and the initial configurations of the robots),
and returns an assignment of robot actions to each robot (that includes the
corresponding geometric paths) to grasp the desired object and to remove, if
necessary, some obstacles.

Algorithm 4 creates G with the root node O0 (step 2) and selects it as
an auxiliar one Oaux for an iterative procedure (step 3) where the following
actions are performed. The auxiliar node is analyzed (step 5) using the
function AnalyzeNode described in Algorithm 5 that changes the state of the
two flags f1,aux and f2,aux associate with Oaux, indicating whether Oaux can
be manipulated by the robots and whether there are obstacles that must be
removed to allow it. Then, the graph G is searched for a solution starting
from Oaux (step 6) using the function checkGraph described in Algorithm 6.
If a solution is not found then G is expanded (step 8) by adding to the node
Oaux the child nodes given by SO1,aux and SO2,aux (i.e the obstacles for R1

and R2 to grasp Oaux), this is done using the function expandNode described
in Algorithm 7. After this, a new terminal node is selected to be analyzed
(step 9) using the function selectNode described in Algorithm 8 and a new
iteration is started. When the function selectNode(G) returns Oaux = ∅, it

16

Algorithm 4: Main

input : W , O0

output: SA

1 SA← ∅ ;
2 Create G with O0, f1,0 = ∅ and f2,0 = ∅ ;

3 Oaux ← O0 ;
4 while SA = ∅ do
5 Oaux ← AnalyzeNode(Oaux, SCaux) (update the flags fi,aux) ;

6 SA← checkGraph(G,Oaux) ;
7 if SA = ∅ then
8 G← expandNode(G,Oaux) ;
9 Oaux ← selectNode(G) ;

10 if Oaux = ∅ then
11 return Error: problem without solution;

12 return SA

means that there are not more expandable nodes, all the terminal nodes of G
have been analyzed and none can be removed directly, either because fi,j = N
or fi,j = D, in this case the problem does not have a solution (step 11).

The functions used in the main procedure mentioned above are the fol-
lowing.

The function AnalyzeNode, described in Algorithm 5, requires as input a
node Oj of G with the flags fi,j = ∅ and SCj, and returns as output the same
node with an updated status of the flags (and the corresponding relevant
information, i.e. the paths Pi,j and the sets SOi,j). AnalyzeNode uses the
functions selectGrasps (Algorithm 2) and findPath (Algorithm 1) described
above to look for Pi,j and SCi,j and, according to the result, establishes the
values of the flags fi,j.

The function checkGraph, described in Algorithm 6, requires as input the
graph G and a node Oj, and returns the assignment of actions SA to be
executed by the robots. The function checkGraph verifies if there exists a
valid path in G from the terminal node Oj to the root node O0 and assigns
the robot actions SA to remove the corresponding obstacles. The algorithm
uses the functions getSiblingNodes and selectParentNode to select the sibling
nodes and the parent node respectively in order to explore the graph while

17

Algorithm 5: AnalyzeNode

input : Oj

output: Oj with updated information about its flags

1 for each Ri do

2 Pi,j, SOi,j ← findPath(Ri, SCi,j) ;
3 set fi,j according to the resulting Pi,j, SOi,j and SCi,j ;

4 return Oj (with the updated information, i.e. fi,j, Pi,j and SOi,j) ;

searching for a solution SA.
The function expandNode, described in Algorithm 7, requires as input the

graph G and the node Oj to be expanded (which includes the information
about the set of obstacles SOi,j), and returns G properly expanded with the
children of Oj. This function simply adds to G as children nodes of Oj the
elements in the set of obstacles SOi,j when Oj cannot be removed by any
robot with a collision free path (i.e. ∄i/fi,j = F) but it could be removed by
a robot Ri if the obstacles in SOi,j are previously removed.

The function selectNode, described in Algorithm 8, requires as input the
graph G and returns one of its terminal nodes Oj, which will be analyze
to check for the existence of a solution. selectNode chooses among all the
terminal nodes of G the one that has the lowest cost, considering as the
cost of a node the number of nodes that, starting from it, represent objects
that must be removed to let O0 (the root node) be free of obstacles. The
function selects terminal nodes that have not been analyzed previously (i.e.
with fi,j = ∅), computes their costs, and returns the terminal node with the
lowest cost (if there are several nodes with the same lowest cost the function
returns the one that was first analyzed).

5 Experimental Results

The proposed approach has been implemented inside the home-developed
path planning framework called The Kautham Project1, which was devel-
oped with open source and cross-platform directives in mind and using li-
braries Qt for the user interface, Coin3D for the graphical rendering, PQP

1 For detailed information about The Kautham Project, see
https://sir.upc.edu/projects/kautham/

18

Algorithm 6: checkGraph

input : G, Oj

output: SA

1 Oaux = Oj;
2 while Oaux 6= O0 do

3 SOaux ← getSiblingNodes(Oaux);
4 [Rl, Oh]← selectParentNode(Oaux);
5 c← getCardinality(SOaux);
6 while SOaux 6= ∅ do
7 select Oaux

′ ∈ SOaux;
8 if ∃i/fi,aux′ = F then

9 if i/fi,aux′ = F for more than one i then
10 select a random [Ri, Oaux

′] for i 6= l;

11 SA← SA ∪ {[Ri, Oaux
′]};

12 delete Oaux
′ from SOaux;

13 c = c− 1;

14 else

15 if ∀i fi,aux′ = N then

16 update Oh with fl,h = N;
17 SOaux = ∅;
18 SA← ∅;

19 if c = 0 then

20 update Oh with fl,h = F;
21 Oaux = Oh;

22 else

23 SA← ∅;
24 break;

25 return SA;

19

Algorithm 7: expandNode

input : G, Oj

output: G

1 if ∄i/fi,j = F then

2 ∀i/fi,j = B add as children of Oj the elements of SOi,j;

3 return G;

Algorithm 8: selectNode

input : G
output: Oj

1 max = number of removable objects in the workspace;
2 Oaux = ∅;
3 for each non-analyzed terminal node Oj ∈ G (i.e. nodes with fi,j = ∅)
do

4 compute the minimum cost of Oj;
5 if cost < max then

6 Oaux = Oj;
7 max = cost;

8 return Oaux;

20

for the collision detection and ROS for the communication layer. This frame-
work provides the developer with several tools needed for the development
of planners, like, for instance, direct and inverse kinematic models of the
robots (arms and hands), random and deterministic sampling methods, met-
rics to evaluate the performance of planners (number of generated samples,
collision check callings, number of nodes in the graph solution, connected
components) and simulation tools.

The following three examples illustrate the ability of the proposed ap-
proach to find the paths for a two hand-arm robotic system composed by
two Stäubli TX-90 robots arms with 6 DOF, the robot R1 is equipped with
a Schunk Anthropomorphic Hand (SAH) with 13 DOF, and the robot R2 is
equipped with a Schunk Dexterous Hand (SDH2) with 7 DOF. The object
to be grasped is always a yellow soda can, and there are other objects in the
scene that act as obstacles that do not allow a direct access to the yellow
can. The initial configuration for each robot is given, and it is also used as
final position for the robot paths. The examples have been run in a computer
with a processor Intel Core2 2.13GHz and 4Gb RAM, Debian OS 7.0 and
ROS Groovy.

In the first example the yellow can O0 is located in the center of a box
that has a lid O1 acting as an obstacle that has to be removed in order to
make the yellow can be reachable (see Fig. 6a). O0 has associated four grasp
configurations for each of the used hands (all of them grasping the object
from the top) and O1 has six grasp configurations for each hand (at three
different points of the lid handle with two opposite orientations of the wrist),
so both robots R1 and R2 can grasp the box lid and the yellow can. When the
procedure is executed, a path to grasp O0 was found for each of the robots
R1 and R2, i.e. P1,0 and P2,0, and, as expected, both of them imply a collision
with the box lid, i.e. SO1,0 = SO2,0 = {O1}, then the corresponding flags are
set as f1,0 = f2,0 = B. Fig. 6b shows the configuration of R1 colliding with the
obstacle O1 while grasping O0. Then, O1 is added as child node of O0 in the
graph G for both R1 and R2. Fig. 6c shows the resulting graph G. When the
first node representing O1 is analyzed, the results is that it can be removed
using any of the robots without any additional obstacles, i.e. P1,1 and P2,1

are collision free meaning that the two robots R1 and R2 can remove the box
lid without obstacles, thus the corresponding flags are set as f1,1 = f2,1 = F .
At this point, the analysis of G already gives a valid assignment of robot
actions: R2 is selected to remove O1 (using a path P2,1 without obstacles)
and R1 is used to grasp O0 (using a path P1,0, also without obstacles once

21

O0

(a)

O1

(b)

O0

R1 R2

B B

O1

R1 R2

F F

O1

R1 R2

Ø Ø

O1 R2 O0 R1

(c)

Figure 6: Example 1; (a) O0 inside the box (without the lid), (b) collision
configuration of the robot R1 with the lid box, (c) precedence graph G and
the assignment of robot actions.

O1 has been removed), as shown in Fig. 6a. Snapshots of the real execution
of this example are shown in Fig. 7.

In the second example the yellow can O0 lies on the table among other
red cans O1, O2 and O3 (see Fig. 8a). In this example it is not allowed to
grasp O0 from the top (as it was done in the previous example), i.e. the
set of grasping configurations associated with O0 for each of the two hands
includes eight cylindrical grasps (like those in Fig. 4, where for clarity only
four grasps were shown), while the red cans can be grasped either with four
grasps from the top and with eight cylindrical grasp for each hand. The
paths P1,0 and P2,0 found to grasp O0 with R1 and R2 have collision with the
red cans O2 and O3 respectively, which were then added to G as children of
O0 for R1 and R2 (see the graph G in Fig. 8b). Analyzing O2, it is found
that it can be removed with both robots R1 and R2 without collisions, i.e.
P1,2 and P2,2 are collision free. At this point the procedure can already select
an assignment of robot actions to solve the task: R2 is selected to remove
O2 using P2,2 and then R1 is in charge of grasping O0 using P1,0 once O2

has been removed. Fig. 9 shows some snapshots of the two robots executing
their assigned actions to arrive to the yellow can O0.

In the third example, the yellow can O0 lies again on the table among
several other red cans O1 to O5 (see Fig. 10a). In this example, as in the
previous one, it is not allowed to grasp O0 from the top while the red cans can
be grasped either from the top or with a cylindrical grasp. In this case, the
path P1,0 found to grasp O0 with R1 has collisions with the red cans O4 and
O5 that were added to G as children of O0 for R1, and the path P2,0 found

22

(a) (b)

(c) (d)

Figure 7: Example 1; (a) initial configuration, (b) R2 removing O1, (c) R1

grasping O0, (d) final configuration.

O2

O3

O1

O0

(a)

O0

R1 R2

B B

O2

R1 R2

F F

O3

R1 R2

Ø Ø

O2 R2 O0 R1

(b)

Figure 8: Example 2; (a) collision configuration of the robot R1 with O2, (b)
precedence graph G and the assignment of robot actions.

23

(a) (b) (c)

(d) (e) (f)

Figure 9: Example 2; (a) initial configuration, (b) R2 grasping O2, (c) R2

removing O2, (d) R1 grasping O0, (e) R1 moving O0, (f) final configuration.

to grasp O0 with R2 has collisions with the red cans O5 and O1 that were
added to G as children of O0 for R2. Fig. 10b shows the resulting graph G.
Iteratively exploring and expanding the graph give the following results. O5

is not reachable with R1 (note the flag f1,5 = N) while using R2 a path P2,5

was found with a collision with O2, which is added to G as child of O5 for R2.
O4 can be grasped and removed with both robots using P1,4 and P2,4 that
were found without any collision. On the other branch of G, to remove O1

a path P1,1 was found including collisions, but since a collision free path P2,1

was also found the node O1 is not expanded, and O5 produces the same result
as above, so it is expanded adding O2 as child node for R2. Now, dealing
with O2, results that it is not reachable with R1 (note the flag f1,2 = N) but
it is removable with R2 using a path P2,2 found without collisions. At this
point the procedure can already assign the robot actions to solve the task:
R2 is selected to remove O2, R2 is in charge of removing O5, R1 is selected
to remove O4, and finally R1 is in charge of manipulating O0 once the other
obstacles were removed. Fig. 11 shows some snapshots of the task execution
following the assignment of robot actions until being able to manipulate to
the yellow can O0.

In order to give an idea of the running performance of the approach, Ta-

24

O2

O5

O4

O0

O1
O3

(a)

O0

R1 R2

B B

O5

R1 R2

N B

O1

R1 R2

B F

O2 R2 O5 R2

O4

R1 R2

F F

O5

R1 R2

N B

O2

R1 R2

N F

O2

R1 R2

Ø Ø

O4 R1 O0 R1

(b)

Figure 10: Example 3; (a) collision configurations of the robot R1 with the
removable obstacles O4, (b) precedence graph G and the assignment of robot
actions.

(a) (b) (c)

(d) (e) (f)

Figure 11: Example 3; (a) initial configuration, (b) R2 grasping O2, (c) R1

grasping O4 while R2 has just dropped O2, (d) R2 grasping O5 while R1 is
going to drop O4, (e) R1 grasping O0, (f) final configuration.

25

Example 1
Path Pi,j Total time(s) #Samples #Samples connected #Paths

P1,0 6.12 218 186 3
P2,0 0.21 92 2 1
P1,1 3.93 113 21 1
P2,1 0.32 68 7 1

Example 2
Path Pi,j Total time(s) #Samples #Samples connected #Paths

P1,0 1.63 49 4 4
P2,0 1.17 93 7 3
P1,2 3.85 101 17 1
P2,2 0.38 87 2 1

Example 3
Path Pi,j Total time(s) #Samples #Samples connected #Paths

P1,0 4.65 62 30 3
P2,0 0.34 83 7 1
P1,1 1.13 64 27 2
P2,1 0.23 87 5 1
P1,2 - - - -
P2,2 0.18 76 2 1
P1,4 1.32 62 30 3
P2,4 5.87 202 30 1
P1,5 - - - -
P2,5 0.44 92 4 3

Table 1: Running information for the three examples.

ble 1 shows for each example: the time in seconds required to computed the
paths Pi,j, the total number of the samples generated in the configuration
space, the number of connected samples in the roadmap, and the number of
paths Pi,j computed for each Oj (note that there is a Pi,j for each grasp con-
figuration in SCi,j, the set of grasping configurations selected in Algorithm 2
from the set of given grasps SCj associated with Oj).

26

6 Summary and Future Works

The paper has presented a new approach for the computation of robot paths
to manipulate objects considering that it may be necessary to remove ob-
stacles from the environment in order to make the paths actually feasible.
The approach is based on what we call Probabilistic Road Map with Obsta-
cles (PRMwO), which returns the path for a robot to reach a particular goal
and the list of obstacles that must be removed. The information obtained
from the PRMwO allows the generation of a precedence graph that is used to
assign robot actions to each robot in order to properly remove the obstacles
and reach the desired object.

The whole approach has been implemented and successfully applied to
a dual-arm robotic system. It is noteworthy that even when the approach
was implemented for the described dual-arm robotic system (available both
in simulation and as a real physical system) it could be really applied to
the case of more than two robots working in a shared environment. Note
than none of the presented algorithms imposes a constraint in the number n
of involved robots, number that only appears in iterative loops of the type
“for each robot Ri (i ∈ {1, ..., n})” (e.g. in line 1 of Algorithm 5), or in
questions like “if ∀i (i ∈ {1, ..., n}) ...” (e.g. in line 13 of Algorithm 6) or “If
∄i (i ∈ {1, ..., n}) such that ...” (e.g. in line 1 of Algorithm 7), therefore the
application of the approach to more than two robots is straightforward.

As future work it is considered the inclusion of a grasp planner such
that the grasping configurations are determined during the manipulation
planning when necessary. Even when this would increase the computational
cost (compared with the use of predefined grasping configurations), it would
avoid the need of having predefined grasping configurations for each object
and several grasping configurations would be computed only when there are
difficulties to reach an abject or when the cost of a first solution is high (e.g.
a large number of obstacles have to be removed). Another topic for future
work is the optimization of the distribution of actions between the robots
according to different criteria, including for instance the possibility that one
robot transfers a grasped object to the other in order to be ready to do the
next action if in this way it is more efficient.

27

Acknowledgements

This work was partially supported by the Spanish Government through the
projects DPI2010-15446, DPI2011-22471 and DPI2013-40882-P.

References

[1] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V.
Dimarogonas, D. Kragic, Dual arm manipulation - A survey, Robotics
and Autonomous Systems 60 (10) (2012) 1340–1353.

[2] N. Vahrenkamp, T. Asfour, R. Dillmann, Simultaneous Grasp and Mo-
tion Planning, IEEE Robotics and Automation Magazine 19 (2012) 43–
57.

[3] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, R. Dillmann, Hu-
manoid motion planning for dual-arm manipulation and re-grasping
tasks, in: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
2009, pp. 2464–2470.

[4] R. Shauri, K. Nonami, Assembly manipulation of small objects by dual-
arm manipulator, Assembly Automation 31 (2011) 263–274.

[5] A. Edsinger, C. Kemp, Two Arms Are Better Than One: A Behavior
Based Control System for Assistive Bimanual Manipulation, Lecture
Notes in Control and Information Sciences 370 (2008) 345–355.

[6] S. M. LaValle, Planning Algorithms, Cambridge University Press, 2006.

[7] J.-C. Latombe, Robot motion planning, Kluwer Academic Publishers,
1991.

[8] N. J. Nils, A mobile automaton: an application of artificial intelligence
techiques, in: Proc. of the 1st. International Joint Conference on Artifi-
cial Intelligence, 1969, pp. 509–520.

[9] C. O’Dunlaing, M. Sharir, C. Yap, Retraction: A New Approach to
Motion-Planning (Extended Abstract), in: STOC, 1983, pp. 207–220.

28

[10] P. Hart, N. Nilsson, B. Raphael, A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths, in: IEEE Transactions on Systems
Science and Cybernetics, 1968, pp. 100–107.

[11] W. Dijkstra, A note on two problems in connexion with graphs, Nu-
merische Mathematik, 1959.

[12] O. Khatib, Real-time Obstacle Avoidance for Manipulators and Mobile
Robots, in: Proc. IEEE Int. Conf. Robotics and Automation, 1985, pp.
500–505.

[13] L. E. Kavraki, P. Svestka, J. Latombe, M. Overmars, Probabilistic
Roadmaps for Path Planning in High-Dimensional Configuration Spaces,
in: Proc. IEEE Int. Conf. Robotics and Automation, 1996, pp. 566–580.

[14] Y. Yang, O. Brock, Adapting the sampling distribution in PRM-
Planners based on an Approximated Medial Axis., in: Proc. IEEE Int.
Conf. Robotics and Automation, 2004, pp. 4405–4411.

[15] A. Yershova, L. Jaille, T. Simeon, S. LaValle, Dynamic-Domain-RRTs:
Efficient Exploration by Controlling the Sampling Domain., in: Proc.
IEEE Int. Conf. Robotics and Automation, 2005, pp. 3856–3861.

[16] L. Zhang, D. Manocha, An Efficient Retraction-base RRT Planner., in:
Proc. IEEE Int. Conf. Robotics and Automation, 2008, pp. 3743–3750.

[17] J. Zucker, M. Kuffner, J. Bagnell, Adaptive workspace biasing for
sampling-based planners., in: Proc. IEEE Int. Conf. Robotics and Au-
tomation, 2008, pp. 3757–3762.

[18] J. Rosell, L. Cruz, R. Suárez, A. Pérez, Importance Sampling based
on Adaptive Principal Component Analysis, in: Proc. of the IEEE Int.
Symposium on Assembly and Manufacturing, 2011, pp. 1–6.

[19] R. Bohlin, L. Kavraki, Path Planning Using Lazy PRM, in: Proc. of the
IEEE Int. Conf. on Robotics and Automation, 2000, pp. 521–528.

[20] E. Cheng, P. Frazzoli, S. LaValle, Improving the performance of
Sampling-Based Planners by using a Symmetry-Exploition Gap Reduc-
tion Algorithm., in: Proc. IEEE Int. Conf. Robotics and Automation,
2004, pp. 4362–4368.

29

[21] J.-M. Lien, Y. Lu, Planning Motion in Similar Environments, in: Proc.
of Robotics: Science and Systems., Seattle, USA, 2009.

[22] R. Guernane, N. Achour, Generating optimized paths for motion plan-
ning, Robotics and Autonomous Systems (2011) 789–800.

[23] C. Galindo, J. Fernández-Madrigal, J. González, A. Saffiotti, Robot
task planning using semantic maps, Robotics and Autonomous Systems
(2008) 955–966.

[24] G. Wilfong, Motion planning in the presence of movable obstacles, in:
Proc. of the 4th Annual ACM Symposium on Computational Geometry,
1988, pp. 279–288.

[25] P. Chen, Y. K. Hwang, Practical path planning among movable obsta-
cles, in: Proc. IEEE Int. Conf. Robotics and Automation, Vol. 1, 1991,
pp. 444–449.

[26] K. Okada, A. Haneda, H. Nakai, M. Inaba, H. Inoue, Environment ma-
nipulation planner for humanoid robots using task graph that generates
action sequence, in: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and
Systems, 2004, pp. 1174–1179.

[27] M. Stilman, J. Kuffner, Navigation among movable obstacles: Real-time
reasoning in complex environments, in: Journal of Humanoid Robotics,
2004, pp. 322–341.

[28] M. Stilman, K. Nishiwaki, S. Kagami, J. Kuffner, Planning and Exe-
cuting Navigation Among Movable Obstacles, in: Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Systems, 2006, pp. 820–826.

[29] Y. Kakiuchi, R. Ueda, K. Kobayashi, K. Okada, M. Inaba, Working with
movable obstacles using on-line environment perception reconstruction
using active sensing and color range sensor, in: Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Systems, 2010, pp. 1696–1701.

[30] M. Dogar, M. Koval, A. Tallavajhula, S. S., Object Search by Manipu-
lation., in: Proc. IEEE Int. Conf. Robotics and Automation, 2013, pp.
4973–4980.

30

[31] C. Rosales, L. Ros, J. M. Porta, R. Suárez, Synthesizing grasp configu-
rations with specified contact regions, International Journal of Robotics
Research 30 (4) (2011) 431–443.

[32] F. Gilart, R. Suarez, Determining Force-Closure Grasps Reachable by a
Given Hand, in: 10th IFAC Symposium on Robot Control, SYROCO,
2012, pp. 235–240.

[33] A. Montaño, R. Suárez, An On-Line Coordination Algorithm for Multi-
Robot Systems, in: 18th Proc. IEEE Int. Conf. Emerging Technologies
and Factory Automation, ETFA, 2013, pp. 1–7.

31

