
Formation control driven by cooperative object tracking
Pedro U. Lima, Aamir Ahmad, André Dias, André G.S. Conceição,
António Paulo Moreira, Eduardo Silva , Luis Almeida, Luis Oliveira,
Tiago P. Nascimento 

Keywords:
Formation control
Formation state estimation
Model predictive control
Cooperative perception
Indoor soccer robots
Outdoor land and aerial robots
Target tracking

a b s t r a c t

In this paper we introduce a formation control loop that maximizes the performance of the cooperative
perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with
a dynamically adjustable geometry which is a function of the quality of the target perception by the
team. In the formation control loop, the controller module is a distributed non-linear model predictive
controller and the estimator module fuses local estimates of the target state, obtained by a particle
filter at each robot. The two modules and their integration are described in detail, including a real-time
database associated to awireless communication protocol that facilitates the exchange of state datawhile
reducing collisions among teammembers. Simulation and real robot results for indoor and outdoor teams
of different robots are presented. The results highlight how our method successfully enables a team of
homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while
complying with performance criteria such as keeping a pre-set distance between the teammates and the
target, avoiding collisions with teammates and/or surrounding obstacles.

1. Introduction

Most of the past and current work on motion coordination of 
multiple (possibly heterogeneous) vehicles [1,2] focuses on con-
trolling a vehicle formation with a given nominal geometry and a 
pre-determined trajectory or a static destination location, in some 
cases more [3] or less [4] compliant with the presence of obstacles 
on the formation trajectory. Such methods typically:

• assume full knowledge of the formation state, expressed as the
relative distances and bearings among all the vehicles, and/or

• rely on local memory-less interactions, often jeopardizing
global formation stability.

A vehicle formation is supposed to serve one or more mis-
sion objectives [5]. One such interesting case concerns localizing

or tracking relevant objects, here and henceforth denominated as
targets. Recent formation control methods go beyond simply stat-
ing the desired geometry for the formation by providing some
meta-specifications (e.g., for velocitymatching, connectivitymain-
tenance and containment control among the formation members
[6,7]) but often give little or no relevance to the requirements
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imposed by target localization and/or tracking to the formation
geometry, so as to improve the target detection and tracking qual-
ity (e.g., accuracy). Active cooperative perception methods in sen-
sor and robot networks [8] concern precisely this problem: how to
actively move mobile sensors so as to improve the accuracy of tar-
get detection by the network, as the result of (spatially and tempo-
rally) fusing the information from all the static and mobile sensors
which observe the target during a step sequence. In this paper we
propose an integrated solution of the ‘‘target localization and track-
ing by a vehicle formation’’ problem, supported on the following
novel contributions:

• a cooperative target tracker based on a particle filter (PF) which
estimates the target position and velocity;

• a non-linear model-predictive formation controller, with the
control objective of efficiently tracking a target based on coop-
erative perception while achieving criteria such as minimizing
the uncertainty about the target position, keeping a pre-set dis-
tance to the tracked object and/or avoiding collisions between
teammates in the formation while tracking the target.

Therefore our solution integrates two basic modules: (i) con-
troller and (ii) estimator.

Our controller consists of a distributed non-linear model pre-
dictive controller (DNMPC). Some predominant approaches in
multi-robot formation control are: virtual structures, behavior-
based and leader-following [9–11]. A widely used controller based
on the leader-following approach is the model predictive con-
troller (MPC) [12] which was recently introduced in holonomic
robots [13]. The primary focus of most existing methods is only to
maintain the formation based on pre-planned paths and static en-
vironment assumption. In a dynamically changing environment, if
the trajectories are pre-defined, linear MPC applied to a non-linear
system can still maintain a desired formation.

Recent approaches for active cooperative target tracking by a
robot team formation such as [8] rely on computationally heavy
optimization processes. By introducing the Gauss–Seidel relax-
ation in an iterative algorithm to detect the next best sensing lo-
cation for the mobile sensors, the authors in [8] achieve a linearly
growing computational complexity over methods like grid-based
exhaustive search which have similar tracking accuracy but where
the complexity grows exponentially with the number of sensors.
The novelty in our approach of integrating the controller and es-
timator modules to achieve a formation that minimizes the joint
uncertainty covariance of the tracked target lies in the fact that
the controller module of each robot performs an optimization over
an already fused target posterior which makes the computational
complexity of the optimization process constant with respect to
the number of mobile sensors in the team. Furthermore the de-
coupling of the optimization problem from the estimates fusion
makes the approach more reliable in case of individual sensor or
inter robot communication failures.

The field of cooperative target tracking has gained a lot of at-
tention in the recent years [14–16]. Many efficient solutions such
as decentralized PF for multiple target tracking [15] and global
position sharing based on non-egocentric tracking of objects [16]
have beenproposed. These solutions focusmore on compacting the
data shared for communication bandwidth reduction and to over-
come the problem of target occlusion. Some solutions such as [17]
assume multiple static platforms and hence do not address the
self-localization errors that creep in when using multiple mobile
sensor platforms. The estimator in our work consists of a coopera-
tive target tracker based on a PF described in full detail in previous
work [18,19]. Essentially the core of it is a PF, modified to handle,
within a single unified framework, the problemof complete or par-
tial occlusion for some of the involved mobile sensor platforms,
as well as inconsistent estimates in the global frame among sen-
sors, due to observation errors and/or self-localization uncertainty
of the sensor platforms. This acts as a feedback module providing
the position and velocity estimates of the tracked object to the con-
troller which in turn uses these estimates as well as the teammate
positions to generate velocity set points for the robot running the
integrated system.

The robots in our formations share information over wireless
communication, which, given its low reliability, is another source
of errors that increase cooperative perception noise. Beyond un-
controllable interferences inherent to the operational environ-
ment, typical wireless communication protocols are also subject
to transmission collisions that lead to packet losses, which are par-
ticularly relevant when the robots share their states periodically in
broadcastmode. Thus,we use a communication protocol that auto-
synchronizes the robot transmissions over the wireless medium,
reducing collisions and improving the quality of the communica-
tion. We built upon the work in [20] to extend such protocol to
ad-hoc networks that are better suited to robot teams [21]. We
also used this protocol to provide an alternative relative localiza-
tion system based on RF-ranging [21] later combined with signal
strength information for faster localization assessment. The actual
information sharing is carried out over a distributed shared mem-
orymiddleware called Real-Time Data Base (RTDB) [22], which de-
couples local processing from communication delays and provides
fast access to remote data with age information.

The rest of the article is organized as follows. The controller and
the estimator modules are detailed in Section 2. Then we describe
their integration in Section 3. This is followed by our approach’s
implementation details on our testbed and the experimental
results in Section 4. We conclude with comments on future work
in Section 5.

2. The controller and estimator modules

2.1. Controller module

The distributed non-linear model predictive controller
(DNMPC-)based formation controller used in thiswork has its roots
in the non-linear model predictive controller (NMPC) developed
and implemented in one of our previous works [23]. NMPC has
a partially distributed architecture where each robot calculates
its own control inputs U solving its own optimization problem,
and using a central unit only as a communication bridge. In the
fully distributed architecture of the DNMPC the communication
is performed by a real-time data base (RTDB) system [21]. This
enables the robots to be communication-failure tolerant. Further-
more, even in the rare case of a communication failure, the robots
use their predictive open-loop strategy to determine their team-
mate states making the DNMPC even more robust.

The DNMPC ability to create and maintain a formation is due to
the fact that the cost functions used by the controllers of each robot
in the team are coupled. This coupling occurs when the teammate
states (position and velocity) are used in the cost function of each
robot controller to enforce the desired formation geometry, thus
the actions of each robot affect its teammates. The DNMPC iterates
through the following two components:

• optimizer: uses an online numeric minimization method to
optimize the cost function and generate the control signals.
The resilient propagation (RPROP) method that is used here
guarantees quick convergence;

• predictor: predicts the state evolution based on the system
state model. The system consists of the robot itself, its team-
mates in the formation or another object in the environment
with an impact on the formation objectives, such as a static ob-
stacle or a moving target.



Therefore, the first step in designing the DNMPC-based forma-
tion controller is to establish the DNMPC cost function that en-
forces the desired formation geometry. Let there be N robots in a
formationwhere the nth robot for 1 ≤ n ≤ N is denoted by Rn. The
DNMPC cost function J(N1,N2,Nc) for robot Rn is given by (1):

J(N1,N2,Nc) =
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where the left superscript assigned to any variable denotes its
value at the ith iteration step of the DNMPC’s optimizer and | · |

denotes determinant for matrix arguments, 1-norm for vector ar-
guments and absolute value for scalars. ∥ · ∥ represents the Eu-
clidean norm. Pt and Vt are respectively defined as the position and
velocity of the tracked target in the 2D global frame.

Pt
def.
=

xt yt

⊤ Vt
def.
=

vxt vyt

⊤ (2)
where in the DNMPC the prediction module uses the following
equations:
xt(k) = xt(k − 1) + T .(vxt(k))
yt(k) = yt(k − 1) + T .(vyt(k))

(3)

and
vxt(k) = vxt(k − 1).BFC

vyt(k) = vyt(k − 1).BFC
(4)

with T as the time step and BFC as the target friction coefficient.
Ṽt , defined as the target velocity unit vector, is given by:
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PRn and VRn are respectively defined as the pose and velocity of
the robot Rn as follows:
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PRn
t is defined as the position of the target in the robot Rn frame

as follows:
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where
xRnt (k) = xt(k) − xRn(k)

yRnt (k) = yt(k) − yRn(k).
(8)

P̃Rn
t , defined as the unit vector indicating the direction of the

target w.r.t. the robot Rn, is given by:
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θ
Rn
t , defined as the bearing of the target w.r.t. the robot Rn is

given by:

θ
Rn
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
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where atan2 has the usual meaning so as to calculate the appropri-
ate quadrant of the computed angle.

P
Rj
Rn is defined as the position of the robot Rn in robot Rj frame

and POk
Rn is defined as Rn’s positionw.r.t. the kth obstacle for 1 ≤ k ≤

Nb where Nb is the total number of obstacles in the environment.
The poses of a robot Rn relative to its teammate Rj (where 1 ≤ j ≤

NM , and NM is the total number of mates) are defined as:

P
Rj
Rn(k) =


x
Rj
Rn(k) = xRn(k) − xRj(k)

y
Rj
Rn(k) = yRn(k) − yRj(k)

(11)

and with respect to an obstacle Ol (where 1 ≤ l ≤ NO, and NO is
the total number of obstacles), is defined as:

POl
Rn(k) =


xOl
Rn(k) = xRn(k) − xOl(k)

yOl
Rn(k) = yRn(k) − yOl(k).

(12)

It is important to mention that in the obstacle’s state evolution,
all obstacles (moving or static) are considered as having zero
velocity at that time instant in order to reduce the computation
load as the number of obstacles increases.

C⊥ is the fused target position covariance matrix. Dval is the
threshold distance between the robot and the target. Pval is the
position coefficient which rotates the robots velocity towards a
desired direction w.r.t. that of the target. 1U i is the control signal
variation between two consecutive iterations of the optimizer. δ(·)
is defined as a function operating on two angles as arguments
that returns their difference scaled between −π and π . K0 is the
distance threshold between teammates or between a robot and an
obstacle.

Finally, N1,N2 are the prediction horizon limits, in discrete
time, such that N1 > 0 and N2 ≤ Np where Np is the desired
prediction horizon. Nc is the control horizon.

The cost function (1) involves seven terms, weighted by λa,
λ0, . . . , λ5, respectively. The formation geometry is enforced, in
the next design step, by adequately setting the λ weights so as to
balance the different constraints involved. The terms are described
as follows:

• the first term (weighted by λa) concerns the penalization of
the target (fused) uncertainty matrix determinant. This brings
the robots into a geometric configuration (w.r.t. the target) that
reduces the uncertainty of the target observation, according to
the target measurement model of each robot sensor;



• the second term (weighted by λ0) prevents the robots from
colliding with the target;

• the third term (weighted by λ1) keeps the robots’ pose oriented
towards the target position;

• the fourth term (weighted byλ2) aligns the robots’ velocitywith
the target velocity;

• the fifth and sixth terms (weighted by λ3 and λ4) prevent the
inter-robot collisions and the robots’ collisions with the static
obstacles in the environment, respectively;

• the seventh and last term (weighted by λ5) is the control effort
penalizationwhich restricts significant changes and oscillations
in the control signal.

The third and last design step is the implementation of the
controller algorithm. Iteration k of the algorithm goes as follows:

1. the optimizer, receives from the predictor the predicted state
of the formation robots and of other relevant entities in the
environment at step k − 1, and calculates the control signal U
that optimizes the cost function;

2. the predictor uses U and the system model to compute the
formation state evolution for the following Np prediction
horizon steps.

These iterations continue until the minimum of the cost func-
tion is reached.

2.2. Estimator module

The estimator module is a cooperative target estimator (CTE)
that provides to the DNMPC estimates of the target position (Pt )
and velocity (Vt ), togetherwith the associated fused target position
covariance matrix C⊥.

The CTE consists of a PF with the standard prediction step but
which, instead of the traditional update step [24], performs a fusion
step as described in [19].

The first design step consists of determining the target mea-
surement model (in this work case studies a Gaussian centered at
the actual target position and with a covariance matrix that de-
pends on the sensor used to measure the target position) and the
target motion model (a constant velocity model with zero mean
normally distributed acceleration noise [19]).

The second and last design step for the estimator module is the
implementation of its algorithm. In our modified PF fusion step,
a robot Rn transmits (i) its target observation measurement zRnt
in the global frame; (ii) its target observation measurement con-
fidence CRn

t ; and (iii) its self-localization confidence CRn , to all its
teammates and receives the same from them. CRn

t is a value in-
versely proportional to the determinant of the target observation
measurement covariance matrix. CRn is calculated depending on
the algorithm used for the self-localization of the robots, e.g., in
case Monte-Carlo localization (MCL) method is used, CRn is given
by the effective number of particles in MCL [25,26]. Subsequently,
the robot Rn builds1 its own observationmeasurement pool (OMP)
OMPRn which is a set defined as follows:

OMPRn = {⟨zR1t , αR1⟩, . . . , ⟨zRNt , αRN ⟩} (13)

where αRi for i = 1, . . . ,N; i ≠ n is the element weight (EW)
assigned to the observation measurements in the pool received
from teammate Ri and computed using its observation measure-
ment and self-localization confidences, as follows:

αRi = CRi
t CRi; i = 1, . . . ,N; i ≠ n. (14)

1 Please note that each robot in the team builds its own OMP on which its CTE
operates.
Fig. 1. Control–estimator module integration flow diagram for the robot R1 (same
for all the robots in the team). Variables in this figure are the ones defined in
Section 2. The block named ‘other modules of robot R1 ’ denotes that robot’s low
level control and sensor units, e.g., robotwheel controller and target detector (using
camera images).

αRn is the EW assigned to the observation measurement in the
pool made by the robot Rn itself and is computed using only Rn’s
observation measurement confidence:

αRi = CRi
t ; i = n. (15)

From here onwards the EWs are normalized.
For each particle, obtained from the PF’s prediction step, an

OMP element is drawn with a probability equal to its EW. The
observation measurement corresponding to the drawn element is
used to assign weight to a predicted particle. This is repeated for
every particle in the predicted PF set. Finally, the PF resampling
is performed in the usual way [24]. Through this process of
confidence-based selection, each robot performs an update over
its particle set in a way such that the information from all its
teammates is accounted for without getting corrupted by their
poor localization or noisy target observation measurements.

TheCTE algorithm functions in a decentralizedmanner enabling
each robot in the team to run its own instance of the CTE. Thus, like
theDNMPC, it is resistant to individual robot’s sensor failure and/or
communication failure between any two robots, making it suitable
for integration with the DNMPC.

3. Module integration

The central objective of the formation control in this work is to
minimize the total uncertainty of the target cooperative estimate
as perceived by the formation. This is achieved by integrating the
controller and the estimator modules, through the incorporation
in the DNMPC cost function of the fused target estimate obtained
from the CTE, along with other terms concerning inter-robot
distances, distance to the target, etc.

3.1. Functional integration

A flow diagram describing the integration of the control and
the estimator modules is presented in Fig. 1. Each robot runs an
instance of the DNMPC and the CTE. The CTE, represented as a
single block in Fig. 1, communicates to the DNMPC the target



Fig. 2. Supporting integration with the RTDB.
position Pt , the target velocity Vt and the fused target position
covariance matrix C⊥. The DNMPC cost function at each robot also
requires the teammates’ positions. The cost function is formalized
in Eq. (1).

The term involving C⊥ in the cost function (1) is initializedwith
the fused target position covariance matrix received from the CTE.
Subsequently, over the rest of the prediction horizons, the DN-
MPC predictor uses a pre-defined covariance evolution model, de-
scribed further in Section 4, to predict the evolution of C⊥ for the
iterative minimization of the cost function. Once the minimum is
reached, the DNMPC sends the velocity signals to the robot’s wheel
controllers so that the robot reaches the next best location maxi-
mizing the cooperative perception of the target while maintaining
a pre-set threshold distance between teammates, between itself
and the target as well as between itself and the obstacles in the
environment.

3.2. Information integration

The actual integration of the control and estimator modules de-
picted in Fig. 2 is supported by a distributed shared memory mid-
dleware called RTDB [22]. Thismiddleware provides, in each robot,
proxies to remote data that are accessed locally similarly to local
variables, thus without suffering communication delays. The prox-
ies are updated in the background by a wireless communication
protocol named RA-TDMA (Reconfigurable and Adaptive Time Di-
vision Multiple Access) [20].

For its internal computations, each robot requires the position
of all teammates. Thus, each robot writes its own position in a
shared variable in its RTDB interface and reads from this interface
the position of its teammates Fig. 2. The RTDB middleware
automatically captures the timewhen shared variables are written
so that, when they are read, their age is computed and delivered
to the application in a suitable structure. This allows detecting
stale data and take appropriate action, such as discarding it or
computing an estimate based on a suitable model.

The RA-TDMA protocol, on its side, transfers the contents of the
shared variables from the robot where they are written to all oth-
ers. This is carried out in a cyclic basis, called the team update pe-
riod (Ttup), which is a configuration parameter. The transmissions
are carried out in broadcast mode, which improves the temporal
consistency across the RTDB, with all shared variables updated at
once independently of the number of receivers.

This protocol has three distinctive features. On one hand, Ttup is
divided in as many slots as robots that are currently active. An au-
tomatic reconfiguration takes placeswhen a robot leaves the team,
e.g., upon a crash, and when a new robot joins, e.g., reintegrating
after a crash. On the other hand, these dynamic slots are enforced
with an adaptive synchronization feature that keeps each robot
transmitting in its slot, thus virtually eliminating collisions within
the team. This synchronization is achieved based on the transmis-
sion instants of the other robots and does not require a globally
synchronized clock.

Finally, the third feature is the operation in ad-hoc mode [21],
without a central access point, in which the TDMA cycle reconfig-
uration and the slots synchronization are propagated through the
network in an epidemic style.

4. Implementation, experiments and results

4.1. Indoor soccer robots

We implemented our formation controller on two separate
RoboCup soccer middle size league (MSL) teams: (i) 5dpo [27]
and (ii) SocRob [28]. The 5dpo robots (Fig. 3 (left)) consist of a
3-wheel omni-directional drive and a catadioptric vision system
used for target state estimation. The SocRob robots, also based on
a 3-wheeled omni-directional drive system, have a dioptric vision
system containing a fish-eye lens camera facing downwards (Fig. 3
(right)). The tracked target was a standard FIFA size 5 soccer ball
for both teams.

In this section we first present two separate covariance models
for the evolution of the (fused) target position covariance matrix
evolution, as explained in the previous section. Thesemodels were
designed specifically for the robot team as well as the tracked
object. Further implementation details, simulations and real robot
results with an analysis are presented later.

4.1.1. 5dpo: target position covariance model
In the case of the 5dpo robots, we developed an empirical

position covariance model C⊥

5dpo (16) where the variance over the
direction to the target is proportional to the squared distance to
the target, and the variance over the perpendicular direction is
proportional to the distance to the target.

C⊥

5dpo =


K1d2 0
0 K2d


, (16)

where K1 and K2 are constants of proportionality.

4.1.2. SocRob: target position covariance model
In the case of the SocRob robots, the position covariance model

is derived from the dioptric system observation model expression.



Fig. 3. 5dpo soccer robot with a catadioptric vision system (left). SocRob soccer robot with a dioptric vision system (right).
The robots have a fish-eye lens based dioptric vision system
pointing downwards to the ground plane, the plane on which the
robots roto-translate. The fish-eye lens’ projection model is given
by:
dpx = fΘ, (17)
where the 3D world frame follows a spherical coordinate system
with coordinate variables denoted by r, Θ andΦ and the 2D image
frame follows a polar coordinate systemwith coordinate variables
dpx and Φ . Since Φ remains unchanged after the transformation, it
is denoted by the same variable. f is the lens’ field of view (FOV)
constant. The origin of both the world frame and the image plane
is assumed to be atO, the point on the ground plane directly below
the robot dioptric system’s center.

The observation model expression for a spherical target of
known size derived using (17) is given by (18) as

r2o − ro

r2o − R2

o


sin

dpx
f


sinΘo cos(Φ − Φo)

+ cos

dpx
f


cosΘo


− R2

o = 0, (18)

which is expressed in the image’s polar coordinate variables dpx
and Φ , the parameters ro, Θo, Φo, the spherical coordinates of the
target sphere’s center and the fixed constants f (lens’ FOV constant)
and Ro (spherical target known radius).

Using the model (18), the target observation MSocRob in these
robots is a 3D vector [r, Θ, Φ] for all ro ≥ 0, 0 ≤ Θo ≤

π
2 ,

−π ≤ Φo ≤ π . Assuming the estimates of each coordinate to
be uncorrelated, the expression for the covariance model (19) is
derived using (17) and (18).

CSocRob
def.
=

σ 2
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0 σ 2
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0 0 σ 2
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1
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0


0

0 0 K5


1
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0 sin
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. (19)
The covariance model expression in (19) is first converted into
the canonical form and then projected onto the ground plane (20)
to simplify the process of covariance merging later.

C⊥

SocRob =


σ 2
d 0
0 σ 2

d⊥


(20)

where

σ 2
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2R2
o

+ K4
r2 cos2 Θ

2(r2 − R2
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4R2
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,
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and K3, K4 and K5 are constants of proportionality.

4.1.3. Covariance merging
Covariance merging method using Smith and Cheeseman’s

formulation [29] is used to obtain the target position covariance
as the result of fusing all robots’ estimates, the evolution of which
is simulated by theDNMPCpredictor for the iterativeminimization
of the cost function. At each robot, C⊥

5dpo in the case of 5dpo or
C⊥

SocRob in the case of SocRob robots, is predicted for the teammates
in the formation, rotated in the robot’s frame and then merged.
In the case of simulation experiments, the means of observation
estimates from teammates are identical while the uncertainty
ellipse around each teammate’s observation is formulated as per
(16) or (20) for merging.

4.1.4. Implementation
The cost function (1) has several terms with changeable

weights. In order to understand the behavior and influence of
the covariance term that minimizes the determinant of the target
fused uncertainty matrix, three situations were tested both in the
simulations and in the real robots. The first situation penalizes the
determinant of the uncertainty matrix and the control effort. The
second penalizes the distances between the robots and the target,
the collision between teammates and the control effort. The third
situation assigns non-zero weights to every term in the cost func-
tion (1).
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Fig. 4. Selection of simulated robot results: The plots in the first column are for SocRob’s 2 robot case in the situation when only the target covariance term in the cost
function (1) is active. The second column plots are for 5dpo’s 3 robots case for the situation when all the terms in its cost function (1) are active. The third column is for
SocRob’s 3 robot case for the situation when only the target covariance term in the cost function (1) is active. The plots in the top row show the robots’ trajectories in the
formation and their final poses while achieving the cooperative minimum target uncertainty where as the plots in the bottom row, directly below the trajectories, show the
corresponding evolution of the cooperative target estimates covariance determinant.
We present the results of the simulation and real robot exper-
iments made with the 5dpo and SocRob robot soccer teams. The
maximum allowed velocity in the 5dpo simulations was 1.4 m/s
while in the SocRob simulations was 0.5 m/s due to the differ-
ences in the dynamics of the robots. Each team uses its own tar-
get position covariance model as described earlier in this section.
The 5dpo simulations were made using SimTwo2 and the SocRob’s
were made using the Webots simulator.3

For each team, the first set of simulation experiments is com-
prised of 2 robots while the second set is comprised of 3 robots.
Results of all these simulations are presented. Robots’ trajectory
plots and target fused position covariance determinant plots of se-
lected experiments are also presented (Fig. 4). Real robot experi-
ments were performed using a team of 2 SocRob robots. The video
attached with this paper shows the simulation and real robot
experiments’ footage where the trajectory for each robot and
the formation can be visualized (see video at http://youtu.be/
lMA8gHa6iZI).

4.1.5. Simulation results
Tables 1 and 2 show the final value of the determinant of the

target fused position covariancematrix afterminimization. Table 3
summarizes the weights used for each term of the cost function
(1) during the experiments. It should be noted that the SocRob’s
target position covariance model is derived from its observation
model itself and hence it naturally finds the best position w.r.t. the
target forminimizing the fused target position covariancewhereas
the 5dpo’s model is built empirically for which the minimization
occurs when the robot’s and target positions coincide. Therefore
in the cost function (1) the robot–target distance threshold term’s

2 Paco Wiki—SimTwo
http://paginas.fe.up.pt/~paco/wiki/index.php?n=Main.SimTwo.
3 Cyberbotics Ltd.—Webots, http://www.cyberbotics.com/overview.
Table 1
Determinant of the target fused position covariance matrix,
obtained from simulationswith 2 5dpo robots and 2 SocRob robots,
for three combinations of the DNMPC cost function terms, dubbed
as ‘Situations’ here and detailed in Table 3.

5dpo—2 robots case

Situation |C⊥

5dpo|

Only target covariance 0.2252
Only mates 0.3145
All terms 0.2201

SocRob—2 robots case

Situation |C⊥

SocRob|

Only target covariance 0.3356
Only mates 0.4205
All terms 0.3415

Table 2
Determinant of the target fused position covariance matrix,
obtained from simulationswith 3 5dpo robots and 3 SocRob robots,
for three combinations of the DNMPC cost function terms, dubbed
as ‘Situations’ here and detailed in Table 3.

5dpo—3 robots case

Situation |C⊥

5dpo|

Only target covariance 0.1017
Only mates 0.1095
All terms 0.1074

SocRob—3 robots case

Situation |C⊥

SocRob|

Only target covariance 0.0742
Only mates 0.0646
All terms 0.0924

weight λ0 for the ‘only target covariance’ experiment situation in
case of 5dpo robot was set to a positive value to avoid robot–target

http://youtu.be/lMA8gHa6iZI
http://youtu.be/lMA8gHa6iZI
http://youtu.be/lMA8gHa6iZI
http://youtu.be/lMA8gHa6iZI
http://paginas.fe.up.pt/~paco/wiki/index.php?n%3DMain.SimTwo
http://www.cyberbotics.com/overview


Table 3
Values of weights for all simulation experiments. The weights were the same for
both the 2 and 3-robots cases.

Only target covariance Only mates All terms
5dpo SocRob 5dpo SocRob 5dpo SocRob

λa 3000 300 0 0 3000 300
λ0 1500 0 1500 1500 1500 1500
λ1 0 0 0 0 300 200
λ2 0 0 0 0 100 100
λ3 0 0 500 600 500 600
λ4 0 0 0 0 600 600
λ5 5 100 5 100 5 100

Table 4
Determinant of the target fused position covariance
matrix, obtained from two SocRob real robots, for three
combinations of the DNMPC cost function terms, dubbed
as ‘Situations’ here and detailed in Table 3.

Situation |C⊥

SocRob|

Only target covariance 0.687
Only mates 0.703
All terms 0.233

Fig. 5. TIGRE.

Fig. 6. Asctec@ Pelican MAV.

collision whereas λ0 for the same situation in SocRob’s need not be
positive.

4.1.6. Real robot results
The video attachedwith this paper presents the footage of the 2

SocRob real robot’s experiments. The weights for each term in (1)
were the same as in the simulations. Table 4 shows the final deter-
minant value of the target fused position covariance matrix after
minimization. It should be noted that for the real robot’s casewhen
all the terms of the cost function are active, a lower determinant
value of the target fused position covariance matrix is obtained.
This is because when only the target position covariance term is
Fig. 7. Experimental scenario.

Fig. 8. Dynamic target tracking by TIGER and Pelican.

used in the cost function the chances for the formation to get stuck
in a local minimum of the DNMPC cost function are higher. Hence,
introducing the other terms in the cost function, such as teammate
avoidance and orientation towards the target, helps the formation
converging to a global minima.

4.2. Outdoor field robots

In the outdoor scenario, we implemented our formation CTE on
a team of 2 robots: (i) TIGRE; and (ii) Pelican. The robot TIGRE [30]
(see Fig. 5) is an autonomous ground robot for exploration and
activity in unstructured environments. It has an electric propulsion
engine and is equipped with an on-board Quad Core Intel(R)
Core(TM) i5 CPU 750 @ 2.67 GHz processor with 4 GB RAM,
a wireless network card, an infra-red thermographic camera, a
laser rangefinder, two visible spectrum cameras in a rigid stereo
baseline (∼0.76m)with a pixel resolution of 1278×958, a Novatel
GPS receiver and a Microstrain IMU.

The robot Pelican, a Micro Aerial Vehicle (MAV) (see Fig. 6), is a
helicopter driven by four rotors symmetric to the center of mass. It
is equipped with a Flight Control Unit (FCU) for data fusion (from a
GPS and an IMU), an on-board 1.6GHz Intel Atom-based embedded
computer, an 802.11nWifi and amonocular camera from IDS UEYe
LE with a resolution of 1280 × 1024.

Both robots run Linux and the ROS framework as a middleware
for parametrization and monitoring of all processes. In addition,
RTDB and RA-TDMA are used to share data between robots.

4.2.1. Experimental scenario and implementation
The experiments with the outdoor robots were performed in a

non-urban area with several landscape elements, e.g., vegetation,
water, rocks, bushes and some semi-urban structures such as
gravel paths (see Fig. 7). Both TIGRE and Pelicanwere tele-operated
in this scenario. A person wearing a 37 cm × 67 cm orange
life jacket (see Fig. 8) walked in the environment to emulate
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Fig. 9. Trajectory plots of the tracked target’s position estimates by the individual
robots and by the CTE running on each of them compared against the ground
truth.

the moving target. The life jacket was equipped with an RTK
GPS Septentrio L1 L2 able to provide its GPS coordinates (during
post-processing) with the maximum error of 10 cm. The position
estimates from this GPS were considered to be the ground truth
positions of the target and were used to evaluate the accuracy of
our proposed method’s implementation.

Images acquired by the cameras mounted on both the robots
and their GPS localization were logged in the respective robot’s
computers along with the associated timestamps. These images
were post-processed to obtain the target observation measure-
ments. The CTE was then applied on these measurements (robot
localization and target position data). Note that Pelican possesses
only one camera and it does not support 3D target detection at
this stage. Consequently, for these preliminary results we consid-
ered the target’s ground height to be constant. In Section 4.2.2 we
present the preliminary results of these experiments that include
the cooperatively estimated positions of the target compared with
its ground truth positions. Please note that currently the forma-
tion controller DNMPC is not fully implemented on the outdoor
robots, hence unlike the indoor robots experimental results (de-
scribed previously in Section 4.1) the complete perception-driven
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Fig. 10. Error plots of the tracked target’s position estimatesw.r.t. the ground truth.

formation control experiments for the outdoor robots case are not
presented. Including the DNMPC in the control closed loop is cur-
rently ongoing work.

4.2.2. Real robots preliminary results
Fig. 9 presents the trajectories of the target as estimated by each

of the robots individually and by the CTE running on these robots.
Fig. 10 presents the corresponding error plots of these estimates.
The error is calculated as the absolute value of the Euclidean
distance between the estimated positions of the target and its
corresponding ground truth positions. The statistical estimates of
these errors are presented in Table 5. Although the mean/median
tracking error for both robots seems large (4–5m), itmust be noted
that these experiments were performed over an area of ∼104 m2,
and that the average GPS localization errors of the robots are∼1m.
A clear benefit of using the CTE over the individual robot’s estimate
is the increase in the tracking period achieved by both robots.
For large time periods during the experiment (where the total
experiment time corresponds to ∼150 s), the target moved out of
the field of view of one of the robots or of both. However, Pelican
could track the target for 31.43% of the time more by using the
CTE instead of simply using its own observation measurements



Table 5
Error statistics of the tracked position estimates of the target. P.I.T.P. stands for percentage increase in tracking period. It refers to the time period in which a robot was not
directly observing the target but was able to track it due to the cooperative tracking by the CTE running on it.

Robot Individual estimate CTE estimates P.I.T.P.
Mean (m) Median (m) Std. Dev. (m) Mean (m) Median (m) Std. Dev. (m)

Pelican 5.71 4.62 4.56 5.65 4.48 5.05 31.43%
TIGRE 6.10 3.55 6.73 6.83 4.96 5.94 51.29%
for tracking, whereas the increase in TIGRE’s tracking period was
51.29% when using the CTE.

5. Conclusions and future work

A method for multi-robot formation control with the main
goal of tracking a target with minimum uncertainty was proposed
in this paper. The control loop includes a distributed nonlinear
model predictive controller (DNMPC) and a cooperative target
state (position and velocity) estimator (CTE). The DNMPC controls
the formation geometry dynamically to minimize a cost functional
consisting of several terms, one of them being the fused target
position covariance matrix determined by the CTE, while the
CTE uses a particle filter to fuse the vision-based observation
measurements of the target by all the formation robots. The inter-
robot wireless communications are efficiently handled based on
a wireless communication protocol (RA-TDMA) and a real-rime
database (RTDB).

Simulation and real robot results were presented for indoor and
outdoor heterogeneous robots demonstrating the comprehensive-
ness of the method implementation. CTE is capable of handling
different situations of occlusion, observation noise and camera
models to fuse their information and determine the target state
accurately, while providing the associated estimate uncertainty.
The DNMPC cost functional enables balancing different formation
control objectives, such as obstacle avoidance, collision avoidance,
or improving target estimation accuracy, while creating andmain-
taining the robot formation.

Our future work includes extending this approach to het-
erogeneous robot teams composed of both holonomic and non-
holonomic robots, as well as to implementing it fully in outdoor
robots.

In this paperwe have focused on the experimental results of the
proposed technique combining a cooperative target tracker based
on a particle filter and a distributed non-linear model-predictive
formation controller. Formation control stability analysis and other
related theoretical issues [31,32] should be tackled in future work.
Nevertheless, one should note that the most accepted technique
used to prove stability in MPC with constraints relies on the use of
a positive invariant set as a terminal constraint. There is a number
of methods for determination of such a set in the linear case. In
the nonlinear case, there is no systematic way of doing that, to our
knowledge. The use of a cascade structurewith nonlinear elements
makes this task even more difficult. Regarding the estimator,
particle filters are one of the most versatile Bayesian filters that
have been extensively used in many robotic applications. As
particle filters do not make strong parametric assumptions on the
posterior belief densities, they are particularly suited for complex
multimodal distributions. It is well known that theoretically the
approximation error in a PF converges to zero only when the
number of particles approximating the posterior density tends
to infinity. In practice, however, resource-adaptive number of
particles produce sufficiently accurate approximations of the
posterior if the observations are handled in a smart manner.
In our work, the measurements are multimodal and arise from
various sources (teammates observing the same object) where
each source in itself is uncertain of its own location. By weighting
the measurements from these sources proportionally to the
sources’ own localization confidence as well as their measurement
confidence of the target, we do not only mitigate the error in
target’s estimate in the world frame but also prevent a systematic
bias in the target estimate that might occur in case only a single
measurement source existed and number of particles were not
very high.
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