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Abstract

This paper presents a novel mechanism to initiate new views within the map
building process for an EKF-based visual SLAM (Simultaneous Localiza-
tion and Mapping) approach using omnidirectional images. In presence of
non-linearities, the EKF is very likely to compromise the final estimation.
Particularly, the omnidirectional observation model is induces non-linear er-
rors, thus it becomes a potential source of uncertainty. To deal with this
issue we propose a novel mechanism for view initialization which accounts
for information gain and losses more efficiently. The main outcome of this
contribution is the reduction of the map uncertainty and thus the higher
consistency of the final estimation. Its basis relies on a Gaussian Process to
infer an information distribution model from sensor data. This model rep-
resents feature points existence probabilities and their information content
analysis leads to the proposed view initialization scheme. To demonstrate
the suitability and effectiveness of the approach we present a series of real
data experiments conducted with a robot equipped with a camera sensor
and map model solely based on omnidirectional views. The results reveal a
beneficial reduction on the uncertainty but also on the error in the pose and
the map estimate.
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Process, Information Gain

1. Introduction

The problem of SLAM poses a challenge in the framework of mobile
robot applications. It involves a laborious process that deals simultaneously
with the mapping and robot’s localization. This fact brings a challenge with
regards to complexity, as the procedure is expected to work incrementally
and to return a coherent representation of the environment. Besides, the
existence of noise sources become accountable for undesired effects which
aggravate and jeopardize the final estimation.

Lately, visual sensors have reached a great emergence as the main tool
for collecting information in the field of SLAM. They represent a promising
option compared to classic sensors such as laser or sonar. They allow us to
take the best advantage of cameras due to their low cost, light weight and low
consumption principally. Nonetheless, their major benefit turns to be their
capability to collect a large amount of visual information. Such a quality
is especially remarkable in the case of omnidirectional cameras, whose field
of view is maximum. Many approaches have exploited this aspect of single
cameras by means of visual descriptors to encode 3D visual landmarks [1, 2,
3]. Omnidirectional cameras have also been used within different contexts
successfully [4, 5, 6].

Over the last years, great efforts have been made on the study and re-
search of the EKF-based SLAM methods sustained by visual sensors [7, 1,
8, 2, 9, 10]. The main efforts have been concentrated on the position esti-
mation of a 3D visual landmarks set in a common reference system. These
approaches are liable to encounter difficulties in assuring the convergence of
the solution, particularly in the presence of non-linear errors. Such errors are
usually provoked by sensory input. Omnidirectional sensors are significantly
susceptible to cause this issue [11], due to its highly non-linear nature. Their
correspondent effects tend to affect severely the data association problem in
SLAM [12]. Other offline algorithms [13, 14, 15] may be seen as an alter-
native technique to keep stability under non-linear circumstances for SLAM
problems [16]. Within this last group, there are some other authors who take
advantage of other iterative optimization techniques embedded in the core of
the EKF filter [17, 18].

In this approach we rely on an improved version of the EKF which demon-
strates its ability to face these common shortcomings commented above. In
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particular, we employ EKF in a non-iterative way. The most relevant char-
acteristic of this approach is the definition of the map by omnidirectional
images (denoted as views), which are captured along the path of the robot
and stored with their poses and visual descriptors. This idea is closely re-
lated to the concept of submap. Here, a reduced set of views constitutes a
compact and simpler representation of the environment compared to tradi-
tional 3D landmark map models. The main novelty is a new mechanism for
the initialization of views within the map building process, aimed at uncer-
tainty reduction. We make use of the visual information provided by the
visual sensor data in order to construct an information distribution model
which accounts for information gain and losses. This task is carried out
by means of a Gaussian Process (GP ), which is included within the field of
non-parametric Bayesian learning techniques. Application of non-parametric
methods, such as GPs have recently proven great enhancements on the map-
ping tasks within the context of autonomous navigation. Continuous frontier
maps are obtained by optimizing the process parameters, which reveal im-
portant uncertainty reduction [19, 20]. Therefore, we propose the training of
a GP as a tool to establish a bounded uncertainty scheme for our approach.
By adopting such a technique, we pursue a positive impact on the uncer-
tainty, which we intend to minimize. As a result, harmful effects that are
likely to appear under high uncertainty conditions, such as errors induced
by non-linearities and consequently instabilities and convergence difficulties
are mitigated. As a consequence, a more robust and consistent map and
trajectory estimate is obtained for the visual SLAM problem.

Summarizing, the fundamental aspects and contributions of this approach
may be listed as it follows:

• A new view initialization mechanism is presented for the map building
process within the problem of EKF-based visual SLAM.

• This strategy accounts for information gain and losses more efficiently.

• Probabilistic representation of features and learning their correlations
through Gaussian processes regression.

• Bounding the uncertainty leads to the mitigation of harmful effects in-
duced by non-linearities in the framework of EKF-based visual SLAM.

This section has introduced the scope and it has also given a brief out-
line of the related work. Next, the rest of this paper has been structured

3



in the following manner: Section 2 briefly presents the basic theory of an
EKF filter within this framework. Section 3 provides a general explanation
to our EKF-based visual SLAM approach. Next, Section 4 exposes the key
points of this contribution, which is supported by Gaussian Processes and
Information theory. Finally, Section 5 shows the results extracted from real
data experiments. They are aimed at testing the validity and reliability of
this approach in terms of accuracy and robustness, but they are especially
seeking the uncertainty reduction, which is obviously translated into an im-
provement on the solution convergence. Comparison between this proposal
and a former SLAM approach has also been included to support these results.
Further discussion and conclusions are addressed in Section 6.

2. EKF

The principle of the EKF [21] is based on the iterative update of an aug-
mented state vector which represents the real time estimate to the problem.
Considering our specific visual SLAM case, constituted by a view-based map,
the estimate returns the pose of the views in the map and the pose of the
robot. Then, the state vector can be defined as:

x̄(t) = [xv, xl1 , xl2 , · · · , xlN ]T (1)

where xv represents the current pose of the robot and xlN the pose of the
N -th view in the map. Two linear relations are defined by F (t) and Hi(t) so
as to encode the dependency between x̄(t) and the observation measurement
zi(t) respectively. In addition, it is essential to bear in mind the information
provided by the odometry of the robot u(t + 1), the uncorrelated gaussian
noise introduced into the system v(t + 1), and the noise generated by the
sensors, wi(t), being also gaussian and with covariance R(t).

Three fundamental stages are well differentiated by the EKF to operate.
Firstly, a prediction for x̂(t) and ẑi(t) is proposed. Then the second stage
makes use of this prediction to determine the deviation between the prior
ẑi(t) with respect to the real observation zi(t). This concept is commonly
known as the innovation, and its meaning is of paramount significance in the
computation of the final solution provided by the filter. Finally, the third
stage takes into account the second stage’s output to produce the refinement
of the estimation obtained during the first stage, seen as an updating step.
These three stages may be described by their analytic expressions in the
following terms:
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• Prediction

x̂(t+ 1|t) = F (t)x̂(t|t) + u(t) (2)

ẑi(t+ 1|t) = Hi(t)x̂(t+ 1|t) (3)

P (t+ 1|t) = F (t)P (t|t)F T (t) +Q(t) (4)

being P (t|t) and P (t + 1|t) the covariance matrices which correspond
to the uncertainty of the estimation at instants t and t + 1 respec-
tively. Q(t) is constituted by the noise parameters which characterize
the odometry of the wheels of the vehicle.

• Innovation
vi(t+ 1) = zi(t+ 1)− ẑi(t+ 1|t) (5)

Si(t+ 1) = Hi(t)P (t+ 1|t)HT
i (t) +Ri(t+ 1) (6)

where Si(t+ 1) represents the innovation’s covariance.

• Update
x̂(t+ 1|t+ 1) = x̂(t+ 1|t) +Ki(t+ 1)vi(t+ 1) (7)

P (t+ 1|t+ 1) = P (t+ 1|t)−Ki(t+ 1)Si(t+ 1)KT
i (t+ 1) (8)

being Ki(t + 1) the gain matrix of the filter which plays the role of
weighting. It is computed in the following manner:

Ki(t+ 1) = P (t+ 1|t)HT
i (t)S−1i (t+ 1) (9)

It is worth noting that Q(t) y R(t) have to be initialized. The noise pa-
rameters which characterize the odometry are introduced into Q(t) and the
experimental accuracy parameters associated with the visual sensor into R(t).
In addition, the odometry u(t) is required as an initial seed for the prediction
obtention defined by Eq. (2).

3. Visual SLAM

The main goal of a visual SLAM technique is to retrieve a reliable estimate
of the position of the robot inside a certain explored environment, which has
to be estimated simultaneously. In this approach, the map is constituted by a
set of omnidirectional images acquired at different poses in the environment,
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denoted as views. Please note that these views do not correspond with infor-
mation from any specific physical landmark as it is traditionally understood
in vision-based SLAM. They are constituted by an omnidirectional image
captured at the pose xl = (xl, yl, θl) and a set of points of interest extracted
from that image. Such arrangement allows us to take the best advantage of
the wider field of view provided by omnidirectional cameras. A large amount
of information may be encoded by a simple image, fact that leads to a signif-
icant reduction of the required computational resources. In consequence, the
compactness of the map is enhanced thanks to the less number of variables
needed for estimating the solution.

As briefly mentioned in Section 2, the pose of the mobile robot at time
t is expressed as xv = (xv, yv, θv)

T , and each view n with n ∈ [1, . . . , N ] is
constituted by its pose xln = (xl, yl, θl)

T
n , its uncertainty and a set of feature

points expressed in image coordinates along with their visual descriptors.
Finally, as shown in Eq. (1), the augmented state vector for our EKF

view-based SLAM is:

¯x(t) =
[
xv xl1 xl2 · · · xlN

]T
(10)

3.1. Map Building

The map building task is depicted in Figure 1. The robot starts exploring
the environment at the origin point A, where it captures an omnidirectional
image IA, stored in the map as a view with pose xlA and being representative
of the relevant visual information around this position. Now IA is assumed
to be the first part of the map, then the robot moves towards the first office
room. As long as there is not any major obstruction, the robot extracts
corresponding points between IA and the omnidirectional image at its current
pose. This fact makes it able to localize itself. However, once the robot
enters the office room, the appearance of the images varies significantly, so
no matches are found on IA. At this point, the robot initializes a new view
named IB at the current robot’s position xlB . This view aids the robot
in localizing itself inside the office room. Finally, the robot concludes the
exploration of the environment with an accumulated map defined by views
IC , ID, IE. The number of views initiated in the map directly depends on
the sort of environment and its visual appearance. Figure 1 also provides a
synthesis of the localization procedure. A comparison between IA and IE is
presented, where corresponding points and the motion transformation given
by the relative angles between the pose of the images are indicated.
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It is important that the initialization of a new view in the map is clearly
explained. Our former approach [22] relied on a relative measurement be-
tween images so as to define an initialization ratio, which was experimentally
defined as:

A = k
c

p1 + p2
(11)

being p1 and p2 the feature points detected on each image and c the cor-
respondences between them. The value of k was aimed at weighting the
measurement according to the visual appearance of each particular scenario.

Although this strategy assesses the similarity of the environment, it is
empirically suited for scenarios where the matching process is feasible and few
outliers are introduced. This fact leads us to seek a more reliable and general
mechanism. According to the objectives stated in this work, in order to
achieve the uncertainty reduction, new contributions and added value have to
be implemented at this stage. We suggest an initialization ratio which adapts
to information gain and losses. Thus it is based on the current uncertainty
of the map. To that end, we propose the use of a regression technique
represented by a GP in order to infer a data information distribution which
aids in the definition of this ratio. In particular, the robot will initialize a new
view whenever there is a high change in the inferred information distribution
from the sensor data, in other words, when there exists relevant changes in
the environment’s visual appearance. As a result, the final estimation will
benefit from this idea since any new view will be initiated at an optimum
pose in the sense of uncertainty. The arrangement of new views will now
assure that the uncertainty of the estimation will be bounded. This proposal
reinforces the value that comes along with our view-based approach: major
information changes on the environment are encoded by new views in the
map. Further explanation and details are given in Section 4

3.2. Observation Model

The observation model has be to designed in accordance to the view-based
map model presented above. The goal is to retrieve a motion transforma-
tion between images which aids in the robot localization. The versatility of
omnidirectional images enables to apply epipolar constraints [23] to extract
the observation measurement between two images as shown in Figure 1. The
position of these images corresponds to the pose where the robot captured
them. To that effect, only two images with a reduced set of corresponding
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Figure 1: Map building process. First view in the map, IA, is initiated at the
origin A. While the robot traverses the environment, correspondences may be
found between IA and the current image captured at the current robot’s pose.
In case that no correspondences are found, a new view is initiated as the current
image, for instance IB at B. The procedure finalizes when the entire environment
is represented.

points between them are required to obtain the motion transformation. The
observation measurement may be expressed as:

zt =

(
φ
β

)
=

(
arctan

(
yln−yv
xln−xv

)
− θv

θln − θv

)
(12)

where φ and β are the relative angles which express the bearing and orien-
tation at which the view n is observed from the current robot’s pose. Please
note that the structure of the view n was presented as xln = (xl, yl, θl)

T
n ,

whereas the pose of the robot is given as xv = (xv, yv, θv)
T . Figure 1 graphi-

cally exposes the meaning of these measurements (φ, β).

3.3. False correspondences avoidance

Matching correct feature points between images it is crucial for retrieving
a reliable and consistent observation model. In this sense, we set some restric-
tions which prevent from false correspondences appearance. We make use of
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epipolar constraints to delimit the search for correspondences [24]. The same
point detected in a first camera reference system, denoted as p = [x, y, z]T ,
may be expressed as p

′
= [x

′
, y

′
, z

′
]T in the second camera reference system.

Then, the epipolar condition is used to state the relationship between both
3D points p and p′ seen from different views.

p′TEp = 0 (13)

where the matrix E is the essential matrix and it can be computed from a
set of corresponding points in two images.

E =

 0 0 sin(φ)
0 0 − cos(φ)

sin(β − φ) cos(β − φ) 0

 (14)

being φ and β the relative angles that determine a planar motion transfor-
mation between two different views, as shown in Figure 1 and Eq. (12). We
rely on the information provided by the EKF at its prediction stage to devise
a realistic search for valid corresponding points between images. In an ide-
alistic case, the epipolar constraint defined by Eq. (13) should equal a fixed
threshold, implying that the epipolar curve defined between images always
presents a little static deviation. However, we consider the propagation of
uncertainties in the map into Eq. (13) by introducing a dynamic threshold
δ(ẑt). This implies a more realistic SLAM approach, since this threshold
depends on the existing error on the map, which dynamically varies at each
step of the SLAM algorithm. This error is correlated with the error on ẑt.
Therefore, given two corresponding points between images, they must satisfy:

p′T Êp < δ(ẑt) (15)

Finally, as it may be observed in Figure 2, the information provided by
a predicted state is used to generate a projection of a normal multi-scale
distribution on the sensor frame, where corresponding points are expected
to be detected. This projection determines a predicted area in where to
search for. The shape of this area depends on the error of the prediction,
which is directly correlated with the current uncertainty of the map. This
approach not only mitigates the undesired harmful effects associated with
false positives, but also simplifies the search for corresponding points between
images as it restricts the area where correspondences are expected, instead
of a global search along the whole image.
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Figure 2: Given a detected point ~p1 in the first image reference system, a point dis-
tribution is generated to obtain a set of multi-scale points λi ~p1. By using the EKF
prediction, they can be transformed into ~q′i on the second image reference system

by means of a rotation R∼N(β̂, σβ), translation T∼N(φ̂, σφ) and scale factor ρ̂.

Finally, ~q′i are projected into the image plane to determine a restricted area where
correspondences have to be found. The circled points represent the projection of
the normal point distribution for the multi-scale points that determine this area.

4. Gaussian Processes

A GP has been introduced in this work in order to establish a sensor
data distribution, which can be mapped into a global reference system. GPs
entail a non-parametric Bayesian regression method, which statistically infer
the dependencies between points in a data set [25], in contrast to conventional
functions which analytically relate inputs and outputs. A GP , denoted as
f(x), is constituted by its mean, m(x), covariance k(x, x′), and the training
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Figure 3: Block diagram summary for the EKF-based visual SLAM approach.

and test input vectors, x and x′ respectively.

f(x) ∼ GP [m(x), k(x, x′)] (16)

f(x′) ∼ N (µ, σ2) (17)

µ = E(f ′ | x, y, x′) = k(x′, x)[k(x, x) + σ2
nI]−1y (18)

σ = k(x′, x′)− k(x′, x)[k(x, x) + σ2
nI]−1k(x, x′) (19)

being σ2
n the variance of the Gaussian observation noise and f ′ the output

values at the test points.

4.1. Sensor data distribution based on GP

Once the GPs basis and formulation have been presented, we are able to
devise a model to represent our sensor data information distribution. The
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inference procedure through a GP takes the visual information gathered from
the environment in the form of feature points detected on the image frame,
as it was explained in Section 3.

While the robot navigates, a certain observation measurement is per-
formed at time t. Then, the feature points detected on the image acquired
at the current robot’s pose are considered as our training data set xi for the
GP . The test points x′i are determined by sampling uniformly the space de-
fined in a global reference system. Finally, the GP returns the mean values
µi and variances σ2

i inferred for these test points. The most straightforward
outcome of GP ′s output is the probability of existence of a feature point at
the locations specified by the test points.

There are several steps involved in the construction of the sensor data
information distribution: Firstly, the feature points are locally processed on
the camera reference system. Secondly they are back-projected into a global
reference system by means of the calibration parameters of the sensor [26].
Next, they become the input to the GP , which returns the probability dis-
tribution. Ultimately, when new points are extracted from images acquired
at new poses, the distribution is fused into the general information reference
system. We can assume that significant variations on the scenario will lead
to the detection of new feature points which will cause substantial changes
on the information distribution representation, what in the end it is the key
point to analyze.

Figure 4 shows an example of the sensor data distribution generated by
the GP in terms of probability of existence associated to a bunch of feature
points.

Figure 5 presents an illustrative example where the robot explores the
environment, meanwhile the visual information varies along the path and so
does the feature points and the output returned by the GP . Poses A and B
are relatively close so that the scene captured by the robot at these points is
quite similar, and thus many feature points are coincident between images.
By contrast, when the robot approaches the second room, the appearance
of the environment changes substantially. Therefore, at pose C, new feature
points are detected with respect to images at poses A and B. Figure 6
provides an extended explanation to this example. Figure 6(a) represents
the motion transformation between poses A, B and C. Then Figure 6(b)
shows the images acquired at A, B and C respectively. The feature points
are projected on the image plane and indicated with crosses. Green crosses
mark corresponding feature points between images and blue crosses mark new
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Figure 4: Sensor data information distribution: probability of existence of feature
points on the 2D reference system.

feature points detected. The change on the appearance of the environment
at C is notable, as it is confirmed by the detection of unseen feature points
shown in blue. This fact involves a variation on the information distribution,
in Figure 7. Here, the current probability of existence of feature points at
poses A, B and C is represented. This figure depicts the evolution of the
sensor data information distribution along these poses. Please note that a
relevant variation appears between poses B and C. Overlapped areas of
high probability denote locations where feature points have been repeatedly
observed several times from different poses. This region encapsulates the
visual information that has remained steady, being more significant between
poses A and B. By contrast, at pose C the information distribution confirms
that the weight of this overlapped area decreases versus the areas which
represent the probability of existence of new feature points.

As seen in the example, at every new pose the robot traverses, a set of
new observation measurements are obtained between its current pose’s image
and the views stored in the map. The visual information provided from the
camera is more likely to overlap at the nearby poses, thus the comparison
of images results in a higher number of corresponding points. By contrast,
the information varies considerably when the robot discovers unknown areas,
and then the corresponding points decrease dramatically.

A profitable use can be made of this variation of visual information. We
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Figure 5: Map building process using an omnidirectional sensor. The robot ex-
plores the environment while simultaneously initiates image views in the map at
poses A, B and C. These images aids in its localization.

propose an efficient map building process in terms of uncertainty. The pur-
pose is to study these variations of visual information in order to decide the
initialization of new views in the map. With this assumption, every new view
will encode the most relevant changes in the environment, according to their
visual informative characteristics. The main expected result is the reduction
of the total uncertainty of the estimated map. The placement of the new
views will be efficiently selected according to a bounded uncertainty proce-
dure which will be defined by an updated version of the former initialization
ratio defined by Eq. (11).

To that end, we adopt the tool given by Kullback-Leibler divergence [27],
which is commonly known as Information Gain in probability theory. The
aim is to evaluate the fluctuation expected in the entropy when a new sample
set is introduced to a certain distribution. In this context, we use the entropy
to measure the uncertainty associated to the feature points given by our GP
in terms of probability of existence. The Kullback-Leibler divergence (KL)
represents the difference of entropy between the information distribution of
current feature points, F1, and the new inferred feature points, F2, from new
images. In other words, the higher value of KL divergence means the newly
introduced feature points are less similar. Thus higher is the amount of new
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(a)

(b)

Figure 6: Detailed description to example presented in Figure 5: 6(a) represents the
motion transformation between poses A, B and C and a 3D point, P (x, y, z); 6(b)
shows the images acquired at poses A, B and C, where the projection of P (x, y, z)
on every image is indicated by pA(u, v), pB(u, v) and pC(u, v) respectively. Cor-
responding points between images are shown by green crosses whereas the new
feature points are shown by blue crosses.
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(a) (b)

(c)

Figure 7: Evolution of the sensor data information distribution along poses shown
in the example presented in Figure 5: 7(a) A; 7(b) B; 7(c) C. Variation on the
probability of existence of feature points on the 2D reference system.

visual information discovered by the robot. Likewise, the uncertainty on the
estimated map will increase as areas of the environment with new visual
appearance are being explored by the robot. The following equations define
their structure:

H(F1) = −
∑
i

F1(i) logF1(i) (20)

KL(F1 ‖ F2) = H(F1, F2)−H(F1) =
k∑
i=1

F1(i) log
F1(i)

F2(i)
(21)

where H(F1) is the entropy of the information distribution of the current
feature point set at time t. F1(i) represents the probability of existence of
the current i-feature points at time t and so does F2(i) with new points
added at time t + 1 from a new image. The relevance of their information
contribution is directly proportional to 1/σ2

i .
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The strategy to initialize a new view seeks an upper bound for the un-
certainty so as to get an efficient map in this sense. To that aim, as we
keep the information distribution of the points referred to a global system,
we consider the KL value in its accumulative format. Then, we measure the
accumulated increases in the uncertainty, given by the addition of new visual
information. The previous initialization ratio shown by Eq. (11) has been
substituted by the following one:

γ =
∑
t

KL(Pt ‖ Pt + 1) (22)

where Pt refers to the data information distribution obtained up to time t
and Pt + 1 refers to the new data information fused into the global reference
system at time t+1. Establishing different thresholds for γ leads us to obtain
different view initializations and thus different map versions. Obviously, the
associated uncertainty also fluctuates differently depending on the placement
of the views. A more detailed explanation with real results is presented in
the next section.

5. Results

We have performed two different sets of real data experiments in an office-
like environment. The equipment consists of a Pioneer P3-AT indoor robot
with a 1280×960 firewire camera and a hyperbolic mirror. The optical axis
of the camera is installed approximately perpendicular to the ground plane,
as it can be seen in Figure 6. We used a SICK LMS range finder in order
to compute a ground truth representation. Firstly, in Section 5.1 we present
results to examine the behavior of this proposal in terms of its associated
uncertainty. Then, in Section 5.2 we show different map solutions obtained
with this SLAM approach. All the set of results presented here are also
compared with a former SLAM version [22] which does not use GP nor data
information distribution in order to initialize views.

5.1. Initialization ratio and sampling resolution

Here we evaluate the mechanism for view initialization under different
conditions. The first parameter to consider is the threshold value for the
new initialization ratio γ, defined in Eq. (4.1). Intuitively, the less views
are initialized in the map when the higher is this ratio. This means that
larger changes on the visual environment are encoded by less views, without
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Figure 8: Evolution of the uncertainty along the robot’s path. Different values
for γ are shown and compared to the uncertainty obtained with the initialization
ratio (Eq. 11) employed in the former SLAM approach.

implying any new initialization. A real experiment has been conducted in
a scenario with dimension 25m×25m. Figure 8 presents the current uncer-
tainty along the path followed by the robot at each time step. It is now con-
firmed that lower values for the initialization threshold help in the reduction
of uncertainty. It is worth noting that the results provided by this proposal
outperform the uncertainty associated with the former SLAM approach at
every case. The main reason for what this is a more feasible mechanism is
the consideration of information gains and losses rather than the amount of
feature points matched. Figure 9 shows the mean uncertainty accumulated
on the total map at each time step. Obviously, the shape and the evolution
is quite similar. Again, the results obtained with this approach confirm a
better performance with regards to the uncertainty. This means that the
view initialization strategy accomplishes with the proposed scheme for ob-
taining a bounded uncertainty. Nonetheless, it is worth mentioning that low
uncertainty values imply larger number of views in the map, and obviously
at a higher computational cost. Hence a trade-off solution is needed, which
usually depends on the specific application.

Secondly, it is necessary to state the same analysis but now looking at
the estimation error. To that aim, we extract values for the RMS error
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Figure 9: Evolution of the mean uncertainty accumulated on the total map. Dif-
ferent values for γ are shown and compared to the uncertainty obtained with the
initialization ratio (Eq. 11) employed in the former SLAM approach.

(Root Mean Square). Figure 10 plots RMS values associated to the different
initialization ratios γ. Once again, comparing with the former approach, the
obtained error with the new approach is lower at any case.

Finally, another parameter which has a considerable importance on the
efficiency of this approach is the sampling size for the test points selection.
As it was mentioned in Section 4, the global reference system is sampled
uniformly by means of these test points x′. Then, the data information
distribution inferred by theGP will have a specific resolution which is directly
linked with this sampling size determined by x′. Now, Figure 11 represents
the RMS (Root Mean Square) error when the sampling size is varied. It can
be observed that higher resolutions ensure better results as the probability
areas are more accurately determined. However, a high resolution inference
from the GP become very expensive in terms of computation. It is worth
noting that the dimension of the grid size is up to scale, according to the
scale factor of the map.

5.2. Map building based on data information distribution

At this point, a trade-off parameter set can be extracted from the study
of the results presented above. Hence, we carry out a complete SLAM exper-
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Figure 10: RMS error for different initialization ratios γ. The RMS value obtained
with the former SLAM approach has been also plotted for comparison.
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Figure 11: RMS error for different grid size resolutions. The grid size resolutions
are expressed up to the scale factor of the current map. The RMS value obtained
with the former SLAM approach has been also plotted for comparison.
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iment. Figure 12 shows the final map and path estimation for an office-like
environment. Figure 13 presents a different solution for the same scenario
where a different initialization ratio has been considered. In order to compare
and prove the benefits of this proposal, Figure 14 presents results obtained
with the former EKF-based SLAM approach [22]. By inspecting Figure 12(a)
and Figure 13(a), it can be confirmed that lower initialization ratios ensure a
more robust solution with a larger number of views, but obviously at a higher
computational cost. Figure 12(b) and Figure 13(b) show the behavior of the
error along the path. Both estimations confirm their improvements in com-
parison with the former approach as seen in Figure 14(a) and Figure 14(b).
An important reduction in terms of uncertainty is achieved.

Finally, the method has been used in a larger scenario with the aim
of testing its robustness and feasibility in large environments. Figure 17
provides general details of this scenario, which corresponds to an indoor
trajectory of 180m. The areas which the robot goes through consist of office-
like rooms, laboratories, corridors and open spaces. The main challenge is to
deal with the big changes on the visual appearance between rooms, but with
the lighting changes on the images. Some omnidirectional images are also
presented, as well as the real path followed by the robot. Figure 16 provides
results for this 50m×50m scenario when using the proposed approach. Again,
the estimated path and map reveal their accuracy and similarity to the real
path, but also its reduced uncertainty.
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Figure 12: 12(a) presents real data results obtained with the presented EKF-based
SLAM approach. The map representation of the environment is formed by N=12
views. The position of the views is presented with error ellipses. 12(b) shows the
solution and the odometry error in X, Y and θ at each time step.
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Figure 13: 13(a) presents real data results obtained with the presented EKF-based
SLAM approach. The map representation of the environment is formed by N=28
views. The position of the views is presented with error ellipses. 13(b) shows the
solution and the odometry error in X, Y and θ at each time step.
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Figure 14: 14(a) presents real data results obtained with the former SLAM ap-
proach. The map representation of the environment is formed by N=11 views.
The position of the views is presented with error ellipses. 14(b) shows the solution
and the odometry error in X, Y and θ at each time step.
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Figure 15: Main details of the large scenario where the last dataset was acquired.
The layout of the building, real path followed by the robot and some omnidirec-
tional views of different areas are indicated.

6. Conclusions

This work has presented a novel mechanism for the view initialization
within the map building process applied to an EKF-based visual SLAM ap-
proach supported by a omnidirectional sensor. This contribution seeks to
provide a more feasible mechanism which accounts for information gain and
losses so that the harmful effects suffered by visual SLAM approaches are
mitigated. Particularly, non-linearities and undesired effects induced in the
observation and movement jeopardize the convergence of the estimation pro-
vided by traditional EKF-based SLAM approaches. In consequence, it is
crucial to keep uncertainty bounded to deal with this issue. To that aim, we
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Figure 16: Real data results obtained with the presented EKF-based SLAM ap-
proach in a large scenario. The map representation of the environment is formed
by N=41 views. The position of the views is presented with error ellipses. 16(b)
shows the solution and the odometry error in X, Y and θ at each time step.
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Figure 17: Evolution of the uncertainty for the large scenario presented above.

have focused on encoding information gain and losses to define the proposed
mechanism to improve the view initialization stage in our EKF-based visual
SLAM approach. This new mechanism is achieved by means of the construc-
tion of a data information distribution inferred with a Gaussian Process.
This distribution represents a probability model for the existence of feature
points which is exploited from an informative point of view. Thus an In-
formation Gain method is finally introduced to come up with the intended
initialization process, which confirms its capability to bound the uncertainty
and to efficiently initiate new views in the map. The results presented have
proven the validity of this proposal and the expected benefits regarding with
the uncertainty reduction, which is translated into a more robust and consis-
tent map and trajectory estimation. Likewise, the results demonstrate the
effectiveness of this approach to set limits to the estimation error as well. In
order to reinforce the value of these results and the contributions made on
this research, we have also compared them with the results obtained by a for-
mer EKF-based SLAM approach which uses a more empirical initialization
mechanism.
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