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1. Introduction

The development of algorithms for the distributed coordination 
and control of large scale interconnected or independent systems 
has received a great attention in recent years see, e.g., [1–6]. These 
problems are of particular interest in the robotic field, motivated 
by the widespread diffusion of autonomous robotic systems, which 
require efficient distributed control strategies for motion, coor-
dination, and cooperation, see [7–9] and the references therein. 
Among the main problems of interest, it is possible to recall forma-

tion control, coverage and containment for sensing, obstacle and 
inter-robot collision avoidance, and border patrolling.

Distributed coordination includes a number of fundamental 
issues, such as flocking [8], formation tracking and control [9]. 
Formations can be represented in many ways, for example by 
means of virtual structures [10,11], using a leader–follower rep-
resentation [12], or through the so-called formation constraint 
function [13]. These problems, including obstacle and inter-robot 
collision avoidance, are tackled with potential functions, gradient 
methods [14], linear feedback control laws [15], and consensus [16]. 
Other well-studied coordination control problems include contain-
ment, i.e., where a team of followers is guided by multiple leaders 
see, e.g., [17–19]. Also motion in unknown environments carries 
about challenging control issues, such as obstacle border patrolling 
(see, e.g., [20,21] and reference therein) while, in the context of 
sensor networks, one of the major issues is coverage, i.e., to deploy 
a set of sensors so as to maximize the overall sensing performance, 
see, e.g., [22–25] and the references therein.
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Fig. 1. The proposed multi-layer control architecture.

Despite the many results nowadays available, several issues still 
need to be addressed [9], if possible in a comprehensive fashion, 
such as the proper handling of constraints, the presence of input 
saturations, and the requirement of robustness. For these reasons, 
solutions based on robust Model Predictive Control (MPC) [3] ap-
pear to be promising. In fact constraints and limitations on the 
robot’s dynamics and trajectory can be easily formulated as suit-
able constraints in the MPC optimization problem; distributed MPC 
solutions are currently available, see [1] and references therein, 
which, in a multi-robot environment, allow for the decomposition 
of the overall coordination control problem into smaller subprob-
lems which can be locally solved on-board. This has significant 
computational and communication benefits with respect to cen-
tralized MPC solutions, and also confers flexibility and robustness 
to the overall system. However, the available MPC-based solutions 
guaranteeing robustness and collision avoidance properties (see 
e.g., [26,27], where notable real application experimental tests are 
also shown) are characterized by high dimensional and nonlinear 
optimization problems even in case of linear systems, which make 
them computationally demanding.

For all the above reasons, in this paper we propose a robust MPC 
approach for the solution of a number of motion and coordination 
problems. The method relies on the multilayer scheme shown 
in Fig. 1 and originally proposed in [2] for general interacting 
subsystems.

At the higher Reference Output Trajectory Layer of the con-
trol structure, and at any time instant t , an optimization problem 
is solved for any robot i to define the future reference trajectory
{z̃t

[i]
, . . . , z̃t

[i
+

] 
N } to be followed for the solution of a number of mo-

tion and coordination problems, including formation control, cov-
erage and optimal sensing, containment control, inter-robot and 
obstacle collision avoidance, and motion problems in an unknown 
environment. At the intermediate Reference State/Input Trajec-
tory Layer, the state and control trajectories {x̃t

[i]
, . . . , x̃t

[i]
+N } and

{ũt
[i]
, . . . , ũt

[i]
+N } compatible with {z̃t

[i]
, . . . , z̃t

[i
+

] 
N } are computed. 

Fi-
nally, at the lower Distributed Robust MPC Layer a robust DPC algo-
rithm is solved to compute the robots’ commands. Notably, at the 
intermediate and lower layers the algorithms are the same for all 
the considered problems. In the development of the method, effort 
has been devoted to state the optimization problems as quadratic 
ones, characterized by linear and computationally non-intensive 
constraints for collision and obstacle avoidance. This allows to cope 
with the usually limited on-board computational power and to en-
hance the reactiveness, in terms of reduction of sampling time, of 
the DPC algorithm.

The paper is organized as follows. In Section 2 it is shown how 
the unicycle robot model can be described using linear equations 
under a suitable feedback linearization procedure. Section 3 is

the core of the paper: indeed, the obstacle and inter-robot colli-
sion avoidance problems are reformulated in terms of linear con-
straints, and the cost function to be minimized is customized in
order to tackle different motion and coordination issues. Section 4
shortly describes the structure and the main characteristics of the
DPC algorithm used at the lower layers, first proposed in [2], and
here specifically tailored to the case of dynamically decoupled sys-
tems. In Section 5we present themain theoretical result, regarding
the recursive feasibility properties of the proposed control scheme.
In Section 6 a sketch of the algorithm implementation is drawn
and the choice of the main tuning knobs is thoroughly discussed.
A number of simulation and experimental results in different sce-
narios, including formation control, optimal sensing, containment,
border patrolling, are illustrated in Section 7. Finally, Section 8
draws some conclusions. The proofs of the main results are re-
ported in the Appendix.
Notation. A matrix is Schur stable if all its eigenvalues lie in the
interior of the unit circle. ⊕ and ⊖ denote the Minkowski sum and
Pontryagin difference, respectively [28], while

M
i=1 Ai = A1 ⊕

· · ·⊕AM . Where not specified, 2-norms are used, i.e., ∥ · ∥ = ∥ · ∥2;
B(dim)
ε (0) := {x ∈ Rdim

: ∥x∥∞ ≤ ε} is a ∞-norm ball centered
at the origin in the Rdim space. Given a two-dimensional vector
v = (vx, vy) on the Cartesian plane, the angle with respect to the
x-axis is denoted by ̸ v. For a discrete-time signal st and a, b ∈

N, a ≤ b, (sa, sa+1, . . . , sb) is denoted with s[a:b]. In is the n × n
identity matrix.

2. The robots

2.1. Model of the unicycle robots

We consider a set ofM unicycle robots, whose dynamics is
ẋ = v cos θ
ẏ = v sin θ
θ̇ = ω

(1)

v̇ = a

where v, a and ω are the linear velocity, acceleration and angular 
velocity, respectively, while (x, y, θ) denotes the position and 
orientation with respect to a fixed frame. The linear acceleration 
a and the angular velocity ω are the control inputs of the system.

2.2. Feedback linearization

A linear model of the robots is obtained with a feedback 
linearization procedure [29]. Defining η1 = x, η2 = ẋ, η3 = y,



(2a)
(2b)
(2c)

η4 = ẏ, the dynamics resulting from (1) is

η̇1 = η2
η̇2 = a cos θ − vω sin θ
η̇3 = η4
η̇4 = a sin θ + vω cos θ. (2d)

Letting ax = a cos θ − vω sin θ and ay = a sin θ + vω cos θ we
transform (2) into a set of two decoupled double integrators with
inputs ax and ay. To recover (ω, a) from (ax, ay)we compute
ω
a


=

1
v


− sin θ cos θ
v cos θ v sin θ

 
ax
ay


. (3)

For obtaining (3) it is assumed that v ̸= 0. This singularity point 
must be accounted for when designing the control law [29], as 
discussed in Section 6.3.

From this point on, we denote by superscript (·)[i] the variables 
associated with the ith robot, i ∈ M = {1, . . . , M}. Being x[i] 

=

(η
[i]
1 , . . . , η

[i]
4 ) the state of the feedback-linearized model of the ith

robot, its discrete-time dynamics is described by

x[i]
t+1 = A x[i]

t + Bu[i]
t + w

[i]
t (4)

where A =

1 τ 0 0
0 1 0 0
0 0 1 τ
0 0 0 1


, B =


τ2

2
0

τ 0

0
τ2

2
0 τ

 , u[i]
t =


axt
ayt


and τ

is the sampling period. The disturbance w[i]
t has been introduced

to model uncertainties, possible discretization errors, and external
disturbances. We assume that w[i]

t ∈ Wi, where Wi is a known
bounded uncertainty set.

To limit the velocity and the position of the ith robot we impose
that

xt [i] ∈ Xi (5)

where Xi is a convex set, for each i ∈ M . The output variables are
defined as the robot Cartesian coordinates, i.e.

z[i]
t = Cx[i]

t (6)

where C =


1 0 0 0
0 0 1 0


. It can be readily verified that the triple

(A, B, C) is reachable, observable, anddoes not have invariant zeros
in z = 1.

3. Reference output trajectory generation

The fundamental feature of the algorithm for the solution of
motion and coordination problems of the robots is the incremental
design of their future reference trajectories guaranteeing the
collision avoidance and the attainment of specific goals, such as
formation control, coverage and optimal sensing, containment,
patrolling. Specifically, at time t , assume that for each robot i, its
reference trajectory z̃[i]

[t:t+N−1] is known over a future window of
length N . Then, the value of z̃[i]

t+N is computed as the solution of the
following optimization problem1

min
z̃[i]t+N

V z
i subject to: (7)

– obstacle avoidance constraints

1 With some abuse of notation but for the sake of clarity and readability, we
denote by z̃[i]

t+N both the argument and the result of the stated optimizationproblem.

– inter-robot collision avoidance constraints

– z̃[i]
t+N ∈ z̃[i]

t+N−1 ⊕ B(2)
εi
(0) (8)

– z̃[i]
t+N ∈ Zi (9)

where the form of the cost function Vi
z depends on the specific 

problem, and will be discussed in the following paragraphs as well 
as the detailed definition of the obstacle and collision avoidance 
constraints. Constraint (8) is included to limit the speed of 
variation of the reference trajectory, and εi is a suitable tuning 
knob whose value influences all the parameters and sets required 
by the algorithm (for a discussion see the following Section 6.1). In 
general, large values of εi speed-up the robots movements, but can 
lead to infeasibility problems. Moreover, physical saturations can 
prevent the robot from achieving extreme speeds. Finally, 
constraint (9) is added to guarantee that no violation of the 
constraint set Xi can take place by the state trajectory of the robot. 
The definition of the set Zi depends on the algorithms applied at 
the lower layers of the hierarchy, and as such will be given in the 
following Section 6.1 together with the method for its 
computation.

Constraint (8) implies (provided that the overall control in 
Fig. 1 is applied) the following result which shows that, if the 
traveling velocity – i.e., the difference of the reference position 
between successive time instants – is bounded, then there exists 
a computable time-invariant neighborhood Yi of the output 
reference trajectory in which the robot’s position is guaranteed to 
lie.

Proposition 1 (The Proof is in Appendix A). If (8) holds, then there 
exists a bounded and time-invariant set Yi such that, for all t ≥ 0:

zt [i] ∈ z̃t [i] ⊕ Yi. � (10)

Letting

δi = max
δz∈Yi

∥δz∥ (11)

be the maximum size of the uncertainty set Yi, in view of
Proposition 1 we have that ∥z̃t

[i
+

] 
N − zt

[i
+

] 
N ∥ ≤ δi. Details on the 

computation of Yi are reported in Section 6.1.

3.1. Definition of the constraints for obstacle and inter-robot collision 
avoidance

In this subsection we formulate the obstacle and inter-robot 
collision avoidance requirements as linear constraints. Assume 
that there exist no obstacles and, for simplicity, that the hth
obstacle is circular, centered at point zh

o with radius Ro
h, although 

our scheme can be readily extended to obstacles with different
shapes. Denoting by Ri the radius of the circle circumscribing the 
ith unicycle robot, in view of (10) and (11) it is easy to verify that 
the condition

∥z̃[i]
t+N − zoh∥ ≥ Ri + Ro

h + δi (12)

guarantees that ∥zt
[i
+

] 
N − zh

o
∥ ≥ Ri + Ro

h, and hence collision 
between robot i and the hth obstacle are avoided, see Fig. 2. 
However, constraint (12) is nonlinear and non convex, and as such 
its inclusion into the optimization problem (7) would prevent the 
use of standard and fast quadratic programming techniques. 
Therefore, a linear approximation of (12) is used; to this end, 
consider a polytope Po

hi circumscribing the circle centered at zh
o, 

with radius Ri + Ro
h + δi, defined by the set of rohi linear inequalities

(h[o,hi]
k )T (z̃[i]

t+N − zoh) ≤ dohi, with k = 1, . . . , rohi. Define ρ
[o,hi]
k (t +

N − 1) = (h[o,hi]
k )T (z̃[i]

t+N−1 − zoh) − dohi as the distance between
the position z̃[i]

t+N−1 and the kth side of the polytope defined above.
Note that



Fig. 2. Geometric illustration of condition (12). Robot: gray region; obstacle: pink
region. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 3. Obstacle and its outer-polytopic approximation. Cyan region: area delimited 
by the selected linear constraint (13). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

–

–

if ρk
[o,hi]

(t + N − 1) < 0, then the points z̃t
[i
+

] 
N−1 and zh

o lie at the 
same side with respect to the line lying on the kth edge of the 
polytope;
if ρk

[o,hi]
(t + N − 1) > 0 then, for at least one value of k, the 

minimum distance constraint (12) is verified.

Among all possible indices k, we select the one corresponding to
the maximum value of ρ[o,hi]

k (t + N − 1), i.e., k[o,hi]
max (t + N −

1) = argmaxk∈{1,...,rohi}
ρ

[o,hi]
k (t + N − 1) and, as illustrated by

Fig. 3, we enforce obstacle avoidance for z̃t
[i
+

] 
N by including in the 

optimization problem the following linear constraint:

(h[ij]

k[o,hi]max (t+N−1)
)T (z̃[i]

t+N − zoh) ≥ dohi. (13)

The index k[o,hi]
max (t +N −1) is selected to guarantee to the robot the

maximal freedom, compatibly with the presence of the obstacle, of
moving towards its goal.

Concerning inter-robot collision avoidance, even if similar to
the obstacle avoidance problem, it is a more challenging issue, 
since it involves coordination between pairs of robots moving on
the plane. To solve this problem, we assume that the value z̃t

[j
+

] 
N−1 is 

available to robot i and that z̃t
[i
+

] 
N−1 is available to robot j. Collision

avoidance is guaranteed if, at each instant, ∥zt
[i
+

] 
N −zt

[j
+

] 
N ∥ ≥ Ri +Rj. 

In turn, this condition is attained if

∥z̃t
[i
+

] 
N − z̃t

[j
+

] 
N ∥ ≥ Ri + Rj + δij (14)

where δij = maxδzi∈Yi ∥δzi∥+maxδzj∈Yj ∥δzj∥. However, requiring

(14) is neither possible (since both z̃t
[i
+

] 
N and z̃t

[j
+

] 
N are optimization 

variables, managed by two different robots at the same time) nor 
sufficient for guaranteeing recursive feasibility. Therefore, as in 
the case of obstacle avoidance, we (out-) approximate the circle
defined by (14) with the set of rij linear inequalities (h[

k
ij]
)T (z̃t

[i
+

] 
N −

z̃t
[j
+

] 
N ) ≤ dij, with k = 1, . . . , rij. We define k[ij

max
] 
(t + N − 1) =

argmaxk∈{1,...,rij}(h
[

k
ij]
)T (z̃t

[i
+

] 
N−1−z̃t

[j
+

] 
N−1)−dij and ρ[ij

max
] 
(t +N−1) =

maxk∈{1,...,rij}(h
[

k
ij]
)T (z̃t

[i
+

] 
N−1 − z̃t

[j
+

] 
N−1) − dij. Then, recalling that the

optimization variables in (7) for robots i and j are z̃t
[i
+

] 
N and z̃t

[j
+

] 
N , at 

time step t , the constraints to be fulfilled by the robots are

(h[ij]

k[ij]max(t+N−1)
)T (z̃[i]

t+N − z̃[j]
t+N−1) ≥ d̃ij(t + N − 1) (15)

(h[ij]

k[ij]max(t+N−1)
)T (z̃[i]

t+N−1 − z̃[j]
t+N) ≥ d̃ij(t + N − 1) (16)

 2  

where d̃ij(t +N −1) = dij +ρ[ij
max

] 
(t +N −1)/2. Hence, the collision 

avoidance problem boils down to the linear inequalities (15) and 
(16).

Note that the previous obstacle and collision avoidance 
constraints should be included in the optimization problem for 
any pair robot/obstacle and any pair of potentially colliding robots, 
correspondingly an all-to-all communication network supporting 
the exchange of information between the robots would be 
required. However, it is apparent that these constraints should be 
considered only among robots and obstacles which are ‘‘proximal’’ 
in a suitable metric. To this end, define the proximity radius for 
robot i with Rpi, and we say that the hth obstacle is proximal to
robot i at time t if zh

o lies in the circle centered in z̃t
[i
+

] 
N−1 with radius 

Rpi. Similarly, the robot j ∈ M \ {i} is a proximal neighbor with
respect to robot i at time t if z̃t

[j
+

] 
N−1 lies in the circle centered in

z̃t
[i
+

] 
N−1 with radius Rpi. In view of this, for robot i at time t , we define 

the set of proximal obstacles and the set of proximal neighbors,
i.e., Oi and Ci ⊆ M \ {i}, respectively, with which collision
avoidance must be enforced. The cardinality of Oi is denoted ni

o. For 
consistency, j ∈ Ci if and only if i ∈ Cj. Since the robot positions is 
time-varying, also the sets Oi and Ci (along with their cardinality) 
are time varying, although this is not specifically indicated for 
notational simplicity. Finally remark that the communication 
between neighbors in Ci must be supported by a suitable (possibly 
time-varying) neighbor-to-neighbor communication network.

Finally, to allow for smooth operation and for avoiding ‘‘ar-
tificial’’ deadlocks, it is advisable that the number of sides of 
the polytopes circumscribing obstacles and robots (i.e., rhi and rij, 
respectively) is large (e.g., greater than 10). Note that this does not 
impact on the computational complexity of the resulting optimiza-
tion problems since, among all possible linear constraints, at each 
time instant only one is selected and enforced.

3.2. Definition of the cost function for motion and coordination tasks

In this section we discuss the different choices of the 
cost function Vi

z for the coordination problems considered,
i.e. formation control, coverage and optimal sensing, containment, 
navigation and patrolling in an unknown environment.

3.2.1. Formation control
According to the so-called l − ψ [30] formation control theory, 

the geometric relationship between a follower i and its leader j is 
expressed by a distance ldij and an angle ψij

d that the follower has to 
keep from the leader, as schematically illustrated in Fig. 4.

Consider M robots, i ∈ M , denote by Ni the set of robots 
to be followed by robot i, and by |Ni| its cardinality. We assume 
that there exists only one formation leader, which without loss of 
generality is robot 1, so that |N1| = 0. Moreover, for each node 
i ∈ M \ {1} we define one ‘‘local’’ leader, with respect to which 
the position of robot i must be defined, so that |Ni| = 1 for all 
i ∈ M \ {1}.

The formation leader aims to attain the final goal zt → zgoal. In 
view of this, the cost function of the formation leader is

V1
z 
= γ z̃t+N 

[1] 
− z̃t+N−1

[1] 
+ z̃t+N 

[1] 
− zgoal 

2 (17)
T

where the weights T and γ are tuning knobs satisfying T ≻γ I2 ≻0.



Fig. 4. l − ψ formation.

Each follower i ∈ M \{1}minimizes the following cost function,
where jleadi is the index of the i’s local leader, i.e., jleadi ∈ Ni:

V z
i = γ

z̃t+N
[i]

− z̃t+N−1
[i]

2
+

z̃t+N
[i]

− zform[i,jleadi ]
2
T (18)

where the set-points zform[i,j] are defined as

zform[i,j]
= z̃t+N−1

[j]
+ ldij


cos(α[j]

t+N−1 + ψd
ij )

sin(α[j]
t+N−1 + ψd

ij )


in which α

[j]
t+N−1 defines the direction of the robot j and is

computed as

α
[j]
t+N−1 = ̸ (z̃t+N−1

[j]
− z̃t+N−2

[j]).

In this way, the set-points are dynamically defined for each 
follower, based on the formation definition and on the position of 
its local leader.

3.2.2. Coverage and optimal sensing
Assuming that the robots are endowed with sensing capabili-

ties, the aim of coverage is to define their optimal position in the 
polytopic and convex area Q which maximizes the overall sens-
ing performance, under the following conditions: (i) data are gen-
erated in the regions of points q ∈ Q with some probability, 
defined by the probability density function φ : Q → R+; (ii) the 
further a sensor is from the region where the data get generated, 
the weaker is its sensing performance. The solution here proposed 
is inspired by the method described in [31]; specifically, given M 
sensors placed at positions S = {s1, . . . , sM }, each designated to 
sense a region Wi, i ∈ M , the scope of the coverage is to find S 
and a partition W = {W1, . . . , WM } of Q, that minimize the cost

J(S ,W ) =

M
i=1


Wi

∥q − si∥2φ(q)dq.

On the onehand, givenS , the optimal partition ofQ corresponds to
its Voronoi partition, i.e. W = V (S ) = {V1, . . . , VM}, where Vi =

{q ∈ Q : ∥q − si∥ ≤ ∥q − sj∥,∀j ≠ i}. On the other hand, given a
partition W of Q, the optimal placement of the sensors minimizing
J(S ,W ) corresponds to si = C i, where C i is the centroid of Wi. In
view of this, the adopted cost function V z

i is the following, for all
i ∈ M .

V z
i = γ

z̃t+N
[i]

− z̃t+N−1
[i]

2
+

z̃t+N
[i]

− C i
t+N−1

2
T (19)

where T ≻ γ I2 ≻ 0 and C i
t+N−1 is the centroid of the Voronoi set

defined in Q and by the positions z̃[j]
t+N−1, for all j ∈ M . Note that

the computation of C i
t+N−1 requires the knowledge of the vertices

of Q and of a subset of positions z̃[i]
t+N−1, i.e., those concerning the

‘‘sensing’’ neighbors of j, and therefore it is distributed.
The convergence (see [31]) of the previous algorithm may be

very slow, and it can be convenient to use the cost functions

V z
i = γ

z̃t+N
[i]

− z̃t+N−1
[i]

2
+

z̃t+N
[i]

− C i
∞

2
T (20)

where C i
∞ is computed offline through the following distributed

iterative procedure:

(I) initialize si0, for each i ∈ M , as the position of the ith robot;
(II) for all k ≥ 0 define C i

k as the centroid of the ith Voronoi set
defined in Q and by the positions sjk, j ∈ M ;

(III) define k = k + 1 and set sjk = C i
k−1. Repeat from step (I) until,

for a given threshold εc > 0, ∥sjk − sjk−1∥ < εc for all j ∈ M .
Then set C i

∞
= C i

k for all i ∈ M .

3.2.3. Containment control
The containment and sensing control problem, see e.g., [17–

19], consists in controlling a set of followers NF , in such a way that 
the followers are confined in a convex hull of the positions of a set 
of leaders NL. The aim of the leaders is to reach some predefined 
final positions. During their motion, the followers must lie in their 
convex hull but, as soon as the leaders reach their goal, they 
are bound to move towards their respective goals for carrying out 
sensing operations. According to [19], a robot i ∈ NF , with position 
z[i], is εF -contained in a set Ω if d(z[i], Ω) < εF (with εF > 0), where 
d(·, ·) denotes the point-to-set distance d(x, Ω) = ζΩ (x) miny∈∂Ω 
∥x − y∥, where ζΩ (x) = 1 if x ∈ Ω and ζΩ (x) = −1 otherwise, and 
∂Ω denotes the boundary of Ω .

To guarantee that zt
[i
+

] 
N , i ∈ NF , is εF -contained in the convex

hull Ωt
L
+N of the positions zt

[j
+

] 
N , j ∈ NL of the leaders, we require

that z̃[i]
t+N , i ∈ NF , is ε̃F -contained in the convex hull Ω̃L

t+N−1 of
z̃[j]
t+N−1, j ∈ NL. For a discussion on the choice of ε̃F and εF see
Section 6.1.

Since not all the leaders transmit information to each of the
followers, we guarantee that z̃[i]

t+N , i ∈ NF , is ε̃F -contained in
the convex hull Ω̃L

t+N−1 of the positions z̃[j]
t+N−1, j ∈ NL by

requiring that z̃[i]
t+N is ε̃F -contained in the convex hull Ω̃L

t+N−1(i)
of the positions z̃[j]

t+N−1 of a subset of leader, which can exchange
information with i through a communication network. Such a
subset of leaders of i is denoted by NL(i).

In viewof the discussion above, the goal of the leaders is to drive
z[i]
t → z[i]

goal, for all i ∈ NL. As such, for all i ∈ NL

V z
i = γ

z̃t+N
[i]

− z̃t+N−1
[i]

2
+

z̃t+N
[i]

− z∗[i]
t+N

2

T
(21)

where T ≻ γ I2 ≻ 0 and z∗[i]
t+N = z[i]

goal if d(z̃
[j]
t+N−1, Ω̃t+N−1(j)) < ε̃F

for all j ∈ NF . Otherwise z̃[i]
t+N = z̃[i]

t+N−1. The latter is done when
there is a least one followerwhich is not contained in its respective
convex hull: in this case the leaders must stop moving to recover
containment.

Secondly, each follower i ∈ NF minimizes the cost function
(21) where, to guarantee containment, z∗[i]

t+N =


j∈NL(i)
kijz̃

[j]
t+N−1

where kij are positive weights such that


j∈NL(i)
kij = 1. On the

other hand, after the leaders have achieved their final positions,
the goal of each follower switches to zt

∗[

+

i]
N = z[i

goal
] , for all i ∈ NF

for sensing purposes. Note that, in turn, the positions z[igoal
] 
, i ∈ NF , 

can be determined as in Section 3.2.2 according to optimal sensing
criteria.

3.2.4. Control in an unknown environment and patrolling
We consider now the problem of navigation in an environment 

where only the main boundaries of the working area and both the 
robot and the goal positions are known. We assume that the robot 
is endowed with sensing capacities and must reach a given goal, 
but has no prior knowledge about the presence, position, size, or 
shape of the obstacles. More specifically, in the proximity of an 
obstacle, the robot is able to get a measurement of the position of a 
sequence of consecutive points of the obstacle’s boundary, named
z1
o, . . . , zN

o
o 
. The moving robot has a visual capacity which depends



Fig. 5. Robot’s visual field and measured points on the obstacle’s boundary.

of two main parameters, see also Fig. 5: the maximum distance 
dvis, and the maximum visual angle αvis.

If there is no obstacle in its visual range, the robot moves to-
wards its goal, as previously discussed. As the obstacle appears in 
the its visual field, the robot carries out an obstacle border pa-
trolling [20,21], until the object is no more in the space between 
the robot and the obstacle. At this point, the robot steers itself to-
wards the goal.

The main rationale of our solution to the border patrolling 
problem consists in satisfying minimum-distance constraints with 
respect to the each point zh

o but, at the same time, minimizing the 
deviation between the minimal distance allowed from the point zh

o 

itself, for each h = 1, . . . , No. This is done by a suitable definition 
of slack variables µh, h = 1, . . . , No for each point in the visual 
range. The ith robot minimizes the following cost function

V z
i = γ

z̃t+N
[i]

− z̃t+N−1
[i]

2
+

No
h=1

λhµ2
h (22)

where γ > 0, λ > 1 are tuning parameters and, under the
following constraints, for all h = 1, . . . ,No:

(h[o,hi]

k[o,hi]max (t+N−1)
)T (z̃[i]

t+N − zoh) = dohi + µh (23a)

δh ≥ 0 (23b)

where dohi = Ri + δi + Ro, see Fig. 6, and where Ro is the minimum 
distance allowed from the point zh

o. Similarly to Section 3.1,
k[o,hi]
max (t + N − 1) = argmaxk∈{1,...,rohi}

(h[o,hi]
k )T (z̃[i]

t+N−1 − zoh) − dohi
identifies a linear constraint, among the ones defining a region
outside the polytope whose sides are dohi-distant from zoh , with
respect to which point z̃[i]

t+N−1 is at maximum distance.
In a few words, the minimization of

No
h=1 λ

hµ2
h under (23),

forces the center of the robot i, i.e., z[i]
t+N , to keep a minimum

distance Ri + Ro from the points zoh, h = 1, . . . ,No but, at the same
time, aims to reduce the distance of z[i]

t+N from the whole sequence
zo1, . . . , z

o
No
. Also, in view of the fact that λ > 1, the robot is forced

to minimize the distance µNo to the point zoNo
with higher priority:

this induces the direction of the robot while circumnavigating the
obstacle.

Specific solutions have been developed for dealing with acute
angles, bottlenecks (e.g., between different but proximal objects),
and for optimal switching strategies between the states go towards
goal and border patrolling. For further details, see [32].

4. Reference state/input trajectory and distributed robust MPC
layers

Once the reference output trajectory layer z̃[i]
[t:t+N−1] has been

defined and incrementally updated as discussed in the previous
section, compatible trajectories x̃[t:t+N−1]

[i] and ũ[t:t+N−1]
[i] for the

states and inputs must be available to apply the final distributed

Fig. 6. Geometric illustration of border patrolling. Robot: gray region; obstacle:
yellow region; pink regions: circles around the visible points on the obstacle’s
boundary. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

MPCalgorithmcomputing the control variablesu[i]
t to be effectively

used. To this end, consider the following dynamic system
x̃[i]
t+1

ẽ[i]
t+1


=


A 0

−C I2

 
x̃[i]
t

ẽ[i]
t


+


B
0


ũ[i]
t +


0
I2


z̃t+1

[i] (24)

where the new state variable ẽt
[i]
+1 is the integral of the tracking

error z̃t+1
[i]

−C ̃xt
[i]. We consider this form of tracking error to induce 

an anticipating action in the control scheme and to make it more 
reactive to time-changing references. In view of the reachability of 
the pair (A, B) and the absence of invariant zeros in z = 1 of model 
(4), for system (24) it is possible to compute the control law

ũ[i]
t = K̃xx̃

[i]
t + K̃eẽ

[i]
t (25)

where the gain K̃ =

K̃x K̃e


can be designed with any stabilizing

algorithm, such as LQ or pole placement control.
Finally, at the Distributed Robust MPC Layer the control vari-

ables are computed to keep the real states x[i] and inputs u[i] as
close as possible to their reference values x̃[i] and ũ[i], while respect-
ing the constraints (5). To this end, define the nominal model

x̂[i]
t+1 = Ax̂[i]

t + Bû[i]
t (26)

and, as more thoroughly discussed in [2], the MPC optimization
problem to be solved at any time instant by the ith robot is

min
x̂[i]t ,û

[i]
t:t+N−1

N−1
h=0

∥x̂[i]
t+h − x̃[i]

t+h∥
2
Q + ∥û[i]

t+h − ũ[i]
t+h∥

2
R

+ ∥x̂[i]
t+N − x̃[i]

t+N∥
2
P

x̂[i]
t+1 = Ax̂[i]

t + Bû[i]
t

x̂[i]
t+h ∈ X̂i, ∀h = 1, . . . ,N − 1

x[i]
t − x̂[i]

t ∈ Ei

C(x̂[i]
t+h − x̃[i]

t+h) ∈ ∆z
i , ∀h = 1, . . . ,N − 1

x̂[i]
t+N − x̃[i]

t+N ∈ κiEi

(27)

where κi > 0 is a tuning parameter and the choice of the sets Ei
and∆z

i ⊆ R2 is discussed in Section 6.1. Moreover

X̂i = Xi ⊖ Ei. (28)
The symmetric matrices Q ≥ 0 and R > 0, weighting the state and
the control error, respectively, are free design parameters, as in LQ
control, while P is assumed to fulfill the Lyapunov equation

(A + BK)TP(A + BK)− P = −(Q + K TRK) (29)
where K is selected in such a way that (A+BK) is Schur stable. The
solution to (27) is (x̂[i]

t|t , û
[i]
[t:t+N−1]|t) and the actual control action to

be applied to the robot is

u[i]
t = û[i]

t|t + K(x[i]
t − x̂[i]

t|t). (30)



5. Main results

The following proposition proves the soundness of the scheme
proposed in this paper. Here, for brevity, we only cope with
obstacles of the type described in Section 3.1; however, similar
arguments can be applied to the case of unknown obstacles, by
treating the object’s points in the robot visual range as center of
suitable circular obstacles.

Proposition 2. Assume that, at time step t, the optimization prob-
lem (7) is feasible and has solution z̃[i]

t+N for all i ∈ M such
that (a) (13) is verified for all h ∈ Oi; (b) (15) is verified for all
j ∈ Ci, (c) z̃

[i]
t+N ∈ z̃[i]

t+N−1 ⊕ B(2)
εi
(0). Then:

(i) at time step t, collisions are prevented both with proximal
obstacles h ∈ Oi and with proximal robots j ∈ Ci for all i ∈ M ;

(ii) at time step t + 1 the optimization problem (7) is feasible for all
i ∈ M . �

The proof of Proposition 2 is given in Appendix B.
Some final remarks are due. The present scheme guarantees 

recursive feasibility of the optimization problem in view of 
Proposition 2 and, as discussed in [2], convergence to the goal 
provided that deadlock solutions are not met. Strategies for 
overcoming deadlocks can be developed along the lines of [33].

It is also worth remarking that the linear obstacle and inter-
robot collision avoidance constraints have little impact on the 
complexity of the optimization problem (7) of each robot. In fact, 
the number of constraints in (7) does not depend on the number of 
inequalities used to define the polytopes, but just on the number 
of objects to be avoided.

Finally note that, in a real application context, many distur-
bances, e.g., model uncertainties, discretization errors, external 
disturbances, and position/velocity measurement errors, may af-
fect the system. In this paper robustness with respect to undesired 
disturbances has been conferred by explicitly considering the ad-

ditive bounded noise terms wt
[i] in (4).

6. Design and implementation issues

6.1. Tuning and computation of the algorithm’s parameters

In this section we discuss the different tuning knobs of the 
proposed scheme and how, based on their definition, the matrices 
and sets, required for the algorithm implementation, can be 
computed.

(1) Inputs: the system matrices A, B, C , the bounds Wi (see
Eq. (4)), the operational constraints Xi, and the geometric
constants (i.e., the radius Ri of the circle circumscribing the ith
robot) are given.

(2) Control gains: the matrices K̃e and K̃x must be defined in such
a way that

F =


A 0

−C I2


+


B
0

 
K̃x K̃e


(31)

is Schur stable. Similarly, we define gain K in such a way that
A+BK is Schur stable. The set Ei is defined the robust positively
invariant (RPI) set

Ei =

∞
h=0

(A + BK)hWi. (32)

Methods for computing approximations of (32) are discussed
in [28].

(3) Tuning knobs: the main tuning knobs are

• for each robot i = 1, . . . ,M, εi > 0, κi > 0, and the set∆z
i

in (27). The latter must be defined as a (e.g., polytopic) set
containing the origin in its interior.

• the weighting matrices Q and R in the cost function used in
the robust MPC problem (27).

• theweights γ and T , verifying T > γ I > 0, for the definition
of the cost function V z

i in (17)–(22). In (22), also parameter
λ > 1 must be defined.

• in the containment control problem discussed in Sec-
tion 3.2.3, the containment level ε̃F > 0 must be defined.

(4) Compute Yi as follows.
• Compute W̃i = −F (I6 − F )−1G B(2)

εi
(0)where

G =


0
I2


. (33)

• Compute the RPI set∆χi =


∞

h=0 F hW̃i.
• Compute Zi = CEi ⊕∆z

i .
• Compute Yi = C


I4 0


∆
χ

i ⊕ Zi.
(5) Compute X̂i according to (28).
(6) Compute Zi, used in (9), according to the following set

inclusion
I4 0

 
(I6 − F )−1G Zi ⊕∆

χ

i


⊕ κiEi ⊆ X̂i. (34)

Concerning the choice of the main tuning knobs the following
general considerations hold. First, the choice of ∆z

i and εi is
characterized by a trade-off. On the one hand, it is desirable to
increase εi as much as possible (e.g., compatibly with the possible
speed saturations) in order to enhance the robot allowed speed;
also, a small size of∆z

i can have the effect of limiting the robustness
of the control scheme by allowing only small deviations of the
nominal state trajectory x̂[i]

t with respect to the reference one
x̃[i]
t . On the other hand, the bigger εi and ∆z

i , the bigger Yi (and
consequently δi), which implies that the size of the uncertainty
set where the robot position is guaranteed to lie may increase.
This has the undesirable effect of increasing the level of confidence
required in the generation of the output reference trajectory; in the
limit case, the inclusion (34) may not have a solution. Concerning
this point, it is important to mention the fact that (34) admits
a solution under the condition that εi is also compatible with
(i.e., smaller than) the velocity saturation levels, i.e., the constraints
on the velocities in the x and y directions, included in the tightened
constraint set X̂i.

In both the formation and containment control problems, it is
suggested to allow the followers to move with greater speed than
the formation leaders, to foster the attainment of the formation and
the containment, respectively, also in transient conditions. This is
achieved by setting εi > εj for all i ∉ NL and j ∈ NL.

Regarding the containment control problem, it is important to
remark that, the value of εF must be compatible with the fact that,
in view of (8), ∥z̃[j]

t+N − z̃[j]
t+N−1∥ ≤

√
2εj and that, in view of

(10) and (11), ∥z[i]
t+N − z̃[i]

t+N∥ ≤ δi, therefore the parameter εF
defining the containment performance is equal to εF = ε̃F + δi +

maxj∈NL

√
2εj. In conclusion, to enhance the performances of the

containment scheme here proposed (which is equivalent to limit
εF ), it may be necessary to reduce the allowed speed of each robot
(i.e., parameter εi in (8)) which, in turn, has the effect of reducing
δi.

In the cost function V z
i (e.g., in (17)–(21)) the values of γ and T

trade between smoothness of the trajectory z̃[i]
t (in case γ takes

relevant values) and speed of convergence to the goal (in case
T ≫ γ I). However, note that the latter objective is subject to a
saturation due to constraint (8).

Finally, in the definition of the cost function (22) for border
patrolling, as remarked in Section 3.2.4, relevant values of
parameter λ > 1 increase the speed towards the last point
zoNo

in the visual range, reducing the smoothness of the traveled
trajectory.



Fig. 7. Realization scheme.

6.2. Algorithm initialization

In view of the fact, at each time instant t , the output reference
trajectory z̃[i]

[t:t+N−1] is assumed to be known, initialization is
fundamental for our scheme. In this section we assume that the
agents, at time t = 0, are not moving. Indeed, agent i is at initial
position z[i]

o . The following initialization procedure can be adopted.

(1) Set z̃[i]
[0:(N−1)] = {z[i]

o , . . . , z
[i]
o }.

(2) Compute χ̃ [i]
o =


x̃[i]o
ẽ[i]o


= (I6 − F )−1G z[i]

o , see (31), (33).

(3) Set x̃[i]
[0:(N−1)] = {x̃[i]

o , . . . , x̃
[i]
o }.

6.3. Online implementation

The online implementation scheme for each robot, see Fig. 7, 
involves two different control loops, acting at different timescales.

6.3.1. External Control loop
The external loop is implemented according to Algorithm 1.

Algorithm 1 DPC-Control
At each time step t > 0:

Ia) Update the set of proximal obstacles Oi
Ib) Update the set of proximal neighbors Ci
Ic) Receive information from neighboring robots (see below).
Id) Solve problem (7), compute z̃[i]

t+N , and update z̃[i]
[t:(t+N−1)]

II) Update x̃[i]
[t:(t+N−1)] using system (25)

III) Solve problem (27) and compute u[i]
t as in (30)

Concerning step (Ic), note that the needed communication
framework among robots is minimal. Indeed, only neighbor-
to-neighbor communication is involved, and only when strictly
required for the specific motion/coordination problem to be
tackled. More specifically:

• For collision avoidance each robotmust communicate predicted
reference positions with all its proximal neighbors, i.e., z̃[j]

t+N−1
for all j ∈ Ci.

• For formation control, each robot i ∈ M \ {1} must receive the
predicted reference position by it local leader(s), i.e., z̃[j]

t+N−1, j ∈

Ni.
• For coverage control, each robot must receive the predicted

reference positions of its proximal neighbors, analogously to
collision avoidance.

• For containment control purposes, each robot must receive the
predicted reference positions of its local leaders, i.e., z̃[j]

t+N−1, j ∈

NL(i).

6.3.2. Internal control loop
The internal loop, implemented on-board, performs the feed-

back linearization procedure described in Section 2.2. The variables
v and ω are derived from the linear system inputs ax and ay us-

ing (3). More specifically, the following recursive procedure can be
used to compute v and ω, iterated – for better precision – with a
small sampling period τin ≪ τ :

1. at iteration k = 0, v is available from the estimator of the linear

state-space model (computed as

η22 + η24) and θ is available

directly from the measurement device;
2. while no new values of v and θ are available from the external

loop, repeat

ω+
= (−ax sin θ + ay cos θ)/v (35a)

v+
= v + τin(ax cos θ + ay sin θ) (35b)

θ+
= θ + τinω (35c)

where the superscript + is used to denote the values of the state
variables at the subsequent iteration step.

The problems related to the singularity point v = 0 can be
numerically circumvented by setting v = sign(v)vmin in (35) when
the absolute velocity falls below a given threshold, i.e., when |v| <
vmin.

For completeness, note that the real inputs of the e-puck robots
are the angular velocities ωR and ωL of the right and of the left
wheels, respectively. We recover ωR and ωL from v and ω as
follows:
ωR
ωL


=

1
R


1 Laxle/2
1 −Laxle/2

 
v
ω


(36)

where Laxle is the robot axle length and R is the wheel radius.

7. Application

Some of the previously proposed algorithms have been tested
in simulation to consider a large number of robots, while others
have been used to control a fleet of three robots in a real laboratory
environment.

7.1. Description of the test bed and parameter tuning

The real robot demonstrations have beenperformedusing three
e-puck robots [34] (with axle length Laxle = 5.2 cm and wheel
radius R = 1.05 cm) moving on a flat worktable (115 × 66 cm2

wide) observed by a color camera (Microsoft LiveCam VX-800,
resolution 640 × 364 px2). According to the dimensions of the
working area and the limitations on the wheel velocities, Xi is
defined as (dimension in cm and cm/s, respectively):

Xi =


0 ≤ η

[i]
1 ≤ 115

−10 ≤ η
[i]
2 ≤ 10

0 ≤ η
[i]
3 ≤ 66

−10 ≤ η
[i]
4 ≤ 10.

Regarding the external control loop, each robot receives its position
z[i]
t from the color camera. A state estimator (i.e., a suitable
Kalman predictor) is then used to compute the estimates of the
state variable x[i]

t . The control action u[i]
t is computed according

to the DPC control scheme, and is transmitted to the robots
through a Bluetooth channel. The state estimator and the DPC
algorithm are implemented in MATLAB. The time required for
image capturing and processing is approximately 0.2 s while the
pure computational effort requires about 0.1 s. Consistently with
this, the sampling time of the outer control loop is about τ = 0.5 s.

Regarding the internal control loop, the sampling period is set to
τin = 0.01 s.

In the experiments shown below, we set εi = 1.5 cm in case i
is a follower and εL = 1 cm in case i is the formation leader in the



Fig. 8. Plots of the robot center trajectories of Experiment 1. Formation leader: blue dots, follower 1: red dots, follower 2: green dots. The gray-filled circles represent the
obstacles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

formation control example, or in case i ∈ NL in the containment 
control example. Note that, recalling (8), εL < εi makes the 
followers faster than the respective leaders: this is required for 
the followers to be able to attain the required formation while the 
leaders are still in motion.

We set Wi = B(
0.
4
1
)
(0), ∆i

z 
= B(

1.
2
5
)
(0). Matrix K is the gain of an 

LQ regulator with Q = I4 and R = 200I2. We also set κi = 1.

7.2. Formation control: real experiment

In Experiment 1 (see Fig. 8) the three robots are initially placed 
at positions (32.80, 31.28), (21.82, 14.40), and (15.10, 50.50), 
where all coordinates are expressed in cm. Two obstacles have 
been introduced: O1 at (62, 12) with radius 7 cm and O2 at (50, 
50) with radius 5 cm. The desired formation is described by the 
following relationships:
L ↔ F1 : ldL,F1 = 20 cm, ψd

L,F1 = 135°

L ↔ F2 : ldL,F2 = 20 cm, ψd
L,F2 = −135°

resulting in a triangular shape.

7.3. Formation control: medium-scale simulation test

Experiment 2 has been performed in simulation in order to
test the performance of the algorithm in a larger-scale set-up.

∞

The system configuration consists of one leader and 15 followers 
to be arranged in a circular fashion around the leader. Fig. 9 
shows the robot positions at different time instants. As expected, 
when the robots reach the constraints, the formation gets modified 
to allow for obstacle avoidance. Furthermore, as the physical 
constraints become inactive (i.e., after passing in the bottleneck-
shaped throat), the formation is restored.

7.4. Optimal sensing

In this section we perform a test concerning coverage and 
optimal sensing. The adopted cost function is the one reported in 
(20), where C i have been computed using the procedure described 
in Section 3.2.2.

Since minimizing (20) corresponds to the problem of moving a 
set of robots towards their respective goals, which is a simplified 
version of the formation control previously-described, we do not 
describe complete test, but only the evolution of the results of the 
iterative procedure described in Section 3.2.2. In Fig. 10 we show 
the evolution of the Voronoi partitions of the set Q during the first 
17 iterations of the procedure, while in Fig. 11 we show the Voronoi 
partitions of the working area when convergence is achieved.



Fig. 9. Robot positions in Experiment 2.

7.5. Containment control: real experiment

In this section we consider six robots, where NL = 1, 2, 3, 4 
and NF = 5, 6. For practical reasons, the leaders are just virtually 
implemented, while the followers are real robots. We set NL(1) = 
{1, 3, 4} and NL(2) = {1, 2, 3} and kij = 1

3 for all i, j. In Fig. 12 
we show the result of the experiment, where the goal of the 
leaders is twofold: first move towards the vertices of the region D1; 
secondly, after the followers reach the respective sensing positions 
(see again Fig. 12), move towards the vertices of region D2. The 
followers, when the leaders are in motion, keep their position in 
the prescribed convex hull of their respective leaders while, after 
the leaders reach their goal positions, move towards the sensing 
coordinates.

7.6. Exploration and border patrolling: real experiment

In this section we consider, for simplicity, one e-puck robot 
and three obstacles. If we consider the obstacle configuration in 
Fig. 13, it is easy to see that deadlocks (i.e., local minima) can be 
encountered when applying pure collision avoidance strategies (as 
in Section 3.1) with respect to both the circular obstacles. To avoid 
this, the border patrolling method described in Section 3.2.4 has 
been successfully adopted.

8. Conclusions

Themulti-level DPC schemeproposed in this paper is character-
ized by some features which make it of interest in the framework



Fig. 10. Evolution of the Voronoi partition of the working area.

of motion and coordination of mobile robots: (i) it is very flexible, 
so that different goals and behaviors can be obtained by simply in-
corporating suitable terms in the optimization problem at the out-
put reference trajectory generation level; (ii) it is robust, since it 
is based on a robust MPC method; (iii) the related computational 
burden is limited, since standard quadratic, small-size, and scalable 
optimization problems with linear constraints must be solved on-
line; (iv) it requires limited neighbor-to-neighbor communication 
among on-board controllers. Future developments will consist in 
considering a stochastic framework, where uncertain probabilistic 
inputs can represent noises or describe robots’ interactions in a less 
conservative way than the one here adopted.
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Appendix A. Proof of Proposition 1 and definition of the sets Yi

The proof of Proposition 1 is constructive, and is based on 
the overall control algorithm described in Sections 3 and 4. In 
the following analysis the superscript (·)[i] and the subscripts (·)i 
introduced in Section 4 will be dropped to simplify the notation.

The first step is to find the maximum error between the output 
reference trajectory z̃t defined by the first layer and the 
corresponding output of the reference trajectory for the state Cx̃t . 
In fact, they are asymptotically equal only in case of z̃t constant, 
because of the integrator in the second layer. Such layer consists in 
Eq. (24), which can be written in compact form as

χ̃t+1 = F χ̃t + G z̃t+1 (37)

Fig. 11. Stationary Voronoi partition of the working area.

where χ̃t =

x̃t ẽt

T . Let χ̃ SS
t be the steady state value of the

enlarged state χ̃t when the input is constant and equal to z̃t :

χ̃ SS
t = F χ̃ SS

t + G z̃t . (38)

Therefore, we want to find a relationship between χ̃t and the
corresponding steady state value χ̃ SS

t . Consider the following
difference:

χ̃ SS
t+1 − χ̃ SS

t = F (χ̃ SS
t+1 − χ̃ SS

t )+ G (z̃t+1 − z̃t)

which leads to

χ̃ SS
t+1 − χ̃ SS

t = (I6 − F )−1G (z̃t+1 − z̃t). (39)
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We can now compute the dynamic equation of the error between
the state χ̃t and its corresponding steady state value χ̃ SS

t :

χ̃t+1 − χ̃ SS
t+1 = F (χ̃t − χ̃ SS

t+1)

= F (χ̃t − χ̃ SS
t )− F (χ̃ SS

t+1 − χ̃ SS
t )

= F (χ̃t − χ̃ SS
t )+ w̃t (40)

where w̃t can be seen as a disturbance acting on the error. Recalling
Eqs. (39), the domain of w̃t can be easily found:

w̃t = −F (χ̃ SS
t+1 − χ̃ SS

t )

= −F (I6 − F )−1G (z̃t+1 − z̃t) ∈ W̃.

Therefore, in view of (40) and according to [2], since F is Schur 
stable, there exists a robust positive invariant set (RPI) for the error
χ̃t − χ̃ SS

t , i.e., ∆χ Therefore, by definition of RPI set and recalling
the definition of χ̃t , we can write:

χ̃t ∈ χ̃ SS
t ⊕∆χ ⇒ x̃t ∈ x̃SSt ⊕


I4 0


∆χ .

Moreover, since Cx̃SSt = z̃t , by simple operations we get

Cx̃t ∈ z̃t ⊕ C

I4 0


∆χ (41)

resulting in a relationship between the output reference trajectory 
and the output variables associated with the reference trajectory 
for the state, i.e. between z̃t and Cx̃t .

In order to relate the output reference trajectory to the actual 
output of the system, the third level of the control architecture has 
to be analyzed. As described in Section 4, the robust input ut is 
obtained through an optimization problem based on the nominal 
system (26). We define the error

εt = xt − x̂t
whose dynamics is described by

εt+1 = (A + BK )εt + wt

where the disturbance wt ∈ W has been previously defined in Eq. 
(4). Therefore, since the matrix (A + BK ) is Schur stable, there 
exists [2] a RPI set for such error E , defined in (32), which leads to 
the following constraint:

xt ∈ x̂t ⊕ E . (42)

As discussed in [2], the optimization problem is also subject to the
following constraint:

(43)C x̂t ∈ Cx̃t ⊕ ∆z .

Combining the constraints (42) and (43) gives

Cxt ∈ Cx̃t ⊕ CE ⊕ ∆z 
∈ Cx̃t ⊕ Z .

Finally, by applying the constraint (41) we get 

zt = Cxt ∈ z̃t ⊕ Y .

Appendix B. Proof of Proposition 2

Concerning result (i), since (13) is verified, and recalling that it
is set z̃[i]

t+N = z̄[i]
t+N|t , it holds that, for all h ∈ Oi, Ri + Ro

h + δi ≤



∥z̃[i]
t+N−zoh∥ ≤ ∥z[i]

t+N−zoh∥+∥z[i]
t+N−z̃[i]

t+N∥ ≤ ∥z[i]
t+N−zoh∥+δi, which

implies that ∥z[i]
t+N − zoh∥ ≥ Ri +Ro

h, and hence collision prevention.
Consider now a proximal robot j ∈ Ci. From (15)–(16)

(h[ij]

k[ij]max(t+N)
)T (z̄[i]

t+N − z̃[j]
t+N) ≥ (h[ij]

k[ij]max(t+N−1)
)T (z̄[i]

t+N − z̃[j]
t+N)

= (h[ij]

k[ij]max(t+N−1)
)T (z̄[i]

t+N − z̃[j]
t+N−1)+ (h[ij]

k[ij]max(t+N−1)
)T (z̃[i]

t+N−1

− z̃[j]
t+N)− (h[ij]

k[ij]max(t+N−1)
)T (z̃[i]

t+N−1 − z̃[j]
t+N−1)

≥ 2(dij + ρ[ij]
max(t + N − 1)/2)

− (dij + ρ[ij]
max(t + N − 1)) = dij. (44)

This guarantees that ρ[ij]
max(t + N) ≥ 0, and hence that Ri + Rj +

δij ≤ ∥z̃[i]
t+N − z̃[j]

t+N∥ ≤ ∥z[i]
t+N − z[i]

t+N∥ + δij, which implies that
∥z[i]

t+N − z[j]
t+N∥ ≥ Ri + Rj, and hence collision prevention.

Concerning result (ii), to guarantee feasibility of the optimiza-
tion problem (7) at time t + 1 it is sufficient to define a solution
z̄[i]
t+N+1 fulfilling all the constraints. Let us set z̄[i]

t+N+1 = z̃[i]
t+N . First

note that, by definition, z̄[i]
t+N+1 ∈ z̃[i]

t+N ⊕ B(2)
εi
(0). Furthermore,

note that (h[ij]

k[o,hi]max (t+N)
)T (z̄[i]

t+N+1 − zoh) = (h[ij]

k[o,hi]max (t+N)
)T (z̃[i]

t+N − zoh) ≥

(h[ij]

k[o,hi]max (t+N−1)
)T (z̃[i]

t+N − zoh) ≥ dohi, which proves that (13) is also

verified at time step t + 1. Regarding (15) (h[ij]

k[ij]max(t+N)
)T (z̄[i]

t+N+1 −

z̃[j]
t+N) = (h[ij]

k[ij]max(t+N)
)T (z̃[i]

t+N − z̃[j]
t+N) = dij + ρ

[ij]
max(t + N) ≥

dij + ρ
[ij]
max(t + N)/2 since ρ[ij]

max(t + N) ≥ 0 in view of (44). �
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