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a b s t r a c t

This paper argues that hybrid human–agent systems can support powerful solutions to relevant problems
such as Environmental Crisis management. However, it shows that such solutions require comprehensive
approaches covering different aspects of data processing, model construction and the usage. In particular,
the solutions (i) must be able to cope with complex correlations (as different data sources are used) and
processing of large amounts of data, (ii) must be robust against modeling imperfections and (iii) human–
machine interaction (HMI) approaches must facilitate human use of crisis management tools and reduce
the likelihood of miscommunication.

In this paper the relevant problem is an environmental protection application involving the detection
and tracking of gases in case of chemical spills in an urban area. We show that a combination of Bayesian
Networks, agent paradigm and systematic approaches to implementing HMI, support effective and robust
solutions. To better integrate human information and demonstrate the usefulness of user generated crisis
response informationwe developed a socialmedia harvesting interface based on data fromTwitter tweets
and a visual interface to facilitate human smell classification.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Social media have changed our world and the way we interact
with each other. Despite all the information and communication
available in our current society, a close cooperation between hu-
mans and intelligent agents is not really present. An Internet of
Things makes objects accessible through internet, but does not
create a real cooperation. Hybrid human–agent systems, also called
Actor Agent communities, can support powerful solutions to real
world problems, such as Crisis Management. Such hybrid human–
agent systems have to supply, fuse and share information to create
a situation assessment enabling reasoning and decision support.
The challenge is to design distributed systemswhere both humans
and intelligent agents have access to the same information in a
dynamic world model where information is fused and reasoning
takes place.

Problems and challenges
In real-world applications of hybrid human–agent systems a

number of challenges is present. The world is dynamic and in-
formation sources may come and go. So the reasoning and fusion
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systems should be capable to add and delete components on the
fly. Also the internal representation should be capable to copewith
time varying information.

Another challenge is that the system, especially in crisis situ-
ations, should not be closed but open. Each crisis situation is dif-
ferent with regard to essential and unforeseen information which
must be included in the system’s world model. The system must
have such a structure that this new information can be recorded
and tracked in its world model.

The sensory data and human information are distributed. It
makes sense to distribute the reasoning system as well, so that
there is a graceful degradation of the system and no single point
of failure, due to miscommunication or disruption of the system.
Oftenmultidisciplinary knowledge is required to develop the com-
ponents of such a distributed system. This collaborative design
however, adds to the complexity of the system.

The interaction with humans is another important aspect. Hu-
man information is fused with sensory agent information. The
question is not only how to merge the information, but also how
to interact optimally for instance through a smart mobile phone
application. The distributed reasoning system and the interaction
design can have a general setup. The interaction and perception
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Fig. 1. General architecture of hybrid human–agent systems.

are dependent on the modalities that the application/platform
provides but the interaction should be designed to deal with this.

Architecture
In Fig. 1 the general architecture of a distributed human–agent

system is given. Both humans and agents observe the environment
and can interact with it. The information from both the humans
and the agents can be locally processed and decisions can be taken,
which leads to directions for actions or requests for information.
The advantage of introducing a local processing step is a graceful
degradation of the system when communication with a central
processing system becomes cumbersome. Social media nowadays
are also an important source of information. Information harvested
from social media can be fused centrally with the locally processed
information and presented to a control and command center. From
the command center instructions can send back again to people
through their devices and social media.

Application
In this paper we will focus on the domain of environmental

protection and a human–agent system formonitoring air pollution
(Winterboer et al. [1]). In the Netherlands, as well as in other
densely populated countries, locations of harbors and industries
processing chemicals are often in close proximity to places where
people live. In the case of a serious chemical spill, a system for the
detection and tracking of potentially dangerous gases is essential.
People in critical regions can be informed through their mobile
phone and safety instructions can be issued. Information to detect
and track the gases can be obtained from different types of gas
sensors present at various locations. Decisions have to be made
about the location of the gas, the type of gas and what measures
need to be taken. However, the development of such a system is
also highly dependent on reliable smell descriptions from people
in the vicinity.

There are no devices that would reliably detect and identify dif-
ferent types of gases. State of the art gas sensors are usually noisy
and they can fail due to different reasons, such as physical damage
or unusual operating conditions. As the currently available sensor
networks are typically not dense enough to support robust detec-
tion and tracking, situation assessment is often strongly supported
by information obtained from humans, who can be considered as

omnipresent information sources that can provide rich and useful
information. By exploiting the existing communication technology
and social media, we can access humans in the affected area who
can provide valuable information on the situation.

This paper addresses the problemof detecting and localizing the
pollution source, without estimating the extent of the plume. In
particular, the challenge is to localize the source without concen-
tration measurements. This is quite a unique approach as most of
the state of the art localization methods rely on calibrated sensors,
which is very expensive and often impractical in the targeted
domains. Complementary work on the modeling of gas concentra-
tions and estimation of the gas plume extent can be found in Asadi
et al. [2] and Lilienthal et al. [3].

Different types of heterogeneous information, delivered by sen-
sors and human beings have to be merged. Bayesian Networks
can be used for that. In a Bayesian network the relationship is
represented between the involved variables. They also form the
statistical framework to determine the probabilities of the values
of the variables and to fuse information.

2. Problem description

In this paper the challenges and various methods will be illus-
trated with the help of an environmental crisis management use
case in which the presence of a gas plume must be detected and
the pollution source localized. This must be achieved by (i) using a
network of cheap chemical sensors, which are not calibrated and
(ii) human reports about various olfactory observations collected
through crowd sourcing. In combination with suitable algorithms,
such sources can be used for simple detection of anomalies, i.e.
unusual gas mixtures caused by industrial pollution. As the system
receives a trigger, a positive detection of a specific gas or an
industrial pollution, potential pollution sources are determined by
taking into account the average wind speed, wind direction and
simple gas dispersion models. So the goal of the overall hybrid
system is to collect relevant data in form of a set of observations
E and infer the hidden causes hk of these observations. For each
possible source sk we create a hypothesis hk that an invisible gas
of an industrial origin is released at a source sk. Moreover, as we
are dealing with noisy sources and uncertain domain knowledge,
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Fig. 2. A simplemodel of the area influenced by a plume originating at source s. The
model is discretized into multiple segments denoted by li .

we compute posterior probability P(hk|Ek) stating that hk is true
given the entire relevant set of evidence Ek. P(hk|Ek) can be used
in different ways in a decision making process, dependent on
the domain/principles used for making decisions. For the sake of
simplicity we assume that when probability P(hk|Ek) exceeds a
certain threshold we assume that hk represents the cause of our
observations.1 The computation of P(hk|Ek) is based on various
assumptions about the gas propagation and the operation of the
sensors and human observers [4,5] and wind direction and wind
speed sensors.

For each hypothesis hk we create a triangular areawhose vertex
is defined through the location of the hypothetical source sk and
its axis is parallel to the wind (see example in Fig. 2). The area is
further subdivided into segments denoted by l1, . . . , ln. An obser-
vation is associated with a specific hypothesis hk if it is contained
in any of the segments of the corresponding downwind region Rk.
Ek denotes all observations that can be associated with hk in this
way.

If the triggering source (sensor or a human report) is located
within the cone associated with a potential source sk, the system
creates a hypothesis hk.

Note that the cone is an extremely crude gas dispersion model
which represents an area in which gas concentrations are likely
to exceed the levels required for the detection of gases/anomalies.
The model is chosen such that it covers an area which is signifi-
cantly greater than the actual area in which such concentrations
would be observed. The justification for this simplifying assump-
tion is provided in [5] while [4] presents experimental results
which confirm that such simplifications do not jeopardize the
overall detection/localization accuracy in the targeted domains.

The computation of P(hk|Ek) is based on a causal Bayesian do-
main model which describes gas propagation and typical obser-
vation sequences throughout the segments of the corresponding
region Rk. (i.e. patterns), given hypothesis hk were true. Bayesian
networks (Pearl [6]) are well suited for that purpose. There are a

1 Alternatively, P(hk|Ek) can be used for the ranking of hypotheses. See a more
elaborate discussion on this in [4].

Fig. 3. A simplified domainmodel describing gas propagation through a discretized
area and capturing relations between the hidden states and the observations.

number of advantages of using Bayesian Networks (BN) for rea-
soning about the hidden causes of observations and the fusion
of different sources of information. Namely, often the data can
be viewed as outcomes of causal stochastic processes where the
causal relations can be described through conditional probabil-
ity distributions and Directed Acyclic Graphs (DAG). BNs can be
obtained through expert introspection or machine learning. The
interpretation of the networks by a human observer is easy. This
holds both for the variables as well as for the structure revealing
the dependences between the variables. Fusion can be done at
different levels and with incomplete information. BNs can relate
very heterogeneous variables and realize efficient inference with
uncertain relations. Bayesian Networks are defined through their
structure: a Directed Acyclic Graphs (DAG) and Conditional Proba-
bility Tables (CPT).

Contrary to common approaches to source localization (e.g.
[7–9]), the chosen solutiondoes not rely on concentration/intensity
measurements since the installation of sufficiently large and dense
networks of calibrated chemical sensors is economically infeasible
in the targeted domains. Therefore, the presented approach sup-
ports detection and source localization based on complex patterns
of heterogeneous binary observations, such as outputs of different
types of chemical detectors based on simple uncalibrated chemical
sensors and human reports.

3. Bayesian models and inference

In the presented use case, the models are based on a crude
discretization of the regions Rk influenced by the gas plume, i.e.
regions within which critical gas concentrations are exceeded (see
Fig. 2). In addition, temporal aspects of the dynamic processes are
capturedwith the help of time slices, each representing a snapshot
of the states at a specific time step. This discretization is captured
by the causal model shown in Fig. 3.

The model can be interpreted as follows:

• Each node Gi represents the presence of the gas at location
li, i.e. segment in the discretized area shown in Fig. 2. More
precisely, Gi = true if the plume front has reached the
boundary between segments li and li+1. The node remains
in the same state until the end of the estimation process.

• Temporal aspects of the gas propagation are not explicitly
represented by the model. Instead, the gas propagation is
captured through a sequence of segment activations. The
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Fig. 4. A composite sensor model capturing the observations at a specific location.

evidence at segment li is not processed and fused with the
overall model if it is obtained prior to the time at which
the hypothetical plume front would reach li and li+1. This
estimated time can be based on appropriate gas propagation
model. After this point in time, all the evidence collected in
segment li is treated as if it belonged to a single time slice,
which starts at the time of the segment activation. This is a
consequence of the fact that in the case of a plume the gas
would remain present at each segment until the end of the
process.

The causal model in Fig. 3 also specifies relations between each
Gi and the observations collected at the corresponding location li.
Little bold circles in Fig. 3 represent the observations. Each small
network attached to node Gi captures the causal stochastic process
producing observations at location li. Note that observationmodels
can be arbitrarily complex causal models themselves, each captur-
ing correlations between different types of observations obtained
at a particular location. An example of such a complex observation
model is shown in Fig. 4, which captures the correlations between
observations of different types, obtained by sensors using con-
ductivity effect of a semiconductor elements, ionization sensors
as well as human reports of smells and health symptoms. The
derivation of the abovementionedmodels is thoroughly discussed
in [5,10].

For the sake of brevity, the discussion in this paper focuses on
the composite sensor models, as the one shown in Fig. 4, each
associatedwith a specific segment li. Monitoring at each segment li
can be viewed as a causal stochastic process, where hidden events
cause observations according to certain probability distributions.
Let us assume that the presence of a certain toxic gas causes
conditions under which a certain type of semiconductors results
in a distinctive conductivity. Similarly, a particular conductivity
could be observed in an ionized gas mixture if the toxic gas is
present. In this paper we assume two types of sensors, evaluating
conductivity in semiconductors and in an ionized gas mixture,
respectively. Introduction of a sensor measuring a particular type
of conductivity will spawn various processes in the sensor’s elec-
tronic circuitry which in turn will result in a certain state of the
sensor. Dependent on the sensor state we will obtain a sequence
of reports, either confirming or refuting the presence of the gas.
Similarly, humans are likely to report about typical symptoms (e.g.
smell). Such a causal process can be described through the graph
shown in Fig. 4, where each node represents a binary variable;
e.g. G = true if the gas is present, otherwise G = false. The
situation under which a semiconductor element and ionized gas

mixture feature typical conductivity is represented by variables
CondC and Ion, respectively. States of the binary variable CondC
correspond to the situations where electrical current under ideal
circumstances would either exceed some detection threshold (i.e.
CondC = true) or remain below that threshold (i.e. CondC =

false). The states of the ith sensor of type x are represented by Sxi
while a sequence of sensory reports is denoted by binary variables
Ex
1, . . . , E

x
n; E

x
k = true if a report confirms the presence of theGas. In

this example, subgraphs containing nodes SC1 , CC
1 , EC

1 , . . . , EC
m and

SC2 , CC
2 , EC

m+1, . . . , E
C
n describe processes in two sensors measuring

the conductivity of local semiconductor elements. Subgraph con-
sisting of nodes S l3, C

l
13, C

l
23, C

l
33, E

l
1, . . . , E

l
o, on the other hand, cor-

responds to the third sensor measuring conductivity of the ionized
gasmixture. Variables SC1 and SC2 denote themeasured conductivity
on the semiconductor elements in the first two sensors while S l3
denotes the measured conductivity of the ionized gas mixture
in the third sensor. Moreover, variables CC

1 , CC
2 , C l

13, C
l
23, C

l
33 rep-

resent the states of critical electronic components of the three
sensors. We also assume that the causal process is influenced by
the air humidity and temperature represented by variables M and
T , respectively. Note that with each sensor an independent local
causal process is introduced to the domain. Besides the sensors
we assume that there are humans in the area, who have olfactory
reactions to G and who submit reports of what they smell via a
call service, app or a web-interface. The states of binary variable
Smell represent situations in which people familiar with a typical
smell of G either do or do not recognize the smell. Moreover, each
individual report is represented by a node Esmell

i . Similarly, first aid
workersmight be able to report about health symptoms, which are
typical results of exposure to G. A situation in which observable
symptoms take place is denoted by variable Sympt and the reports
are denoted by variables ESympt

i .
BayesianNetworks can copewith uncertainties inmodeling (i.e.

the domain knowledge) and observations. However, each source
must be explicitly captured in a BN, which is challenging in do-
mains where information sources are dynamic (sensors are added
at runtime). So for each constellation of information sources we
need a specific BN. In addition, large quantities of heterogeneous
information accessed through the existing communication and
sensing infrastructure often require large BNs which in turn re-
quire significant processing and communication resources. Both,
the dynamics of the environment and the processing complexity
can be tackled by introducing amodular approach tomodeling and
processing.
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Fig. 5. An organization of fusion agents implementing a distributed causal model. Each solid rectangle corresponds to an agent with a local modeling fragment represented
by dashed rectangles. Dashed arrows show the flow of the inter-agent fusion messages.

4. Distributed fusion

The challenges introduced by large quantities of data stemming
from dynamic sources can be efficiently tackled by creating com-
plex domainmodels through a combination of simpler fusionmod-
ules at runtime, as new sources become available. The resulting
system of loosely coupled modules fuses data obtained from dis-
parate modules, such that each new piece of evidence is correctly
reflected in the probability distributions over the hypotheses of
interest. Such data-driven fusion is based on information flows
between disparate fusion modules that exchange messages carry-
ing probability distributions over variables representing correlated
phenomena in the domain. Such modularization requires (i) a
sound decomposition of BN models and inference processes and
(ii) a platform that supports non-trivial information flows and self-
organization.

In this paper we assume the modularization approach intro-
duced in [10] that allows correct inference in a system of loosely
coupled BN models (see for example Fig. 5). The modularization
is based on simple design rules based on the theory on fac-
tor graphs [11]. The resulting system of BN modules supports
exact globally coherent Bayesian inference without compilation
of secondary inference structures spanning multiple processing
modules, such as Junction Trees [12,13]. Xiang [13] introduces a
method for inference in multiply sectioned Bayesian Networks
and Paskin and Guestrin [12] proposed a runtime compilation of
junction trees. These approaches require compilation of secondary
inference structures, which can be computationally expensive and
time consuming. In addition, the approach from [12] requires
prior knowledge of all information sources. Consequently, these
approaches do not support quick adaptation of fusion systems and
cannot efficiently cope with domains where information source
constellations can change at runtime. In [14] we propose amethod
to reduce the dependences between the modules through in-
stantiation of variables. Markov Boundaries provide the means
for systematic reduction of dependences between local BNs. The
approach is related to loop cut-set conditioning [6]. Contrary to
the other loop cut-set conditioning methods, we assume that cer-
tain variables in inference modules are instantiated by using hard
evidence, thus avoiding combinatorial explosion which is typical

for the loop cut-set method in the case of many loops in the net-
works. In the resulting systems, each module executes inference
on a local BN by using any standard inference method, including
local junction trees, which can be compiled prior to the operation.
The modules achieve globally coherent inference by exchanging
marginal probabilities based on local inference [10,15].

Complementary fusion modules autonomously form meaning-
ful distributed fusion systems. Fusion in such an assembled net-
work can easily be distributed throughout several machines thus
avoiding processing and communication bottlenecks. Beside sound
and efficient fusion algorithms, basic fusion modules must sup-
port also efficient communication and cooperation protocols. In
addition, a distributed fusion system should be able to adapt to
the current situation autonomously. Therefore, modules should
form fusion systems consisting of relevant modules autonomously
and they should be able to reason about resource allocation with
respect to sensing and processing capacity. In order to be able
to cope with such complex functionality in a systematic way, we
makeuse of themulti agent systemsparadigm (Jennings et al. [16]).
Each fusionmodule is an autonomous agent that provides a certain
fusion service and has the logic to formmeaningful fusion systems
through service composition.

• A fusion agent Ai is a processing unit, a module, which can
compute probability distributions over variables Vi in its local
BN.

• Each agent Ai maintains a set of service variables Ri ⊂ Vi and
a set of input variables Li ⊂ Vi.

• Each agent Ai can compute marginal posterior probabilities
over the local service variables.

• Two agents can exchange their local estimates of marginal
(posterior) distributions for any variable contained in the local
BNs of both agents.

In Fig. 5 we can identify nine agents. Agent A1 has service
variable R1 = G and the following input variables L1 =

{CondC, Ion, Smell, Sympt}. Variables in L1 on the other hand, cor-
respond to service variables (i.e. outputs) of agents A2, A3, A4, A5,

A9, i.e. R2 = R9 = CondC, R3 = Ion, R4 = Smell, R5 = Sympt . The
agents exchange messages carrying locally estimated probability
distributions over these variables.
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Agents wrap information sources and provide uniform com-
munication and fusion protocols. As new information sources
wrapped by agents enter the scene, the domain models of fusion
systems are adapted on the fly, without any centralized control.

A. Fusion Organization
Each fusion process depends on the constellation of cooper-

ating agents, which corresponds to a particular problem or task
decomposition. In this context we use the concept of a Fusion
Organization. A particular organization Ω is a function of a given
query or hypothesis E and a set of available agents (Pavlin et al.
[14]).

A global task of a fusion organization Ω is computation of the
probability distribution P(H|E) over some hypothesis variable H ∈

Ri of agent Ai which correctly reflects the entire evidence set E. This
is only the case if P(H|E) = P ′(H|E) where P ′(H|E) is computed
through propagation of the entire evidence E in a monolithic BN
which correctly captures all dependences and independences that
exist between variables in and between the agent’s local models in
Ω . This requires well-defined cooperation of fusion agents since
evidence E corresponds to instantiations of variables in different
agents in a fusion organization Ω .

In the presented use case the BN modules are used for the
creation of composite observation models as well as for the fusion
using models of dynamic processes. For each segment li of the
downwind area Ah a set of BN modules is assigned. Such a set of
modules supports inference about the presence of a gas at li by con-
sidering specific data sources, such as sensors of different types and
reports from humans associated with this location. Fig. 5 shows an
example of such a set of modules collaboratively estimating the
presence of a toxic gas at a specific location by exchanging partial
fusion results. In fact, this system of fusion modules supports
Bayesian inference which is equivalent to inference based on the
monolithic observationmodel from Fig. 4. Note also that each com-
posite observation model is an organization of collaborating mod-
ules formed at runtime through service discovery as the relevant
data sources become available. Moreover, the results of such com-
posite observation models for different locations l1, . . . , ln within
the hypothetical plume area Ah are fed to module Dh that supports
inference about the dynamic gas propagation processes. Fig. 6
shows a set of modules implementing a fusion system dedicated to
a specific hypothesis h associatedwith a specific downwind areaAh
(see example in Fig. 2). In such a system, module Dh estimates the
likelihood of a leak by exploiting the knowledge of gas propagation
captured by the hidden variables of the model shown in Fig. 3. Dh
fuses beliefs of fusionmodules dedicated to different segments (i.e.
locations) in Ah, which estimate the likelihood of the presence of a
specific gas at each location li by fusing all available observations
at li.

Importance of variables in a BN
The acquisition of some variables can be costly, time consuming

or involve risks. So it could be very helpful to know the maximum
impact that one variable could have on another variable in the
network. It also gives the possibility to prioritize missing evidence
(relevant to a decision). This is for instance used in the visual
human smell interface in the next section. It can also speed up the
inference by a further reduction of the complexity of the network
(Engelen [17]). A practical problem is that the computation of
the maximum impact of one variable on another given certain
evidence is infeasible for larger BNs. In Gosliga et al. [18] an ap-
proach is proposed for a fast approximation method to determine
the maximum impact that one variable can have on another. This
efficient approximation never underestimates the impact.

Cost of communication
Particularly in the early stages of a crisis, communication chan-

nels may be damaged. Communication channels may also suffer

Fig. 6. An organization of fusionmodules implementing a distributed causal model
of a stochastic process generating observations at different locations l1, . . . , ln and
times within a hypothetical area Ai. Note, each box corresponds to an arbitrarily
complex Bayesian Network fragment.

from limited bandwidth and delays. In dynamic situations the
relevance of information will also decrease when time passes. So
in such cases there will be a tradeoff between the cost of commu-
nication and the relevance of the information send. Agents should
be aware of the usefulness of sending the information given the
impact of variables and the delay (Foeken et al. [19]).

5. Modeling and robust information fusion

It turns out that, by explicitly considering causality, the critical
dependences in monitoring processes can easily be determined. In
such domains causal processes are well understood, since they are
to a great extent created through designers of monitoring systems
and operators; such processes are created by (i) putting together
various man-made components, such as sensors, communication
systems and (ii) exploitation of well known procedures, such as
asking people that call an emergency center specific questions
about the symptoms and smells and other observations. We can
safely assume that sensor developers understand main aspects of
causal mechanisms in the sensing devices while the professionals
in an estimation process followwell established procedures.Model
construction consists of (i) the development of causal graphs,
which capture direct dependences between the variables, i.e. qual-
itative knowledge, and (ii) the determination of the parameters
which capture the strength of the causal (stochastic) influences,
i.e. quantitative knowledge.

Construction of robust causal domain models
Construction of causal domain models for gas detection is ex-

ploiting the fact that with each sensor or a human reporter a new
local causal process is introduced to the domain. By introducing
a new gas sensor, the gas initiates processes on the measuring
element and in the sensor’s circuitry which eventually produces
sensor reports. For example, the process introduced by the third
sensor is captured by the graph fragment consisting of variables
S Ion3 , C Ion

3 , E Ion
n+1, . . . , E

Ion
o shown in Fig. 4. In principle, the local

processes within a sensor become part of the overall distributed
mechanism generating relevant observations. Similar reasoning
applies to humanobservers.Moreover, each type of sensors usually
provides observations about a single phenomenon represented by
a process variable, such as, for example, Cond and Ion in Fig. 4. Thus
several sensors of the same type are influenced by a single phe-
nomenon resulting from a causal process and by a few boundary
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Table 1
CPT capturing the estimated perception model for human observers.

P(ESmell
i | G) G = true G = false

ESmell
i = yes 0.75 0.34

ESmell
i = no 0.25 0.66

conditions represented by context variables, such as M and T in
Fig. 4. In addition, components and reports of one sensor do not
influence components and reports of another sensor. Thus, we can
represent a process generating observations of a certain typewith a
network fragment which is sparsely connected to other fragments.
Only variables for which direct dependences exist are connected
directly. In other words, the resulting causal graph describing the
overall observation generating process is sparsely connected.

The modeling parameters, i.e. the conditional probabilities
defining the CPTs, could be obtainedwith the help of theMaximum
likelihood estimationmethod [20] or through expert introspection.
The former is a sound solution, however, it is viable if all variables
in the model can be observed. In case of partially observable
models EM algorithm can be used [21]. Sometimes, experts can
estimate the conditional probabilities. In principle, the CPTs relat-
ing variables corresponding to the sensor components, observed
phenomena and the observations can be estimated by repeated
experiments. In some cases, this approach can be also practical for
the estimation of CPTs relating human reports and the presence
of gases. For example, we could extract such relations from the
database compiled by the DCMR milieudienst in Rijnmond, an
environmental protection agency in the Port of Rotterdam. The
database captures complaints/reports of citizens collected during
incidents with known causes. The database allowed estimation
of conditional probability distributions for simple reports from
citizens indicating the presence or absence of an industrial air
pollution, i.e. an anomaly caused by an abnormal concentration
of any substance that can be classified as gas, chemical vapor or
oil derivatives, which are typically released by the industry. In this
case GasX = true corresponds to the presence of such an anomaly.
In principle we counted how often complainers responded with
yes/no to a question ‘‘Does the smell remind you of a chemical
or oil or gas?’’. This question was asked via a web-page or by
an automated response system when complainers call a special
number provided by the DCMR. In the latter case the complainers
could respond by pressing various options, such as 1 for yes, 2
for no and 3 for do not know. By using the DCMR database we
extracted the perception model P(ESmell

i |G) for citizens shown in
Table 1. The estimation of the parameters in Table 1 was based
on 586 incidents for which the cause of complaints was known.
The 95% confidence intervals for the parameters were ±0.03 for
P(ESmell

i |G = true) and ±0.037 for P(ESmell
i |G = false), respectively.

If parameters in a BN are identical to the true distributions over
the modeled variables, then a Bayesian classifier is optimal (Duda
& Hart [20]). Unfortunately, in many real world applications, it
is very difficult or even impossible to obtain probabilistic models
that precisely capture the true probability distribution over the
phenomena in the observed domains. Training data sets are finite
and human experts cannot precisely specify the domain models.

However, by considering the theory of BNs it was shown that
reliable classification can be achieved even if the parameters sig-
nificantly deviate from the true probabilities, as long as the used
BNs satisfy simple conditions [14]. Key to robust inference are
relations between the true conditional probability distributions and
the distributions captured by the used CPTs [14]. Let us assume a
true conditional probability distribution P(E|C) between variables
C and E whose states ci and ej correspond to causes and effects, re-
spectively. It can be shown that a system is robust if the used CPTs
P(E|C) and the true distributions P̂(E|C) satisfy simple conditions:

∀ej ∈ E : argmaxciP(ej|ci) = argmaxci P̂(ej|ci) (1)

and

0.5 <
∑
ej∈Bci

P(ej|ci), (2)

where Bci denotes the set of all states of E for which the likelihood
of state ci is maximum: Bci = {ek|∀ci ̸= cj : P̂(ek|ci) > P̂ (ek|cj)}. In
case of binary variables the relations (1) and (2) are satisfied if, in
both, the CPT describing the true conditional probabilities and the
CPT from themodel, the elements of the same diagonal exceed 0.5.
For example, let us assume a true distribution P̂(E|C) over binary
variables E and C: P̂(e1|c1) = 0.7, P̂(e2|c1) = 0.3, P̂(e1|c2) = 0.4
and P̂(e2|c2) = 0.6. We say that a CPT P̂(E|C) in a model correctly
captures relations between the true probabilities if its parameters
satisfy P̂(e1|c1) > 0.5 and P̂(e2|c2) > 0.5. In the targeted domains
it is often plausible to assume that relations (1) and (2) can reliably
be identified by experts or extracted from relatively small data sets
with the help of machine learning techniques. This is for example
the case with the CPT shown in Table 1. The relations stay the
same for any combination of parameters in the 95% confidence
interval. Moreover, in [14] it was shown that if the BN corresponds
to a factor tree whose root is the hypothesis variable, then the
expected classification accuracy asymptotically approaches 1 with
the growing number of branches rooted in the hypothesis variable
if relations (1) and (2) are satisfied for all CPTs in the BN. This
is a consequence of the inherent properties of the BNs [6]. A
factorization represented by a BN corresponds to a factor tree if
the BN has a DAG with a tree topology or appropriate variables
in multiply connected BNs are instantiated. Example of the latter
is instantiation of variables M and T in the multiply connected
model from Fig. 5. If many information sources are available, we
can obtain BNs corresponding to factor trees with large branching
factors which makes fusion reliable even if we use CPT parameters
that deviate from the true distributions significantly.

The robustness can be illustratedwith a simple example, where
the detection of a gas in a certain area is based on complaints
only and the true distribution P̂(ESmell

i |G) is given by Table 1 and
the associated 95% confidence intervals.2 Thus, we would instan-
tiate only the leave nodes corresponding to smell observations
in the model from Fig. 5. This would be equivalent to reasoning
with a naive BN. If 0.5 were used as the decision threshold, the
detection would be equivalent to simple majority voting [14].
Consequently, we can show that the lower bound on the detec-
tion performance would asymptotically approach 1 for arbitrary
CPTs P(ESmell

i |G) as long as they satisfy the following relations:
P(ESmell

i = true|G = true) = P(ESmell
i = false|G = false) > 0.5,

the same relations that can be found between the true conditional
probabilities from Table 1. For 10 reports the expected detection
accuracy would exceed 0.88 while the accuracy would exceed 0.99
if we obtained more than 30 reports.

Evaluation of the system performance
The detection and localization accuracy of the presented decen-

tralized systemdependonmultiple factors, such as the distribution
of data sourceswithin the area that is considered in the estimation,
the quality of data sources, modeling inaccuracies as well as the
criteria used for decision making. Due to usual heterogeneity of
the data and a large number of possible situations the system can
be exposed to, the evaluation of the overall performance requires
huge numbers of experiments (large numbers of permutations of
possible constellations of data sources). Despite such complexity,

2 In this experiment we assume that the true distribution is defined by the
worst case parameters defined in the 95% confidence intervals of the parameters
in Table 1. In this case, the probability of a correct answer given the presence of the
gaswould be 0.75−0.03 = 0.72. This number defines the chance of having a report
correctly indicating the presence of the gas.
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the evaluation of the expected system performance can be broken
down into smaller problems. This is the case if the processes can
be described with BNs that feature relatively sparse graphs. In
the running use case, passive gas detectors do not influence each
other3; i.e. they are conditionally independent given the hidden
variables representing the gas propagation. Because of such loose
coupling of the phenomena in data generating processes, the over-
all models used for the fusion in the presented example can be
viewed as a composition of (i) loosely coupled components that
describe the detection processes and (ii) components that describe
the dynamic gas propagation processes. Examples of the former are
shown in Fig. 5while an example of a dynamicmodel is capturedby
the variables Gi and CPTs P(Gi|Gi−1) in the model shown in Fig. 3.
The inference about dynamic gas propagation processes and the
leak localization is carried out by module Dh shown in Fig. 6.

The expected accuracy of individual detectors and their com-
ponents can be evaluated in controlled experiments in labs or
outdoors. For each detector type this can be captured by the causal
models in a statistically sound manner by using Maximum Like-
lihood Estimation methods. Moreover, as it was illustrated in the
previous section, effective observationmodels can be obtained also
for humans reporting on their perception on chemical substances.

However, the estimation of the expected accuracy of the mod-
ules estimating the states in dynamic processes is more challeng-
ing as such modules interpret spatio-temporal data patterns. For
example module Dh in Fig. 6 relies on data originating from many
distributed detectors whose outputs depend on the relative posi-
tion w.r.t. to the leak and the weather conditions. In addition, the
performance of this module depends on the efficiency of the data
association processes. In order to carry out statistically meaningful
evaluation the module has to be exposed to a large number of
possible situations.

As it is impractical and often impossible to obtain sufficient
quantities of real world data with the ground truth, the estimation
of the expected performance of the overall system is carried out
through a large number of simulations. Many different situations
are simulated through sampling of data based on a systematic
variation of the various modeling parameters. In this way we can
generate many data sets for known ground truth and estimate
the detection and localization accuracy. Clearly, the simulations
cannot perfectly capture all conditions in the real world. Instead,
they are based on many simplifying assumptions. So the question
is whether the results based on simulations allow any reliable
conclusions about the expected performance in the real world
applications. This is possible if the following is the case:

• Sensor models for the used detectors are based on real
world data stemming from tests under different conditions
in controlled experiments.

• It can be shown that the expected performance is insensi-
tive to various assumptions about the physical world. This
is done by using extreme modeling assumptions; discrep-
ancies between the simulated ground truth and the used
models are systematically varied and they are greater than
the discrepancies between the used models and the actual
processes.

The system is evaluated with a special testing harness, where
it is fed with synthetic data obtained with the help of simulated
plumes and detector activations. The simulation assumes a specific
situation, such as for example a uniform grid of detectors and a
set of 5 potential sources positioned along a line in the middle of

3 Note, in this paper gas detectors can be devices or human observers. In case
of human sources, it is assumed that they are independent in the early stage of an
incident, as the people might be biased through communication via social media in
later phases.

Fig. 7. Experimental set up. Dots represent sensors and diamonds represent
potential sources. Lines with the same pattern represent the plume boundaries.

the grid shown in Fig. 7. The simulated plume originates from the
source at location 3 and its shape is assumed to be triangular cone.
The area enclosed by the plume shape represents the regionwhere
the concentrations exceed the detection sensitivity and it is also
used for the data association; all the observations collected inside
the cone are considered for hypothesis updating.

The simulated environment is used to sample values of the
detectors under different conditions. The sampled data is fed to the
distributed inference system and the expected localization accu-
racy is estimated (see [4] for a detailed discussion). The average lo-
calization accuracy of the overall system is plotted in performance
charts as a function of the detector noise. Fig. 8 shows a perfor-
mance chartwhere each curve represents the expected localization
accuracy for grid densities 1 km, 0.5 km and 0.25 km, respectively.
The value on the vertical axis represents the percentage of the cases
inwhich the correct hypothesis was associatedwith themaximum
posterior and the plumedirectionwas assumed180◦, i.e. the plume
propagated towards the North, thus perpendicular to the sources
line.

The performance chart in Fig. 8 shows good accuracy also in the
case of high noise levels. Moreover, the charts show that the ex-
pected accuracy improveswith the detector grid density, a theoret-
ically predicted property of the used causal models [14]. Namely,
by increasing the detector grid density the number of branches
in the underlying domain model increases which mitigates the
impact of the sensory noise and the modeling discrepancies. Sim-
ilar plots can be made for different orientations [4]. Moreover, the
impact of various simplifying assumptions was evaluated through
similar experiments. For example the impact of the errors made
with the assumptions about the plume form used for the data
association was evaluated by running experiments with different
shapes of assumed and true plumes. These experiments showed
that the localization system is insensitive to the geometry of the
plume (see [4]).

The introduced performance charts in combination with ro-
bustness evaluations are engineering tools that support systematic
design of cost efficient solutions with known expected accuracy.
We can use such tools to investigate trade-offs between the sensor
network density and the sensor quality that guarantees a lower
bound on the expected performance of the overall system.

6. A visual interface for augmented human smell perception

Humans are very good at detecting and discerning smells [22].
However, we are bad at identifying the name of a smell or at
providing a meaningful description of it. Olfactory perception is
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Fig. 8. Expected localization accuracy as a function of the detector noise rate (i.e. failure rate). The different curves correspond to different sensor densities.

an interesting, yet underrepresented research area in human–
computer interaction (HCI) and there has been little research on
how to create interfaces making use of or supporting the human
sense of smell.

To incorporate human smell capacity into an environmental
monitoring system, a dedicatedmobile applicationwas developed.
In order to create such a dedicated mobile application, we in-
vestigated the effect of multi-modal odor cues on human smell
identification. Our focus was on providing a mobile interface that
assists users in identifying the smells they perceive to increase the
accuracy and performance of the overall environmental monitor-
ing system.

Olfactory perception in HCI research
One of the main obstacles in research on olfactory interfaces

(discussed in [23]) concerns the lack of proper classification or
description schemes for smells (other than those related to wine
and perfume). The lack of a common smell ‘vocabulary’ makes
communicating about smells difficult for both system and user.

Another difficulty is that although humans can detect and
discriminate countless odorants, they can identify few by name
[22]. For a public environmental monitoring system based on
human/social sensing this is problematic because the system is
crucially dependent on accurate smell descriptions from humans.
Therefore, we studied whether there are suitable ways to facilitate
the communication of sensory information, such as olfactory per-
ceptions.

Previous research has shown that the identification of odors (i.e.
free recall of the name of an odor) without the presence of other
relevant semantic information is a difficult task for humans (e.g.
[24], [25]). Other studies have revealed that the odor identification
process works considerably better when participants can choose
between possible labels, rather than free recall (e.g. [26]).

Yeshurun and Sobel [22] argue that the primary function of
olfaction can be viewed as to signal a human for approach or
withdrawal and that this signal is best represented by pleasant-
ness. Their research indicates that humans consistently and rapidly
describe an odor by its perceived pleasantness. Gottfried andDolan
[27] demonstrate that although human olfaction is unreliable, it
benefits substantially from visual cues. Participants were faster
and more accurate at recognizing odors when these odors ap-
peared in the context of semantically congruent visual cues.Morrot
et al. [28], Demattè et al. [29], and Gilbert et al. [30] all found strong
connections between olfactory perception and colors.

To summarize, the literature suggests that odors are subjec-
tively associated with images, words, colors and personal mem-
ories. Furthermore, people tend to discriminate between smells
based on how pleasant or unpleasant they find the smell.

Stimuli to assist odor recognition
To create a first prototype of an intelligent interface that auto-

matically generates cues to assist human smell identification for
this application, our question is:

‘‘Which on-screen stimuli will improve the accuracy of user pro-
vided, real-time odor identifications compared with free recall?’’.
We carried out a study in two phases. In phase one, we elicited

odor descriptions and associations in order to extract meaningful
stimuli for human smell identification aswell as to seewhich stim-
uli provide discernible rankings for automatic smell classification.
In phase two, we carried out an experiment to assess which smell-
related stimuli generated by the interface would lead to more
accurate odor identification. Details of these studies can be found
in [31].

In phase 1 of the study, we exposed participants to nine distinct
smells and asked them to provide multiple types of associations
that the smell evoked. The between-subjects independent variable
‘odor’ was manipulated by exposing each participant to one of
nine odors with ‘scratch & sniff’ cards specifically developed by a
professional manufacturer for the purpose of the study. The final
sample consisted of 429 participants (180 males and 249 females).
Ages ranged from 18–65 (M = 33.1, SD = 12.46).

Each participant was asked to provide

1. a textual association: ‘Which word or term best describes
the current smell?’;

2. a personal memory association: ‘Describe a memory you
associate with the current smell’;

3. a color association: a choice from black, white, red, green,
yellow, blue, brown, purple, pink, orange, gray colors pro-
vided on the screen;

4. a visual mental image the odor evoked: ‘Describe a visual
image that comes to mind when you smell the odor’.

For each association method, we measured how confident par-
ticipants’ felt that their provided association accurately described
the odor. Each time participants provided an association, theywere
therefore asked to answer the following questions:

Confidence/closeness of match: Participants rated on a seven point
Likert-type scale how confident they were that the selected asso-
ciation best matched the odor they perceived (e.g., ‘How confident
are you that the image accurately describes the odor?’; scale from
1–7, 1 = ‘not a close description at all’ to 7 = ‘very close descrip-
tion’).

Participants then also reported their perception of intensity and
pleasantness of the smell.

Intensity: Participants rated on a seven point Likert-type scale the
perceived strength of the odor (‘How intense was the odor?’).

Pleasantness: Participants rated on a seven point Likert-type scale
the perceived pleasantness of the odor (‘How pleasant did you find
the odor?’).

In a short post-test interview, participants were also asked
which association method they thought best described the smell
and why.
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The results showed that there were indeed significant differ-
ences between how intense a smell was perceived depending on
which odorant participants were rating (H(8) = 49.45, p <

0.001). ‘Natural gas’ was perceived as themost intense smell (M =

5.7, SD = 1.3) and ‘Mildew’ as the least intense one (M =

4.2, SD = 4.2).
The results of another analysis showed that there were also

significant differences between pleasantness ratings (H(8) =

101.89, p < 0.0001) depending on which odorant participants
were rating.

We then analyzed whether there were (significantly) different
odor associations for each association method. If odor associations
differed significantly across odors for a particular method (e.g.,
image associations) then that association method would be best
to implement as stimuli in our system. We found that there was
indeed a significant difference between color associations (H(8) =

19.69, p = 0.012) depending on the odorant participants were
confronted with. Thus, color associations were a good candidate
to be used for providing feedback regarding olfactory perceptions.
However, looking at the frequencies of provided color associations,
we found that although some of the provided color associations
fitted well with the odorant, ‘brown’ was the most often selected
color for six of the nine smells, which made color cues much less
meaningful. Moreover, even though the image and name descrip-
tions were very different for the different smells, there was too
much variation in the answers to yield significance.We did not find
significant differences between odors in terms of memory valence.

Further results show that there was a significant interaction
effect between participants’ confidence ratings on the association
methods and the different odors (F (31.26, 0.98) = 1.70, p =

.009),meaning that confidence levels differed significantly for each
method for a particular odor. Since we wanted to offer stimuli that
will yield highly accurate smell descriptions, it was important to us
that users would feel confident about the description/association
they provide.

To assess the quality of a particular association method, we
comparedparticipants’ confidence rating (howwell the participant
felt the association matched the odor) and found that overall par-
ticipants felt least confident with the memory association (29.9%),
followed by the image (26.9%), text (25.1%), and, finally, their
color association (18%). Similarly, from the interview responseswe
found that participants were most confident about their memory
associations (31.9%), followed by image associations (27.9%), tex-
tual associations (25.1%), and least confident about color associa-
tions (18.0%).

To summarize, we found that participants rated the odors dif-
ferently in terms of intensities and pleasantness, again demon-
strating that human noses are able to distinguish between and
characterize different odors. Both survey and interview data
showed that participants were most confident of their memory,
image and text associations. Memory associations were individu-
ally very different and particularly difficult to present. Therefore,
we decided to focus on image, text, and a combination of image
and text cues, as well as pleasantness ratings in a second study to
test whether and which of these stimuli types would lead to the
highest accuracy and user satisfaction.

In phase 2 of the study, we carried out an experiment to assess
whether the association stimuli elicited from phase 1, automat-
ically generated by an adaptive interface, would lead to more
accurate odor identification. The final sample consisted of 190
participants (106 males and 84 females). Ages ranged from 18–65
(M = 32.0, SD = 10.60).

We focused on the three smells we considered to be most
common and realistic in the environmental monitoring context:
gasoline, rotten eggs, and natural gas. Also, there was considerable
overlap in the descriptions received from participants in phase one

Table 2
Study 2 odor name stimuli.

Odor Association ‘Similars’

Natural gas Stove e.g., rotten eggs, exhaust fumes
Gasoline Petrol station e.g., paint, oil
Rotten eggs Rotten eggs e.g., rotten vegetables, sweat

for these smells and we therefore expected these smells to benefit
most from additional stimuli to aid recognition (see Table 2).

Each participant was exposed to only one of five on-screen
stimulus conditions:

• Textual: The participant could select a name that best
matched the odor from a list of 25 words.

• Image: The participant could select an image that best
matched the odor from a list of 25 images (see Fig. 9).

• Text/image: The participant could select a text/image that
best matched the odor from a list of 25 text/image associa-
tions.

• Pleasantness: The participant could provide feedback on a
7-point pleasantness scale: ‘How pleasant do you think this
odor smells?’.

• Free recall: Participants were asked to fill in the name of
the odor in a textbox. They were not provided with any
additional stimuli.

The between-subjects designmeant that a participantwould be
exposed to only one stimulus (for instance images), he or she first
smelled the odor, and was then exposed to all the available image
cues so that they could click on the figure that best represented the
smell they perceived.

In the environmental monitoring system that is developed, the
system would generate hypotheses about potential gases in the
environment, each associated with a calculated probability. The
users’ odor identifications would help to reduce the number of
hypotheses and determine the gas that is in the air. This study is
designed to closely replicate such a situation.

A new variable was calculated to measure user accuracy: two
researchers coded all user responses. An ‘accurate’ score was as-
signed to every selection that directly represented the odorant
(e.g., ‘Rotten eggs’ for rotten eggs) or through selection of ‘similar
descriptors’ as identified from phase 1 (e.g., ‘Oil’ for ‘Gasoline’). An
‘inaccurate’ score was assigned when the odor was not identified.

Results showed a significant difference in accuracy be-
tween free recall and the stimulus conditions combined (U =

1906.00, Z = −1.982, p = 0.048). When comparing accuracy
means (1 = direct; 2 = ’similar’, and 3 = wrong), partici-
pants were most accurate in the image stimuli condition (M =

1.35, SD = .49), the image and word combined condition (M =

1.42, SD = .50), and then the word only condition (M = 1.54,
SD = .50). They were least accurate in the free recall condition
without any stimuli (M = 1.63, SD = .49).

The results of our studies indicate that interactive stimuli in-
deed improve human smell identification performance. The results
show that participants thought that providing an image and word
stimulus was most pleasant and useful. Moreover, we found a sig-
nificant difference in accuracy between free recall and the stimulus
conditions combined. No significant difference in accuracy was
found for the 4 stimulus conditions. When comparing accuracy,
participants were most accurate in the image stimuli condition,
the image and word combined condition and then the word only
condition. They were least accurate in the free recall condition
without any stimuli.

Development of a visual interface supporting human olfactory percep-
tion

Based on the results of the previous study we were able to
develop an adaptive interface of a mobile application for the
Android operating system. This application is connected to a
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Fig. 9. Visual cues presented in 2nd study.

distributed environmental monitoring and decision-making sys-
tem. The environmental monitoring system detects anomalies in
the air quality through chemical sensors or complaints from in-
habitants. It consequently calculates hypotheses concerning the
gases that are the most likely pollutants. Inhabitants in the area
are contacted through their mobile phones and requested about
potentially perceived smells in order to inform the detection sys-
tem and to eventually support or reject hypothesis based on this
newly received evidence. The adaptive interface on participating
volunteers’ mobile phones dynamically generates and displays
visual and textual cues related to the hypothesized gases. The user

can then select the image/text combination that most accurately
represents the smell they perceive.

For our application we developed a Bayesian Network, which
contains the relations between the presence of the three gases H2S,
mercaptan andoil/gasoline and the observation of answers to three
types of questions illustrated in Fig. 10. The questions we use for
classification make use of a word/image combination, ratings of
the smell on a pleasantness scale and classifying the gas into a
category.

Within the context of the overarching environmental monitor-
ing project the goals of the mobile application are twofold: First,
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Fig. 10. Screenshots of the prototype app.

concerned citizens can file a complaint and inform responsible en-
vironmental monitoring agencies about unusual and unfavorable
smells at their current location. Second, the system can inquire
about users’ smell perceptions in a potentially affected area, which
are then communicated to the central detection system, in order
to determine the likelihood, severity, and location of an incident.

The interface offers users one of three stimulus screens (see
Fig. 10) based on which kind of feedback promises the highest
information gain for the underlying Bayesian Network-based gas
detection system. (1) A screen which shows visual and textual
cues, as tested in this study. (2) A 7-point pleasantness scale to
indicate the subjective pleasantness of the perceived odor and
(3) a screen allowing to select whether the user perceives the
smell as oily, chemical, or gaseous (which allows the gas detection
system to make critical computations concerning the likelihood
and criticality of a gas pollution). The selection of stimuli is based
on Bayesian reasoning processes concerning possible substances
derived fromalready available information fromstationary sensors
or earlier reports from concerned citizens.

As a proof of context implementation, the application is based
on a simple HTTP client–server architecture implemented with
the Web framework Django (www.djangoproject.com) and a trial
version of the Bayesian decision-network toolHUGIN (www.hugin.
com) on the server side, and Android (www.android.com) on the
client side.

The conditional probabilities entered in the Bayesian Network
are mostly approximations, whereas some stem from unpublished
research. By iterating over all the leaf nodes of our Bayesian Net-
work, which represent (possible) answers given by our users, we
candeterminewhichquestion is going to give us themost discrimi-
native information. This is done by ‘clamping’ a node, whichmeans
selecting a possible state/answer for that node, and observing the
difference in probability for the states in the topmost node. The
leaf node that shows the biggest difference and thus is the most
informative is then sent back to the users in the form of a ques-
tion. By answering that question, the user effectively permanently
‘clamps’ this node and all the probabilities in the network are
updated. When asked for the most informative node again, the
systemwill return a new (unclamped) node which, given the state
the network is in, is now the most informative. This process starts
up every time a person indicates that there has been an incident

and via this question selection scheme speeds up the gathering
of useful information. This is even more the case when many
different questions are added. Also the concept of using tailor-
made questions for users seems powerful. For instance, different
word/picture combinations can be presented to a user when the
system requires information about some particular examples.

Based on these findings, we built an initial prototype of amobile
interface that allows users to report unusual and/or unpleasant
odors via a combination of visual and textual cues. We expect
that this kind of ‘social environmental sensing’ will considerably
improve early detection of environmental incidents in the near
future.

To our knowledge, the study reported here was the first
large-scale user study to inform the development of a system to
facilitate human smell perception and labeling in amobile applica-
tion. We have shown that computer-supported odor classification
benefits from particular types of graphical user interface stimuli.
Both perceived enjoyment and usefulness were highest for the
picture plus word stimuli condition, which is a crucial finding for
mobile applications designed for environmental monitoring that
heavily relies on participation from volunteers. Interestingly, we
also found that pleasantness is indeed a differentiating indicator
of smell perception. In our studies pleasantness ratings differed
significantly across smells.

7. Twitter as real-time stench locator

The use of social media gives new additional ways to detect and
locate stench. Twitter has been shown to be a suitable source of
certain information as there are over 300 million twitter accounts
and the communication is almost real time. In addition, many
tweets are taggedwith geographical information. There are already
several approaches proposed to use twitter as a monitoring tool,
such as in event detection of flu symptoms in a population [32] or
for earth quake alerts [33].

Sincemany stench related keywords are part of daily life simple
twitter mining is not sufficient. We developed a method [34] that
calculates a probability score for the detection of anomalies and
that also takes into account social factors, such as day and night
rhythm and geographical distribution of users.

http://www.djangoproject.com
http://www.hugin.com
http://www.hugin.com
http://www.hugin.com
http://www.android.com
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Fig. 11. This figure shows on the left a screenshot of the interface. On the right are two graphs of stench related tweets. The upper graph shows the actual number of tweets
as well as the expected number. In the lower graph the difference between the two is visualized. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

In this work, we monitor all tweets that contain stench related
keywords in a certain area. To detect anomalies we have to model
the expected spatio-temporal twitter activity of stench related
keywords when no incident happens. The differences between the
actual and the expected numbers of stench related tweets forms
the basis for the detection of anomalies and the highlighting of
those differences for real-time visualization of potential events.

Wemodel the occurrences as a non-stationary Poisson process,
i.e. a Poisson process with a varying rate parameter. In our case we
model the tweet rate λ as a function of both space and time. For a
certain time interval the expected number of observations can be
obtained by integrating over the time interval and area.

We are interested in the probability of the number of observa-
tions our model generates in a ‘normal’ situation plus an unknown
number of incident related tweets. We gauge this by calculating
the probability that the observations are caused by a model with
a higher rate parameter λ. For any time window and area this is
calculated based on the following formula:

P(anomaly|n, λM ) =

∫
∞

λM

Pois(λ, n)dλ

= 1 −

∫ λM

0
Pois(λ, n)dλ. (3)

Here, λM is the expected rate derived from our space–time model
M, n is the observed number of tweets, and Pois is the Poisson
distribution’s probability mass function.

A set of 93 predefined queries of pollution related keywords and
phraseswere issued to a Twitter search engine. The keywordswere
obtained from complaint logs of a regional environmentalmanage-
ment agency from a list of human smell descriptions of industrial
gases. If exact geographical coordinates were available (which is
the case for many tweets sent from current smart phones), those
were used. Otherwise, the filtering was based on user-provided lo-
cation labels, whichwe transformed into geographical coordinates

using Google’s Geocoding API. Over 120.000 tweets containing one
or more ‘smelly’ keywords from over 50.000 users in NL were
obtained during the data collection period. Of these tweets, 72%
had a location from which 44% was exact and 55% approximate.

Locations of relevant tweets are plotted on a map that is cen-
tered and focused on the Netherlands: the location of interest.
Visualizing spatial data on a two dimensional plane allows for
detection of correlations and clusters in the patterns formed by the
data points. High densities of relevant tweets at a certain location
provide users of the system with a first indication of potential
anomalies. The map is augmented with a visual representation of
the anomaly: for every location, the probability of an anomaly is
translated into a color value, ranging from green (very improbable)
to red (highly probable), as can be seen in Fig. 11. The resulting
image is added as a semi-transparent overlay to the map. The
upper figure on the right indicates the actual number of relevant
tweets in blue and the expected number of tweets in green. In the
lower figure the difference is shown between the actual and the
expected number of tweets together with a threshold abovewhich
an anomaly is detected.

As no major incident happened during the data collection pe-
riod, we manually collected a random sample of tweets and com-
pared that to actual pollution incidents The preliminary evaluation
revealed that while most tweets containing pollution-related key-
words did not actually report ‘serious’ visual or olfactory observa-
tions, twomajor fires were indeed detected and highlighted on the
system’s map. This illustrates that the system is capable of detect-
ing pollution-related anomalies. However, there were also many
occasions where the system did not detect incidents. Although this
preliminary system can be improved in number of aspects it shows
the potential of using social media data as an additional source of
information in environmental systems.
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8. Conclusions

Realworld problems such as environmentalmonitoring require
a close cooperation between humans and intelligent agents. In
these systems a human does not only interact with the environ-
ment and is a user of information but also forms an essential
source of information. The challenge is to design robust distributed
systems that fuse heterogeneous and dynamic information from
humans and intelligent agents to support decision making. In this
paper we focus on two essential aspects of such systems: the
robustness of information fusion and decisionmaking and optimal
human interaction. The application of this paper is a system to
monitor air quality and to detect environmental incidents in an
urban area.

Modular BayesianNetworks in conjunctionwith InferenceMeta
Models were presented as a solid basis for the development of
efficient and reliable fusion systems, which support situation as-
sessment in environmental monitoring. It creates the possibility to
add and deletemodules on the fly resulting in a kind of data-driven
fusion. This gives the possibility to deal with ad-hoc constellations
of information sources as it is difficult to provide adequate domain
models prior to the operation in these types of applications If
many information sources are available, we can obtain BNs corre-
sponding to factor trees with large branching factors which make
fusion reliable even ifwe use parameters that deviate from the true
distributions significantly.

As this paper concerns the detection and tracking of gases, the
human interface is an interface for human olfactory perception. A
mobile application was developed that assists users in identifying
the smells they perceive to increase the accuracy of the overall en-
vironmentalmonitoring system. In order to create such a dedicated
mobile application we investigated the effect of multi-modal odor
cues on human smell identification. Our experiments show that
both a combination of text and picture descriptors and individual
pleasantness ratings are useful to accurately identify smells when
the number of smells is limited (as it is the case in an industrial
area) and the sample size is large enough.

Promising is also the use of social media. We showed in a
preliminary study that stench related tweets form an additional
source of information to detect environmental incidents.

In this paper we presented a concept of which the components
have been validated but still an effort of integration and extensive
testing is needed to see how the distributed agent–human system
organizes itself and works together. In particular with respect to
the primary user of the system: the environmental agency, which
forms the ‘spider in the web’. This agency is responsible for the
handling of chemical incidents and decides about the measures to
be taken. They are also responsible for the deployment of sensors
and can involve experts in the field in case of an chemical incident
as additional sources of information.

The application of this paper is in the domain of environmental
protection and a human–agent system for monitoring air pollu-
tion. However, the solutions can be generalized to other domains
were (sensor) agents and humans share and fuse information in
a distributed setting. Potential other application domains are for
instance dynamic traffic routing, fire monitoring and dynamic
selecting escape routes, weather monitoring and local road con-
ditions, search and rescue.

One contribution of this work is the presented Modular
Bayesian Networks and Inference Meta Models, which offer re-
liable dynamic fusion when modules come and go. So it is easy
to fuse human information where humans supply information on
the fly. Another contribution is the developed human interaction
with the system. The smell study reported here was the first large-
scale user study to inform the development of a system to facilitate
human smell perception and labeling in a mobile application.

The work reported in the paper has laid the basis for robust
information fusion in environmental management when humans
and sensor information has to be dynamically fused. Future re-
search should involve full integration and large scale testing of the
system. Also dynamic selection of places and persons from which
the informationwill decrease the uncertaintymost is an important
issue.

The impact on environmental management of these type of
intelligent systems can be substantial, as currently it is common
practice in agencies to handle incoming complaints through phone
calls by hand.

Acknowledgments

The presented work was partially funded by the European
Union, FP7-ICT project DIADEM, ref. no. 224318 and the Dutch
Ministry of Economic Affairs, ICIS project ref. no. BSIK03024.

References

[1] A. Winterboer, M.A. Martens, G. Pavlin, F.C.A. Groen, V. Evers, DIADEM: a
system for collaborative environmental monitoring, in: Proceedings of the
ACM 2011 Conference on Computer Supported Cooperative Work, 2011,
pp. 589–590.

[2] S. Asadi, M. Reggente, C. Stachniss, C. Plagemann, A.J. Lilienthal, Statistical gas
distributionmodelling using kernel methods, in: E.L. Hines, M.S. Leeson (Eds.),
Intell. Syst. for Machine Olfaction: Tools and Methodologies, IGI Global Pub.,
2011, pp. 153–179 (Chapter 6).

[3] A.J. Lilienthal, S. Asadi, M. Reggente, Estimating predictive variance for statis-
tical gas distribution modelling, in: Proc. Int. Symp. Olfaction and Electronic
Nose-2009, in: AIP Conf. Proc., vol. 1137, 2009, pp. 65–68.

[4] F. Mignet, G. Pavlin, P. de Oude, P.C.G. da Costa, Evaluating complex fu-
sion systems based on causal probabilistic models, in: FUSION 2013, 2013,
pp. 1590–1599.

[5] G. Pavlin, P. de Oude, F. Mignet, Gas detection and source localization: A
Bayesian approach, FUSION 2011, 2011, pp. 1–8.

[6] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann, Burlington, 1988.

[7] A. Keats, E. Yee, F.-S. Lien, Bayesian inference for source determination with
applications to a complex urban environment, Atmos. Environ. 41 (3) (2007)
465–479.

[8] U. Konda, Y. Cheng, T. Singh, P. Scott, Source identification of puff-based
dispersion models using convex optimization, in: Proceedings of the 13th
Conference on Information Fusion, UK, July, 2010.

[9] K.S. Rao, Source estimation methods for atmospheric dispersion, Atmos. Env-
iron. 41 (33) (2007) 6964–6973.

[10] G. Pavlin, P. de Oude, M. Maris, J. Nunnink, T. Hood, A multi-agent systems
approach to distributed Bayesian information fusion, Inf. Fusion 11 (3) (2010)
267–282.

[11] F.R. Kschischang, B.J. Frey, H.-A. Loeliger, Factor graphs and the sum–product
algorithm, IEEE Trans. Inf. Theory 47 (2001).

[12] M.A. Paskin, C.E. Guestrin, Robust probabilistic inference in distributed sys-
tems, in: Proceedings of the 20th Annual Conference on Uncertainty in Artifi-
cial Intelligence, UAI-04, Banff, Canada, AUAI Press, 2004, pp. 436–445.

[13] Y. Xiang, Probabilistic Reasoning in Multiagent Systems: A Graphical Models
Approach, Cambridge University Press, Cambridge, 2002.

[14] G. Pavlin, J. Nunnink, Inference meta models: Towards robust information
fusion with Bayesian networks, in: The Ninth International Conference on
Information Fusion, Florence, Italy, 2006.

[15] P. de Oude, G. Pavlin, Efficient distributed Bayesian reasoning via targeted
instantiation of variables, in: IAT 2009, 2009, pp. 323–330.

[16] N. Jennings, K. Sycara, M. Wooldridge, A roadmap of agent research and
development, Auton. Agents Multi-Agent Syst. 1 (1998) 7–38.

[17] R.A. van Engelen, ApproximatingBayesian belief networks by arc removal, IEEE
Trans. Pattern Anal. Mach. Intell. 19 (8) (1997) 916–920.

[18] S.P. van Gosliga, F.C.A. Groen, Estimating the impact of variables in Bayesian
belief networks, in: Tenth Tbilisi Symposium on Language, Logic and Compu-
tation: Gudauri, Georgia, 23–27 September 2013, Tbilisi: Centre for Language,
Logic and Speech, and Razmadze Mathematical Institute, Tbilisi State Univer-
sity, 2013, pp. 87–90.

[19] E. van Foeken, P. Hiemstra, L. Kester, An improved method for creating shared
belief in communication constrained sensor networks, in: 4th German Work-
shop Sensor Data Fusion: Trends, Solutions, Applications SDF2009, Lübeck,
Germany, 2009.

[20] R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis, John Wiley &
Sons, New York, 1973.

[21] C. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag, Berlin,
2006.

http://refhub.elsevier.com/S0921-8890(16)30472-9/sb1
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb1
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb1
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb1
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb1
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb1
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb1
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb2
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb2
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb2
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb2
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb2
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb3
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb3
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb3
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb4
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb4
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb4
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb4
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb4
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb5
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb5
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb5
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb6
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb6
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb6
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb6
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb6
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb7
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb7
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb7
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb8
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb8
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb8
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb8
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb8
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb9
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb9
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb9
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb10
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb10
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb10
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb11
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb11
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb11
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb12
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb12
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb12
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb13
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb13
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb13


F.C.A. Groen et al. / Robotics and Autonomous Systems 90 (2017) 71–85 85

[22] Y. Yeshurun, N. Sobel, An odor is not worth a thousand words: From multidi-
mensional odors to unidimensional odor objects, Annu. Rev. Psychol. 61 (2010)
219–241.

[23] J. Kaye, Aromatic output for HCI, Interactions 11 (1) (2004) 49–61.
[24] W.S. Cain, To know with the nose: Keys to odor identification, Science 203

(1979) 467–470.
[25] C. Murphy, W.S. Cain, M.M. Gilmore, R. Blair Skinner, Sensory and semantic

factors in recognition memory for odors and graphic stimuli: Elderly versus
young persons, J. Psychol. 104 (2) (1991) 161–192.

[26] R. de Wijk, W.S. Cain, Odor quality: description versus free and cued identifi-
cation, Percept. Psychophys. 56 (1) (1994) 12–18.

[27] J. Gottfried, R. Dolan, The nose smells what the eye sees: Cross-modal visual
facilitation of human olfactory perception, Neuron 39 (2) (2003) 375–386.

[28] G. Morrot, F. Brochet, D. Dubourdieu, The color of odors, Brain Lang. 79 (2)
(2001) 309–320.

[29] M.L. Demattè, D. Sanabria, C. Spence, Cross-modal associations between odors
and colors, Chem. Senses 31 (2006) 531–538.

[30] A.N. Gilbert, R.Martin, S.E. Kemp, Cross-modal correspondence between vision
and olfaction: The color of smells, Am. J. Psychol. 109 (3) (1996) 335–351.

[31] A.K. Winterboer, V. Evers, F.C.A. Groen, G. Pavlin, A Visual Interface for Aug-
mented Human Olfactory Perception in the Context of Monitoring Air Quality,
Technical report, University of Amsterdam, 2011.

[32] V. Lampos, N. Cristianini, Tracking the flu pandemic by monitoring the social
web, in: Workshop on Cogn, Inform. Proc., CIP’10, 2010, pp. 411–416.

[33] P. Earl, Earthquake twitter, Nature Geosci. 3 (2010) 221–222.
[34] H. Smid, P. Mast, M. Tromp, A. Winterboer, V. Evers, ‘‘Canary in a coal mine’’:

monitoring air quality and detecting environmental incidents by harvesting
Twitter, in: Proceedings of the 2011 Annual Conference Extended Abstracts
on Human Factors in Computing Systems, 2011, pp. 1855–1860.

Frans Groen is professor emeritus of the University of
Amsterdam. He obtained hisM.Sc. degree (cum laude) and
his Ph.D. degree in Applied Physics from the Delft Univer-
sity of Technology. From 1970 to 1988 his was a scientific
staff member of the Pattern Recognition Group at the
Applied Physics Department of the TU-Delft, where hewas
responsible for the robotics activities. In 1988 he became
full professor at the Computer Science Department of the
University of Amsterdam, heading the research in Intelli-
gent Autonomous Systems. He served as cross-appointed
full professor at the Free University of Amsterdam from

1986 to 1996. He was a Fulbright research scientist in 1984 at the Robotics Institute
at CMU and in 1996 as visiting professor at the University of Utah. He was an
advisor of TNO D&V, the National Dutch Research Lab for Defense and Safety. From
2001 to 2007 he served as director of the Informatics Institute of the University of
Amsterdam. He is a fellow of the IEEE.

His current research interests are in sensor data processing for autonomous
real-worldmulti-agents systems, dynamic distributedworldmodeling anddecision
making.

Gregor Pavlin is senior researcher and project manager at
Thales Nederland B.V. He received his Ph.D. in computer
science from the Graz University of Technology, Austria
in 2001. He has extensive industrial experience in de-
velopment of complex, safety critical airborne software
systems. His current research interests are algorithms,
modeling techniques and architectures supporting robust
decentralized information fusionwith humans in the loop.
The emphasis is on the exploitation of causal Bayesian
models for the development of sound solutions using het-
erogeneous data from noisy sources.

Andi Winterboer is a senior consultant at VDI/VDE In-
novation + Technik GmbH in Berlin. VDI/VDE Innovation
+ Technik GmbH, is a service provider for the German
Federal Ministry of Education and Research, where he is
responsible for technology screening on all topics related
to human–computer interaction. He obtained his Ph.D. in
Artificial Intelligence from the University of Edinburgh in
2009. Before joining VDI/VDE Innovation + Technik GmbH
in 2011 he was a postdoctoral researcher at the Intelligent
Systems Lab (ISLA) at the University of Amsterdam partic-
ipating in the EU FP7 project DIADEM.Within this project,

he worked with Professor Vanessa Evers on human–computer interaction aspects
of a system that detected potentially hazardous situations in heavily populated
industrial areas using input from both a distributed sensor network and humans
through mobile devices.

Vanessa Evers is a full professor of Computer Science at
the University of Twente Human Media Interaction group
and Director of the DesignLab for multidisciplinary re-
search. She received a M.Sc. in Information Systems from
the University of Amsterdam, and a Ph.D. from the Open
University, UK. During her Master studies she spent two
years at the Institute of Management Information Studies
of the University of New South Wales, Sydney. After her
Ph.D. she has worked for the Boston Consulting Group,
London and later became an assistant professor at the
University of Amsterdam Institute of Informatics. She was

a visiting researcher at Stanford University (2005–2007). Her research interests
focus on interaction with intelligent and autonomous systems such as robots or
machine learning systems as well as cultural aspects of Human–Computer Interac-
tion. She has published over 80 peer reviewed publications, many of which in high
quality journals and conferences in human–computer interaction and human robot
interaction.

http://refhub.elsevier.com/S0921-8890(16)30472-9/sb14
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb14
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb14
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb14
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb14
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb15
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb16
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb16
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb16
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb17
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb17
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb17
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb17
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb17
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb18
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb18
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb18
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb19
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb19
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb19
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb20
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb20
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb20
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb21
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb21
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb21
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb22
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb22
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb22
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb23
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb23
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb23
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb23
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb23
http://refhub.elsevier.com/S0921-8890(16)30472-9/sb24

	A hybrid approach to decision making and information fusion: Combining humans and artificial agents
	Introduction
	Problem description
	Bayesian models and inference 
	Distributed fusion
	Modeling and robust information fusion
	A visual interface for augmented human smell perception
	Twitter as real-time stench locator
	Conclusions
	Acknowledgments
	References


