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Abstract

Multi-sensor perception have an important role in robotics and au-
tonomous systems, as inputs for critical functions such as obstacle detec-
tion, localization, etc. This Multi-sensor perception begins to appear in
critical applications, such as drones and ADAS (Advanced Driver Assis-
tance Systems). However such complex systems are di�cult to validate
entirely. In this paper we study these systems under an alternative de-
pendability method: fault tolerance. We propose an approach to tolerate
faults in multi-sensor data fusion based on the more classical method of
duplication-comparison, and o�ering detection and recovery services. We
detail an example implementation using Kalman �lters data fusion for
mobile robot localization. We demonstrate its e�ectiveness in this case
study using real data and fault injection.

Keywords: Data fusion, Multi-sensor Perception, Dependability, Fault
tolerance

1 Introduction

Perception is a fundamental input to any robotic system. However, data per-
ceived by such systems are often complex and subject to signi�cant uncertainties
and inaccuracies.

To overcome these problems the multi-sensor approach resorts to data from
multiple and complementary sensors, and uses their redundancy to �lter noises,
eliminate some aberrant data, increase the precision of perception, and extract
complex knowledge about the environment. But multiplying sensors and the
underlying data fusion algorithms consequently increases the risks of hardware
and software faults. Moreover, the validation of this approach encounters two
major problems:
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� First, fusion algorithms are part of the declarative programming paradigm,
which consists in describing a problem and the system in way to reach a
decision. This paradigm is often used in arti�cial intelligence applications
such as planning, but is harder to understand and validate than imperative
programming (which is the description of successive steps to execute).
Generally, declarative programming approaches are nowadays forbidden in
critical system standard. For example, the EN 50l28[1] railway standards
states that arti�cial intelligence software are not recommended in critical
applications, whereas procedural programming (that is part of imperative
paradigm) is highly recommended. For this reason the behavior of fusion
algorithms is hard to predict, making them di�cult to validate by formal
approaches, such as formal model and proof checking.

� Second, the open environment which complex robotic systems are con-
fronted to also generates a near-in�nite execution context. In validation,
execution context refers to the di�erent possible situations that the sys-
tem may be confronted to. In open environment, this context is deemed
near in�nite because obstacles may appear at any moment in many di�er-
ent ways, lighting and wind conditions may vary, etc. As such, validation
of automobile systems require thousand and thousand of hours passed
driving on roads, with no certainty that all possible situations have been
encountered. For this reason testing is a di�cult, long and costly opera-
tion.

An alternative to this validation is the development of fault tolerance mecha-
nisms: since it is di�cult to remove all faults in the system, we will seek to limit
their impact on its functions.

In this paper, we thus focus on the issues of fault tolerance in multi-sensor
perception systems, which is a fundamental input for any autonomous robotic
system. In our approach we propose an architecture based on duplication / com-
parison to detect and diagnose faults in a data fusion mechanisms. We illustrate
it by an example application for mobile robot localization using Kalman �lter
data fusion, and we detail its fault tolerance services such as faults detection and
system recovery suitable for multi-sensor perception to ensure their reliability.

This paper is organized as follows: after this introduction, section 2 sum-
marizes concepts and related works on fault tolerance in data fusion. Section
3 describes our proposed architecture, and details its fault tolerance services
such as fault detection and system recovery. Section 4 describes an intelligent
vehicle localization application that implements our duplication-comparison ap-
proach, and section 5 presents our experimental study validating our approach
using real data and fault injection. Finally the paper ends with conclusions and
perspectives for future works.
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2 Concepts and related work

This paper studies two di�erent domains, each using speci�c terminologies and
concepts. Dependability centers on the notion of fault, as a potential cause of
system failures, and o�ers various means, including fault tolerance, to deal with
it. Data fusion intends to merge di�erent sensor outputs to better perceive the
system's environment. Both fault tolerance and data fusion use redundancy, but
the former tries to detect and tolerate internal faults, while the later focuses on
aleas in an open and shifting environment. This section introduces the concepts
of both these domains. It �rst describes the concepts related to dependability,
that encompasses fault tolerance, then presents Kalman �lters data fusion. It
�nally proposes a state of the art regarding fault tolerance mechanisms in data
fusion.

2.1 Dependability

A system's dependability is its ability to deliver a service that can justi�ably
be trusted[2][3]. This notion encompasses three di�erent concepts: (a) its at-
tributes, the expected properties of the system, (b) its threats, unacceptable
behaviors of the system that are causes or consequences of a lack of depend-
ability, (c) its means, methods that allow a system to dependably perform its
function (that is by placing a justi�ed con�dence in the service it delivers). For
more information on general concepts in dependability, the reader may refer to
[2] and [3].

� The attributes of dependability are properties that a system must ver-
ify. Six main attributes are de�ned: (a) Availability: readiness for correct
service. (b) Reliability: continuity of correct service. A system is reliable
if it delivers continuously and correctly its service for a speci�ed period.
(c) Maintainability: ability to undergo modi�cations and repairs. It char-
acterizes the ability of a system to be returned quickly from a failure to an
operational state in which it can perform its required functions. (d) Safety:
absence of catastrophic consequences on the user(s), the system, and the
environment. (e) Con�dentiality: absence of unauthorized disclosure of
information. (f) Integrity: absence of improper system alterations.

In this work we particularly focus on two attributes of dependability:
safety and reliability. Note that trying to achieve both of these attributes
may be contradictory. Indeed, for an autonomous vehicle in a danger-
ous situation, safety may require to stop and assess the situation, while
reliability would ask to continue the performed service.

� Threats are undesirable behaviors of the system. They are of three types:
faults, errors and failures. These threats are linked by a causal relation-
ship: the fault is the adjudged or hypothesized cause of an error, while the
error is likely to result in a failure as shown in Figure 1. In this �gure the
decisional system A takes as input the output of the perception system B,

3



Sensor
B

Error
Perception System

Fault

Error
Decisional System

A

Fault

Failure Failure

Figure 1: Causal chain

so the correct service of A depends on the correct service of B. For A, the
failure of B is considered as an external fault, which in turn can cause an
internal error in A, then �nally the failure of A.

Perception in a robotic system being the basis upon which the system
takes action, it is vital to avoid incorrect behavior, as failures could lead
to the failure of the system as a whole.

� Means have been designed to counter the previous threats. They are
classi�ed into four types: (a) Fault prevention, that is how to prevent the
occurrence or introduction of faults in the system, (b) Fault tolerance, that
is how to allow a system to properly ful�ll its function in the presence of
faults, (c) Fault removal, that is how to reduce the presence (both number
and severity) of faults in a system, (d) Fault forecasting, that is how to
estimate the presence, the creation and consequences of faults in a system.

2.1.1 Fault tolerance

One of the four means of dependability, fault tolerance aims to ensure proper
delivery of a system's services despite the presence of faults. Fault tolerance is
principally carried out via error detection and system recovery.

� Error detection is a prerequisite for the implementation of fault tolerant
solutions. It aims to detect the erroneous state of the system before it
propagates to system failures. There are three main methods for error
detection.

1. Duplication-comparison: it consists to compare the results from at
least two redundant units that are independent to the faults to tol-
erate and provide the same service.

2. Temporal watchdog: it consists to check a temporal error in a system
by controlling its response time which should not exceed a maximum
value (time out).

3. Likelihood checks: it seeks to detect errors by checking against aber-
rant values in the system state.
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� System recovery allows the substitution of an error-free state to the
erroneous state. This substitution can be made in three ways:

1. Recovery: the system is restored to a correct state that occurred
before the occurrence of the error. This correct state must have been
previously saved by the system.

2. Pursuit: a new state is found from which the system can function
properly (eventually in a degraded mode).

3. Error compensation: the erroneous state contains enough redun-
dancy to allow its transformation into a correct state.

2.2 Data fusion

Information fusion consists in combining information from multiple sources to
improve decision making[4]. Data fusion systems are widely used in various
�elds especially robotics for di�erent applications, such as navigation, obstacle
detection, object tracking, etc.

In localization applications, the most used data fusion approach is the Kalman
�ltering. In the following section we present the main concepts of the Kalman
�lter data fusion algorithm, which we use in our application to locate a mobile
robot in its environment.

2.2.1 Kalman �lters data fusion algorithm

Kalman �lter in data fusion consist in estimating the unknown state of the
system, and systematically correcting this estimation through observation. This
is achieved through sets of sequential calculations to provide a best estimate of
the system's state variables, with at each step a correction proportional to the
error between the current prediction and sensors outputs. This method has been
widely applied in many robotic applications [5] [6] [7] [8] (such as autonomous
navigation, target tracking and localization).

We consider a discrete-time system model (equation 1) and a discrete-time
observation model (equation 2) :

Xk = AXk−1 +BUk−1 + wk (1)

where Xk is the state vector, Uk−1 the command vector, wk a zero mean white
gaussian noise with an assumed known covariance matrix Qk, A the known state
transition matrix, and B the known control transition matrix.

Zk = HXk + vk (2)

where Zk is the observation vector of the sensor, and vk the white gaussian ob-
servation noise for the sensor with zero mean and an assumed known covariance
matrix Rk.
A multi-sensor Kalman �lter for data fusion can be computed using these two
models as a prediction step (equation 3) and a correction step (equation 4).
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1. Prediction step: The corrected estimated state of the previous time step
X̂+
k−1, and the command input Uk−1 are used to produce an estimate of

the current state X̂−
k and its predicted uncertainty P−

k :{
X̂−

k = AX̂+
k−1 +BUk−1

P−
k = AP+

k−1A
T +Q

(3)

2. Correction step: Once the observation Zk is available, the predicted
state X̂−

k can be corrected by introducing Ŝk (and its associated covari-
ance Sk) weighted by the Kalman �lter gain Kk, thus obtaining the more
accurate estimation state X̂+

k and its covariance matrix P+
k .

Ŝk = Zk −HX̂−
k

Sk = HP−
k H

T +R
Kk = P−

k H
TS−1

k

X̂+
k = X̂−

k +KkŜk

P+
k = (Id−KkH)P−

k

(4)

Note that Ŝk is the residual of the Kalman �lter, thereafter known as Res. Also
note that, in our opinion, A, B, Q and R are particularly susceptible to design
faults, as Q and R are generally determined empirically after some experiments,
and A and B are part of a model that may be hard to validate exhaustively.

2.3 Fault tolerance in data fusion

To our knowledge, few studies exist on fault tolerance in data fusion. The ap-
proaches we have found in the literature mainly use fault tolerance by duplica-
tion / comparison, that we have categorized in two di�erent classes: duplication
based on an analytical model of the fusion process, and duplication based on
hardware redundancies.

An example of duplication based on an analytical model of the fusion process
is [9], where a Kalman �lter is used as a mathematical model to propose an hy-
brid multi sensor data fusion architecture integrating Kalman �ltering and fuzzy
logic techniques. The main characteristics of this architecture is its tolerance
to permanent and transient sensor faults. This tolerance is obtained by using
the optimality of the Kalman �lter and the capability of fuzzy systems to deal
with imprecise information using fuzzy sets and common sense rules. In this
architecture the transient faults are detected using a residual technique, and
permanent faults are detected by a voting method [10]. In [11] the authors pro-
pose an architecture for fault-tolerant sensors. This approach uses an abstract
sensor system [12] which is embedded in a virtual sensor to improve the sensor
characteristics in the presence of noise and failures. By using a mathematical
model to evaluate redundant sensor data, this approach achieves a more reliable
position estimation. [13] proposes a state of the art concerning fault detection
and isolation techniques based on analytical redundancy. These techniques are
based on the generation of residuals using a mathematical model, and their
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evaluation to detect and isolate faults in a dynamic system. It details the dif-
ferent residual generation techniques, including those based on Kalman �lter,
Thereafter a decision logic generally based on thresholding technique is applied
to evaluate the residuals to detect and isolate faults. The authors noted that
when the analytical model is uncertain, these techniques become problematic.
In this case, they suggest to use knowledge based methods.

The approaches based on hardware redundancies use the analysis of some
internal parameters (such as the con�ict) to ensure fault tolerance. In [14] the
authors discuss the detection of a malfunction by the temporal analysis of the
con�ict resulting from the fusion of data sources, based on the Transferable
Belief Model (TBM) of Smets [15] [16]. The authors propose to merge data
sources pairwise and take into account the evolution of con�ict (as de�ned by
Smets) resulting from the fusion. A source is considered defective if its con�ict
with others are high. After recognition of the failed source the authors suggest
to weaken its in�uence on the �nal decision, by associating reliability indices
and using the discounting technique proposed by Shafer [17]. This weakens the
source's masses and increases their discounting factor without discarding con-
�icting sources completely. In [18], an algorithm to detect a defective source
by analyzing the reliability of each source is proposed. To each source are as-
sociated two reliabilities: static reliability represents the quality of the source
whereas dynamic reliability indicates con�ict between this source and the others.
Global reliability of the source is then based on the two previous reliabilities.
This global reliability serves as a discounting factor to weight belief masses given
by the sources before they are combined. Assuming that the con�ict comes from
a defective source, the authors analyze the discounting factor (global reliability
of sources) to detect the erroneous source using a thresholding method. In [19]
a similar approach was proposed by the same authors in the speci�c context
of the possibility theory. In [20] D-S theory is used to resolve the interval es-
timation problem in the context of wireless sensor networks. In this method
the data fusion merges N intervals to estimate the smallest one tolerating f
hardware faults. In [21] an adaptive technique was used to weight the sensor
outputs in multisensor data fusion process. This technique uses the standard
deviation of each sensor (estimated by statistics and a temporal factor related to
previous data) to calculate a discounting factor of the sensor outputs and uses it
in data fusion process to ensure fault tolerance and weaken the negative e�ects
of aging hardware. [22] presents approaches of data fusion for inertial network
systems. In these systems, the authors use redundant nodes that are structured
hierarchically. Most nodes play the role of slaves while one plays the role of
master, which will realize the global fusion. Di�erent transformation matrices
(rotation and translation) are developed to ensure the alignment of measures.
A Kalman �lter is used as fusion algorithm. The authors use the IMU redun-
dancy to ensure fault masking and to have more precise outputs. In [23] Peng
et al propose a diagnosis method in analog circuits combining neural network
and evidential reasoning. This method follows two steps. First, a preliminary
diagnosis is implemented using a neural network on a preselected set of test
signals to construct a mapping between sensors output and erroneous states.
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Second, an evidential reasoning using D-S theory is employed to merge di�erent
possible fault patterns to get the correct one. In our opinion such a diagnosis
could not be used on critical systems, because the mapping in the �rst step is
based on training, that could be not exhaustive or deciding wrongly. Moreover
remains the problem of the trustworthiness of the data fusion mechanism, that
we explicit in the following paragraph. Other similar examples of fault tolerance
in data fusion are mentioned in section 3.C of [24], an article that reviews fault
tolerance practicies in wheeled robotic systems.

In our opinion, those papers focus only on hardware fault tolerance. More-
over, they detect and tolerate faults related to physical sensors using data fusion
processes that are di�cult to design and validate, thus being rather untrustwor-
thy. Fault tolerance through data fusion can only be done to our knowledge
by trying to tolerate software faults in the data fusion process, or guaranteeing
with formal methods that this data fusion process is sound. We only found two
papers in the literature addressing this problem, both using formal analysis to
raise the trustworthiness of data fusion mechanisms. In [25] where an approach
of data fusion based on Covariance Intersection CI and Covariance Union CU is
proposed to ensure consistency and fault tolerance in the management of infor-
mation in distributed networks. CI based solution ensures that the fusion result
of consistent estimates is consistent in any situation. The CU completes the CI
by ensuring that the fusion result of inconsistent estimates remains consistent
and thus tolerating sensor faults through masking. Such mechanism is validated
by a formal analysis of its properties. In [26] another approach for binary data
fusion from distributed sensors is proposed. It provides fault tolerance by ana-
lyzing formally sensor con�dence levels associated with each decision outcome,
which serves to enhance performance by improving robustness of the Boolean
Fusion and eliminate its weaknesses in order to reduce or even eliminate false
alarms.

In our opinion a signi�cant �aw in those di�erent techniques is that they
focus only on hardware faults, relying on the fusion mechanisms to detect and
tolerate the errors. But fusion mechanisms are hard to design and validate, often
incorporating values that have been determined empirically (such as gains) or
models that are di�cult to validate formally. Software faults in data fusion are
thus for us a big concern in data fusion, and the proposed architecture aims to
tolerate both hardware and software faults.

3 Fault tolerance with Duplication-Comparison

We propose in this section an approach that o�ers detection and recovery ser-
vices for data fusion using duplication-comparison. Figure 2 details this generic
architecture. It implements two parallel and independent branches, each run-
ning a data fusion mechanism using redundant or diversi�ed sensors to perceive
a system state and its environment.

Under a single fault hypothesis (no more than one activated fault is present
at the same time in the system), this architecture can tolerate one hardware
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fault in the sensor blocks, or detect one software fault in the data fusion blocks.
These services could be extended to multiple faults by increasing the level of
hardware and software redundancy. Such redundancy can also be exploited to
tolerate the detected software faults using diversi�ed data fusion mechanisms
and the voting method [27].

The general principle of our architecture is presented in Figure 2 and consists
of comparing the results of the two fusion blocks to detect a signi�cant deviation
between the data fusion outputs. Such di�erence indicates the presence of an
error. The sensor outputs and residual values from the fusion are then used
to determine whether this error is due to a hardware fault in the sensors or a
software fault in the fusion algorithms, then to diagnose the detected error and
determine the correct output of the perception system.

Details of our approach are presented in the following subsections. An ap-
plication example for vehicle localization is presented in section 4.

DataSFusionSBlockS1
DF1

DataSFusionSBlockS2
DF2

DataSFusionS
Component

ErrorSDetection
SModule

EDM

ErrorSIdentification
andSRecovery

SModule
EIRM

FaultSTolerant
SSSComponent

ErrorSDetection

ErrorSIdentification

BranchS1
SensorSBlockS1

SensorS
Component

S1

SensorSBlockS2
S2

SensorSBlockS3
S3

SensorSBlockS4
S4

BranchS2

Figure 2: Duplication-Comparison Architecture for fault tolerance in multi-
sensor perception

3.1 Fault detection and recovery services

Our architecture uses two parallel branches, each running one data fusion block
with two sensor blocks : the �rst branch (S1, S2, DF1) combines the outputs
of sensor blocks S1 and S2 in the fusion block DF1, and the second branch
(S3, S4, DF2) combines the outputs of the sensor blocks S3 and S4 in the
fusion block DF2. The outputs of each duplicated component are compared
with its diversi�ed redundant one : for example, in Figure 2 the output of DF1

is compared with the output of DF2, the output of S1 is compared with the
output of S3, and the output of S2 is compared with the output of S4. The
outputs of fusion blocks are compared to detect an eventual error in the system,
and the outputs of the sensor blocks are used to diagnose the detected error and
determine the correct output of the perception system. Our architecture is thus
composed of two modules:
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1. Error Detection Module (EDM) : it compares the outputs of DF1 and DF2

to detect possible faults in the system. When there is no activated fault in
the system, the fusion block outputs will be similar. The outputs of DF1

and DF2 will be signi�cantly di�erent when a relevant error is present.
The algorithm 1 describes the process of this module.

Algorithm 1: Error Detection Algorithm

Data: DF1,DF2 : fusion blocks outputs
Result: E : Error indicator

1 Calculate ∆DF1,DF2

2 if ∆DF1,DF2
> ThrsDet then

3 E ← {YES};
/* Compare sensor blocks outputs and the residual values

for diagnosis and recovery */

4 else
5 E ← {NO};
6 end

2. Error Identi�cation and Recovery Module (EIRM) : it carries out the di-
agnosis of a previously detected fault, and ensure the system recovery. It
is composed of two steps:

� Sensors blocks comparison: it identi�es the type of the fault, Hard-
ware in the sensor blocks or software in the fusion blocks. This is
achieved trough comparison of di�erent sensor block's outputs (S1

with S3 on one hand, and S2 with S4 on the other hand).

� If one sensors blocks output deviates from its dual, then a hard-
ware fault is diagnosed on one of these two sensors, as an erro-
neous sensor will have a di�erent output than a correct one. The
faulty sensor will be identi�ed in the residual comparison step.

� If the sensors outputs are similar, then a software fault is diag-
nosed. With no more redundancy, we can do nothing but put
the erroneous system in a safe state. However another diversi�ed
data fusion block DF3 using two outputs amongst S1, S2, S3 and
S4 can be implemented to diagnose the faulty data fusion block,
and recovers the system from the detected error [27].

� Residual comparison: it identi�es the faulty sensor in the case of an
hardware fault. As we have already checked in the sensors outputs
comparison that the current discrepancy between the two branches is
due to the sensors and not the fusion mechanisms, we trust here the
data fusion algorithms and compare its residual outputs to identify
the erroneous branch. The highest residual value indicates con�ict
in the data sources, and thus the faulty data fusion block.
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Knowing now the type of the faulty sensor and its erroneous branch, the
system has identi�ed the erroneous sensor and can recover by using output
values of the error-free branch.

3.2 Qualitative Analysis

The proposed architecture provides the following fault tolerance services:

• Hardware fault detection and recovery : it detects and recovers from one
hardware error related to the perception sensors block (S1, S2, S3 or S4).

• Software fault detection: it detects one software fault related to data fusion
algorithms (DF1, DF2). Such fault can be tolerated by a third diversi�ed
block and a voting method.

To ensure these services, our architecture requires some comparison between
some sensor blocks:

• the comparison can be done on the sensors output or on processed data.
For example in our case study (section4), a derivative of rear wheels speed
is computed before comparing it to the acceleration of an INS (Inertial
Navigation System).

• the comparison can be done between two sensor blocks, each encompassing
one or more sensors, and where all used outputs of one block have a
counterpart (raw or processed) in the second block.

4 Application: Kalman �lters data fusion for ve-

hicle localization

In this section we present an application of the generic architecture detailed in
Section 3. We apply this architecture to a vehicle component localization using
Kalman �lters for data fusion. To implement our architecture two �lters are
used to fuse the input data from various sensor blocks. The �rst Kalman �lter
uses data of an accelerometer, a gyrometer and an odometer. The second one
uses data of another odometer and a GPS. From these two branches, the EDM
and EIRM modules described in section 3.1 can be implemented. Details of this
implementation are shown in �gure 3.

4.1 Tricycle model for front and rear wheel odometry

Computations of the vehicle position from odometry sensors (F-odo and R-
WSS in Figure 3) are based on the tricycle model [28] presented in Figure 4.
In this model, the vehicle is composed of two �xed rear wheels on the same
axis and an orientable centered front wheel located on the longitudinal axis of
the robot. The motion of the vehicle can be inferred from two variables: the
longitudinal velocity and the direction of the steerable wheel. We establish the
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kinematic equations that we use in the prediction of KF1 and the correction of
KF2 respectively in sections 4.3 and 4.4.
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4.2 Terminology and notations

We introduce in Table 1 some terminologies and notations used in the following
section.

Notation Description
XKFik

(xKFik
, yKFik

, θKFik
) State of the Kalman �lter i at

time k
With i ∈ {1,2}
∆tk = tk − tk−1 Timestamps
ZKFik

measurement vector used in ob-
servation model of Kalman �lter
i a time k

wKFik
noise vector of the system model of
Kalman �lter i at time k

vKFik
noise vector of the observation
model of Kalman �lter i at time k

QKFi
covariance matrix of the system
noise wKFi

RKFi
covariance matrix of the measure-
ment noise vKFi

Table 1: Notations

4.3 Kalman �lter for INS-Front Odometer data fusion

The �rst Kalman �lter applied to the �rst branch of our architecture (KF1) con-
sists of the coupling an inertial system and a front wheel odometry system: We
use an INS (accelerometer and gyrometer) to predict the system state, and the
front wheel odometry to correct it. The state variables are the positions of the
vehicle (x, y), its orientation (θ) and its longitudinal speed (V ). Implementation
details of this con�guration are as follows:

• System model : we use equation (5) as a system model in KF1, taking as
input UINS(γINS , ωINS), the longitudinal acceleration measured by the
accelerometer and the angular speed measured by the gyrometer.
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
xKF1k

yKF1k

θKF1k

VKF1k


︸ ︷︷ ︸
XKF1k

=


1 0 0 ∆tkcos(θKF1k−1

)

0 1 0 ∆tksin(θKF1k−1
)

0 0 1 0
0 0 0 1


︸ ︷︷ ︸

A

.


xKF1k−1

yKF1k−1

θKF1k−1

VKF1k−1


︸ ︷︷ ︸
XKF1k−1

+


1
2

∆t2k 0
1
2

∆t2k 0
0 1

∆tk 0


︸ ︷︷ ︸

B

.

[
γINSk−1

ωINSk−1

]
︸ ︷︷ ︸
UINSk−1

+ wKF1k

(5)

• Observation model : The observation model is based on front wheel odome-
try sensors and a tricycle model [28]. It is implemented as follows (equation
6):

ZKF1k
=


xFodo

yFodo

θFodo

VF


k

= HKF1 .XKF1k
+ vKF1k

(6)

where (xFodo, yFodo, θFodo) is the vehicle pose estimated by the front odom-
etry system, and VF is the longitudinal speed given by the front encoder.
The matrixHKF1

that de�nes the observation model is the identity matrix
because the measurements are the same than the system state variables,
and we have thus decided not to make it appear in equations derived from
6.

4.4 Kalman �lter for Rear odometry- GPS data fusion

The Kalman �lter used in the second branch of our application implements a
tricycle kinematic model [28] using the rear wheel odometry coupled with a GPS
sensor.

� System model : the system model equations are as follows (equation (7)):


xKF2k

yKF2k

θKF2k

VKF2k


︸ ︷︷ ︸
XKF2k

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


︸ ︷︷ ︸

A

.


xKF2k−1

yKF2k−1

θKF2k−1

VKF2k−1


︸ ︷︷ ︸
XKF2k−1

+


∆tkcos(θk) 0
∆tksin(θk) 0

0 ∆tk
1 0


︸ ︷︷ ︸

B

.

[
VRk−1

ωRk−1

]
︸ ︷︷ ︸
URk−1

+ wKF2k

(7)
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where VR and ωR are respectively the rear wheels linear speed and their
angular speed. These values are calculated from the rear wheels encoders:

� VR is the mean of the rear left and rear right wheel speeds

� ωR is the elementary rotations of the two rear wheels{
VR = VRR+VRL

2

ωR = VRR−VRL

e

(8)

where VRR and VRL are respectively the rear right wheel speed and left
wheel speed, and e is the entrax of the vehicle (the distance between the
two wheels on the axle).

� Observation model : The GPS observations are de�ned in the following
way:

ZKF2k
=

[
xGPS

yGPS

]
k

=

[
1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

HKF2

.XKF2k + vKF2k (9)

Note that both process / observation models are nonlinear, so an extended
Kalman �lter is indeed much more appropriate for such nonlinear system.
We used a simple Kalman Filter to facilitate the development process,
and used a linearization interpolation to synchronize the di�erent sensors
data.

4.5 Fault tolerance services

As we see in �gure 3, our architecture implements two independent positioning
systems (both Kalman �lters) using diversi�ed sensors, thereby providing a
software and hardware redundancy.

Our goal is to exploit the hardware redundancy in sensors and software
diversi�cation in the Kalman �lter algorithms to provide fault tolerance services
using the duplication- comparison technique.

In the following sections, we detail these detection and recovery services by
explaining how the EDM and EIRM are implemented.

4.5.1 Error detection service:

To detect possible errors in the system, we compare the estimated positions of
the two implemented Kalman �lters. For this we calculate the euclidean distance
∆Pos(KF1,KF2) (equation 10) between the output PosKF1

of the �rst �lter and
the output PosKF2

of the second �lter. Then we compare this distance to a
speci�c detection threshold ThrsDet. If the distance ∆Pos(KF1,KF2) is greater
than the threshold ThrsDet, this implies that a signi�cant di�erence between
the two positions (PosKF1 , PosKF2) has occurred, which we identify as an error.
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Otherwise no error is detected. The diagram 5 schematizes the operation of the
fault detection.

∆Pos(KF1,KF2) =
√

(xKF1
− xKF2

)2 + (yKF1
− yKF2

)2 (10)

Begin

KF2 KF1

∆Pos(KF1,KF2)

∆Pos(KF1,KF2) > ThrsDet

E = NoE = Y es

EIRM

PosKF2
PosKF1

yes no

Figure 5: Fault detection organigram

4.5.2 Diagnostic and recovery services

When an error is detected, we proceed to the fault diagnosis in order to isolate
the faulty component in the decision-making, and therefore deduce the correct
output of the system. This diagnosis is made in two successive steps: sensor
output comparison (SC), followed by residual comparison (RC):

� Sensor outputs comparison (SC) : in case of an hardware fault, it
identi�es the wrong sensor type by comparing the outputs of similar sen-
sors. In our case study, we compare in one hand the output of the rear
wheel speed sensor (R-WSS ) with those of the inertial navigation system
(Acc, Gyro), both sensors being used in the prediction step of the two
Kalman �lters. ωINS is compared with ωR, and γINS compared with the
derivative of the linear speed exit from R-WSS ∂VR

∂t . On the other hand,
the position given by the GPS (xGPS , yGPS) is compared with the one
of the front odometric system (xFodo, yFodo), both sensors blocks being
used in the correction step of our Kalman �lters. These comparisons are
performed using thresholding methods, and three thresholds are therefore
necessary: (ThrsωINS,RWSS

, ThrsγINS,RWSS
, ThrsPosGPS,Fodo

).

� If the output of one sensor block deviates signi�cantly from its dual,
the system diagnoses an hardware fault on one of the two sensors.
The faulty sensor will be identi�ed in the residual comparison. Com-
parison of the sensors outputs is done by calculating the three dis-
tances given in equations (11) and determining whether they exceed
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the aforementioned thresholds (ThrsωINS,RWSS
, ThrsγINS,RWSS

, and
ThrsPosGPS,Fodo

).

* ThrsωINS,RWSS
: threshold for comparison between the angular

speed given by the gyro ωINS with those deduced from the rear
wheel speed sensors (R-WSS ) ωR,

* ThrsγINS,RWSS
: threshold for comparison between the longitu-

dinal acceleration provided by the accelerometer γINS with the
derivative of the linear velocity calculated from the rear encoders
(R-WSS ) ∂VR

∂t ,

* ThrsPosGPS,Fodo
: threshold for comparison between the position

from the GPS PosGPS = (xGPS , yGPS) with the estimated po-
sition by the front odometry system PosFodo = (xFodo, yFodo). ∆Pos(GPS,F−odo) =

√
(xGPS − xFodo)2 + (yGPS − yFodo)2

∆γ(INS,R−WSS) =| γINS − ∂VR

∂t |
∆ω(INS,RWSS) =| ωINS − ωR |

(11)

� If the sensor outputs are similar (i.e. the distances calculated in equa-
tions 11 are less than the chosen thresholds), the system diagnoses a
software fault. As mentioned in the previous section we can recover
from it with one more data fusion block.

� Residual comparison (CR) : in the case of a hardware fault, this step
identi�es the wrong branch according to the residual values of the two
Kalman �lters as described in section 3.

Knowing now the type of faulty sensor and the erroneous branch, the system
has identi�ed the faulty sensor, and can be restored using the position values of
the error free branch.

5 Fault tolerance evaluation

In this section, we propose an experimental study to evaluate the fault toler-
ance mechanisms described previously. This study relies on real data and fault
injection. First, we present the experimental environment (Activity, Faults,
Measures) that we used to perform these experiments. Second we present the
results of our fault injection campaign.

5.1 Hardware Environment

The Kalman �lters and fault tolerance mechanisms detailed in this paper have
been validated with real data acquired in the city of Compiègne (France) by
the experimental vehicle CARMEN shown in Figure 6. The vehicle is equipped
with several sensors: an inertial system measuring longitudinal and lateral ac-
celerations and the yaw rate, a GPS for absolute navigation purpose, and �nally
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a CAN-bus gateway used to access the wheel speed sensors (WSS), a yaw rate
gyrometer, and the steering angle.

Figure 6: Experimental vehicle (CARMEN)

5.2 Software Environment

Our evaluation environment is based on real data acquisition using the software
platform PACPUS1. Data replay and fault injections were realized with Matlab:
the acquired experimental data has been used o�ine to validate the presented
architecture. Each data sample is time stamped, which allows o�ine reruns of
the vehicle experiment. This is particularly useful to automate the experiments,
which could not have been automated otherwise. We used fault injection as it
is necessary to stress fault tolerance mechanisms. Hardware faults are simu-
lated by the alteration and modi�cation of sensor output values, while software
faults are simulated through mutation2 by modifying the models and gains of
the Kalman �lters.

5.3 Fault injection campaign

Our fault injection campaign is based on the de�nition of four essential param-
eters : (a) Activity, the mission performed by the robot and its environment,
(b) Faults, the domain of hardware and software faults injected in the system,
(c) Results, the logs and data generated during an experiment, (d) Measures,
data aggregated from several experiments as a signi�cative measures.

5.3.1 Activity:

We call activity the mission requested to the robot in a given environment. The
activity in our experiments is driving of the circuit shown in Figure 7. This
experimental circuit is composed of a straight line and two roundabouts. In our
opinion, it allows to simulate various maneuvers that may be requested to the
system.

1PACPUS : The Heudiasyc laboratory platform PACPUS aims to federate tools and re-
sources to carry out research and experiments in the intelligent vehicles �eld. One of the
main goals of the platform is to develop, integrate and test driving help and ADAS functions
(Advanced Driver Assistance Systems) and autonomous navigation.

2A mutation is a basic syntactic change in an existing code.
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Figure 7: Experimental Circuit

5.3.2 Sets of faults:

We introduce both hardware and software faults in the system: hardware faults
on the sensors outputs ans software faults in the Kalman �lters.

� Hardware faults: based on feedback from our engineers, we identi�ed three
di�erent hardware faults categories on the embedded sensors in our vehicle:
bias faults, frozen data faults, and null faults, modeled as follows:

Let Siout be the sensor output used by our perception mechanism and Sin
its normal output when the sensor is functional (i.e. before injection).

� for bias faults, the sensor output is biased by a constant ∆.

Siout(tk)
ti≤tk

= Sin(tk) + ∆ (12)

� for frozen data faults, the sensor always sends the same output from
a speci�c date ti.

Siout(tk)
ti≤tk

= Sin(ti) (13)

� for null fault, the sensor is blocked on its initial value, so after time
ti it always delivers the same initial output.

Siout(tk)
ti≤tk

= Sin(t0) (14)

� Software faults are mainly introduced during the software development
phase (speci�cation, design, coding, etc). These faults are mainly classi-
�ed as development faults ; they are generally human made, unintentional
and without malicious intent (although intentional sabotage is also possi-
ble). Some environmental external faults (such as solar �are or electrical
storm) may also in a system cause faults that may be classi�ed as software
faults during operation by modifying its executive code (by bit-�ips, for
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example). Classical examples of software faults include: Assignment - a
value is assigned incorrectly or not at all ; Checking - absence or incorrect
validation of data or loop or conditions ; Algorithm - incorrect or missing
implementation; Function - incorrect or missing parameters. In our ex-
perimentations we target any software faults in the source code (Kalman
�lter code).

We use the mutation technique (i.e. an elementary modi�cation of the
basic code) to generate mutated Kalman �lters. Studies show that the
mutation technique is representative of faults in imperative programs [29].
As sets of good practices are not as mature for declarative programming
than for imperative programming, and as they have behavior de�ning val-
ues that are determined empyrically (such as gains for command laws, and
noise matrices for Kalmna Filters), declarative programs are particularly
prone to software faults. As no studies have been realized to character-
ize the representativity of software faults in declarative programming, we
hypothesized that they are somewhat similar to faults in imperative pro-
gramming. The mutation technique speci�cally aims to simulate software
faults and validate fault tolerance mechanisms: from an original program
(in our experiments the Kalman �lters), we create a set of variants called
mutants that di�er from the original program by a single elementary modi-
�cation. The behavior of the faults tolerance mechanisms is then analyzed
by confronting experimental results of the nominal program and various
mutants whose fault were activated during the experiment. But as no such
studies exist for declarative programs, we decided to use this technique in
our Kalman �lters. After analyzing the process and observation models of
both implemented Kalman �lters, we injected several types of mutations:

� numerical values substitution: a numerical value may be replaced by
a speci�c value of its domain (such as 0, 1, and -1 for integers).

� unary operator : an unary operator may be replaced by an other one
(cos become sin for instance ...).

� binary operator : a binary operator may be replaced by a speci�c
operator set (- instead of + and vice versa, * instead of /).

� multiplication by a real value: as the matrices Q, R of (process and
observation noises, respectively) are initialized empirically through
experimentation, faults in their values are highly possible and can
a�ect the Kalman �lters outputs. In our mutations we simulated
some of these mistakes to reveal their e�ect on the system output.

5.3.3 Results and measures:

Our experiments produce several intermediates logs. From these various results,
we try to establish meaningful measures to quantify the e�ectiveness of the
proposed architecture. These results and measures are listed as follows, and
summarized in table 2:
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1. Results: are parameters that concern one experiment.

� Detection delay (DelDet): it is the di�erence between the fault injec-
tion time tInj and its detection time tDet.{

DelDet = tDet − tInj
With: tDet = tk

∆PosKF1,KF2
≥ThrsDet

(15)

To determine whether the injected fault is detected, identi�ed, and cor-
rectly recovered from, we de�ne three boolean variables for each experi-
ment:

� Bd characterizes if an error is detected by the system (Bd = 1 if the
detection occurs, Bd = 0 otherwise),

� Bi represents the fact that the type of the fault is correctly diagnosed
(hardware in sensors or software in data fusion algorithms) (Bi = 1
if the diagnosis is correct, Bi = 0 otherwise),

� Br determines whether the system recovers after detection (whether
it diagnosis correctly the erroneous component and selects the correct
output) (Br = 1 if the system recovers correctly, Br = 0 otherwise).

Before introducing other measures, we need to de�ne the grandeur diffCF,CN ,
which represents the di�erence between the nominal system behavior and
its behavior with an injected fault. This quantity thus determines the
di�erence between the nominal position and the erroneous position.

Let (xKF1N
, yKF1N

), (xKF2N
, yKF2N

) be the outputs of both Kalman �lters
KF1, KF2 in the absence of faults, and (xKF1F

, yKF1F
), (xKF2F

, yKF2F
)

their outputs with an injected fault. Due to the single fault assumption,
only one branch is a�ected by the fault. In the following we will assume
that it is the branch 2 (this is an arbitrary choice, since both are symmet-
rical). In this case (xKF1F

, yKF1F
) = (xKF1N

, yKF1N
).

In Figure 8, we de�ne PN (xN , yN ) the middle of the segment [(xKF1N
, yKF1N

),
(xKF2N

, yKF2N
)], and PF (xF , yF ) the middle of the segment [(xKF1F

, yKF1F
),

(xKF2F
, yKF2F

)] as de�ned in equation 16.{
xF =

xKF1F
+xKF2F

2 , yF =
yKF1F

+yKF2F

2

xN =
xKF1N

+xKF2N

2 , yN =
yKF1N

+tKF2N

2

(16)

The quantity diffCF,CN is thus the euclidean distance between the two
points PN and PF , and its value is according to the equation 17:

diffCF,CN =
√

(xF − xN )2 + (yF − yN )2 (17)

21



Figure 8: PN and PF de�nition

To characterize our system in terms of false positives3 and absence of
detection4 we de�ne two boolean variables BErr and BFail:

� BErr determines whether the injected fault causes an error in the
system, without it being necessarily considered as a failure. We con-
sider here that the system contains a signi�cant error if the di�erence
between the nominal behavior and the erroneous behavior of the sys-
tem is greater than 2 meters. This variable (BErr = 1 if the system
contains an error, BErr = 0 otherwise) is than de�ned as:{

BErr = 1 if diffCF,CN >= (ThrsErr = 2m)
BErr = 0 if diffCF,CN < (ThrsErr = 2m)

(18)

� BFail determines whether the injected fault causes a system failure.
We consider that the localization system is failed if the di�erence
between the nominal behavior and the behavior with the injected
fault is greater than 10 meters. This variable (BFail = 1 if the
system fails, BFail = 0 otherwise) is then de�ned as:{

BFail = 1 if diffCF,CN >= (ThrsFail = 10m)
BFail = 0 if diffCF,CN < (ThrsFail = 10m)

(19)

The two thresholds ThrsErr and ThrsFail were de�ned here from ex-
perimental values from the system's nominal behavior. However, in an

3false positives: alerts with absence of errors in the system.
4absence of detection: absence of alerts in the presence of errors in the system.
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industrial application, these thresholds would be given as system speci�-
cation.

In our experiments we have also de�ned three temporal result to charac-
terize the detection performance:

� DelFail determines how long it takes for the injected fault to cause
a system failure:{

DelFail = tFail − tInj
With: tFail = tk

Diff(CF,CN)≥ThrsFail

(20)

� DelErr determines how long it takes for a signi�cant error to be
detected. {

DelErr = tDet − tErr
With: tErr = tk

Diff(CF,CN)≥ThrsErr

(21)

� DelFail,Det determines the time remaining after detection and before
the system is led to failure. Failures will be inevitably detected due
to our threshold values choice.{

DelFail,Det = tFail − tDet
With: tDet = tk

∆PosKF1,KF2
≥ThrsDet

(22)

2. Measures: From the previous results, we de�ne for each type of injected
fault (hardware or software) measures characterizing the detection, the
identi�cation and the recovery rate in our experiments:

� PFP represents the rate of "false positive" in the system. A false
positive is declared if the system detects an error (Bd = 1) while its
behavior was near the nominal behavior (BErr = 0):{

PFP = Number of false positive
Number of detected faults

With: Bd&BErr ⇒ false positive
(23)

� PND represents the rate of "absence of detection" in the system. An
absence of detection is declared if the error generated by the injected
fault is not detected (Bd = 0) while the system failed (BFail = 1):{

PND = Number of non detected faults
Number of faults causing system failure

With: Bd&BFail ⇒ absence of detection
(24)

� Pi is the percentage of detected faults correctly diagnosed and iden-
ti�ed.

Pi =
Number of correctly identi�ed faults

Number of detected faults
(25)
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� Pr: is the percentage of detected faults correctly recovered from.

Pr =
Number of times that the system is successfully recovered

Number of detected faults
(26)

� PEWF : is the percentage of detected faults that would have caused
the system's behavior to deviate signi�cantly (BErr = 1) without
failing (BFail = 0). Thus, it is the rate of faults for which the log-
ical expression Bd&BErr&BFail is true. For these faults, detection
is correct (there was an error), but these errors were not signi�cant
enough to cause a system failure. Depending on the system speci�-
cation, they could be considered as false detection.

� PDet,Err: is the percentage of detected faults that would have caused
a signi�cant error in the system:

PDet,Err =
Injections/ < Bd = 1 & BErr = 1 >

Injections/ < BErr = 1 >
(27)

� PDet,Fail: is the percentage of detected faults that causes the system's
failures:

PDet,Err =
Injections/ < Bd = 1 & BFail = 1 >

Injections/ < BFail = 1 >
(28)

Table 2 summarizes the various results and measures employed in our per-
formance evaluation campaign.

5.4 Experimental example:

In this section we present a sample of our experimental campaign. We �rst
present the nominal behavior of the system, then results in the presence of two
injected faults.

5.4.1 Nominal behavior without fault injection

To evaluate the developed fault tolerant mechanisms, we performed data acqui-
sition with the instrumented vehicle (�gure 6). The vehicle travels a distance
of 420 meters on the test circuit shown in Figure 7. For each used sensor, a
dedicated software component, time-stamps and records its data. Data from
the di�erent sensors are then synchronized through a linear interpolation to use
as synchronized time-discretized inputs for the Kalman �lters.
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Designation Unit
Results DelDet Detection delay Second

Bd Detection indicator Boolean
Bi Identi�cation indicator Boolean
Br Recovery indicator Boolean
BErr Error indicator Boolean
BFail Failure indicator Boolean
DelFail Failure delay Second
DelErr Error delay Second
DelFail,Det Delay between detection and failure Second

Measures PFP False positives rate %
PND No detection rate %
Pi Identi�cation rate %
Pr Recovery rate %
PEWF Errors without failure rate %
PDet,Err Detected Errors rate %
PDet,Fail Detected Failures rate %

Table 2: Di�erent considered results and measures

A faultless experiment was performed to characterize the nominal system be-
havior. These results were useful to de�ne the di�erent detection and diagnostic
thresholds, and to serve as a reference sample and ground truth for comparison
with behaviors in the presence of faults.

Figure 9 represents the vehicle position estimated by the two implemented
Kalman �lters (PosKF1

, PosKF2
) and the output of our architecture PosS ,

which is the average of these two estimations. Figure 10 represents the dis-
tance ∆Pos(KF1,KF2). In the nominal case, this distance is less than the chosen
detection threshold ThrsDet(10 m).

Figure 9: Nominal Behavior: Estimated position by
both Kalman �lters and the system

Figure 10: Nominal Behavior: Distance
between the position of both Kalman �lters
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Three other thresholds are needed in our implementation:

� One threshold to compare the GPS position with the front wheel odometry
system (F-odo) position: ThrsPosGPS,F−odo

= 10 meters.

� Two thresholds to compare the inertial navigation system outputs (INS)
with the values processed of the rear wheel speeds sensor (R-WSS): Thrsγ(INS,R−WSS)

=

0.45 m/s2, and Thrsω(INS,R−WSS)
= 0.23 rad/s.

� One threshold to ensure, in the hardware error detection case, that the con-
�ict in one Kalman �lters is considerably higher than the other ThrsRes =
9 meters.

All these thresholds were chosen to be signi�cantly higher than the values ob-
served in the nominal behavior.

5.4.2 System's behavior in the presence of faults

Here we present the results of two fault injections: one hardware faults on the
GPS sensor, and one software fault in the Kalman �lter KF1. These two two
faults have been presented in [30].

• Additive faults on GPS

The �rst injected fault that we consider is an additive permanent fault
in GPS output. This external fault simulates a typical jump in the GPS
position due to satellite signals rebounds. This fault is usually not perma-
nent, but can occur for a signi�cant time. At time ti = 60.5 seconds, we
added a jump of 10 meters on the xGPS , as described in equation (29).

xGPS(tk)
ti≤tk

= xGPS(ti) + 10 (29)

In Figure 11, we see that the di�erence between the positions estimated
by the two Kalman �lters ∆Pos(KF1,KF2) exceeds the threshold ThrsDet,
so the system detects an error at time tDet = 62.5 seconds.

We see in Figure 12 that the INS and R-WSS outputs are similar, while
the di�erence between the GPS position and F-odo position exceeds the
threshold ThrsPosGPS,F−odo

. This indicates that the detected error is a
hardware fault in the GPS or F-odo.

Figure 13 con�rms that the absolute value of the residual generated from
KF2 (| ResKF2

|) is signi�cantly higher than the absolute value of the
residual generated from KF1 (| ResKF1

|) indicating that the branch KF2

contains an error.

Knowing now the couple (GPS, F-odo) containing the faulty sensor and
the wrong branch (Branch 2), the system can identify the GPS as a faulty
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Figure 11: Additive Fault in GPS: Distance
between the position of both Kalman �lters

Figure 12: Additive Fault in GPS: Sensor
Output Comparison

Figure 13: Additive Fault in GPS: Residue
Comparison

Figure 14: Additive Fault in GPS:
Estimated position by both Kalman �lters

and our architecture

sensor, and take the correct output PosKF1 at t = 62.5 seconds, as shown
in Figure 14, 2 seconds after the injection.

Note that the residual ResKF2
has signi�cant value only for a short period

of 3 seconds. After that, it takes a value below our diagnostic threshold
because the gaps between the erroneous GPS and the correct F-odo have
been smoothed by the �lter. It is therefore vital to detect the error in
that window, and the determination of thresholds is con�rmed to be very
important.

Note that these thresholds depends on the application, and their optimiza-
tion may be a costly work for the design of a new system.
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• Software fault in the Kalman �lter KF1

This injection is a software fault in the �rst Kalman �lter KF1. As men-
tioned above, Kalman �lters mechanisms appear as particularly sensitive
to design faults. For example, Covariance noises Q and R have a big
impact on the �lters output estimation, and are usually determined em-
pirically. In this scenario, we put Q = R/103 from the beginning of the
experiment (tInj = 0) to give more con�dence to the INS system than the
F-odo system.

As shown in Figure 15, the estimated position by KF1 slowly drift than
from the one estimated by KF2, before diverging abruptly and exceeding
our detection threshold at time t = 87.1 seconds.

Figure 16 shows that the detected error is not diagnosed as a hardware
fault in the perception sensors. This indicates a software fault in one of
the data fusion algorithms (KF1 or KF2) without distinguishing which
one, for lack of software redundancy.

After the detection of this software fault at time tDet = 87.1 seconds, our
architecture generates an alert indicating that the localization system has
failed as shown in Figure 17. It is particularly interesting to see that such
fault can not be detected for up to 80 seconds because the results of the
failed block are similar to those of the non-failing block. This reinforces
our opinion that data fusion mechanisms are di�cult to validate and their
faults should be taken into account by fault tolerance mechanisms.

Figure 15: Software Fault in Kalman �lter
1:Distance between the position of both Kalman �lter

Figure 16: Software Fault in Kalman �lter
1:Sensor Output Comparison
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Figure 17: Software Fault in Kalman �lter 1:Estimated position by both Kalman �lters
and our architecture

5.5 Global results

In our experiments, 90 faults on the sensors and 20 faults in Kalman �lter
algorithms were injected. For each type of component, we injected a set of
di�erent faults with di�erent values, at di�erent times, in order to validate
as widely as possible their impact on the �nal result of the architecture, and
measure the ability of our approach in terms of detection and recovery. Although
the number of faults that we injected appears limited for the validation of a
critical system, the injection and experiments are automated. Time is thus the
only factor to limit the validation of our fault tolerant mechanisms. Exhaustive
validation is of course impossible, but a large number of injecting faults in diverse
environments and activities is crucial to justify trust in the fault tolerance of
the system.

This section presents the overall results of our experimental campaign.

5.5.1 Hardware faults

� Faults on GPS: the GPS su�er from several external errors due to
diverse environmental factors. we injected jumps in the position provided
by the GPS, simulating four di�erent jumps (2, 5, 10, 20) in four directions
(+ X, -X, + Y, -Y). These faults were injected at four di�erent dates.
These di�erent combinations make sixty-four (64) the number of injected
faults on the GPS. A sample results of these injections is shown in Table
3.

The experimental results show that all the injected faults that causes a
system's failure are correctly detected, diagnosed, and recovered from.

� Faults on the odometry sensors: To simulate the faults that may
occur on the encoders, we injected the three fault types (null, frozen,
bias) described in 5.3.2. The null and frozen data faults were injected at
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Comp hop Dir tInj tDet DelDet DelFail DelFail,Det DelErr

GPS 2 +X 60.59 X X X X X
5 -X 87.47 90.27 2.80 X X 1.96
10 -Y 72.35 72.91 0.56 X X 0.28
20 +Y 82.15 83.27 1.12 45.36 44.24 1.12

Table 3: Sample of additive faults in GPS

four di�erent times making the eight fault injection scenarios presented in
Table 4. The bias faults (1, 2, 3, and 4) were also injected at four di�erent
times, making sixty (16) fault injection scenarios (a sample is shown in
Table 4). Thus twenty-four (24) faults in total are injected on the F-WSS.
The table 4 give the results found in these cases.

Comp Type tInj tDet DelDet DelFail DelFail,Det DelErr

F-WSS Hard 60.59 64.51 3.92 13.44 9.52 0.56
87.47 99.79 12.32 13.72 1.40 5.04

Null 60.59 62.27 1.68 2.52 0.84 1.12
87.47 90.83 3.36 X X 2.52

Bias(1) 72.35 85.23 12.88 33.88 21.00 10.08
Bias(4) 87.47 89.15 1.68 8.12 6.44 0.84

Table 4: Sample of faults injected on F-WSS

Note that all the injected frozen data faults are detected, diagnosed, and
recovered from.

Note that the injected null faults are detected, and diagnosed correctly.
However in the last injected fault, recovery has not occurred since the
residuals generated by the two �lters KF1 and KF2 do not exceed the
chosen threshold ThrsRes. This is an example of an error without failure
(EWF).

Finally note that all the injected bias faults are detected and diagnosed
correctly. However for a bias of 1 meter the system recovery is not done
because this bias does not allow the residual generated by the Kalman
�lter to be signi�cant.

� Fault on the Steering angle sensor: we injected only two Null faults
on the steering angle sensor. The two injection times correspond to the
instant when the vehicle begins driving on through respectively the �rst
and the second straight line of the experimental circuit. On the straight
lines, the fault is not detected because it has no signi�cant impact on the
system. It is detected as soon as the vehicle turns. Table 5 summarizes
the results for these faults.
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Comp Type tInj tDet DelDet DelFail DelFail,Det DelErr

Steering angle Null 59.75 67.31 7.56 9.52 1.96 1.40
82.15 88.03 5.88 13.16 7.28 1.12

Table 5: Null Faults in steering angle sensor

5.5.2 Software faults:

For software faults, many mutations are possible. We considered a sample of
twenty (20) di�erent mutations, simulating errors in the process and obser-
vation models of the Kalman �lter. We injected the following mutations: 8
substitutions of numerical values, 4 substitutions of geometrical expressions, 2
variables sign exchange, 4 variable substitutions, 2 mutations modeling errors
in covariance matrices Q and R estimation.

These mutations were generated manually by changing the Kalman �lters
codes. Table 6 show the e�ects of these software errors, and the ability of our
approach in terms of detection of such errors.

Original Mutant tInj tDet DelDet DelFail DelFail,Det DelErr

Q1 Q1 = 10−5.R1 0.00 87.19 87.19 X X 25.76

A1
1,4 : cos(θ) A1

1,4 : −cos(θ) 0.00 72.07 72.07 X X 18.76

B1
1,1 : 1

2
dt2 B1

1,1 : dt2 0.00 X X X X X

H1
1,1 : 1 H1

1,1 : 0 0.00 88.03 88.03 89.99 1.96 21.28

Q2 Q2 = 10−5.R2 0.00 84.67 84.67 X X 24.92

A2
1,1 : 1 A2

1,1 : −1 0.00 55.83 55.83 57.79 1.96 3.08

B2
1,1 : cosθ B2

1,1 : sinθ 0.00 57.79 57.79 X X 5.60

H2
1,2 : 0 H2

1,2 : 1 0.00 55.55 55.55 58.35 2.80 2.52

Table 6: Sample of software faults in Kalman �lters

5.6 Global Measures

This section present the measures discussed in section 5.3.3 for our experimental
campaign.

5.6.1 Hardware faults:

On the ninety (90) hardware injected faults on GPS sensors, F-WSS, and the
steering angle sensor, all faults are correctly detected. However only 62.32 %
are diagnosed and recovered from. This performance gap is due primarily to
the choice of the used recovery thresholds. Indeed, we have empirically chosen
all thresholds with only criterion being that they exceed nominal values. To
improve the performance of our architecture, a better study of these thresholds
is necessary. We also note that no false positive is generated by our architecture

31



on this set of hardware faults, and no absence of detection is reported. 44 %
of faults injection correctly detect a signi�cant error (DiffCF,CN ≥ ThrsErr)
while the system is not considered as failed (DiffCF,CN ≥ ThrsFail). These
errors could be considered as false detection that can be treated using two
solutions:

� to take into account the signi�cant external disturbance that may occur
on the sensors (eg: re�ection of the sun on a camera, GPS jumping, mea-
surement noise on inertial sensors) by raising the detection threshold.

� to consider them temporary faults, which would disappear from the system
at the same time than the disturbances.

Table 7 provides an overview of global measures on all di�erent hardware
injected faults in our experimental campaign.

Type Pd (%) Pi (%) Pr (%) PFP (%)

hardware
100.00 100.00 62.32 0.00
PND (%) PEWF (%) PDet,Err(%) PDet,Fail(%)

0.00 44 91.89 100.00

Table 7: Measures on hardware faults

5.6.2 Software faults:

On the 20 simulated mutations, 90 % of the faults a�ecting the system (BErr =
1) were detected by our architecture. As mentioned previously, the level of
software redundancy in our architecture do not allow the detected software
faults to be recovered. To ensure this recovery service a diversi�ed third branch
is needed. For the injected software faults no false positive was generated and
no absence of detection was reported. 44 % of realized mutations generate an
error in the system without failure. These errors, as previously mentioned in
the hardware faults, could be considered as false detection.

Table 8 summarizes the measures on the various performed mutations sim-
ulating software faults.

Type Pd (%) Pi (%) Pr (%) PFP (%)

Software
90.00 100.00 0.00 0.00

PND (%) PEWF (%) PDet,Err(%) PDet,Fail(%)
0.00 44 88.89 100.00

Table 8: Measures on software faults
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6 Conclusion and perspectives

The use of multi-sensor perception begins to spread in critical applications,
which raises more and more the problem of their dependability. We presented
in this paper a fault tolerance architecture based on duplication-comparison.
This architecture provides the fault detection, and system recovery services,
but requires means to compare the outputs of redundant sensors and to also
compare the outputs of fusion mechanisms.

We presented an example of real application for our proposed approach,
that consists of vehicle localization using Kalman �lters. We have presented
its fault tolerance evaluation using real experimental data and fault injection,
demonstrating the e�ectiveness of our mechanisms in terms of fault detection
and system recovery.

In future work, we intend to implement a third Kalman �lter to ensure
software fault tolerance in our vehicle localization application. We also plan
to carry out a comparative study of our real application results according to
di�erent thresholds,seeking a method to determine optimal thresholds. Finally,
we intend to implement this approach in addition of transient faults, where we
assume that by maintenance or time, an activated fault may disappear.
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