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Abstract

This paper proposes a new method for guaranteed integration of state equations. Within this framework, the variables
of interest are trajectories submitted to both arithmetic and differential equations. The approach consists in formalizing
a problem thanks to a constraint network and then apply these constraints to sets of trajectories. The contribution of
the paper is to provide a reliable framework to enclose the solutions of these differential equations. Its use is shown to
be simple, more general and more competitive than existing approaches dealing with guaranteed integration, especially
when applied to mobile robotics. The flexibility of the developed framework allows to deal with non-linear differential
equations or even differential inclusions built from datasets, while considering observations of the states of interest. An
illustration of this method is given over several examples with mobile robots.
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1. Introduction

In this paper, we consider the problem of guaranteed

integration of dynamical systems (see e.g. [1]) of the form

ẋ (t) = f (x (t) , t) + n(t) (1)

where t ∈ R is the time, x(t) is the state vector, n(t) is
the noise vector, assumed to belong to a known box [n],
and f : Rn × R → R

n is the evolution function [2]. One
of the main motivations of guaranteed integration meth-
ods is to develop reliable cyber-physical systems such as
Acumen [3] for dynamical systems simulation and veri-
fication. From a mathematical point of view, our prob-
lem corresponds to the area of interval integration [4, 5],
the aim of which is to compute a guaranteed enclosure
of an Initial Value Problem (IVP). Efficient libraries for
interval integration of differential equations are available,
such as Cosy [6], Vnode [7], DynIbex [8] or Capd [9].
These libraries are used in robotics and automatic control
to verify dynamical properties of non-linear systems [10],
to compute reachable sets [11, 12] or for state estimation
[13]. They are also used by mathematicians to prove con-
jectures [14, 15].

From an initial box [x](0), representing a bounded initial
state at time t = 0, guaranteed integration provides a set
of techniques to compute a box-valued function [x](t) (or
tube) containing all feasible solutions of an Ordinary Dif-
ferential Equation (ODE) or a differential inclusion. Exist-
ing methods are based on interval extensions of the Euler
[4], Runge-Kutta [8] or Taylor [6] integrations and the ap-
plication of the Picard-Lindelf Existence Theorem.

This paper studies a constraint-based approach [16, 17]
for guaranteed interval integration. Our approach consists

in rephrasing a problem of trajectory integration into a
problem of constraint satisfaction. To achieve this goal,
we introduce a new tool, a dedicated contractor, which
allows us to consider constraints defined by a differential
inclusion, in a guaranteed way. We show that the gener-
icity of the method allows to deal with a wide range of
problems involving differential equations. The user has to
define a dynamical system with a set of constraints and
let the contractors approximate the envelope containing
the set of solutions. Meanwhile, other kinds of constraints
can be defined in the system, such as state observations,
and easily considered by our dynamical contractor. To our
knowledge, such simple, generic and reliable approach has
not been proposed so far.

The paper is organized as follows. Section 2 presents
the principle of constraint propagation and how it can be
related to sets of trajectories. It relies on existing works,
that will serve as the basis of Section 3 in which we pro-
vide a new approach to consider dynamical systems and
solve an initial value problem. The simplicity of the ap-
proach is highlighted in Sections 4 and 5 that illustrate,
respectively, the tool with robotics simulations and state
estimations based on real datasets. A comparison with
Capd [9] (which can be considered as one of the most effi-
cient libraries in this field) shows that our method can also
be considered as competitive, at least for robotics appli-
cations. Sections 6 and 7 conclude the paper and present
the numerical libraries used during this work.

2. Constraint Propagation over Trajectories

Subsection 2.1 recalls the principle of constraint propa-
gation [16, 17] that will be used later to formalize a prob-
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lem of interval integration and then state estimations in
robotics applications. Dynamical systems lead to con-
straints to be applied on sets of trajectories. To this end, a
tool such as a tube can be used to enclose the domain of the
feasible solution set. Its description is given in Subsection
2.2.

2.1. Constraint Satisfaction Problems

CSP. In numerical contexts, problems of control, state
estimation and robotics can be described as Constraint

Satisfaction Problems (CSP) in which variables must sat-
isfy a set of rules or facts, called constraints, over do-
mains defining a range of feasible values. Links between
the constraints define a Constraint Network [18] involv-
ing variables {x1, . . . , xn}, constraints {L1, . . . ,Lm} and
domains {X1, . . . ,Xn} containing the xi’s. The variables
xi can be symbols, real numbers [19], vectors of R

n,
and sometimes trajectories [20, 21]. The constraints can
be non-linear equations between the variables, such as
x3 = cos (x1 + exp(x2)), or differential equations: ẋ3 · ẍ1+
exp (x2) = 0. Domains are intervals, boxes [22], polytopes
[23, 24] or tubes [25, 20] when dealing with trajectories.

Contractors. A constraint L can be applied on a box
[x] ∈ IR

n with the help of a contractor C. The box [x], also
called interval-vector, is a closed and connected subset of
R

n and belongs to the set of n-dimensional boxes denoted
IR

n. Formally, a contractor C associated to the constraint
L is an operator IR

n → IR
n that returns a box C ([x]) ⊆

[x] without removing any vector consistent with L [22, 26].
Constructing a store of contractors such as C+, Csin, Cexp
associated to primitive equations such as z = x + y, y =
sin(x), y = exp(x) has been the subject of much work.

Decomposition. Problems involving complex equa-
tions can be broken down into a set of primitive equa-
tions. Here, primitive means that the constraint cannot
be decomposed anymore and that the related contractor
is available in the collection of contractors, thus allowing
to deal with a wide range of problems. This can also be
applied on trajectories. For instance, the differential equa-
tion ẍ(·) · ẋ(·) = x(·) can be decomposed into:







ẋ = b

ḃ = a
x = a · b

(2)

Combining primitive contractors leads to a complex con-
tractor that still provides reliable results.

Propagation. When working with finite domains, a
propagation technique can be used to solve a problem.
The process is run up to a fixed point when domains Xi

cannot be reduced anymore.

Our goal is to consider trajectories as variables and to
implement contractors to reduce their domains given a dif-
ferential constraint. This will be done with the help of
tubes.

δ

t

[x]

tf

t0

x
∗(t)

Figure 1: A tube [x](·) represented by a set of slices. This represen-
tation can be used to enclose signals such as x∗(·).

2.2. Tubes: envelopes of feasible trajectories

Definition. A tube is defined [27, 28] as an envelope
enclosing an uncertain trajectory x(·) : R → R

n. In this
paper, we will use the definition given in [20, 21] where a
tube [x](·) is an interval of two trajectories [x−(·),x+(·)]
such that ∀t, x−(t) 6 x+(t). A trajectory x(·) belongs to
the tube [x](·) if ∀t, x(t) ∈ [x](t). Figure 1 illustrates a
tube implemented with a set of boxes. This sliced imple-
mentation is detailed hereinafter.

Arithmetics on tubes. Consider two tubes [x](·)
and [y](·) and an operator ⋄ ∈ {+,−, ·, /}. We define
[x](·) ⋄ [y](·) as the smallest tube (with respect to the in-
clusion) containing all feasible values for x(·)⋄y(·), assum-
ing that x(·) ∈ [x](·) and y(·) ∈ [y](·). This definition is
an extension to trajectories of the interval arithmetic pro-
posed by Moore [4]. If f is an elementary function such
as sin, cos, . . . , we define f

(

[x](·)
)

as the smallest tube

containing all feasible values for f
(

x(·)
)

, x(·) ∈ [x](·).
Integrals of tubes. In the same way, the integral of

a tube [29] is defined from t1 to t2 as the smallest box
containing all feasible integrals:

∫ t2

t1

[x](τ)dτ =

{∫ t2

t1

x(τ)dτ | x(·) ∈ [x](·)

}

. (3)

From the monotonicity of the integral operator, we can
deduce:

∫ t2

t1

[x](τ)dτ =

[ ∫ t2

t1

x−(τ)dτ,

∫ t2

t1

x+(τ)dτ

]

, (4)

where x−(·) and x+(·) are the lower and upper bounds of
tube [x](·) = [x−(·),x+(·)]. The computed integral is a
box with lower and upper bounds shown on Figure 2. For
efficiency purposes, the interval primitive of a tube defined
by

∫ t

0
[x](τ)dτ can be computed once, giving a primitive

tube.
Simple example. Figures 3a–3b present two scalar

tubes [x](·) and [y](·). The tube arithmetic makes it possi-
ble to compute the following tubes, as depicted by Figures
3c–3e:

[a](·) = [x](·) + [y](·)
[b](·) = sin ([x](·))
[c](·) =

∫

0
[x] (τ) dτ

(5)
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(a) hatched part depicts the lower bound of
∫
b

a
[x](τ)dτ

t
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x
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∫
b

a

x
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(b) hatched part depicts the upper bound of
∫
b

a
[x](τ)dτ

Figure 2: Lower and upper bounds of a tube’s integral

Contractors for tubes. The contractors recalled in
Subsection 2.1 can be applied on sets of trajectories, thus
allowing constraints over time such as a(t) = x(t) + y(t)
or b(t) = sin (x(t)). A tube contractor has been defined in
[21] and is recalled here. A contractor applied on a tube
[a](·) aims at removing unfeasible trajectories according to
a given constraint L:

[a](·)
CL−−→ [b](·). (6)

The output of the contractor CL is the tube [b](·) such
that:

∀t, [b](t) ⊆ [a](t), (contraction) (7)
(

L
(

a(·)
)

a(·) ∈ [a](·)

)

=⇒ a(·) ∈ [b](·). (completeness) (8)

For instance, the minimal contractor C+ associated with
the constraint a(·) = x(·) + y(·) is:





[a] (·)
[x] (·)
[y] (·)



 7→





[a] (·) ∩ ([x] (·) + [y] (·))
[x] (·) ∩ ([a] (·)− [y] (·))
[y] (·) ∩ ([a] (·)− [x] (·))



 . (9)

In this way, information on either [a](·), [x](·) or [y](·) can
be propagated to the other tubes.

Implementation. There are several ways to imple-
ment a tube. Our choice is to build it with a set of boxes
representing slices of identical width. Figure 1 illustrates
such implementation with a list of boxes, while keeping
enclosed an unknown trajectory x∗(t):R → R. More pre-
cisely, a tube [x](t), with a sampling time δ > 0, is a
box-valued function which is constant for all t inside in-
tervals [kδ, kδ + δ], k ∈ Z. The box [kδ, kδ + δ] × [x] (tk),

[x]

t

(a) Tube [x](t) = t2 + [e] where [e] ∈ IR is an arbitrary
interval corresponding to tube’s constant thickness.

[y]

t

(b) Tube [y](t) = −cos(t) + h(t) · [e] where h : R → R is
an arbitrary function depicting a thickness changeover.

[a]

t

(c) Tube [a](t) = [x](t) + [y](t)

[b]

t

(d) Tube [b](t) = sin ([x](t))

[c]

t

(e) Tube [c](t) =
∫
t

0
[x](τ)dτ

Figure 3: Tubes as described by Equation (5) with tube arithmetics.
Note that the vertical scales of these figures vary for full display.

3



with tk ∈ [kδ, kδ + δ] is called the kth slice of the tube
[x](·) and is denoted by [x](k). The resulting approxima-
tion of a tube encloses [x−(·),x+(·)] inside an interval of
step functions [x−(·),x+(·)] such that:

∀t, x−(t) 6 x−(t) 6 x+(t) 6 x+(t). (10)

Such implementation then takes rigorously into account
floating point precision when building a tube, thanks to
reliable numerical libraries such as [30].

Further computations involving [x](·) will be based on
its slices, thus giving an outer approximation of the solu-
tion set. For instance, the lower bound of the integral of a
tube, defined in Equation (4), is simply computed as the
signed area of the region in the tx-plane that is bounded
by the graph of x−(t) and the t-axis, as pictured in Figure
4. The lower slice width δ, the higher the precision of the
approximation.

t

[x]

b
a

∫
b

a

x
−(τ)dτx

−(t)

Figure 4: Outer approximation of the lower bound of
∫
b

a
[x](τ)dτ .

3. Reliable Integration

This section provides a new simple and reliable integra-
tion method, which is the main contribution of this paper.
We propose a new contractor denoted by C d

dt
in association

with the differential equation ẋ(t) = f (x(t), t).

3.1. CSP approach

An interval integration corresponds to a specific network
involving only one constraint given by ẋ(t) = f(x(t), t).
When intermediate values are known – such as the initial
condition x(0) – further constraints can be added to the
network. Using a decomposition, our problem reduces to
the following CSP:



























Variables: x(·), v(·)
Constraints:

1. ẋ = v

2. v = f (x, t)

Domains: [x](·), [v](·)
(11)

The intermediate variable v(·)1 represents the derivative
of x(·) (first constraint) and can be computed with an

1the notation v(·) recalls robot’s velocity: the derivative of its
position x(·)

analytical expression (second constraint) or simply known
to belong to a given set of trajectories: the tube [v](·).

A reliable resolution is performed by the use of guar-
anteed tools to implement each constraint. The second
constraint, for instance v = f(x, t) = − sin(x), will be ap-
plied with a composition of elementary contractors such
as C− and Csin. However, a contractor C d

dt
for the first

constraint ẋ = v has to be built.

3.2. Differential tube contractor C d
dt

The differential constraint implies contractions that can
be propagated along the whole domain in a forward and
then a backward way. We break down the implementation
into two contractors C→d

dt

and C←d
dt

so that C = C→d
dt

◦ C←d
dt

.

Forward contractor C→d
dt

. When solving an ordinary

differential equation numerically such as ẋ = v, a recur-
rence relation is typically encountered:

x(t+ dt) = x(t) + dt · v(t). (12)

The new corresponding contractor is obtained with
bounded values and intersections:

[x](t+ dt) = [x](t+ dt) ∩ ([x](t) + dt · [v](t)) . (13)

Eventually, this definition has to fit with the chosen rep-
resentation of a tube built with a set of slices of width
δ. This implies some time uncertainties over each slice.
Hence, the bounded value of the (k+1)th slice is obtained
thanks to:

[x](k + 1) = [x](k + 1) ∩ ([x](k) ∩ [x](k + 1) + [0, δ] · [v](k + 1)) .
(14)

Backward contractor C←d
dt

. The same method is ap-

plied in backward for the (k − 1)th slice:

[x](k−1) = [x](k−1)∩([x](k) ∩ [x](k − 1)− [0, δ] · [v](k − 1)) . (15)

The algorithms for tubes contractions are provided be-
low. A simple example of such forward/backward propa-
gation is also given in Figure 5, with a given tube [ẋ](·),
an uninitialized tube [x](·) and conditions x0 = 0, xf = 4.
The variable [xfront] used in the algorithms is depicted by
blue thick lines in Figure 5.

Algorithm 1 C→d
dt

(in : [x0], [v](·), inout : [x](·))

1: begin

2: var [xfront]← [x0]
3: var [xold]
4: for k = 1 to k do

5: [xold]← [x](k)
6: [x](k)← [xold] ∩ ([xfront] + [0, δ] · [v](k))
7: if k 6= k then

8: [xfront]← [xold]∩([xfront] + δ · [v](k))∩ [x](k+1)
9: end if

10: end for

11: end

4
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δ

1

k = 1

2

k = 2

3

k = 3

4

k = 4

5

k = 5

t

[ẋ]

(a) Derivative tube [ẋ](·) used
to contract [x](·) initialized to
[−∞,∞]∀t.

0

1

2

3

4

1 2 3 4 5
t

[x]

(b) First step of forward inte-
gration contractor: first slice k1
is contracted from [−∞,∞] to
[0, 2].

0

1

2

3

4

1 2 3 4 5
t

[x]

(c) End of forward contractions.
The minimal envelope of solu-
tions compliant with [ẋ](·) is pic-
tured in blue. Slices representa-
tion – outer approximation – is
depicted in gray.

0

1

2

3

4

1 2 3 4 5
t

[x]

(d) First step of backward inte-
gration contractor, with the last
condition x(5) = 4. A reduced
envelope, pictured in dark blue,
is computed from t = 5 to t = 0.

0

1

2

3

4

1 2 3 4 5
t

[x]

(e) End of backward processing.

0

1

2

3

4

1 2 3 4 5
t

[x]

(f) Tube [x](·) is contracted to
optimally enclose the thin enve-
lope pictured in dark blue.

Figure 5: Storyboard of a forward/backward tube contraction.
Curved lines picture feasible trajectories ẋ∗(·) and x∗(·) that remain
respectively enclosed within [ẋ](·) and [x](·) after the contractions
process.

Algorithm 2 C←d
dt

(in : [xf ], [v](·), inout : [x](·))

1: begin

2: var [xfront]← [xf ]
3: var [xold]
4: for k = k to 1 do

5: [xold]← [x](k)
6: [x](k)← [xold] ∩ ([xfront]− [0, δ] · [v](k))
7: if k 6= 1 then

8: [xfront]← [xold]∩([xfront]− δ · [v](k))∩ [x](k−1)
9: end if

10: end for

11: end

Algorithm 3 C d
dt
(in : [x0], [xf ], [v](·), inout : [x](·))

1: begin

2: C→d
dt

([x0], [v](·), [x](·))

3: C←d
dt

([xf ], [v](·), [x](·))

4: end

3.3. Fixed points

A fixed point method may be applied to solve a CSP
involving a constraint v = f(x). For instance, the prob-
lem ẋ = − sin(x) can be described by a cyclic constraint
network as pictured in Figure 6. Due to the existence of
one loop, an iterative resolution has to be processed un-
til a fixed point is reached. The proposed approach can
be easily applied on this kind of problems but may pro-
vide poor results compared with other dedicated libraries
such as Capd [9], which is typically devoted to this type
of problem.

However, in most robotics applications, constraints net-
works form causal kinematic chains. In such cases, our
method appears to be efficient and competitive. Section 4
provides mobile robotics examples with a concrete appli-
cation of the tool.

4. Simulation of a Mobile Robot

4.1. Causal kinematic chain

For mobile robots, the differential equation often has a
structure of a causal kinematic chain. For instance, motors
generate an acceleration of the wheels rotation, driving the
vehicle forward, creating a displacement. As an example,

sin

∫
x0−

a b

x

Figure 6: Circuit associated with the IVP defined by equation ẋ =
− sin(x). The equation can be broken down into a = sin(x), ḃ = a,
x = x0 − b. All trajectories x(·), a(·), b(·) belong to tubes.
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∫

cos

sin

∫

∫

u

θ

θ

ẋ

ẏ

x

y

Figure 7: Causal kinematic chains associated to the state equations
of a car. All trajectories u(·), θ(·), ẋ(·), ẏ(·), x(·), y(·) belong to
tubes.

let us consider a wheeled robot R with a constant velocity
[31] and described by the following state equations:

R :







ẋ(t) = 10 · cos
(

θ(t)
)

,
ẏ(t) = 10 · sin

(

θ(t)
)

,

θ̇(t) = u(t),
(16)

where x, y correspond to the position of the robot and θ to
its heading. As illustrated by the circuit of Figure 7, the
state equations do not consist in looped constraints and
are composed of two causal kinematic chains.

Here, car’s speed is set to v = 10m/s. We assume that
the initial state x0 belongs to the box:

x0 ∈ [−1, 1]× [−1, 1]× [−6/5π − 0.02,−6/5π + 0.02].

In order to compare with theCapd library, u(·) is bounded
by the following analytical expression:

u(t) ∈ [u](t) = − cos

(

t+ 33

5

)

+ [−0.02, 0.02]. (17)

Tubes [θ](·), [ẋ](·), [x](·), . . . , are initialized to
[−∞,+∞] for all t. Our propagation method yields the
tubes projected on Figure 8. Note that the estimation be-
comes more pessimistic with time: without exteroceptive
measurements, the robot progressively gets lost. The fig-
ure shows that our method is more accurate than Capd

on this example.

y

x

Figure 8: Interval simulation of the robot R. The blue line represents
the true poses of the robot while gray shapes correspond to the tubes
[x](·)× [y](·) projected on the world frame. The green box is the final
box obtained for t = 14. By comparison, the final box computed with
Capd is represented in red.

y

x

Figure 9: Simulation as presented in Figure 8. This time, the initial
and final states are almost known while uncertainties are maximal
in the middle of the mission.

To illustrate the fact that our method is more general
and more flexible than existing guaranteed integration ap-
proaches, consider now a situation where final state x(14)
is known to belong to the box [x] (14) = [53.9, 55.9] ×
[6.9, 8.9]× [−2.36,−2.32]. Adding this information to the
constraint network, the contractor C←d

dt

can be called to

perform a backward propagation. The result is illustrated
by Figure 9 where backward contractions are observed.

4.2. Example involving higher order differential con-

straints

Let us now consider a robot described by its state x ∈
R

2 representing its position on a horizontal plane, and
following a Lissajous trajectory:

x(t) = 5 ·

(

2 cos(t)
sin(2t)

)

. (18)

Equation (18) describes the actual trajectory which is un-
known. To illustrate our approach, we generate differential
equations satisfied by x(t). The initial condition is known
to belong to a box [x0]. The associated constraint network
is the following:











































Variables: x(·), ẋ(·), ẍ(·)
Constraints:

1. ẍ1(t) ∈ −10 cos(t) + [−0.001, 0.001]

2. ẍ2 = −0.4 · ẋ1 · ẍ1

3. ẋ(0) =

(

0
10

)

, x(0) ∈

(

[9.8, 10.2]
[−0.2, 0.2]

)

Domains: [x](·), [ẋ](·), [ẍ](·)
(19)

The contractor based approach provides the envelope of
trajectories pictured in Figure 10. It shows the ease-of-use
of differential constraints that are usually encountered in
mobile robotics where x is the position of a robot, ẋ its
speed and ẍ its acceleration.

5. Extension to State Estimation

A state estimation problem (see e.g. [32, 33, 34]) in-
volving state constraints can be cast into a constraint

6



p2

p1
0−10 10

0

5

−5

Figure 10: A robot following a Lissajous curve. Blue line is the truth
given by Equation (18). Gray area is the envelope of trajectories
computed with the proposed method applied on the previous CSP.
One should note that further constraints such as x2(t) = x2(t + π)
or x(π

2
) = x( 3π

2
) could be easily added to the CSP.

network for which four types of uncertainty propagations
are encountered. The forward propagation (1), the back-

ward propagation (2), the correction (3) and the state con-
straints (4). In the literature, (1) is known as the predic-

tion, (1)+(2) the integration, (3) the correction, (1)+(3)
the filter and (1)+(2)+(3) the smoother. Section 3 pro-
vides a tool for (1)+(2), i.e., the forward/backward in-
tegration. This has been illustrated in Section 4 with the
simulation of mobile robots. In the current section, we will
show that the approach can also be extended to all types
of constraints, namely (1)+(2)+(3)+(4), which is of high
interest for robotics applications. An example is given on
a real dataset.

5.1. Added corrections and state constraints

A state estimation relies on the following equations:
{

ẋ(t) = f(x(t), t),
y(t) = g(x(t)),

(20)

where f : R
n × R → R

n is the evolution function and
g : Rn → R

m is the observation function. The latter allows
corrections over the state x(t) from a given measurement
y(t) that can be bounded by [y](t). This constraint is
easily applied by performing a local contraction of the tube
[x](·) at time t such that:

[x](t) = [x](t) ∩ g−1([y](t)). (21)

A filter or a smoother procedure is then respectively ob-
tained thanks to C→d

dt

or C d
dt
.

5.2. State estimation of an underwater robot

As an example, let us consider a real experiment with an
underwater robot. We will consider both evolution equa-
tions and state observations in order to perform a complete
state estimation. A classical kinematic model for an un-
derwater robot [35, 2] is:

{

ṗ = R(ψ, θ, ϕ) · vr,
v̇r = ar − ωr ∧ vr,

(22)

where R(ψ, θ, ϕ) is the Euler matrix given by:





cos θ cosψ − cosϕ sinψ + sin θ cosψ sinϕ sinψ sinϕ + sin θ cosψ cosϕ

cos θ sinψ cosψ cosϕ + sin θ sinψ sinϕ − cosψ sinϕ + sin θ cosϕ sinψ

− sin θ cos θ sinϕ cos θ cosϕ



.

In these equations, the vector p = (px, py, pz)
⊺ gives the

coordinates of the center of the robot expressed in the ab-
solute inertial coordinate system R0, as well as the three
Euler angles (ψ, θ, ϕ). The robot’s speed vector vr and
acceleration vector ar are expressed in its own coordinate
system R1. The vector ωr = (ωx, ωy, ωz)

⊺
corresponds to

the rotation vector of the robot relative to R0 expressed
in R1. It is indeed conventional to express ar, ωr in the
coordinate system of the robot since these quantities are
generally measured by the robot itself via an inertial mea-
surement unit attached on it.

Consider now a trajectory of the Autonomous Underwa-
ter Vehicle Daurade (Figure 11). From its inertial unit,
we collect measurements for ar, ωr, ψ, θ, ϕ with some
bounded errors defined thanks to the datasheet of the sen-
sor. Furthermore, Daurade is equipped with a DVL2 giv-
ing measurements about its speed vector vr. From these
sensors we create tubes based on each of these variables.
See for instance Figure 13.

Figure 11: Daurade AUV managed by DGA Techniques Navales

Brest and the Service Hydrographique et Ocanographique de la Ma-

rine (SHOM), during an experiment in the Rade de Brest, October
2015. Photo: S. Rohou.

With tube arithmetic and tube integration, we finally
compute the positions of the robot: [p](·). One of its com-
ponent is plotted in Figure 14. An overview of the mission
is pictured by Figure 12 where the first dead reckoning
computation is depicted in light gray. A state estimation
is then performed with the help of two positioning mea-
surements pictured in red. This led to the contraction of
[p](·) over the whole mission duration, by using the pre-
sented contractor C d

dt
.

6. Conclusions

This paper proposes a simple and efficient constraint-
based method for the guaranteed interval computation of

2DVL: Doppler Velocity Log, a hydro-acoustic sensor using the
Doppler effect to measure robot’s velocity over the seabed.
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(a) Mission map: Daurade exploring a 25 hectares seabed area.
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(b) Zoom on the two state observations: these are bounded
positioning measurements obtained at t1 = 14min and t2 =
32min.

Figure 12: Mission map after 45 minutes. Blue line is Daurade’s true trajectory, given by an ultra-short baseline (USBL), a system made
of underwater acoustic sensors for positioning purposes. Gray area and white boxes respectively correspond to the tubes [p1](·) × [p2](·)
projected on the world frame before and after the consideration of fleeting positioning measurements, pictured by red boxes. Indeed, the only
use of inertial data and velocity measurements provided by the DVL leads to a strong drift at the end of the mission. Here, thanks to two
observations, the drift is reduced over the whole mission duration.

[ṗ1] (m/s)

t

Figure 13: Example of Daurade’s tube [ṗ1](·) computed to rep-
resent the velocity along x in R0. Because this tube comes from
measurements without any integration process, its thickness remains
constant.

[p1] (m)

t

Figure 14: Daurade’s tube [p1](·) computed as the primitive of
[ṗ1](·). This tube becomes thicker depicting cumulative uncertainties
due to the dead-reckoning method. Observations pictured in Figure
12 are not represented here.

mobile robots trajectories. The principle is to model the
problem as a constraint network and generate a contractor
from each constraint. The contractors contract all tubes
as much as possible up to a fixed point. In order to deal
with dynamical systems, a dedicated differential contrac-
tor has been proposed. Its use is well suited in high order
differential contexts, non-linear equations, fleeting obser-
vations and real datasets. Hence, this approach appears
to be competitive for robotics applications while providing
reliable sets of robots trajectories.

7. Available Libraries

An optimized tube class has been implemented
during this work and is available on: www.simon-
rohou.fr/research/tubint. The source code of the simu-
lated examples presented in this paper are also provided
in this library. This class is compatible with IBEX: a C++
library for system solving and global optimization based
on interval arithmetic and constraint programming, see
www.ibex-lib.org. Figures have been drawn using the vi-
sualizer VIBEs [36].

8. Acknowledgments

This work has been supported by the French Direction

Gnrale de l’Armement (DGA) during the UK-France PhD
program. We also thank DGA Techniques Navales Brest

for their kind help during Daurade’s experiments.

[1] M. Konecny, W. Taha, J. Duracz, A. Duracz, A. Ames, Enclos-
ing the behavior of a hybrid system up to and beyond a zeno
point, in: Cyber-Physical Systems, Networks, and Applications

8



(CPSNA), 2013 IEEE 1st International Conference on, IEEE,
2013, pp. 120–125.

[2] L. Jaulin, Mobile Robotics, Elsevier Science, 2015.
[3] W. Taha, A. Duracz, Acumen: An Open-Source Testbed for

Cyber-Physical Systems Research, Springer International Pub-
lishing, Cham, 2016, pp. 118–130.

[4] R. E. Moore, Methods and applications of interval analysis,
SIAM, 1979.

[5] M. Berz, Computational differentiation: techniques, applica-
tions, and tools, no. 89, Society for Industrial & Applied, 1996.

[6] N. Revol, K. Makino, M. Berz, Taylor models and floating-point
arithmetic: proof that arithmetic operations are validated in
COSY, The Journal of Logic and Algebraic Programming 64 (1)
(2005) 135–154.

[7] N. S. Nedialkov, K. R. Jackson, G. F. Corliss, Validated solu-
tions of initial value problems for ordinary differential equations,
Applied Mathematics and Computation 105 (1) (1999) 21–68.

[8] J. A. dit Sandretto, A. Chapoutot, Validated explicit and im-
plicit runge-kutta methods, Reliable Computing 22 (2016) 79.
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