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Abstract

We describe a methodology to design foot soles for a humanoid robot given walking gait parameters (i.e. given center-
of-mass and zero-moment-point trajectories). In order to obtain an optimized compliant sole, we devised a shape
optimization framework which takes –among other inputs, an initial rough (simplified) shape of the sole and refines it
through successive optimization steps under additional constraints and a cost function. The shape is optimized based on
the simulation of the sole deformation during an entire walking step, taking time dependent input of the walking pattern
generator into account. Our shape optimization framework is able to minimize the impact of the foot with the ground
during the heel-strike phase and to limit foot rotation in case of perturbations. Indeed, low foot rotation enforces a
vertical posture and secures the balance of the humanoid robot. Moreover, weight restriction (formulated as a constraint
on the sole volume) is added to our optimization problem.
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1. Introduction

Bipedal walking on flat ground is a well-documented
and thoroughly studied problem in the humanoid research
field. An excellent review is presented in [1]. Recent stud-
ies show that humanoid walking on flat floors reached a
good level of maturity. Indeed, humanoid robots can walk
with human-in-loop [2], with human stylized gaits [3, 4]
or with emotional behavior gaits [5]. In the latter works,
the precise control of the contact interaction between the
humanoid robot feet and the ground plays an important
role. Reducing the impact at the landing is important to
perform smooth walking gaits. For example, reducing im-
pacts and having smooth walking is critical in human-in-
the-loop walking under hard visual servoing constraints [6]
or for precise stylized or emotional walking gaits.

To reduce the impact of the foot landing, different stud-
ies illustrate the importance of the foot shape design.
Adamczyk et al. [7] show that in a human passive walk-
ing locomotion, the energy loss during heel contact with
the ground varies with (i) the foot shape, and (ii) the
first contact point between the foot and the ground [8].
They explain how a rolling foot shape considerably reduces
impact-shock when the heel touches the ground. Recently,
Fukushima et al. [9] show that foot shape, once opti-
mized, allows passive walking on various slopes. Miyakoshi
and Cheng [10] propose a model for biped walking with
a curved surface foot (using an array of point contacts).
This model improves the stability of walking and reduces
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impact forces during foot contact maintaining the same
human-like walking characteristics. Aerts et al. [11] found
by experimental measurements that the shock absorption
in humans happens at the foot pads. In most people, the
heel pad is 25mm thick, and compresses by 12mm during
stance. To make the foot more controllable, the material
is hyperelastic –it starts out being compliant, and then
stiffen during stance. Furthermore, Sardain and Besson-
net [12] show how the sole mechanism influences the sta-
bilization of biped robot walking.

The large majority of humanoid robots are embedded
with force sensing devices at the ankles. In order to protect
the robot structure and the force sensors from high impact
forces during landing phases, two types of shock-absorbing
mechanisms are commonly used.

The first is an internal passive mechanism. This type of
shock-absorbing mechanism is present in the feet of many
humanoid robots such as the Honda’s Asimo [13] and the
Kawada’s HRP families [14]. The Asimo’s shock-absorbing
system smooths the impact force deforming rubber bush-
ing inserted into guides. HRP robots have three rubber
bushing with dampers that are attached between the foot
and the leg. Unfortunately, this non-measurable compli-
ance makes the attitude of the robot difficult to control,
especially in complex maneuvers [15]. For this reason, a
dedicated software-compensator is necessary to stabilize
the walking [16, 17]. Bruneau et al. [18] explain the diffi-
culty in modeling and controlling these flexibilities.

The second shock-absorbing system consists in using ex-
ternal passive mechanisms. Yamaguchi et. al use a multi-
sensor foot mechanism with shock absorbing material [19].

Preprint submitted to Robotics and Autonomous Systems July 15, 2017



The foot sensors detect the path surface during the landing
phase, which is combined with an adaptive biped walking
control method and a flexible material to reduce the im-
pact forces. Of course, combination of both is possible. In
fact, all humanoid robots have a thin patterned rubber sole
mounted (glued) on the part of their feet in contact with
the ground. Because it is thin, large part of the landing
shocks are absorbed at the ankle compliance.

In this paper, we aim at designing an optimized com-
pliant sole added under the rigid structure of each foot
to reduce the impact force at the landing phase, while
accounting for the difficulty of the control after the land-
ing phase (by increasing rotational stiffness). In addition,
the soft soles must also be designed to absorb landing im-
pact shocks and ground unevenness with a better contact-
surface casting. During walking, the sole’s compliance de-
pends on the contact area variations. This external flexible
sole can also offer other benefits such as better adherence
properties and adapting, through deformation, to the ter-
rain irregularities. We already mentioned this problem
and reported very preliminary results in [20], Fig. 1. We
decided to pursue this idea further.

(a) (b)

Figure 1: (a): Rectangular parallelepiped soles mounted on HRP-4’s
feet; (b): Initial sole shape where Os is the center of the surface
attached to the foot

Our long-term objective is to optimize the sole together
with the parameters of the walking pattern generator
(WPG) to design soles that can adapt (in form and stiff-
ness) to specific conditions and prerequisite needs for walk-
ing. In order to achieve this goal, we decided to proceed
in three phases:

1. devise an approach by which we optimize the sole
shape for given walking parameters and prerequisites,

2. extend the latter approach to combine tuning the
walking parameters and sole shapes in a single op-
timization problem,

3. use the latter approach to obtain an optimized sole
shape for different terrain conditions and requests.

This paper deals with the first phase of our work-plan.
In Sec. 2, we explain our framework; in Sec. 3, we illustrate
our optimization problem; in Sec. 4 and 5, we detail each
module of the simulation framework and the methods used
to define the sole geometry and the mechanical properties
of the shape optimization problem; in Sec. 6 we describe

the cost function of our optimization process; in Sec. 7 we
present some solutions obtained using our approach.

2. Sole design framework

Shape optimization is very important in different engi-
neering disciplines. When load carrying efficiency is tightly
linked to the shape, the optimization of the structure is
necessary. The common goal of a shape optimization prob-
lem is to find an object shape that minimizes an objective
function and satisfies some constraints [21, 22]. Many ex-
amples show the importance of shape optimization: for
example the design of fillets, structures with holes [23],
general 2-D bodies [24], curvilinear-stiffened panels [25],
hull design [26], electromagnetics [27], and automotive
aerodynamics [28]. Particularly relevant are the studies
on aerospace engineering [29]. These shape optimization
problems adopt different approaches to find optimal de-
sign of statically-loaded elastic structures. In our study,
the force applied to the structure/object (i.e. the sole)
depends on both time and space. The simulation of the
foot/sole movement in a specific instant of time depends
on the previous ones due to the sliding friction. To take
into account these factors, we developed a dedicated shape
optimization framework (Fig. 2) that optimizes the sole
shape for a given walking pattern parameters, see Fig. 1a.
Our aim is to find the sole’s shape that minimizes a cer-
tain cost function computed over the simulation of the foot
movement during the contact phase, while bounding the
volume of the sole.

Recently, adaptive or refinement-based parametrization
have been developed to improve the efficiency of shape op-
timization algorithms [30, 31, 32, 33]. Zingg et al. [34]
show that gradient-based optimization is more efficient
than gradient-free optimization in aerodynamics. This dif-
ference becomes more important with a higher number of
design variables. In our optimization problem, the decision
variables (i.e. the parameters) are the spline coefficients
describing the sole deformation. The number of these co-
efficients is chosen by the user. Since we already envision
extending our approach to a single optimization problem
of the sole shape and the walking pattern generator at the
same time, we expect the number of parameters to increase
significantly. For this reason, we use a gradient-based for-
mulation of the sole optimization problem.

The Fig. 2 illustrates our framework. The sole shape
and the walking pattern are optimized using two distinct
modules (Sec. 1). The Zero Moment Point (ZMP) position
and force obtained from the walking pattern generator are
the input to the simulation of the movement and the de-
formation. The simulation module will be detailed later.

3. Problem formulation

Our objective is to obtain a sole shape Ω, seen as a
connected subset of R3, which lowers at best (i) the im-
pact force during the heel-strike phase (shock-absorbing),
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Figure 2: Framework to optimize the sole shape for the given walking parameters. Xini, Xact and Xopt are respectively the initial,
actual (during shape optimization process) and optimized sole nodes positions defining its shape. pini and p are respectively the initial
and intermediate (during shape optimization) sole shape parameters. s is the function transforming Xini in Xact. The Walking Pattern
Generator (also formulated as an optimization problem) is an independent module that return the desired force F des and ZMP positions
Zdes as input to the simulation of the sole movement and deformation. The geometry parametrization module describes the shape of sole.
The Shape optimizer finds numerically minimums of the cost function c(Ω).

and (ii) the foot rotation during the whole foot movement,
while tracking a given resultant wrench of support reac-
tion. We formulate this goal as an optimization program.

We specify a pair of functions (F des(t),Zdes(t)) repre-
senting the total contact forces and ZMP position over the
time interval [t0, tf ] during which we want the sole to be
in contact with the floor. We defined the cost function as
follows, using the Cartesian stiffness matrix Kc:

c(Ω) =
∫ th
t0
σmax (Ktr

c (Ω, t)) dt− w
∫ tf
t0
σmin (Krot

c (Ω, t)) dt
def
= ctr − w crot

(1)
where σmax and σmin denotes respectively the largest and
smallest singular value of a matrix, which implies we op-
timize the stiffness in the worst direction. The two terms
correspond respectively to:

1. minimization of the translational part of the Cartesian
stiffness matrix Kc (maximize the compliance) during
the heel-strike phase to reduce the impact force, and

2. maximization of the rotational part of the Cartesian
stiffness matrix Kc during the whole foot movement
to decrease foot rotation in case of perturbations. Low
foot rotation enforces the vertical posture and secures
the balance of the robot during walking.

th is the end of the heel-strike phase that we define as
lasting 10% of the whole contact phase, when the vertical
component of force almost reached its maximum, that is
at the end of double support. Note that c and Kc are
parametrized by F des and Zdes.

We also specify a maximum volume vmax (and hence the
weight) for the sole, otherwise we would obtain very large
and bulky soles. We thus have the following program:

min.
Ω

c(Ω), s.t. v(Ω) ≤ vmax (2)

where v(Ω) denotes the volume of the sole.

4. Sole description

To make the problem (2) tractable, we need to describe
the shape Ω with a finite number of parameters, and to
simulate the movement and deformations undergone by a
given shape. We do so by choosing a specific parametriza-
tion of the shape Ω, using Finite Element Model (FEM) to
include the mechanical properties of the sole and a special
algorithm to simulate the movement and deformations.

In the remaining of this paper, we divide the surface ∂Ω
into two non-empty disjoint parts:

∂Ω = SD ∪ SS , with SD ∩ SS = ∅ (3)

SD is the surface of the sole attached to the rigid part of
the foot (Dirichlet surface) and SS is the surface of the
sole that could be in contact with the ground. We also
denote by ΩI := Ω \ ∂Ω the interior volume of Ω.

4.1. Geometry parametrization

An important part of the shape optimization problem
is the choice of basis in the parametrization. In this pa-
per, we choose to describe the sole geometry by giving
an initial shape that is deformed according to a func-
tion parametrized by a 2D spline. The coefficients of this
spline are the optimization decision variables. The ob-
tained shape is used to simulate the whole foot movement
imposed by the walking pattern generator outputs.

Therefore, we describe Ω by (i) an initial volume Ω0

and (ii) a deformation of this volume according to a
parametrized function s. Fig. 3 gives a 2D illustration
of this process.

The shape Ω0 is discretized into finite elements and we
define a point Os on SD (Fig. 1b), typically at its center.

To each node Xi of the FEM with Cartesian coordinates
(xi, yi, zi) in a frame attached to Os, we associate spher-
ical coordinates (ri, θi, ϕi) with the following convention
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(Fig. 3):

ri =
√
x2
i + y2

i + z2
i

θi = atan2 (yi,−zi) , ϕi = atan2

(
xi,
√
y2
i + z2

i

)
Then the coordinates of the node after deformation are

X ′i = s(p, θi, ϕi)Xi (4)

We define s as a 2D B-spline with parameters p:

s(p, θ, ϕ) =

nθ∑
j=0

nϕ∑
k=0

pj,kNj(θ)Nk(ϕ) (5)

where the Nj and Nk are B-spline basis function of degree
2 scaled appropriately so that s is spatially defined on[
−π

2
,
π

2

]2
. The variables nθ and nϕ are user-defined; they

control the precision of the spline. The spherical mapping

has the singular points (the poles) for φ = ±π
2

. In prox-

imity of the poles, close points Xi have very different θi
and thus may have very different images X ′i through equa-
tion (4). To avoid this problem, we impose that in proxim-
ity of the pole coordinates the spline function is constant,
by constraining the pj,0 (respectively nϕ) to have the same
value.

We used a spherical parametrization, rather than a
Cartesian one, since it allows a 2D shape parametriza-
tion of the surface, rather than a 3D one. The Cartesian
parameterization would then have more parameters and
would be redundant (tangential deformations to the sur-
face of the body having no effect on the shape).

To avoid that the sole size is too large or too small, we
bound the shape optimization parameters pj,k.

4.2. Finite Element Model

To simulate the deforming motion given by the flexible
sole and obtain a desired ZMP force and position, we use
FEM and contact modeling from mechanical laws (Sec. 5).

The simplest FEM is the static linear elastic model un-
der the assumption of small deformations [35]. This model
is valid when the node displacements w.r.t the object size
is relatively low and the sole deformation response is fast
enough. In this paper, we assume that under a given force,
the dynamic sole deformations are faster than the external
dynamic forces and that the sole has small deformations.

In the static case for linear elasticity, a characteristic
stiffness matrix is extracted from each element. These
elementary matrices are then assembled in a large stiffness
matrix K of the sole.

Once discretized by the finite element method, the dis-
placements at each point of the mesh depend on external
forces applied to the same points. Therefore, we can write
the following linear relationship:

K lU = lF (6)

where lF ∈ RN is the vector of generalized forces (nodal
forces) and lU ∈ RN is the vector of the node displace-
ments. The superscript l before a letter denotes that the
vector is expressed in the sole frame and no superscript
means that the vector is expressed in the world frame.

The displacement of the Dirichlet nodes are known and
for this reason, we can write the system (6) as:KDD KDI KDS

KID KII KIS

KSD KSI KSS

 0
lU I
lUS

 =

lFDlF I
lF S

 (7)

where I, D and S denotes respectively nodes of ΩI , SD
and SS .

To simplify the mechanical model of sole, as in [36], we
add that internal nodes are not subject to external forces
lF I = 0. Therefore, keeping the two last lines, the system
becomes: [

KII KIS

KSI KSS

] [
lU I
lUS

]
=

[
0

lF S

]
(8)
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Figure 4: Contact between the sole and the ground.

From (8), we can write a condensed linear elasticity
law [36], to be used in first analysis of our algorithm:

lUS =
(
KSS −KSIK

−1
II KIS

)−1 lF S
= K−1

S
lF S

lU I = −K−1
II KIS

lUS

(9)

where KS is the stiffness surface matrix.
As in [36], we consider that external forces apply to the

sole surface nodes only. Hence, to find the displacement
of each nodes, we divide the simulation into two steps:

1. find the displacement lUS induced by the contact with
the ground (Sec. 5), and then

2. compute the displacement lU I using the second equa-
tion in (9).

5. Contacts

We describe how we model the contact between the sole
and the (flat) ground. To model the contact, we use a
relationship between the two unknowns of the system (9):
the contact force and the relative position between the sole
node position and the ground position (Fig. 4). This rel-
ative position is called contact space displacement vector
δ. For a point contact α, the normal component of δ is:

δn,α = n (P α −Qα) (10)

where n =
[
0 0 1

]
is the normal vector.

We denote with the subscript n the normal compo-
nent of the vector vn = nv and with the subscript t
the tangential components of the vector vt = tv, where

t =

[
1 0 0
0 1 0

]
.

We need to compute the forces F applying to the contact
points P , which impose non-interpenetration between the
sole and the ground. We use the two following laws:

1. Signorini’s law establishes for each contact node α
the complementarity between F α and δα along each
contact normal [37]:

0 ≤ F n,α ⊥ δn,α ≥ 0 (11)

2. Coulomb’s law characterizes the dry friction. If F α
is the contact force applied to the contact node α and
µ the friction coefficient, we can distinguish two com-
plementarity conditions for stick and slip motions:

(a) ‖F t,α‖ < µ|Fn,α| and δt,α = 0 (stick condi-
tion)

(b) F t,α = −µFn,α δt,α
‖δt,α‖ (slip condition)

Based on the framework in Fig. 2, we want to find a pos-
sible position and orientation of the sole together with the
configuration of the contact points to obtain F des and Zdes

given by the walking pattern generator. Our algorithm is
illustrated in Fig. 5.

Frictional contact
problem (algorithm 1)

Walking pattern generator Sole Position at q − 1

equation (25)

Update sole
position

and orientation
(equation (24))

equation (27)

(F des,Zdes) (Oq−1
l ,Υq−1)

(δ,F )

NO

YES

(Ol,Υ)

YES

NO

P

Figure 5: Framework for contact handling to obtain F des and Zdes.
q − 1 is the previous time step.

5.1. Signorini’s law

To find the contact space displacements and
forces, we can formulate the contact problem as a
linear complementarity problem (LCP). Various methods,
direct or iterative are possible to solve LCP [38]. For
our applications, we use an iterative Gauss-Seidel solver
based on [39]. Using this contact resolution, LCP takes
into account the coupling between the different contact
points.

Given the foot orientation and position defined respec-
tively by three angles Υ = (θ, φ, ψ) and a vector Ol, the
sole surface node positions in the absolute frame P free are
given by the following relationship (Fig. 4):

P free = [Ol · · ·Ol]
T

+H
[
lP free

1 · · ·lP free
m

]T def
= Ol +H lP free

(12)

where lP
free

is the vector of the free node positions in the
sole frame. H = diag(R, . . . ,R), where R is the foot
orientation matrix defined by three Euler rotation angles
Υ = (θ, φ, ψ). The subscript m is the number of nodes
of suface SS of the sole that can potentially be in contact
with the ground. The superscript T denotes the transpose
operator.
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When the sole comes into contact with the ground, we
can express the displacement US as:

US = P − P free (13)

Using the linear relationship (9) tranformed in the global
frame, the position of each surface node is composed of two
terms:

P = HK−1
S H

TF + P free def
= WF +Ol +H lP

free
(14)

W is the Delassus operator [40].
By definition of δα, linking a surface node to a reference

point Qα on the ground, we can write:

δ = P−Q = WF+Ol+H
lP

free−Q def
= WF+δfree (15)

where Q =
[
Q1 . . .Qm

]
.

Once δ is computed as presented next, lUS is obtained
by:

lUS = HTUS = HT (δ +Q)−lP free (16)

Then, the normal component of the displacement vec-
tor (15) for each contact point α is:

δn,α = nOl + nR lP free
α + n

m∑
β=1

(W αβF β)

def
= δfree

n,α + n
m∑
β=1

(W αβF β)
(17)

where W αβ
def
=

[
Wt

Wn

]
def
=

[
Wtt Wtn

Wnt Wnn

]
is the 3× 3 Delas-

sus’ operator coupling the contacts α and β. Qα does not
appear in (17) since we consider the absolute frame on the
flat floor, and hence nQα = 0.

Using (11) and (17), the Signorini’s problem can be
solved using a LCP in the frictionless case.

5.2. Coulomb’s law

We now explain how we add the Coulomb’s law. In the
3D case, this law adds a non-linearity to the initial contact
problem. To solve friction contact cases, two approaches
are commonly used in the literature: (i) keeping the prob-
lem linear by using a multi-sided pyramid approximates of
the friction cones [38] and (ii) try solving the non-linear
problem like in [41].

Using the first method, we can stack multiple contacts
with friction in a global LCP. However, if we choose to
model the friction with pyramids of 4 facets, each contact
generates six new lines in the LCP and the computational
cost of the problem can become very high. In addition,
the accuracy is very low with 4 facets pyramids.

The non-linear approach in [41] is based on the Newton’s
method. For the paper to be self-contained, we explain this
method for one node in contact (we also derive gradients
from them later-on).

From (15), we find the tangential component of the con-
tact space displacement:

δt,α = tOl,α + tR lP free
α + t

m∑
β=1

(W αβF β)− tQα

≈ tOl,α + tR lP free
α + t

m∑
β=1

(W αβF β)− tP (q−1)
α

def
= δfree

t,α + t
m∑
β=1

(W αβF β)

(18)

where t is the tangential vector, P (q−1)
α is the node posi-

tion in absolute frame at the previous time step and q is
the current time step. In case of a node already in con-
tact at q − 1, the contact reference point is the previous
node position P (q−1)

α . In case of a new contact, we project

on the ground the node position P (q−1)
α as an approxima-

tion of the reference contact position. In fact, real contact
takes place at an intermediate time between previous and
current time step, and a node may have moved a little in
the tangent direction. Precise contact position could be
found, but at the price of a variable step size and event
driven simulation, which is computationally costly when
many contacts occur. Additionally, this approximation is
good enough when the time-step size is sufficiently small.

From (17) and (18), we obtain:

δα = Ol +R lP free
α −

[
P

(q−1)
t,α

0

]
+

m∑
β=1

W αβF β

def
= δfree

α +
m∑
β=1

W αβF β

(19)

Using (19) and Coulomb’s law, we build for each contact
α an application Φ ∈ R2 × R × R2 × R. This method to
solve friction contacts is taken by [42, 39]. In this section,
we detail these equations below to compute the gradient
of our algorithm in Sec. 5.4.

Φ1(δα,F α) = δt,α − δfree
t,α −W tnFn,α −W ttF t,α

Φ2(δα,F α) = δn,α − δfree
n,α −WnnFn,α −W ntF t,α

Φ3(δα,F α) = F t,α −
µFn,α (F t,α − qtδt,α)

‖F t,α − qtδt,α‖
Φ4(δα,F α) = qnδn,α

(20)

The first three equations (two for Φ1 and one for Φ2) are
given by (19) and the last three equations (two for Φ3 and
one for Φ4) by the Coulomb’s law. To solve (20), we need
to find a couple (δα,F α) such as Φ(δα,F α) = 0.

Alart and Curnier [43] explains that a Newton method
can be applied to this type of function. Detail about the
convergence are given in [44]. Based on [42], we choose the
coefficients qn and qt as:

qn =
1

Wnn
, qt =

λmin

λ2
max

(21)

where λmin and λmax are respectively the min and max
eigenvalue of the matrix W tt.

To solve (20), we also use the Newton’s method:[
δ(r)
α

F (r)
α

]
=

[
δ(r−1)
α

F (r−1)
α

]
−
[
∂Φ
(
δ(r−1)
α ,F (r−1)

α

)]−1 [
Φ
(
δ(r−1)
α ,F (r−1)

α

)]
6



where ∂Φ is the Jacobian matrix of the application Φ and
it is illustrated in AppendixA.

If the first derivatives are sufficiently smooth and the
initial point is not too far from one of the roots of the
equations, the convergence of the Newton’s Method is
quadratic.

5.3. Gauss-Seidel method for contacts

In multi-contact case (m contacts), we need to take
into account the coupling between the contact nodes. Us-
ing (19), we have 3m equations with 3m force unknowns
and 3m movement unknowns.

Rewriting (19) as:

δα −W ααF α =

m∑
β=1,β 6=α

W αβF β + δfree
α (22)

As in [39], we can use an iterative Gauss-Seidel method
to obtain a real-time solution of the contact problem un-
der the Signorini’s and Coulomb’s laws. This method is
well-adapted to sparse matrices and it converges, at least
locally, when the system is over-constrained and there are
multiple solutions. The convergence of this method is
shown in [45].

The principle is to test the contacts one by one, and
always in the same order, blocking all others to their
most recently calculated value (algorithm 1). ε2, ε3 are
respectively the desired accuracy for Signorini’s law and
Coulomb’s law.

Algorithm 1: F = contact(F , δfree)

Data: W , µ
Parameters: ε2, ε3
for 1 ≤ α ≤ m do

δα ←
m∑

β=1,β 6=α
W αβF β + δfree

α

if δn,α < ε2 then

F α ← −W−1
ααδα

if ‖F α,t‖ > µFα,n then
Fα,n ← −δfree

α,n/Wnn

δα ←W ααF α + δfree
α

do

c← [∂Φ (δα,F α)]
−1

[Φ (δα,F α)][
δα
F α

]
←
[
δα
F α

]
− c

while Φ (δα,F α) > ε3

else
F α ← 0

To find the appropriate contact node forces and then
the node positions for a given foot 6D position (transla-
tion and rotation), we can use the frictional contact algo-
rithm 3 using Gauss-Seidel method [39]. q is the time step

and r is the total number of simulation steps; ε1 is the de-
sired accuracy for the contact problem. The initialization
procedure of the frictional contact algorithm is described
in algorithm 2.

Algorithm 2: (F , δfree) = init(Ol,Υ)

Data: Oini
l , lP

free
, P (q−1), F (q−1)

compute R(Υ)
if q = 1 then

for α = 1 . . .m do
F α ← 0

δfree
α ← Ol +

[
−tOini

l

nR lP free
α

]
if q = 2 . . . r then

for α = 1 . . .m do

F α ← F (q−1)
α

δfree
α ← R lP free

α +Ol −
[
P

(q−1)
t,α

0

]

Algorithm 3: (F , δ) = AlgoContacts(Ol,Υ)

Parameters: ε1
(F , δfree)← init(Ol,Υ) //algorithm 2
do

F old ← F
F ← contact(F , δfree) //algorithm 1

while

∥∥∥F − F old
∥∥∥

‖F ‖
> ε1

compute δ using equation 19

5.4. Desired force and ZMP position algorithm

In the previous section, we detailed the frictional con-
tact problem where the inputs are the foot position and
orientation and the outputs are the contact forces and the
contact space displacements. In this section, we propose
an algorithm to compute foot position and orientation to
obtain the desired F des(t) and Zdes(t) and null vertical
torque at ZMP ΓZdes,n = 0 mentioned in Fig. 5.

Let f be the function computing the resultant force
F tot, the ZMP Z and vertical torque at desired ZMP
ΓZdes,n from (F , δ). We want to solve the equation

f(AlgoContacts(Ol,Υ)) =

F des(t)
Zdes(t)

0

 (23)

We solve it by Newton method.
Therefore, we derive a Newton step by finding a differ-

ential relationship between (Ftot,Z,ΓZdes,n) and (Ol,Υ):F des − F tot

Zdes −Z
−ΓZdes,n

 =

 dF tot

dZ
dΓZdes,n

 = J

[
dOl

dΥ

]
(24)
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where dΥ =
[
dθ dφ dψ

]T
; J is the Jacobian matrix

that links ZMP Force and position with foot orientation
and position.

In AppendixB, we detail the terms of equation (24).
The method to obtain the node positions for a desired

ZMP position and force is illustrated in algorithm 4. ε4
is the desired accuracy for ZMP position and force. In
algorithm 4, we relax the convergence of AlgoContact 3
through a user-defined parameter λ ∈ [0 1]:∥∥∥F − F old

∥∥∥
‖F ‖

> λ

∥∥∥∥∥∥
F des − Ftot

Zdes −Z
−ΓZdes,n

∥∥∥∥∥∥ (25)

Using this relaxed method, we reduce the simulation time
by 30%.

The convergence of our algorithm is achieved when the
following condition is met:∥∥∥F − F old

∥∥∥
‖F ‖

< ε1 (26)

and: ∥∥∥∥∥∥
F des − Ftot

Zdes −Z
−ΓZdes,n

∥∥∥∥∥∥ < ε4 (27)

Algorithm 4: P = ForcePos(F des,Zdes)

Data: Ol, Υ, lP
free

Parameters: ε1, ε4, λ
(F , δfree)← init(Ol,Υ) //algorithm 2
do

do

F old ← F

F ← contact(F , δfree) //algorithm 1
compute Ftot using equation (B.1)
compute Z, ΓZdes,n using equation (B.2)

while equation (25) is true
compute J using equation (B.8)[
dOl

dΥ

]
← J−1

F des − Ftot

Zdes −Z
−ΓZdes,n


Ol ← dOl +Ol

Υ← dΥ + Υ
while equation (27) is true
compute U using equation (9)

compute P free using equation (12)

P ← U + P free

5.5. Initial conditions

To solve the problem, we have to set the condition at the
first time step. We impose an initial position Oini

l and yaw
orientation of the foot just before the first contact that will

be used for the reference contact positions Q. Initial roll
and pitch orientation of the foot just before first contact is
not imposed since it could be discontinuous with the roll
and pitch orientation found from desired ZMP position.
Initial roll and pitch orientation of the foot are then taken
to be the same as those obtained from the desired ZMP
position. Hence, tangential reference contact positions are:

Qt = tOini
l + tRini(θ, φ, ψini) lP free

α (28)

where ψini is the desired fixed yaw orientation of the foot
at first contact with the ground. For the normal compo-
nent, δini

n,α = δn,α. For the tangential term, equation (18)
becomes:

δini
t,α = tOl,α + tR lP free

α + t
m∑
β=1

(W αβF β)− tQα

≈ t(Ol,α −Oini
l,α) + t(R−Rini)lP free

α

+t
m∑
β=1

(W αβF β)

(29)

From (17) and (29), we obtain:

δα = Ol,α +R lP free
α −

[
t(Oini

l,α +RinilP free
α )

0

]
+
∑m
β=1W αβF β

(30)

The Jacobian matrix for the first step is detailed
in AppendixC.

6. Cost function

As explained in Sec. 3, our cost function is based on the
Cartesian stiffness computed in the ZMP position. Here,
we explain how we can find this matrix. For an iterative al-
gorithm we need to find a differential relationship between
(F tot,ΓZ) and (zOl,ω), where ω is angular velocity and z

denotes the ZMP frame. We consider zOl rather than Ol

so that reference point for small rotation is Z rather than
the absolute origin. Defining a small rotation dω = ω dt,
we want the following matrix Kc:[

dF tot

dΓZ

]
= Kc

[
zdOl

dω

]
=

[
Ktr
c Ktr,rot

c

Krot,tr
c Krot

c

] [
zdOl

dω

]
(31)

The detailed description with computational details of
the Cartesian stiffness is in AppendixD.

7. Results

We first present the conditions of the sole optimization
problems, followed by a presentation of the obtained soles
and discussions.
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Figure 6: ZMP trajectory at left and ZMP force at right
for the energy-minimizing case.
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Figure 7: ZMP trajectory at left and ZMP force at right
for the straight case.

7.1. Optimization description

We used smooth ZMP and force trajectories of Fig. 6
obtained with the walking pattern generator [46] based on
a minimization of the robot energy consumption. Pattern
generator was used on a single cyclic step. To obtain the
whole ZMP trajectory under each foot, the ZMP reparti-
tion is computed during the double-support-phase of the
walking gait. The ZMP trajectory is defined as a twice
differentiable piecewise polynomial function whose param-
eters are obtained by solving a QP optimization problem.
The force trajectory is a by-product of the computation.
More details are given in [47] and [46].

Table 1 summarizes the different cases used to obtain
optimized sole shapes. They were chosen to study the in-
fluence of different parameters on the sole shape obtained.
Here is a detailed description of studied cases:

1. A reference case that can be applied to the robot.
2. A case giving more weight to the rotation criterion

for better stability during the walk. Used to see the
influence of relative weight given to impact force and
foot rotation reduction.

3. A case with a different material, to see the influence of
the choice of material on the sole shape and criteria.

4. A case with a different ZMP trajectory simply going
from heel to toe in the middle of the foot, to see the
influence of the ZMP trajectory.

5. A case with a non-modified surface attached to the
rigid lower part of the robot foot SD (Dirichlet nodes
with no displacement) during optimization, as op-
posed to the other cases where the shape of this sur-
face of Dirichlet nodes is modified and optimized (but
kept flat). In this case this surface remains constant
during optimization, in order to obtain a sole that can
be used on real robot without changing the existing
rigid part of the foot. This case allows to see the cost
of this constraint on the foot shape and criteria.

To obtain dynamic properties close to the original robot
set-up, we impose that the existing robot foot weight with
ankle flexibility is similar to our proposed new foot with
the flexible sole. This is enforced by the constraint on the
total volume in problem (2)1.

1This constraint is implemented as an inequality instead of an
equality; yet this is equivalent at the solution, because the constraint
is active (but an inequality enhances the convergence).

Table 1: Different cases for the different optimized sole shapes.
The Young modulus of neoprene is 1 MPa and of butyl rubber is
1.4 MPa [48]. The cost function is the equation (1); WPG denotes
the ZMP force and trajectory obtained using the walking pattern
generator in [47].

Case WPG Material Cost Dirichlet

1-Ref Fig. 6 Neoprene w = 1 Free

2-Rot Fig. 6 Neoprene w = 1000 Free

3-Rubber Fig. 6 Butyl rubber w = 1 Free

4-Straight Fig. 7 Neoprene w = 1 Free

5-Fixed Fig. 6 Neoprene w = 1 Fixed

In the case of the neoprene for a maximum sole weight
of 1 kg, the maximum volume is:

vmax =
mmax

ρ
=

1 kg

1230 kg m=3 = 813 cm3 (32)

where ρ is the material density [48]. In the case of butyl
rubber vmax = 1098 cm3.

Starting from the initial shape in Fig. 1b, we obtain
convergence to an optimized sole shape. We then refine
the optimized shape using iso2mesh’s library2 and we
run a second optimization with the refined mesh as initial
shape, etc. During the shape optimization process, the
mesh could be invalid because of some reversed tetrahe-
drons (with a negative volume) [49]. In this case, we stop
automatically the optimization, remesh and restart. To
obtain one optimized sole, our optimization takes between
1 day and 1.5 days of computation with a partially opti-
mized code on a personal laptop. The library iso2mesh is
very useful in our case because it is able to create quality
volumetric mesh from isosurface patches.

Fig. 8, 9, 10, 11, 12 shows the optimized soles for the
different cases in Table 1 and a dry friction of 0.8.

7.2. Discussions

Notice for all optimized soles, that to minimize the im-
pact during the heel-strike phase, the optimizer creates a

2http://iso2mesh.sourceforge.net/
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flexible appendix with minimum connection with the rigid
part of the foot, in a shape similar to the human heel. This
“heel” part is different for the different cases in Table 1.
In particular, notice that for the trajectory in Fig. 6, this
part is in the back-left part of the sole, for the trajectory
in Fig. 7 it is in the back-center part of the sole. One can
conclude that the optimizer creates a heel where the ZMP
trajectory is along the sole.

The difference of the heel part for different cost func-
tions is also remarkable. In the case 1-Ref, this part is
more rounded, shorter and with less connection with the
rigid part of the foot in comparison with the optimized
sole in the case 2-Rot. This interesting result shows that if
we want to enforce lower foot rotation to keep the vertical
posture, we need a less rounded, longer heel with rigid sup-
port. Those characteristics to minimize foot rotation are
also observed at the front of the optimized sole, where only
rotational part of the Cartesian stiffness is maximized. We
then obtained a large front part of the optimized sole sim-
ilar to front part of human feet.

To fulfill the volume constraint of the problem (2), the
optimizer whittle many sole parts down. Especially, less
material is present in the middle x-axis, which increases
rotational stiffness along x-axis.

More precisely, from Fig. 13 and Table 2, comparing the
different cases, one can observe the followings:

1. For a given sole, Cartesian stiffness in translation and
rotation are rather linked, since their evolution with
respect to time is similar in Fig. 13. Hence minimiz-
ing translational stiffness and maximizing rotational
stiffness are antagonistic objectives. Different com-
promises can be found between both criteria. Since
translational stiffness is minimized only at the begin-
ning, we can observe that stiffnesses are lower at the
beginning and larger later.

2. For the case 1-Ref compared to the initial sole, ctr

has been divided by almost 5, while crot is about the
same. So shape optimization improves one of the two
sole criteria by a large factor.

3. For the case 2-Rot compared to the case 1-Ref, the
rotational stiffness is improved while the impact ab-
sorption is worsen, which is another compromise with
more importance given to maximizing the rotational
stiffness, as expected with increased weight on this
criterion.

4. For the case 3-Rubber compared to case the 1-Ref,
what is lost in translational stiffness minimization is
gained in rotational stiffness maximization, which is
another compromise. Criteria for this butyl-rubber
sole are another compromise close to neoprene sole,
so this change of material has no significant impact
on the sole performance.

5. For the case 4-Straight compared to the case 1-Ref.
Both ctr and crot are worse. Having a straight ZMP
trajectory seems worse than a trajectory starting and
finishing in a corner of the foot. This is caused by

a poor rotational stiffness around the y-axis due to
an entirely soft heel. It shows that ZMP trajectory
has a strong influence on sole shape optimization. In
future works, we plan to optimize the sole shape and
the ZMP trajectories simultaneously.

6. For the case 5-Fixed compared to the case 1-Ref, ctr

and crot are about 40% worse. It shows that it is
worth optimizing the rigid part of the foot and re-
design robot feet accordingly.

Additionally, as explained in Sec. 4.1, we bound the
shape optimization parameters pj,k. This bound in com-
bination with the initial parallelepiped shape can create
some sharp shapes in the optimized soles. We notice that
for example, in the front part in Fig. 8, 9, 10, 11, 12.

These results can be visualized in the accompanying
video available at https://youtu.be/wivyn5klAMw. This
video presents the deformation simulations of the soles.
One can notice that the deformation of the heel appendices
at the beginning of foot contact are undergoing deforma-
tions of the order of cm, with rotations of about 45◦. The
small deformation hypothesis is compromised, and results
in this case are not precise. For more precise results, we
plan to use a large-deformation FEM code in the future.
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Figure 13: Cost functions for the five cases in Table 1.

8. Conclusion

In this paper, we devised a framework to optimize the
sole shape of a humanoid robot for a given cost function.
To obtain faster and easier to implement algorithms, some
model approximations have been done. In particular, we
used a simplest FEM for static linear elastic model under
the assumption of small deformations to model the soles.
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Figure 8: Optimized sole for the case 1-Ref: ZMP trajectory illustrated in Fig. 6, material neoprene and w = 1 in the cost function (1)

Figure 9: Optimized sole for the case 2-Rot: ZMP trajectory illustrated in Fig. 6, material neoprene and w = 1000 in the cost function (1)

Figure 10: Optimized sole for the case 3-Rubber: ZMP trajectory illustrated in Fig. 6, material butyl rubber and w = 1 in the cost function
(1)
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Figure 11: Optimized sole for the case 4-Straight: ZMP trajectory illustrated in Fig. 7, material neoprene and w = 1 in the cost function (1)

Figure 12: Optimized sole for the case 5-Fixed: ZMP trajectory illustrated in Fig. 6, material neoprene and w = 1 in the cost function
(1). Case with a non-modified surface attached to the rigid lower part of the robot foot SD (Dirichlet nodes with no displacement) during
optimization

Table 2: Comparison of the cost function in equation 1 for the initial and optimized shape for the five cases in Table 1. The subscript ini
denotes the plain rectangular brick shaped sole in Fig. 1b and opt denotes the optimized sole shape. ctrini and ctropt are in [N/m], while crotini

and crotopt in [N.m/rad]. The column with “comp.” are comparisons with optimized case 1-Ref, in the most interpretable format (multiplied

or divided by a coefficient, increased or decreased by an amount in percent compared to criterion of 1-Ref). ctropt is minimized, so increase is

worse. crotopt is maximized, so increase is better and decrease is worse.

Case ctrini ctropt ctropt comp. crotini crotopt crotopt comp. cini copt

1-Ref 3.88 · 106 8.06 · 105 / 1.79 · 105 1.74 · 105 / 3.70 · 106 6.33 · 105

2-Rot 3.88 · 106 4.65 · 106 ×5.77 1.79 · 105 3.50 · 105 ×2.01 −1.75 · 108 −3.45 · 108

3-Rubber 5.39 · 106 9.59 · 105 +19.0% 2.48 · 105 2.14 · 105 +23.0% 5.15 · 106 7.45 · 105

4-Straight 9.14 · 106 1.02 · 106 +26.6% 3.41 · 105 5.84 · 104 /2.98 8.80 · 106 9.62 · 105

5-Fixed 3.88 · 106 1.21 · 106 +50.1% 1.79 · 105 1.16 · 105 −33.3% 3.70 · 106 1.09 · 106
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The obtained soles appear having some similar charac-
teristics with the human foot. We also showed that the
shape optimization improves significantly the criteria con-
sidered for the sole, and that the ZMP trajectory and the
shape of the contact with rigid part of the foot have a
strong influence on the performance of the sole, but not
the different material tested.

The next step of this research is to extend the latter
approach to optimize the walking pattern parameters and
sole shape in a single optimization problem formulation.
This proved to be pertinent and was investigated in simpler
2D predefined forms in [50].

In the papers [51][46], we investigated adding a plain
rectangular compliant sole to a humanoid robot. In the
near future, we will build up and test the optimized soles
on a real robot to validate the procedure and criteria con-
sidered. We will also use more accurate FEM, for example
considering large-displacement and nonlinear material be-
haviors.

In the current state of our framework, the gradient of the
cost function is obtained by finite differences, which im-
pose numerous simulations of the sole movement for each
iteration of the shape optimization process. We are cur-
rently implementing the analytical gradient. We expect
this will speed-up the presented computation by a factor
20–100.

After those improvements, we also plan to develop a
controller for stabilization with a sole prior to experiments
on the HRP-4 humanoid robot.
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AppendixA. Jacobian of the application Φ

∂Φ =


I2×2 02×1 −W tt −W tn

01×2 1 −W nt −Wnn

∂Φ3

∂δt,α
02×1

∂Φ3

∂F t,α

∂Φ3

∂Fn,α
01×2 qn 01×2 0

 (A.1)

in which:

∂Φ3

∂δt,α
= qtµFn,αΠ (F t,α − qtδt,α) ,

∂Φ3

∂F t,α
= I2×2 − µFn,αΠ (F t,α − qtδt,α) ,

∂Φ3

∂Fn,α
= −µ (F t,α − qtδt,α)

‖F t,α − qtδt,α‖

Π(V ) =
∂

∂V

(
V

‖V ‖

)
=

1

‖V ‖3

[
(v2)2 −v1v2

−v1v2 (v1)2

]

AppendixB. Relationship between ZMP force-
position and foot position-orientation

From (24), we can straightforwardly obtain F tot in func-
tion of the force applied at the contact node α:

F tot =

m∑
α=1

F α (B.1)

Then for Z and ΓZdes,n we start with equation of resul-
tant torque at a point A given by:

ΓA =
m∑
β=1

(P β −A)× F β (B.2)

Using the definition of the ZMP and the vertical resul-
tant torque at Zdes we get:ΓZ,t1 = 0

ΓZ,t2 = 0
ΓZdes,n

 =
m∑
β=1

 (P t2,β −Zt2) · Fn,β
−(P t1,β −Zt1) · Fn,β

(P t1,β −Zdes,t1) · Ft2,β − (P t2,β −Zdes,t2) · Ft1,β


(B.3)

The subscripts t1 and t2 denote respectively the first and
second component of the vector.

We now have relations (B.1) and (B.3) between
(Ftot,Z,ΓZdes,n) and nodes position and force, and rela-
tion (19), Signorini’s and Coulomb’s laws between nodes
position and force as well as sole position and orientation.
To find the differential relationship (24), we have to take
the differential of previously cited equations.

Considering F α, δα, Ol and (θ,φ,ψ) as variables, the
differential of (19) is:

dδα = dOl +

m∑
β=1

W αβdF β +
[
νθ νφ νψ

]
dΥ (B.4)

where νx for each angle x ∈ {θ, φ, ψ}:

νx =
∂R

∂x
lP

free

α +

m∑
β=1

(
∂R

∂x
CαβR

T +RCαβ
∂R

∂x

T
)
F β

Following the Coulomb’s law, we can distinguish two cases
for each contact node α:

1. Stick: We have three equations given by (B.4) and
three equations given by δα = 0→ dδα = 0.

2. Slip: We have three equations given by (B.4)
and three equations given by the differential of the
Coulomb’s law (A.1).

Using those considerations, we can write the following sys-
tem that relates contact forces and contact space displace-
ments to the foot position and orientation:[

A11 A12

A21 A22

] [
dF
dδ

]
=

[
B11 B12

03s×3 03s×3

] [
dOl

dΥ

]
(B.5)

where:
dδ includes only the slipping contacts, m is the number
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of contacts, s is the number of slipping contacts, p(j) j ∈
[1, ..., s] is the jth slip contact and:

A11 = −W ,A12 =
[
a1 · · ·aj · · ·as

]
,

aj =
[
01

3×3 · · · I
p(j)
3×3 · · ·0s3×3

]T
A21 =

[
cT1 · · · cTj · · · cTs

]T
,

cj =

01
3×3 · · ·

 ∂Φ3

∂F t,j

∂Φ3

∂F n,j
01×2 0

p(j) · · ·0m3×3


A22 = diag (dj) , dj =

 ∂Φ3

∂δt,j
02×1

01×2 qn


B11 =

[
I · · · I

]T
B12 =

[
b1 · · · bi · · · bm

]T
,∀i ∈ [1m]

bi =
[
νθi νφi νψi

]T
The differential of (B.3) gives:

m∑
β=1

∂P t2,β

∂δt2,β
dδt2,βF n,β +

m∑
β=1

(P t2,β −Zt2)dFn,β − dZt2
m∑
β=1

Fn,β = 0

−
m∑
β=1

∂P t1,β

∂δt1,β
dδt1,βF n,β −

m∑
β=1

(P t1,β −Zt1)dFn,β + dZt1
m∑
β=1

F n,β = 0

m∑
β=1

∂P t1,β

∂δt1,β
dδt1,βF t2,β +

m∑
β=1

(P t1,β −Zdes,t1)dFt2,β

−
m∑
β=1

∂P t2,β

∂δt2,β
dδt2,βF t1,β −

m∑
β=1

(P t2,β −Zdes,t2)dFt1,β = dΓZdes,n

(B.6)

With
∂P t,β

∂δt,β
= I (obtained by differentiating (15)) it can

be presented in the following matrix form:F des − Ftot

Zdes −Z
−ΓZdes,n

 =

[
D11 03×3s

D21 D22

] [
dF
dδ

]
(B.7)

where for p(j) j ∈ [1 s] is the jth slip contact:

D11 =
[
I1

3×3 · · · I
i
3×3 · · · I

m
3×3

]
,∀i ∈ [1m]

D21 =
[
d1 · · ·di · · ·dm

]
,∀i ∈ [1m]

di =


0 0

1

F tot,n
(P it1 −Zt1)

0 0
1

F tot,n
(P it2 −Zt2)

(−P it2 +Zt2) (P it1 −Zt1) 0


D22 =

[
e1 · · · ej · · · es

]
, j ∈ [1 s]

ej =


1

F tot,n
Fp(j)n 0 0

0
1

F tot,n
Fp(j)n 0

Fp(j)t2 −Fp(j)t1 0


Combining (B.5) with (B.7), we finally get J in (24):

J = DA−1B (B.8)

Considering ΓZdes,n rather than ΓZ,n gives a simpler dif-
ferential (B.6) since Zdes is constant. Since Z converges
to Zdes, the same solution is obtained in the end.

AppendixC. Jacobian for the first step

Considering F α, δα, Ol and (θ,φ,ψ) as variables, the
differential of (30) is:

dδα = dOl,α+

m∑
β=1

W αβdF β +
[
νθini νφini νψ

]
dΥ (C.1)

where:

νθini = νθ −
[
t∂R

ini

∂θ
lP free
α

0

]
, νφini = νφ −

[
t∂R

ini

∂φ
lP free
α

0

]

This gives a modification of (B.5) for the initial step only
for bi as follows:

bi =

[
νθi −

[
t∂R

ini

∂θ
lP free
i

0

]
νφi −

[
t∂R

ini

∂φ
lP free
i

0

]
νψi

]T
(C.2)

For the first time step, the differential of (15) gives:

dP β = dδβ +

[
t∂R

ini

∂θ
lP free
α t∂R

ini

∂φ
lP free
α 0

0 0 0

]
dΥ (C.3)

Differential (B.6) now have additional terms that finally
gives initial step J ini = J + J̃ in (24), where:

J̃ =

03,3 03,3

03,3

[
t∂R

ini

∂θ hn t∂R
ini

∂φ hn 0
∂Rini

t1

∂θ ht2 −
∂Rini

t2

∂θ ht1
∂Rini

t1

∂φ ht2 −
∂Rini

t2

∂φ ht1 0

]
ht1 =

m∑
β=1

lP free
β Ft1,β , ht2 =

m∑
β=1

lP free
β Ft2,β ,

hn = 1
Ftot,n

m∑
β=1

lP free
β Fn,β

AppendixD. Details of the cost function

To obtain the equation (31), we start by differentiating
(19) with respect to t instead of (θ, φ, ψ). To do so, we use
the following derivation of a vector applied on a rotation
matrix

dR = d̂ωR (D.1)

where d̂ω denotes the skew matrix of dω.
(D.1) applied to the differential of (19) gives after fac-

torization in dω:

dδα = dOl +
m∑
β=1

W αβdF β − (R̂P free
α )dω

+
m∑
β=1

(
W αβF̂ β − (Ŵ αβF β)

)
dω

(D.2)

Therefore in matrix form we have:[
A11 A12

A21 A22

] [
dF
dδ

]
=

[
Bω11 Bω12

03s×3 03s×3

] [
dOl

dω

]
(D.3)
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where Aij are same as in (B.5) and:
Bω11 =

[
I1 · · · Ii · · · Im

]T ∀i ∈ [1m]

Bω12 =
[
b1 · · · bi · · · bm

]T ∀i ∈ [1m]

bTi = −(R̂P free
i ) +

m∑
β=1

(
W iβF̂ β − (Ŵ iβF β)

)
Using differential of (B.1) and (B.2) with (D.3), we have

the following relationship:[
dF tot

dΓ

]
= G

[
dF
dδ

]
=

[
G11 03×3s

G21 G22

]
A−1Bω

[
dOl

dω

]
(D.4)

where for p(j) j ∈ [1 s] is the jth slip contact:

G11 =
[
I1

3×3 · · · I
i
3×3 · · · I

m
3×3

]
,∀i ∈ [1m]

G21 =
[
g1 · · · gi · · · gm

]
,∀i ∈ [1m]

gi =

 0 0 (P it2 −Zit2)
0 0 −(P it1 −Zit1)

−(P it2 −Zit2) (P it1 −Zit1) 0


G22 =

[
ζ1 · · · ζj · · · ζs

]
,

ζj =

 0 Fp(j),n 0
−Fp(j),n 0 0
Fp(j),t2 −Fp(j),t1 0


Using (D.4) and the transport law for the screw, we can

find the Cartesian stiffness as:[
dF tot

dΓZ

]
= GA−1Bω

[
dOl

dω

]
= GA−1BωΞ

[
zdOl

dω

]
= Kc

[
zdOl

dω

]
(D.5)

where Ξ =

[
I(3,3) Ẑ(3,3)

0(3,3) I(3,3)

]
and Ẑ is the skew matrix:

Ẑ =

 0 Ol,n −Ol,t2 +Zt2
−Ol,n 0 Ol,t1 −Zt1

Ol,t2 −Zt2 −Ol,t1 +Zt1 0

 (D.6)
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