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Abstract

This paper deals with range-only simultaneous localization and mapping (RO-SLAM), which is of particular
interest in aerial robotics where low-weight range-only devices can provide a complementary continuous
estimation between robot and landmarks when using radio-based sensors. Range-only sensors work at greater
distances when compared to other commonly used sensors in aerial robotics and they are low-cost. However,
the spherical shell uniform distribution inherent to range-only observations poses significant technological
challenges, restricting the approaches that can be used to solve this problem. This paper presents an
undelayed multi-hypothesis Extended Kalman Filter (EKF) approach based on Gaussian Mixture Models
(GMM) and a reduced parameterization of the state vector to improve its efficiency. The paper also proposes
a new robot-to-landmark and landmark-to-landmark range-only observation model for EKF-SLAM which
takes advantage of the reduced parameterization. Finally, a new scheme is proposed for updating hypothesis
weights based on an independence of beacon parameters. The method is firstly validated with simulations
comparing the results with other state-of-the-art methods and later validated with real experiments for 3D
RO-SLAM using several radio-based range-only sensors and an aerial robot.

Keywords: range-only simultaneous localization and mapping, robot localization, Kalman filtering,
Gaussian Mixture Models.

1. Introduction

Range-only simultaneous localization and mapping (RO-SLAM) aims to map the position of a set of
elements (landmarks) while at the same time localizing a mobile robot with respect to that map using
range-only observations. In contrast to other SLAM approaches, the main challenge of RO-SLAM is the
rank-deficiency of the range-only observation model. These observations consist of a single value which
represents the distance between a pair of elements (robot or landmarks). Thus, given a single range-only
observation, the lack of bearing information between these two elements makes the relative position between
them follow a uniform spherical shell probability distribution as is shown in Fig. [I] for a single range-only
observation between an aerial robot and a landmark. Furthermore, in contrast to other schemes like bearing-
only SLAM [I], RO-SLAM presents an increased complexity for higher dimensionality (e.g. 3D SLAM
in aerial robotics) due to the 1-rank observation model associated with range-only observations (azimuth
and elevation angle not observed) compared to other bearing-only models in which the only unobserved
parameter is the distance between the robot and one landmark, or other fully observable approaches like
RFID SLAM[2, B]. Hence, when applying multi-hypothesis approaches, this rank-deficiency implies a higher
number of hypotheses/parameters in the state vector.

*This work is partially supported by the ARCAS project (FP7-ICT-2011-7-287617) funded by the European Commission of
the Seventh Framework Programme and two national projects, RANCOM (P11-TIC-7066) and CLEAR (DPI12011-28937-C02-
01).
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Figure 1: Spherical parameterization of a landmark position in 3D RO-SLAM. The yellow area represents the uniform spherical
shell distribution where the landmark might be located with a single range-only observation p; between an aerial robot and
this landmark. The green object represents the real position of the landmark, whereas the center of the sphere is composed by
the position of the aerial robot at the time the range-only observation is received. The thickness of the 3D shell represents the
standard deviation of the range measurement o, .

Range-only methods have gained research interest in the last decade particularly for robot/people/object
indoor localization and ubiquitous applications among others and more recently in aerial robotics for radio
frequency source localization in military, rescue, aerial manipulation or inspection scenarios. RO-SLAM
becomes especially interesting in aerial robotics due to the small size and low weight associated to these
kind of sensors. Additionally, most range-only sensors include a unique identifier in their signal that simplifies
the common data association problem present in other SLAM schemes. RO-SLAM algorithms becomes a
good complement to other SLAM approaches where a direct line of sight between robot and landmark is
not always possible due to high altitudes or static/dynamic obstacles as is the case for cameras or LIDAR
sensors [4].

Depending on the kind of technology employed to measure the distance between a pair of sensors (e.g.
radio-based or ultrasound range-only sensors), different ranging methodologies are proposed in the literature:
the most common is based on the radio signal strength of ranging messages [5],[6] (also known as Radio Signal
Strength Indicator or RSSI range-only sensors), or the time of arrival (TOA) or Time Differential of Arrival
(TDOA) of the signal [7, 8, @] for radio and/or ultrasound range-only sensors.

The main research interest of range-only methods resides in how to cope with the spherical shell uni-
form distribution of the position as shown in Fig. Thus, in the case of range-only localization several
methods [I0, [IT] 12] are based on numerical optimization approaches which trilaterates the position of the
mobile robot employing 3 or more static ranging nodes (also known as anchors) at different positions. On
the other hand, [I3] proposes a fingerprinting method using a neural network which is particularly useful
when RSSI-based devices are used. Fuzzy logic has also been used for range-only localization [I2] employ-
ing a Voronoi diagram to cope with common flip ambiguities in the probability distribution associated to
range-only estimations. Other range-only localization approaches are based on Bayesian filters [10, 14 [15]
or batch-processing techniques [16].

In the case of mapping problems, the estimated variables are the position of a set of static elements or
landmarks (also known as self-localization or network localization). Three common approaches are used for
mapping: one based on the use of inter-node range-only observations to estimate the relative position of
static nodes, another based on the use of mobile robots with known position to trilaterate the position of each
individual landmark using non-linear optimization methods and finally, a hybrid approach which combines
the advantages of both methods. Some early works use batch-processing techniques like Multidimensional
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Scaling (MDS) [I7] or Least square methods [I8] to map the relative position of each node. However MDS
methods require a high connectivity between static nodes to localize each of them, which is why other authors
proposed different approaches based on sub-map estimation [I9] or the use of artificial nodes created from a
set of range measurements taken from different robot positions [20]. Other authors have used decentralized
inference to solve the mapping problem by means of multilateration from a mobile robot usign probablistic
frameworks like particle filters [21],22]. Particle filters model the inherent spherical shell uniform distribution
of range-only landmarks position by using Monte Carlo sampling methods.

In the case of Gaussian filters, authors tend to use two common approaches: the first and most common
consists on a delayed initialization of the Gaussian filter based on a pre-estimated position of landmarks [23]
211, 24] and the second approach uses undelayed initialization based on multi-hypotheses frameworks to cope
with the non-Gaussian distribution of landmark positions. However, in delayed initialization approaches,
single estimation convergence will always depend on the robot’s trilateration with respect the landmark
so that important delays might be produced until these landmarks converge and can be integrated in
the Gaussian filter used to refine the robot position. On the other hand, undelayed approaches have the
advantage of integrating range-only observations into the Gaussian filter since the very beginning without
loss of information and, more importantly, they are able to improve the robot’s position estimation without
requiring single solution convergence of landmarks. One of these undelayed approaches [25] is based on
a polar parameterization which allows the Gaussian filter to be initialized using a predefined variance
around the pf-space. The main drawback of this approach is the use of heuristics based on the robot
trajectory to split the initial unimodal distribution into two Gaussians which, in the case of 3D RO-SLAM,
becomes more complex. In [26] a method is proposed which integrates a Gaussian Mixture in an Extended
Kalman Filter (EKF) to represent the non-Gaussian distribution of the sensor’s bearing information. This
approach has the additional advantage of making the integration of inter-node range-only observations
without losing cross correlation information between landmarks possible as is the case of the decentralized
approach presented in [25]. The main drawback of multi-hypothesis methods is the computational burden of
keeping all possible hypotheses in the system. To cope with this drawback, [26] uses a pruning strategy which
allows the computational burden of the multi-hypothesis approach to be reduced as landmarks converge to
a single solution. In a previous work, the authors of this article proposed an extended version of [26] which
deals with higher dimensionalities by using a reduced parameterization approach. The method proposed in
this paper extends the 3D approach presented in [27] by introducing a new observation model for range-
only measurements which only requires a single update equation as opposed to the Federated Information
Sharing approach [I] inherited from [26]. The paper compares the computational burden and accuracy
obtained with the new correction model with respect to previous observation models based on Federated
Information Sharing. Also, this paper shows a scheme for updating Gaussian Mixture weights based on the
same independence assumption between beacon parameters proposed in [27]. This paper will show both
how the reduced parameterization and how the new range-only observation model might be used with other
approaches (i.e. for example, how new observation model might be used with a Cartesian parametrization,
or how the reduced parameterization might be used with other classical range-only observation models).
The use of the reduced parameterization proposed in [27] does not imply an independence between beacon
parameters, so other classical approaches might be used to update the weights of the Gaussian Mixtures.

For the case of range-only simultaneous localization and mapping, different frameworks have been pro-
posed in the literature. Some authors employ batch-processing methods like [28] 29] which solves the problem
as an optimization problem. Even though batch-processing methods present accurate results, they are not
suitable for online estimation. Other authors use probabilistic frameworks which are suitable for online
estimation and can model most belief distributions present in robotic applications [30]. A comparison of
most common SLAM frameworks is done in [31), B2], where the Unscented FastSLAM presents better per-
formance results over other classical approaches like EKF-SLAM or UKF-SLAM. FastSLAM is based on
the factorization of the map using a Rao-blackwellization of the robot and map probability distribution,
allowing the estimation of individual landmarks position and the robot position to be separated. Instead of
using a Gaussian filter, FastSLAM factorizes the map by using a Monte Carlo sampling approach to model
the relation between the localization and map belief, thus having a different map probability distribution
per localization sample.
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Figure 2: ARCAS project: Aerial Robotics Cooperative Assembly System (http://arcas-project.eu). @ aerial robots
endowed with manipulators grasping a bar and bars with two embedded radio range-only sensors at the ends of bars so
that robots endowed with manipulators can estimate the pose of these bars.

Some solutions based on the FastSLAM framework use optimized particle filters not only to estimate
the position of the robot but also for landmarks position. These particle filters are optimized by means of
a reduction in the number of particles [33] or by using an adaptive resampling method [34]. FastSLAM is
typically implemented with EKF's for map estimation since it improves the efficiency of landmark estimation
using both delayed [35, [36] and undelayed strategies [37]. However, when the system includes high correlation
constraints between landmarks, as is the case for those applications which includes range-only measurements
between landmarks, Rao-blackwellization can no longer be applied to factorize the map. As an example, in
the ARCAS project (http://arcas-project.eu) shown in Fig.|2] some radio-based range-only sensors are
embedded into structure parts so that they can be localized by different robots endowed with manipulators
whose mission is to assemble a structure cooperatively. In this application, strong correlations are introduced
in the filter by using range-only observations between landmarks and integrating with a very low deviation
the known constraints in the relative position of landmarks embedded in the same structure part.

Some approaches have already included range-only observations between landmarks in their RO-SLAM
formulation [38| 25, 20] but without exploding the cross-correlation information of these landmarks. These
range-only observations not only increase the speed of convergence of landmarks’ hypothesis but also improve
the mapping accuracy. This redundant information of inter-landmarks distance increases both reliability
and precision of the map as demonstrated in [39] for multi-sensor fusion in SLAM and, indirectly, the
localization of the robot through its correlation with landmarks. For this reason, range-only observations
between landmarks might become especially informative in a centralized framework [27, 26] 25] like EKF-
SLAM. In previous work of the authors of this article [27], 2D RO-SLAM was extended to 3D RO-SLAM
by using the approach described in [26] in order to keep the correlation between landmarks. To the best
of the authors’ knowledge, there is no other implementation of centralized EKF for 3D RO-SLAM which
takes advantage of correlations between landmarks. For this reason, in this paper the classical Federated
Information Sharing approach has been implemented [Il [26] using three different parameterizations for
comparison purpose. This paper extends the authors’ previous work by including a new observation model
for inter-landmark range-only measurements and shows how these measurements not only improves the
speed of convergence and accuracy of the map but also improves the robot localization results.

This article is an improved and extended version of authors previous work [27] with the following main
contributions:

1. an improved update scheme used to compute the new weights of Gaussian Mixtures. This allows
to update one GMM weight taking into account other dependent GMM instead of just taking into
account the most probable one.

2. a novel observation model used with range-only observations which only requires a single equation.
This allows a huge reduction on the computational burden of the EKF correction stage per range-only
observation and avoids having to split each observation variance as opposed to Federated Information
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Sharing approaches since the observation is not duplicated for each hypotheses.

3. a new approach to integrate inter-node range-only observations (i.e. range-only observations between
static range-only sensors) even when the filter has not yet converged to a single solution. This allows
a faster convergence of filter hypothesis (reducing computational burden of the filter at earlier stages),
a higher relative mapping accuracy and an indirect reduced robot localization error.

4. extended validation with more comparisons and more simulated and real experiments including multi-
ple beacons (range sensors to be mapped), anchors (range sensors with known position) and an aerial
robot.

The rest of the paper is organized as follows. A brief overview and comparison of different parameteriza-
tions with respect to the proposed reduced parameterization is presented in Sect. [2} A detailed description
of the method is given in Sect. [3] Simulation and real experiments with multiple radio-based range sensors
and an aerial robot are presented in Sect.[d Finally, the paper is closed with some conclusions and future
work in Sect. Bl

2. RO-SLAM parameterization in a nutshell

This section compares the reduced parameterization proposed in [27] with other RO-SLAM parameter-
izations used in the literature for multi-hypotheses approaches. Two important aspects should be taken
into account when comparing the parameterizations used for an EKF-SLAM approach: first, the computa-
tional complexity of the Gaussian filters, which in the case of EKF, is highly dependent on the number of
parameters of the state vector [30], and second, the scalability of the system with the number of landmarks.

The most common parameterization used in the literature for landmarks position is the Cartesian param-
eterization [37 24]. In this parameterization, each hypotheses j of a landmark 7 is composed by Cartesian
coordinates so that the total number of parameters for H hypotheses would be 2H (fi; = [:j,y:;]T) for 2D
and 3H (f” = [xij,yij7zij]T) for 3D.

On the other hand, [40] proposed a polar parametrization for 2D RO-SLAM where each landmark position
is parametrized as f; = [x;,yi, pi, 0;]. Here, z; and y; are the center of the annulus distribution from which
the first range-only observation is received with a radius of p; meters and the angle 8; between the reference
frame of the robot and landmark i. This polar parameterization fits better with 2D RO-SLAM since it allows
the annular distribution of a single range-only observation to be represented using an elongated Gaussian in
polar coordinates (p#-space). However, to represent the flip ambiguity which appears with the second range-
only observation, the authors use a heuristic method to split the unimodal distribution into two Gaussian
distributions as a result of the intersection between the first annulus distribution and the second generated
with a new range-only observation. Thus, to represent these 2 hypotheses, polar parameterization uses 8
parameters (4 for each hypotheses) compared to 4 parameters needed in Cartesian parameterization for the
same number of hypotheses. The main drawbacks of this parameterization are that it duplicates the common
parameters x;, y; and p; in both hypotheses and requires to delay the initialization of both hypotheses until a
good trilateration is achieved to split the initial Gaussian distribution into two Gaussians. This is especially
difficult in the case of 3D RO-SLAM where ambiguities are made worse. When inter-node range-only
observations are integrated [25], this polar parametrization requires up to 5 x 2™ parameters to represent
the initial spherical shell uniform distribution with m being the number of landmarks. In addition, as [25]
is based on a decentralized solution, so it does not take into account the correlations between landmarks.

An extension of this polar parameterization was proposed in [26] for 2D RO-SLAM, in this case the
authors use a Gaussian Mixture Model (GMM) to model the annular distribution of the landmark position
belief. GMMs are probability distributions that are convex combination of Gaussian distributions, they form
a semi-parametric alternative to non-parametric distributions, providing a better flexibility and precision
when modeling the underlying statistics of range-only observations. In a GMM each mode i is a normal
distribution N (u;, 0;) weighted by w;, where 0 < w; < 1 and Zle w; = 1. Then, to represent the position
hypothesis of a landmark ¢ azimuth angle 6; with N modes, the probability mass function fp, (z) will look
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fo(x) = wo, N(z;0i;,00,) (1)
j=1

With this parameterization, each landmark state is parameterized as f; = [x;,ys, pi, 0i1, .-, in]T . Thus,
when the number of hypotheses is H > 4, the number of parameters of this reduced polar parameterization
is shorter with respect to classical Cartesian one (3 + H against 2H used in Cartesian parameterization).
The advantage of this reduced polar parameterization with respect to the polar alternative presented in [40]
is that it does not duplicate common hypothesis parameters x;, y; and p;. Furthermore, unlike decentralized
filters [25], the single state-vector-parameterization of nodes used in [26] allows the cross correlations between
landmarks to be taken into account.

However, as in RO-SLAM the number of hidden variables to be estimated increases with the dimension-
ality of the problem, for the case of 3D RO-SLAM, it is necessary to increase the state vector of landmarks to
estimate not only the azimuth angle of the landmark but also the elevation angle (see Fig. . A straightfor-
ward extension of previous polar parameterizations into spherical parameterization would consist of using
a single GMM with multivariate Gaussian modes. Each mode would represent a single hypothesis with
azimuth angle 6; and elevation angle ¢;. Then, the 3D state vector of a range-only landmark with Cartesian
and the spherical parametrization described would be:

fi= @, ya, 2, Tz, Yiz, Zizs oo Tib, Yilt s Zim) " (2)
fi= i, v, 2, pis 0i1, bir, iz, diz, oo, i, Gim] " (3)

Hence, the required number of parameters per landmark with a 3D Cartesian parameterization would
be 3n whereas with a spherical formulation using a single GMM it would be 44+ 2H, being H the number
of hypotheses.

The reduced parameterization proposed by authors of this paper in [27] is based on a generalization
of the spherical parameterization , which makes it suitable for different dimensionalities. This reduced
parameterization, instead of representing all hypotheses with a single GMM, uses one GMM per hidden
variable (i.e. in RO-SLAM, one GMM for each bearing parameter). Thus in the case of 3D RO-SLAM,
hypotheses used to cover the spherical shell distribution shown in Fig[3|are parameterized using 3 parameters
for the center [z;,y:,2;]7, another for the radius of the sphere p;, N parameters to represent the azimuth
angle samples (modes of the first GMM 6) and M parameters for elevation angle samples (modes of the
second GMM ¢). Thus, the number of parameters used for a landmark in 3D RO-SLAM would be 44+ N + M
making the total number of hypotheses H = N x M. In the case of 2D RO-SLAM, it would just use one
GMM for the azimuth angle as in [26] with 4 + N parameters.

Then, for 3D parameterization, the complete state vector of a landmark ¢ using this reduced parameter-
ization would be:

fi = [, Yis 20, pir Oirs oo Oin s Gty ooy Gina]” (4)

Table [T] and Fig. [4 show a comparison in the number of parameters required to represent the spherical
shell distribution shown in Fig. [I] with the 3D Cartesian, the single-GMM spherical and the reduced param-
eterization for different number of hypotheses. As can be seen, for example, to represent 1024 hypotheses
3072 parameters are needed in the case of 3D Cartesian, 2052 in the case of the single-GMM spherical and
only 68 parameters with the proposed reduced parameterization (4 plus 32 azimuth + 32 elevation angles
- Sect. [3| shows the details of state initialization).

However, the reduction of parameters in the reduced spherical parameterization limits the distribution of
the hypotheses, i.e. while the azimuth and elevation samples are distributed uniformly on the range 0 — 2,
the joint hypotheses distribution is not uniformly distributed. So, a good covariance should be used for
the azimuth and elevation angles for each Gaussian to cover the entire spherical shell distribution of the

6
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Figure 3: Reduced parameterization for 3D RO-SLAM: The combination of the GMM used for the azimuth angle with the

GMM used for the elevation angle represent the set of hypotheses used to model the spherical shell distribution.
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Figure 4: Number of parameters used to model a given quantity of hypotheses for the different 3D RO-SLAM parameterizations.

Table 1: Comparison of different parameterizations for 3D RO-SLAM.
#Hyp\#Params 3D Cart. Spherical Reduced

4 12 12 8

32 96 68 16
64 192 132 20
512 1536 1028 50
1024 3072 2052 68

landmark position. The way in which these covariance matrices should be computed during the initialization
stage of a landmark will be shown in the following section.

3. EKF-based 3D RO-SLAM

Most SLAM implementations, like visual SLAM (or bearing-only SLAM), tend to be more efficient when
using a FastSLAM approach. This SLAM scheme is based on the Rao-blackwellization of the map and robot
belief which makes an independence assumption between landmarks. However, although RO-SLAM might
also be implemented with a FastSLAM making the same independence assumption, the high constraints
introduced by inter-landmark observations in RO-SLAM are better modeled using an EKF. Hence, this
paper uses a multi-hypotheses approach which integrates Gaussian Mixture Models (GMM) in an undelayed
EKF-SLAM scheme based on [26] approach.

EKF-SLAM gathers the robot and landmarks parameters in a single state vector, using the covariance
matrix to represent the cross correlations between robot and landmarks. The state vector of the proposed

7
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EKF-SLAM for 3D RO-SLAM is composed of the following parameters:

xt =[x, f1 £, £ )T (5)

’tm

where x is the robot state which follows a unimodal Gaussian distribution (e.g. x! = [2L,4%, 2¢]T) and f!
is the landmark ¢ multi-modal Gaussian state.

The Extended Kalman Filter is based on the Markov independence assumption to implement the Gaus-
sian bayesian filter used to compute the belief:

bel(x'T1) :p(zt+1|xt+1)/p(xt+1|xt,u”l)bel(xt)dx (6)

where u*t! is the last system action and z't! the last range-only observation. In the case of EKF, the
prediction stage of bayesian filter is based on a marginalization of the current next state %! with respect
last action u'*! and previous state x*. Later, when the system receives new range-only observations z!*!,
it computes the belief by computing the conditional probability p(x!*!|z!*!). The EKF equations for
marginalization are formalized in the following expressions:

£ = g ut) 7)

Pt = GP'G"+R (8)

where G is the Jacobian of the non-linear robot dynamic model g(x!,u’*!) and R is the noise matrix of
the robot dynamic model. In this paper we will not focus on the prediction phase since any robot dynamic
model used for other SLAM approaches can also be used for RO-SLAM, like the quadrotor dynamic model
described in [41].

The update stage algorithm for the proposed RO-SLAM approach is summarized in Fig. [5| In the first
step of this flow chart the reader may notice that range-only observations are pre-filtered before passing
them to the EKF-SLAM framework. This pre-filtering is highly recommended to filter range-only outliers
which might lead to EKF divergences. In this paper the pre-filtering technique described by authors of this
paper in [38] is used, though other techniques might also be applied, like the one proposed in [24]. The other
steps of the flow chart shown in Fig. [5| are detailed in the following subsections.

3.1. Landmark initialization

For initialization of new landmarks this paper proposes an adaptive scheme which adapts to the first
range-only observation received at the current robot position. Thus, only range measurements between the
robot and one landmark are considered for initialization as shown in Fig.[5] Landmarks located further than
a certain distance threshold should be discarded to reduce the computational load, as range information
worsen with distance normally.

New landmarks are initialized when the first range-only observation r; is received by the robot from a
landmark 4. With this observation r; and the current position of the robot x,, the parameters of are
initialized as:

Xi = X, (9)
o

0, = %—n j=1,...,N (11)
g w(M+1) .

o= LT a1 M 12

bij i i j=1.. (12)

where x; = [2;, Y, 2] is the robot position at the time the range-only observation r; is received.
With and (12)), N azimuth and M elevation Gaussian modes are uniformly distributed within ranges
(-, 7] and (-7/2,7/2) respectively. However, the number of modes required to distribute all hypotheses in

8
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Figure 5: Flow chart describing the update stage of the proposed RO-SLAM algorithm upon receiving range measurements.

the spherical shell distribution depends on the radius of the sphere p; and a desired density of hypotheses d
(in practice d = 0.18 gives good results). Thus, the appropriate number of azimuth and elevation modes for
both GMMs to cover the spherical shell distribution shown in Fig might be computed from H* = 47r2d as
H* = N x M. Then, as hypotheses should be distributed with a spherical shell distribution, the number of
elevation samples required are M = N/2 and hence the number of azimuth samples can be computed from
the last two expressions as N = [v2H*]. With this initialization strategy, the actual number of hypotheses
generated is H =N x M > H*.

The next step is to initialize the covariance matrix of each Gaussian mode and their associated weights,
wg,,, and wg,, . As both GMMs should approximate a uniform distribution around either the azimuth and
elevation space, the values of wg,, and wg,, are easily initialized as wg,, = 1/N and wy,,, = 1/M.

The standard deviation of each variable of the state vector f; is initialized as follows. The covariance
matrix of parameters x;, y; and z; is initialized using the current covariance of the robot position. The
variance of p; is initialized using the standard deviation of the range measurement as a2i = a?i. Cross
correlations with this variable are set to 0. Finally, the standard deviation of each Gaussian mode 6;,
and ¢y, is identically initialized for each GMM according to the following expressions, setting initial cross
correlations to 0:

27
L= — =1,...,.N 13
O-ezn keN n ? ) ( )
™
. = — =1,...,.M 14
U¢zvrz k¢M m ) ? ( )

where values kg and kg of the expressions and are proportional factors computed using the Kullback-
9
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Figure 6: Experiments performed for the optimal selection of kg and kg factors. In @ and the Y axis represents the
Kullback-Leibler divergence factor and the X axis represents the standard deviation used for each simulated GMM. Each series
represents the simulation for a fixed number of modes in the GMMs. KEII and @ shows an example of the GMM generated
using the optimal values of Ky and K respectively. The combination of both GMM, and @ gives the uniform spherical
shell distribution for a range measurement r = 5m received at coordinates [0, 0, 0].

Leibler (KL) distance between a Gaussian Mixtures and a target uniform distributions for 6; and ¢; variables.
The KL divergence factor is a statistic which comes from information theory and measures the amount of
additional information that is required to model a target distribution (in this case the uniform distribution)
given a proposal distribution (in this case a Gaussian Mixture). However, this statistic does not have a closed
form for Gaussian Mixtures, hence a Monte Carlo sampling method [42] can be used to get an approximation
of this statistic. When comparing two probability distributions, the best fit is that which has a information
divergence (KL distance) equal to 0. Then, kg and k, were computed from a set of simulations where
different Gaussian Mixtures with different number of modes were used to model a uniform distribution over
(-7, m] for kg and (-m/2,7/2) for ky. For each Gaussian Mixture with k& modes, different standard deviations
were tested to initialize each mode of the Gaussian Mixture. The standard deviations which had the KL
distance closest to 0 were selected as the optimal deviation for a given Gaussian Mixture with k£ modes.
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These values are marked with circles in Fig. [6a] and Fig. The selected standard deviations were used
to get the mean value of kg and £, using the expressions and . The results of these experiments
are depicted in Fig. [6a] and Fig. [6c] where the X axis represents the different standard deviations used for
each Gaussian Mixture with £ modes and the Y axis represents the KL distance. The values that gave the
best fit were kg = 1.7 and kg = 2.5. Fig. @ and Fig. @ shows an example of the GMM generated for a
range measurement of r = 5m received at position [0, 0, 0] using the initialization strategy explained in this
section and proportional factors kg and k4. The combination of both GMMs, Fig. @ and Fig. @ results
in a uniform spherical shell distribution.

3.2. EKF and weights update

This section focuses on the correction stage of the EKF for range-only observations. The correction stage
of a EKF computes the conditional probability p(z!*!|%**!) using the following common EKF correction
equations:

Xt = R LK - @) (15)
pit! (I - KH)P'*! (16)

where K is the Kalman gain computed as K = Pt THT (HP**TH” + Q)~', and H is the Jacobian of the
observation model h(x").

In this section only robot to landmark ¢ observations (denoted as r;) are considered, the next subsection
will detail the correction scheme for range-only observations between two static range-only sensors u and v
(denoted as ryy).

Once a landmark f; has been initialized using the first range-only observation, new observations r; are used
to correct the state vector of the EKF and the weights of GMMs for landmark . Classical multi-hypothesis
approaches use one correction equation per hypothesis (i.e. N x M equations) using Federated Information
Sharing approach [ 26], 27]. This approach is referenced here as Full Hypotheses Correction (FHC).
In the authors’ previous work [27], a correction scheme is proposed which reduces the required number of
correction equations from N x M to N + M with respect to classical FHC approaches, this method is referred
to here as Multi-Hypotheses Correction (MHC). This correction scheme reduces the computational
load of the innovation (or residual) matrix inversion in EKF, the dimensionality of which depending on the
number of correction equations. In this paper, this correction scheme is improved with a small reduction
of accuracy to a single correction equation using a novel technique which the authors have called Gaussian
Mixture Correction (GMC). By using this technique, the inversion of the innovation matrix becomes a scalar
inversion when receiving a single range measurement at time ¢. The technique consists on the integration of
the complete GMMs in the correction equation by using the expectation of each Gaussian Mixture, so the
weights of the GMMs are taken into account as constant variables when correcting the landmark hypothesis
states. The expectation (or overall mean) of a Gaussian Mixture GM M with k Gaussian modes N (u;, 0;)
is computed as [43]:

k
E[GMM] = wip; (17)

Using GMC in 3D RO-SLAM is as easy as using the expectation of the azimuth E[;] = 6; and elevation
E[¢;] = ¢; GMMs in the non-linear observation model of range measurements. The integration of expecta-
tions 6;, ¢; in the range-only observation model for the linearization point x = [y, Yr, 2r, Ti, Yi, Zi, Pis Oi, i)

can be formulated as:
h(x) =4/62+ 55 + 02 (18)
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where 6, = (xy, — ), 0y = (yf, — Yr), 02 = (25, — 2r) and xy,, ys, and zy, stand for:

x5, = x; + picos(0;)cos(d;)
Y, = Yi + pisin(i)cos(e;) (19)
Zf; = zi + pisin(o;)

Notice that the use of this observation model for 2D RO-SLAM, in contrast to the MHC method used
in [26], is similar to 3D RO-SLAM but omits altitude terms z and with a fixed elevation value ¢; = 0 in
and .

With this correction scheme, it is no longer necessary to split the variance of the range measurement
among multiple equations using Federated Information Sharing approach. In general, including the weights
of GMMs in the observation model h(x) makes it more informative than MHC method, allowing a faster
convergence in the filter. With GMC approach all hypotheses are equally affected when they are uniformly
distributed (i.e. all hypotheses have the same weight) but, as the weights are updated, those hypotheses
with higher likelihood are favored, making the whole GMMs converge to the most probable hypotheses.
GMC not only reduces the computational load required in the correction stage of multi-modal observation
models but also eases the implementation of multi-hypothesis solutions with respect other similar methods
in the literature.

However, the efficiency and simplicity of this correction scheme comes at expense of a possible initial
reduction in the accuracy of the correction scheme with respect to other approaches. This small loss of
accuracy only happens in those cases where the initial GMM distributions make the Jacobian lineariza-
tion point be far from the actual position of the landmark since this linearization point is computed as
the expectation value of each GMM. However, as will be shown later, this correction scheme compensates
this loss of accuracy by accelerating the convergence time of hypotheses with respect to other approaches
and hence makes the linearization point converge to the real landmark position with only a few range-only
observations.

After the EKF state has been corrected, the weights wy,, and wg,,, of both GMMs must be updated
according to the current distribution of p(r;|x‘*!, xﬁ“, pi,0i, ¢;). However, wg,, and wg,,, depends on the
following marginal probabilities:

Wil = wh, PO R 6 (20)
wifl =l p(r T X o 6) (21)

To compute these marginal distributions, this paper propose to use the following equations based on an
independence between landmark parameters as in [27] but using the Total Probability Theorem for dis-
crete random variables [30]. This method is referenced along this paper for comparison purpose as Total
Probability Update (TPU):

M
p(n-\xr, XGm) = Z p(ri|xr7 X9in7¢im)p(¢im) (22)

m=

—

p(ril%r, Xg,,) = ) p(rilXe; X5 Oin )P (0in) (23)

1>

where X, = [Xi, pi; Oinl, Xg,,, = [Xis pis Oim], P(0in) = wp, and p(dim) = Wl . Conditional probabilities

p(ri|Xr, X0, , Oim) and p(r;|X,,Xe,,., 0in) are evaluated as Gaussian distributions, with mean computed with
for each hypothesis composed by 6;, and ¢;,, modes, and variance Ufi.

TPU has the same computational complexity as the method proposed in [27], which is referenced in
this paper as Maximum Likelihood Update (MLU). The difference with MLU, is that TPU considers the
complete multi-modal distribution of the azimuth and elevation angles instead of using the most probable
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Gaussian mode, making the method more robust against noisy measurements. The main advantage of
considering azimuth and elevation samples as independent variables is that the weights of these parameters
can be stored with a storage complexity O(N + M) against the storage complexity required to store each
joint hypotheses weight O(IN x M). The reduced spherical parameterization proposed in this paper might be
used with the weights update strategies MLU and TPU. However, as neither the reduced parameterization
nor the new GMC observation model imply an independence between azimuth and elevation angles, the
parameterization might also be used with classical update strategies used in the literature by storing the
joint hypotheses weights instead of storing the weights of azimuth and elevation samples independently.

3.8. Inter-node range-only observations

Previous paragraphs have described the observation model employed to correct the EKF state using robot
to landmark range-only observations. However, as Fig. 5| shows, there are two additional types of range-only
observations, namely those measured between static landmarks (also called inter-node observations), i.e.
those generated from one anchor (range-only sensors which position is given) to one landmark and those
generated between 2 landmarks (also called inter-node range-only observations).

For the case of anchor-landmark range-only observations ry4,,,, the observation model of these measure-
ments is quite similar to (18) but with &, = (z, — z4,)?, 8y = (yf, — ya,)? and 8, = (24, — z4,)?. Thus, in
this case, as the robot state vector x, is not used, and x4, is not part of the state vector, the first terms of
jacobian relating to the robot position would be aahT(x) = 0. On the other hand, the conditional probability
used to update the weights of the GMMs are no lonrger conditionally dependent on the robot position but
on the fixed position of the anchor x4, and will be computed again using TPU:

wptt = wh p(ritxa, KT P62 (24)
Wi =Wl p(ri T xa, % P ) (25)

In the case of inter-landmark range-only observations r,,, this paper proposes to use but with

6-75 = (xfu - :Cfv)27 53/ = (yfu - yf'u)2 and 62 = (qu - Zf'u)z'

The probability distribution functions employed to update the weights of both landmarks’ GMMs are:

t+1

witl = W, p(r BEL|pEEL b L gL (26)
w;ti — w;“mp( t+1|ft+1 t+17pz+1’ ¢t+1) (27)
with = wp p(riTHECT XYY L 0L (28)
wett = wh, PO IR XU ol gk (29)

In this case, conditional probabilities of — are again computed using Total Probability Theorem over
variables ¢y, Ovn and @y, for , variables 0., Oy, and ¢, for 7 variables @ym, Oun and ¢y, for
and variables 0, 0., and ¢, for .

The update of landmarks’ GMMs weights might be computationally expensive in cases of inter-landmark
observations when these landmarks contains a high number of hypotheses, however, in practice, as landmarks
are static, this observations can be integrated in the EKF at a low frequency to avoid filter overconfidence
regarding the landmarks positions. On the other hand, as will be shown during experimental validation,
inter-landmark observations, together with robot-landmark measurements, make the hypothesis convergence
faster. Thus, once landmarks converge to a single hypothesis, the application of — is as expensive as
integrating a range measurement between two positions, situation in which the weights do not need to be
updated.

3.4. GMMs Reduction

As in other multi-hypothesis methods, it is highly recommended to prune hypotheses as they become
less probable or merge those similar. This reduction lowers the computational burden of multi-hypothesis
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methods which, in this case, only affects the length of the state vector but not the correction stage of the
EKF as commented above. The heuristics used in this paper to reduce the number of modes of one GM are
based on the following rules:

o If a mode weight w;; is lower than a certain threshold &, then, the mode j is pruned. The threshold
used here is d;;, = 10*11/k, where k is the current number of modes in the Gaussian Mixture. The
value 10~!! has been selected experimentally looking for a trade-off between accuracy and efficiency.

e The second rule is used to merge similar modes. Two modes of the same GM are merged if their
relative arc distance p;|a;, — aim| is bellow a certain threshold é4 (in practice §; = 0.25m gives good
results), here «;; represents two different modes of a single Gaussian Mixture (the azimuth or the
elevation GMM). In order to merge two similar modes, this section use the moment-preserve merge
procedure explained in [43] because, as its name suggests, it preserves the overall moment of the
Gaussian Mixture when merging two modes as compared to other methods [26, 27] which prune the
one with lower weight without preserving the overall moment.

As might be noticed, as a consequence of the reduced parameterization proposed here, after pruning
a Gaussian mode 6;, from the 6, GMM, actually M full hypotheses are pruned from the spherical shell
distribution (in the same way, N full hypotheses are deleted when pruning a mode ¢;,).

4. Results

This section is aimed at validating the different contributions of the RO-SLAM algorithm presented in
this paper. First, some simulations are used to compare the map scalability, the observation models and the
weights update strategies with respect to state-of-the-art RO-SLAM approaches. As the reader may notice,
there is not too much work on online 3D RO-SLAM, so the classical 3D RO-SLAM algorithms described
above have been implemented in ROS framework for comparison purposes. On the other hand, the results
on a real dataset will be compared with a previous algorithm by the authors [27] based on MHC and
MLU. Finally, a comparison of RO-SLAM accuracy with and without inter-node range-only observations is
presented using simulated and real experiments. A video for one of the real experiments described below
is available (see Fig@ showing the results of the algorithm described in this paper on indoor environments
(FADA-CATEC testbed shown in Fig[9a) with a real aerial robot.

The methods presented in this paper and other state-of-the-art algorithms have been implemented in
C++ using the Robot Operating System (ROS) framework. During simulations, the simulated aerial robot
used is based on the hector model from one of the ROS packages. Simulated range-only sensors are based
on the characterization of range-only sensors used for real experimentation. These sensors are radio-based
range-only sensors (also called nodes) with a 0 mean error with standard deviation of 0.5 meters at 70Hz,
which is similar to the characteristic of the range measurements generated by a real Nanotron range sensor
as shown in Fig[Th] Typically range measurements are limited to a maximum distance as the number of
outliers increase linearly with the distance between the range-only sensors as it is shown in Fig[7al

During the real experiments, a Pelican quadcopter from Asctec was used with an onboard radio-based
range-only sensor (base node) from Nanotron [44] (see Fig. [0c). It is well-known that precise odometry is
complex in aerial robots and hence, in order to localize the robot during these experiments, a set of static
sensor nodes with known position (anchors) were used to localize the robot. Some aerial robots use visual
odometry to cope with this problem [45]. In this paper, anchors allow the aerial robot to be localized by
multilateration of the robot position by using range measurements taken from the robot to the anchors. Even
though a precise prediction model might improve the results of the experiments presented in this paper, a
simple prediction model has been implemented for these experiments which just increases the variance of
robot parameters with a very small value at a high frequency. At least 4 anchors are required to estimate
the three-dimensional position of the aerial robot. The range-only sensor is based on a development board
and has the following characteristics:

e General purpose ATMega 1284P microcontroller at 20MHz.
14
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Figure 7: Nanotron range-only sensor characterization for indoor environments: @ sensor characterization@error histogram.

Radio transceiver 2.4 GHz ISM band. Up to 20dB transmission power.
e Ranging accuracy of 2 m indoors / 1 m outdoors.
e 128KB flash memory for programs and retrieved data.

e Distance measurements computed with the SDS-TWR method, based on the ToF method but without
needing any clock synchronization between nodes.

An example of the pre-filtering [46] results for range-only observations between robot (node 25) and node
6 is shown in Fig[8|for a Nanotron radio-based range-only sensor in a real indoor experiment. The results of
the pre-filtering method are compared with the real distance between nodes 25 and 6. The real distance of
mobile node 25 is measured using the ground truth of the robot and the static node 6. Both ground truths
were measured using a VICON motion-tracking system (see Fig. . This figure shows how this filter not
only smooths the raw range-only observations (blue line) but also rejects most range outliers. With this
pre-filtering method, the filtered range-only observations (red line) get closer to the real distance measured
between nodes 25 and 6 (green line).

Additionally, to complement the poor trilateration of the aerial robot altitude, the onboard barometric
altimeter of the Pelican was used, including the estimation of the altimeter bias in the EKF (the equations
of the altimeter bias have been omitted because it is out of the scope of this paper). The simulator generates
altitude measurements with a mean error biased throughout the time of the experiment and with a standard
deviation of 20mm at a frequency of 20Hz (similar to the barometric barometric altimeter sensor used in
real experiments).

4.1. Simulation results

Simulation results are mainly used for comparison purposes between the proposed method and other
methods in the literature. The first experiments compare the scalability and accuracy of the proposed
reduced spherical parameterization (or RSP) against other classical parameterizations. Later, the GMC
observation model is compared with other models based on Federated Information Sharing. The indepen-
dence assumption made between azimuth and elevation parameters in MHU and TPU strategies will be
validated by comparing the results with the common joint hypothesis weight update strategy where azimuth
and elevation parameters are considered as dependent random variables. As the main objective of these
experiments is to evaluate the mapping algorithm proposed for RO-SLAM, during simulation experiments
the position of the robot is given to avoid mapping errors coming from a bad localization of the aerial robot.
Real experiments will evaluate the complete SLAM approach showing localization and mapping results.
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Figure 8: Pre-filtering results for real range-only observations taken with a radio-based range-only sensor. Filtered range
measurements (red line) are plotted along with raw observations (blue line) and real distances (green line).

4.1.1. Map scalability

The scalability is validated using different simulations for up to 50 landmarks randomly distributed in
a region of 30 x 30 x 10 meters comparing the computational complexity and accuracy of the mapping
approaches using the large spherical parameterization (LSP) extended from [26], the 3D Cartesian parame-
terization used in [37] and the reduced parameterization proposed in [27].

In Fig. 4| (shown above) a large improvement in the amount of parameters required to estimate the same
number of hypotheses with respect to other classical EKF representations was demonstrated. As stated
in [30], it is well known that the computational complexity of the EKF framework is directly related with
the number of parameters, thus the reduction of the state vector implies an improvement in the EKF-SLAM
framework. This theoretical results on computational complexity are validated with the simulation results
shown in Fig.[I0a] This figure shows the maximum processing time spent during the correction stage of the
EKF, i.e. during computation of equations and . The maximum processing time is used since in
most of the cases it coincides with the case of a maximum number of parameters in the state vector. On the
other hand, Fig. shows the average mapping error for different number of beacons. As can be seen, the
mapping error is approximately the same for all parameterizations but a clearly computational complexity
reduction is shown in the case of the reduced parameterization shown in Fig. [l Another characteristic of
the mapping error is how it increases with the number of landmarks which is mainly related with a reduced
convergence time of the solution due to the inter-landmark correlations introduced by EKF.

In this case, the scalability is studied with the number of landmarks (or beacons). However, the same
results might be reached by using just one beacon and increasing the initialization distance or the density
of hypotheses d.

4.1.2. Observation model

The following simulations are aimed at comparing classical observation models used in centralized EKF-
SLAM approaches based on Federated Information Sharing [Il 26] 27] (FHC or MHC methods) with the
observation model proposed here (GMC). As there is no open implementation of FHC method for 3D
RO-SLAM, this method has also been implemented in C++ along with MHC and GMC methods for the
sake of method comparison and benchmarking. For all these observation models the proposed reduced
spherical parameterization is used to demonstrate how this parameterization can also be used with classical
observation models. In this case, the results are compared against different initialization densities d (i.e.
different number of hypotheses per beacon) and with a fixed number of 10 beacons. The idea is to compare
the processing time with a larger number of correction equations in the observation model and also with a
different number of parameters in the state vector.
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Figure 9: Setup used for indoor real experiments: @ FADA-CATEC indoor testbed anchors used for localization and
VICON system used for groundtruth Pelican aerial robot from Asctec@ 3 bars with 6 embedded beacons. Video available
at http://grvc.us.es/staff/caba/share/video.mp4

As shown in equation , the computational burden on the inversion of the innovation matrix depends
on the number of correction equations whereas the rest depends on the number of parameters in the state
vector. Fig. shows the processing time taken not only in the correction stage of the EKF but also in
computing the matrices of the range-only observation model (Jacobian, noise matrix, etc). The figure shows
a quadratic increase for FHC due to the quadratic dependence with the number of azimuth and elevation
angles while the other models are more linear. In the case of GMC the linear increment on the processing
time is because of the increment in the number of parameters on the state vector. MHC depends not only on
the number of parameters to model all hypotheses but on the number of correction equations used. On the
other hand, Fig. shows GMC has a faster convergence rate for reaching a single hypothesis compared
to the other models coming at the expense of the worst mapping error as shown in Fig. As this last
figure shows, the mapping error decreases as the density of hypotheses increases during initialization phase.
This decrease is lower for FHC and higher for MHC.

4.1.8. Weights update

Despite the convergence time of beacons depends very much on the observation model implemented
(FHC, MHC or GMC), it is mainly related with the strategy used to update the weights of GMMs. The
correction strategies MHC and GMC can be combined with different methods used to update the weights
of GMM (e.g. MHC with MLU or MHC with TPU, etc). However, as MLU and TPU are based on the
assumption that azimuth and elevation angles are independent, the classical Cartesian and LSP parameteri-
zations are not suitable for these update strategies. On the other hand, as the reduced parameterization does
not impose an independence between beacon parameters, this parameterization and the GMC observation
model proposed here can be still used with the classical approach used to update the weights of hypothe-
ses at expenses of a higher memory consumption. The following experiments compare the classical Full
Hypotheses Update (FHU) strategy used in the literature [47, 26, [I] for dependent azimuth and elevation
parameters with the methods proposed by authors of this paper, Most Likely Update (MLU) and Total
Probability Update (TPU). In these experiments 10 beacons are used and the observation model used in
these experiments is GMC.

In this case, the results are also compared against different hypotheses densities d to check the update
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Figure 10: Comparison of the processing time and mapping error for the proposed Reduced Spherical Parameterization (RSP),
the Large Spherical Parameterization (LSP) and the classical Cartesian parameterization: @ EKF correction stage maximum
processing time, @ averaged mapping error.

processing time and the hypotheses convergence for the different strategies with a larger number of hy-
potheses per beacon. The processing time measured is the time used to update the weights of the Gaussian
Mixtures plus the processing time taken by the prune strategy explained above.

As Fig. [12] there is not much difference between FHU and TPU methods and both have better perfor-
mance than MLU. However, TPU tends to be the most efficient in terms of processing time and memory
consumption. FHU consumes an amount of memory quadratic in the number of azimuth and elevation angles
as explained above due to the dependence assumption made between landmark parameters. Additionally,

the independence assumption does not seem to affect the accuracy of the mapping results when using either
MLU or TPU.

4.2. SLAM accuracy

For real experimentation, 6 beacons embedded in 3 bars (2 beacons per bar) were used as shown in
Fig.[0d] In this experiment, only MHC and GMC observation models are compared using MHC with MLU
as the RO-SLAM algorithm presented in [27] against the algorithm proposed in this paper using GMC
with TPU. The results obtained with this real dataset are shown in Fig. [[4 The averaged localization
error is 0.54 meters and the averaged mapping error is 0.6 meters with an averaged horizontal error of 0.14
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Figure 11: Comparison of@ the processing time, @ hypotheses convergence time and averaged absolute mapping error
for 10 beacons, different number of hypotheses and different range-only observation models.

meters for the MHC method, whereas for the GMC method the localization error is 0.54 meters and the
averaged mapping error is 0.58 meters with an averaged horizontal error of 0.2 meters. Figure [I3a] shows
the localization results for GMC (the MHC results are similar). As shown in Fig. [L5| with a red line, 75%
of the time the localization error is below 0.6 meters when not using inter-node range-only observations.
Furthermore, as Fig. shows with a green dashed line, the localization estimation shown in blue is always
within the 30 variance interval with respect the ground-truth of the aerial robot shown with a red line. As
can be seen, the vertical error (Z axis) is higher than horizontal axis. The trilateration of the altitude is
affected by this lack of movement and distribution of sensors position along this axis on tis real experiment.
Mapping error is shown in Fig[T4a] for MHC and in Fig. for GMC. In this case, as it was an indoor
experiment, the aerial robot only could fly in a range of 1.5-3 meters which is why the mapping error
presents a higher vertical mapping error. This is specially notable in the case of beacon 22 because of a lack
of observability in the beacon altitude. Again, the SLAM results are quite similar in both methods with a
mapping error below 0.5 meters but with a reduced computational complexity in the case of GMC.

4.3. Inter-node range-only observations

This section validates the observation model for inter-node range-only observations in the EKF-SLAM
framework described above. The same synthetic and real datasets used before are reused now but inter-
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landmark observations are integrated. Inter-landmark measurements r;; are filtered so that they are inte-
grated in the filter at a frequency of 0.1Hz for the same pair of sensors ¢ and j. This is necessary to reduce
redundant information which can lead to overconfident estimations. In this case, the method employed for
correction stage of the filter and to update the weights of hypotheses are GMC and TPU respectively.

The localization error using inter-node observations in the case of the synthetic dataset for 20 beacons
goes from 0.63 meters to 0.49 meters, whereas in the case of real experiments the localization error goes
from 0.54 meters to 0.49 meters. The cumulative localization error in Fig. shows how the localization
error throughout the whole experiment is reduced when inter-node range measurements are used. This
reduction in the localization error is a direct consequence of the reduction in the mapping errors but also
in the convergence time. It should be noted that, while a beacon does not converge, the corrections related
with its observations are less precise due to the amount of hypotheses of the beacon.

On the other hand, in Fig. [16|can be seen how inter-node range measurements reduce the mapping error
by more than 45% for simulation and more than 6% for real experimentation. The convergence time is also
reduced with inter-node observations as shown in Fig. [L6¢ and Fig. [16f] in more than 55% in simulation and
more than 60% in real experimentation. The X axis represents the time stamps of the experiment and the
Y axis the number of beacons which have converged to a single hypotheses. The blue line corresponds to the
convergence time using inter-node range measurements whereas the red line corresponds to the convergence
time without using inter-node range measurements. This reduction of the convergence time is dependent
on the frequency at which inter-node observations are integrated in the filter. Simulations performed at
different inter-node observation periods have shown that higher frequencies leads to faster convergences but
may reduce filter stability.

5. Conclusion

This paper has presented a Range-only SLAM approach applied to aerial robotics based on the integration
of Gaussian Mixtures in a EKF with undelayed initialization. RO-SLAM poses significant technological
challenges with respect to other SLAM schemes because of the rank-deficiency of range-only observations
which leads landmarks position to a spherical shell uniform distribution.

The RO-SLAM algorithm proposed in this paper inherits the advantages of the reduced parameterization
presented by authors in [27] and improves the correction stage of the EKF with a novel technique which
only requires a single correction equation. This observation model not only improves the computational
requirements of the correction stage but also reduces the convergence time of hypotheses. Furthermore, the
paper presents an improved scheme to update the weights of hypotheses which is based on the same inde-
pendence assumption between landmark parameters made in [27] but presents better robustness, processing
times and convergence and accuracy. Finally, the additional integration of range-only observations between
static range sensors reduces the convergence time of hypotheses and improves the precision of mapping and
localization errors up to a 60%.

The paper also benchmarked the proposed 3D RO-SLAM approaches with other state-of-the-art algo-
rithms:

1. three different parameterizations of landmark positions: Classical Cartesian parameterization [47], the
extended spherical parameterization [26] and the proposed reduced spherical parameterizations.

2. three different observation models: one based on classical Federated Information Sharing (FIS) [IJ,
an extended version of FIS previously presented in [27], and the novel GMC model proposed in this
paper.

3. three different strategies to update the weights of hypotheses: classical strategy employed in [47, [26],
an improved version previously presented in [27], and the robust strategy proposed in this paper.

As there are no open-access implementations for centralized EKF 3D RO-SLAM, the authors imple-
mented the classical and proposed approaches to compare the performance and accuracy of the methods.

Future work will be focused on the use of other filtering schemes like unscented Kalman filter for lin-
earization problems or Information filters for scalability improvements, in order to compare the advantages
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and disadvantages of these filters. The authors are also working on multi-SLAM and active perception
approaches which takes advantage of the reduced parameterization and the efficient correction approach
presented in this paper. Finally, some recent methods for odometry estimation based on optical-flow with
UAVs [48] will be studied for the predictive stage of the filter.

Acknowledgment

The authors would like to thank FADA-CATEC for the use of their facilities for real experimentation

and also to Victor Vega and Alfredo Vazquez for their support during the experiments.

References

[1] J. Sol, A. Monin, M. Devy, T. Lemaire, Undelayed initialization in bearing only SLAM, in: 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2005. (IROS 2005), 2005, pp. 2499-2504. doi:10.1109/IR0S.2005. 1545392,

[2] L. Jing, P. Yang, A Localization Algorithm for Mobile Robots in RFID System, in: 2007 International Conference on
Wireless Communications, Networking and Mobile Computing, 2007, pp. 2109-2112. doi:10.1109/WICOM.2007.527.

[3] P. Yang, W. Wu, Efficient Particle Filter Localization Algorithm in Dense Passive RFID Tag Environment, IEEE Trans-
actions on Industrial Electronics 61 (10) (2014) 5641-5651. doi:10.1109/TIE.2014.2301737.

[4] F. Fabresse, F. Caballero, I. Maza, A. Ollero, Localization and mapping for aerial manipulation based on range-only
measurements and visual markers, in: Robotics and Automation (ICRA), 2014 IEEE International Conference on, IEEE,
2014, pp. 2100-2106.

[5] H. Wang, J. Wan, R. Liu, /A novel ranging method based on RSSI, Energy Procedia 12 (2011) 230-235. |[doi:10.1016/j.
egypro.2011.10.032
URL http://www.sciencedirect.com/science/article/pii/S1876610211018583

[6] P. Bahl, V. Padmanabhan, RADAR: an in-building RF-based user location and tracking system, in: IEEE INFOCOM
2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings, Vol. 2,
2000, pp. 775784 vol.2. doi:10.1109/INFCOM.2000.832252.

[7] P. Corral, E. Pena, R. Garcia, V. Almenar, A. de C. Lima, Distance estimation system based on ZigBee, in: 11th IEEE
International Conference on Computational Science and Engineering Workshops, 2008. CSEWORKSHOPS ’08, IEEE,
2008, pp. 405-411. [doi:10.1109/CSEW.2008.79.

[8] N. T. GmbH, Real time location systems (RTLS) (apr 2007).

URL http://wuw.nanotron.com/EN/pdf/WP_RTLS. pdf

[9] N. B. Priyantha, A. Chakraborty, H. Balakrishnan, The cricket location-support system| in: Proceedings of the 6th Annual
International Conference on Mobile Computing and Networking, MobiCom ’00, ACM, New York, NY, USA, 2000, p. 3243.
doi:10.1145/345910.345917.

URL http://doi.acm.org/10.1145/345910.345917

[10] Guoyu Fu, Jin Zhang, Wenyuan Chen, Fengchao Peng, Pei Yang, Chunlin Chen, Precise localization of mobile robots via
odometry and wireless sensor network, Int J Adv Robotic Sy 10. [doi:10.5772/56217.

[11] Y. . Lpez, M. E. d. C. Gmez, J. L. lvarez, F. L.-H. Andrs, [Evaluation of an RSS-based indoor location system, Sensors
and Actuators A: Physical 167 (1) (2011) 110-116. doi:10.1016/j.sna.2011.02.037.

URL http://wuw.sciencedirect.com/science/article/pii/S0924424711000999

[12] D. Herrero, H. Martnez, Range-only fuzzy voronoi-enhanced localization of mobile robots in wireless sensor networks,
Robotica FirstView (2011) 1-15. |doi:10.1017/80263574711001263.

[13] M. Gholami, N. Cai, R. Brennan, |An artificial neural network approach to the problem of wireless sensors network
localization, Robotics and Computer-Integrated Manufacturing 29 (1) (2013) 96-109. doi:10.1016/j.rcim.2012.07.006.
URL http://wuw.sciencedirect.com/science/article/pii/S0736584512000907

[14] A. Gasparri, F. Pascucci, An interlaced extended information filter for self-localization in sensor networks, IEEE Trans-
actions on Mobile Computing 9 (10) (2010) 1491-1504. doi:10.1109/TMC.2010.122,

[15] J. Gonzlez, J. Blanco, C. Galindo, A. Ortiz-de Galisteo, J. Fernndez-Madrigal, F. Moreno, J. Martnez, Mobile robot
localization based on ultra-wide-band ranging: A particle filter approach, Robotics and Autonomous Systems 57 (5)
(2009) 496-507. |doi:10.1016/j.robot.2008.10.022,

URL http://wuw.sciencedirect.com/science/article/pii/S0921889008001747

[16] S. Li, X. Wang, S. Zhao, J. Wang, L. Li, Local semidefinite programming-based node localization system for wireless
sensor network applications, IEEE Systems Journal Early Access Online. doi:10.1109/JSYST.2013.2260625.

[17] B. Ingwer, P. J. F. Groenen, Modern Multidimensional Scaling - Theory and Applications, Springer, New York, NY, 1997.
URL http://www.springer.com/statistics/social+sciences+%26+law/book/978-0-387-25150-9

[18] A. Ahmad, S. Huang, J. Wang, G. Dissanayake, A new state vector and a map joining algorithm for range-only SLAM,
in: 2012 12th International Conference on Control Automation Robotics Vision (ICARCV), 2012, pp. 1024-1029. doi:
10.1109/ICARCV.2012.6485298.

[19] D. Moore, J. Leonard, D. Rus, S. Teller, Robust distributed network localization with noisy range measurements, in:

Proceedings of the 2Nd International Conference on Embedded Networked Sensor Systems, SenSys ‘04, ACM, New York,

21


http://dx.doi.org/10.1109/IROS.2005.1545392
http://dx.doi.org/10.1109/WICOM.2007.527
http://dx.doi.org/10.1109/TIE.2014.2301737
http://www.sciencedirect.com/science/article/pii/S1876610211018583
http://dx.doi.org/10.1016/j.egypro.2011.10.032
http://dx.doi.org/10.1016/j.egypro.2011.10.032
http://dx.doi.org/10.1016/j.egypro.2011.10.032
http://www.sciencedirect.com/science/article/pii/S1876610211018583
http://dx.doi.org/10.1109/INFCOM.2000.832252
http://dx.doi.org/10.1109/CSEW.2008.79
http://www.nanotron.com/EN/pdf/WP_RTLS.pdf
http://www.nanotron.com/EN/pdf/WP_RTLS.pdf
http://doi.acm.org/10.1145/345910.345917
http://dx.doi.org/10.1145/345910.345917
http://doi.acm.org/10.1145/345910.345917
http://dx.doi.org/10.5772/56217
http://www.sciencedirect.com/science/article/pii/S0924424711000999
http://dx.doi.org/10.1016/j.sna.2011.02.037
http://www.sciencedirect.com/science/article/pii/S0924424711000999
http://dx.doi.org/10.1017/S0263574711001263
http://www.sciencedirect.com/science/article/pii/S0736584512000907
http://www.sciencedirect.com/science/article/pii/S0736584512000907
http://www.sciencedirect.com/science/article/pii/S0736584512000907
http://dx.doi.org/10.1016/j.rcim.2012.07.006
http://www.sciencedirect.com/science/article/pii/S0736584512000907
http://dx.doi.org/10.1109/TMC.2010.122
http://www.sciencedirect.com/science/article/pii/S0921889008001747
http://www.sciencedirect.com/science/article/pii/S0921889008001747
http://www.sciencedirect.com/science/article/pii/S0921889008001747
http://dx.doi.org/10.1016/j.robot.2008.10.022
http://www.sciencedirect.com/science/article/pii/S0921889008001747
http://dx.doi.org/10.1109/JSYST.2013.2260625
http://www.springer.com/statistics/social+sciences+%26+law/book/978-0-387-25150-9
http://www.springer.com/statistics/social+sciences+%26+law/book/978-0-387-25150-9
http://dx.doi.org/10.1109/ICARCV.2012.6485298
http://dx.doi.org/10.1109/ICARCV.2012.6485298
http://dx.doi.org/10.1109/ICARCV.2012.6485298
http://doi.acm.org/10.1145/1031495.1031502

675

680

685

690

695

700

705

710

715

720

725

730

735

20]

(21]

[22]

(23]

24]

[25]

[26]

27)

(28]
[29]
30]
(31]
(32]
(33]

(34]

(35)

(36]

(37)

(38]

(39]

[40]

[41]

[42]

[43]
[44]

[45]

NY, USA, 2004, p. 5061. doi:10.1145/1031495.1031502.

URL http://doi.acm.org/10.1145/1031495.1031502

J. Djugash, S. Singh, G. Kantor, W. Zhang, Range-only SLAM for robots operating cooperatively with sensor networks,
in: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, 2006, pp. 2078-2084.
doi:10.1109/R0OBOT.2006.1642011.

F. Caballero, L. Merino, I. Maza, A. Ollero, A particle filtering method for wireless sensor network localization with an
aerial robot beacon, in: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, 2008, pp. 596
—601. doi:10.1109/R0OBOT.2008.4543271.

F. Caballero, L. Merino, P. Gil, I. Maza, A. Ollero, A probabilistic framework for entire WSN localization using a mobile
robot), Robotics and Autonomous Systems 56 (10) (2008) 798-806. |doi:10.1016/j.robot.2008.06.003.

URL http://wuw.sciencedirect.com/science/article/pii/S0921889008000869

L. Génevé, O. Kermorgant, E. Laroche, |A Composite Beacon Initialization for EKF Range-Only SLAM, in: IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2015.

URL https://hal.inria.fr/hal-01219746/document

E. Olson, J. Leonard, S. Teller, Robust range-only beacon localization, in: In Proceedings of Autonomous Underwater
Vehicles, 2004, p. 6675.

J. Djugash, S. Singh, Motion-aided network SLAM with range, The International Journal of Robotics Research 31 (5)
(2012) 603 — 625.

URL https://www.ri.cmu.edu/pub_files/2012/4/2012-IJRR-NetworkSLAM. pdf

F. Caballero, L. Merino, A. Ollero, A general gaussian-mixture approach for range-only mapping using multiple hypotheses,
in: IEEE International Conference on Robotics and Automation (ICRA), 2010, 2010, pp. 4404-4409.

F. R. Fabresse, F. Caballero, I. Maza, A. Ollero, Undelayed 3d RO-SLAM based on gaussian-mixture and reduced spherical
parametrization, in: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo Big Sight,
Tokyo, Japan, 2013, pp. 1555—1561. doi:10.1109/IR0S.2013.6696556.

B. Boots, G. J. Gordon, A spectral learning approach to range-only SLAM| arXiv:1207.2491.

URL http://arxiv.org/abs/1207.2491

J. R. Spletzer, A New Approach to Range-only SLAM for Wireless Sensor Networks, CiteSeer, 2003.

S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, The MIT Press, 2005.

Z. Kurt-Yavuz, S. Yavuz, A comparison of EKF, UKF, FastSLAM2.0, and UKF-based FastSLAM algorithms, in: 2012
IEEE 16th International Conference on Intelligent Engineering Systems (INES), 2012, pp. 37 —43. |doi:10.1109/INES.
2012.6249866.

J. Li, L. Cheng, H. Wu, L. Xiong, D. Wang, An overview of the simultaneous localization and mapping on mobile robot,
in: 2012 Proceedings of International Conference on Modelling, Identification Control (ICMIC), 2012, pp. 358 —364.

P. Yang, Efficient particle filter algorithm for ultrasonic sensor-based 2d range-only simultaneous localisation and mapping
application, IET Wireless Sensor Systems 2 (4) (2012) 394 —401. doi:10.1049/iet-wss.2011.0129,

Z. M. Wang, D. H. Miao, Z. J. Du, Simultaneous localization and mapping for mobile robot based on an improved particle
filter algorithm, in: International Conference on Mechatronics and Automation, 2009. ICMA 2009, 2009, pp. 1106 —1110.
doi:10.1109/ICMA.2009.5246103\

D. Hai, Y. Li, H. Zhang, X. Li, Simultaneous localization and mapping of robot in wireless sensor network, in: 2010
IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), Vol. 3, 2010, pp. 173 —178.
doi:10.1109/ICICISYS.2010.5658491.

J.-L. Blanco, J. Gonzalez, J. Fernandez-Madrigal, A pure probabilistic approach to range-only SLAM, in: IEEE Inter-
national Conference on Robotics and Automation, 2008. ICRA 2008, 2008, pp. 1436-1441. |doi:10.1109/R0OBOT.2008.
4543404.

J.-L. Blanco, J.-A. Fernandez-Madrigal, J. Gonzalez, Efficient probabilistic range-only SLAM, in: IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2008. IROS 2008, 2008, pp. 1017 —1022. doi:10.1109/IR0S.2008.4650650.
A. Torres-Gonzalez, J. R. Martinez-de Dios, A. Ollero, Accurate fast-mapping Range-Only SLAM for UAS applications,
in: Unmanned Aircraft Systems (ICUAS), 2015 International Conference on, IEEE, 2015, pp. 543-550.

URL http://ieeexplore.ieee.org/xpls/abs_all. jsp?arnumber=7152334

J. Castellanos, J. Neira, J. Tardos, Multisensor fusion for simultaneous localization and map building, IEEE Transactions
on Robotics and Automation 17 (6) (2001) 908-914. |doi:10.1109/70.976024.

J. Djugash, S. Singh, /A robust method of localization and mapping using only range, in: O. Khatib, V. Kumar, G. J.
Pappas (Eds.), Experimental Robotics, no. 54 in Springer Tracts in Advanced Robotics, Springer Berlin Heidelberg, 2009,
pp. 341-351.

URL http://link.springer.com/chapter/10.1007/978-3-642-00196-3_40

S. Bouabdallah, R. Siegwart, Full control of a quadrotor, in: IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2007. IROS 2007, 2007, pp. 153-158. |doi:10.1109/IR0S.2007.4399042]

J. Hershey, P. Olsen, Approximating the kullback leibler divergence between gaussian mixture models, in: IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, 2007. ICASSP 2007, Vol. 4, 2007, pp. IV-317 -IV-320.
doi:10.1109/ICASSP.2007.366913.

A. Runnalls, Kullback-leibler approach to gaussian mixture reduction, IEEE Transactions on Aerospace and Electronic
Systems 43 (3) (2007) 989 —999. |doi:10.1109/TAES. 2007 . 4383588|

Nanotron Technologies GmbH, nanoPAN development kit.

URL http://wuw.nanotron.com/EN/PR_ic_modules.php#08

F. J. Perez-Grau, F. R. Fabresse, F. Caballero, A. Viguria, A. Ollero, Long-term aerial robot localization based on visual

22


http://dx.doi.org/10.1145/1031495.1031502
http://doi.acm.org/10.1145/1031495.1031502
http://dx.doi.org/10.1109/ROBOT.2006.1642011
http://dx.doi.org/10.1109/ROBOT.2008.4543271
http://www.sciencedirect.com/science/article/pii/S0921889008000869
http://www.sciencedirect.com/science/article/pii/S0921889008000869
http://www.sciencedirect.com/science/article/pii/S0921889008000869
http://dx.doi.org/10.1016/j.robot.2008.06.003
http://www.sciencedirect.com/science/article/pii/S0921889008000869
https://hal.inria.fr/hal-01219746/document
https://hal.inria.fr/hal-01219746/document
https://www.ri.cmu.edu/pub_files/2012/4/2012-IJRR-NetworkSLAM.pdf
https://www.ri.cmu.edu/pub_files/2012/4/2012-IJRR-NetworkSLAM.pdf
http://dx.doi.org/10.1109/IROS.2013.6696556
http://arxiv.org/abs/1207.2491
http://arxiv.org/abs/1207.2491
http://dx.doi.org/10.1109/INES.2012.6249866
http://dx.doi.org/10.1109/INES.2012.6249866
http://dx.doi.org/10.1109/INES.2012.6249866
http://dx.doi.org/10.1049/iet-wss.2011.0129
http://dx.doi.org/10.1109/ICMA.2009.5246103
http://dx.doi.org/10.1109/ICICISYS.2010.5658491
http://dx.doi.org/10.1109/ROBOT.2008.4543404
http://dx.doi.org/10.1109/ROBOT.2008.4543404
http://dx.doi.org/10.1109/ROBOT.2008.4543404
http://dx.doi.org/10.1109/IROS.2008.4650650
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7152334
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7152334
http://dx.doi.org/10.1109/70.976024
http://link.springer.com/chapter/10.1007/978-3-642-00196-3_40
http://link.springer.com/chapter/10.1007/978-3-642-00196-3_40
http://dx.doi.org/10.1109/IROS.2007.4399042
http://dx.doi.org/10.1109/ICASSP.2007.366913
http://dx.doi.org/10.1109/TAES.2007.4383588
http://www.nanotron.com/EN/PR_ic_modules.php#08
http://www.nanotron.com/EN/PR_ic_modules.php#08

740

745

[46]

[47)

(48]

odometry and radio-based ranging, in: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), 2016.

F. R. Fabresse, F. Caballero, I. Maza, A. Ollero, Robust range-only SLAM for aerial vehicles, in: 2014 International
Conference on Unmanned Aircraft Systems (ICUAS), 2014, pp. 750-755. doi:10.1109/ICUAS.2014.6842320.

J.-L. Blanco, J. Gonzlez, J.-A. Fernndez-Madrigal, Optimal filtering for non-parametric observation models: Applications
to localization and SLAM| The International Journal of Robotics Research 29 (14) (2010) 1726-1742. doi:10.1177/
0278364910364165.

URL http://ijr.sagepub.com/content/29/14/1726

V. Grabe, H. Bulthoff, P. Giordano, Robust optical-flow based self-motion estimation for a quadrotor UAV, in: 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012, pp. 2153-2159. doi:10.1109/IR0S.
2012.6386234.

23


http://dx.doi.org/10.1109/ICUAS.2014.6842320
http://ijr.sagepub.com/content/29/14/1726
http://ijr.sagepub.com/content/29/14/1726
http://ijr.sagepub.com/content/29/14/1726
http://dx.doi.org/10.1177/0278364910364165
http://dx.doi.org/10.1177/0278364910364165
http://dx.doi.org/10.1177/0278364910364165
http://ijr.sagepub.com/content/29/14/1726
http://dx.doi.org/10.1109/IROS.2012.6386234
http://dx.doi.org/10.1109/IROS.2012.6386234
http://dx.doi.org/10.1109/IROS.2012.6386234

Maximum processing time

2500,00
2000,00
» 1500,00
E - TPU
,E = MLU
= 1000,00 FHU
500,00
0,00
0 50 100 150 200 250 300 350
Num.Beacons
(a)
Hypotheses convergence time
120
100
80
5
e o - TPU
.é == MLU
=
0 FHU
20
0
0 50 100 150 200 250 300 350
Num. Beacons
(b)
Absolute mapping error
1,4
1,2
1
g 08 —&— TPU
2 06 —— MLU
u FHU
0,4
0,2
0
0 50 100 150 200 250 300 350

Num.Beacons

(©)

Figure 12: Comparison of@ the processing time, @ hypotheses convergence time and averaged absolute mapping error
for 10 beacons, different number of hypotheses and different weights update strategies.
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Figure 16: Experiments with inter-node range measurements: |(a)| simulation with 20 beacons and without inter-node observa-
tions, real experiment without inter-node observations, simulation with 20 beacons and inter-node observations, @
real experiment with inter-node observations, convergence time of beacons with (blue line) and without (red line) inter-
node observations in synthetic dataset and convergence time of beacons with (blue line) and without (red line) inter-node
observations in real experimentation.
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