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Abstract

Advanced cognitive capabilities enable humans t~ so:. > " en complex tasks by representing
and processing internal models of manipulation actions a. 1 their effects. Consequently, humans
are able to plan the effect of their motions before ¢.~=cution and validate the performance after-
wards. In this work, we derive an analog approac* for rovutic wiping actions which are fundamen-
tal for some of the most frequent household chore. i'.cluding vacuuming the floor, sweeping dust,
and cleaning windows. We describe wiping ac .>ns a ‘d their effects based on a qualitative particle
distribution model. This representation enables ~ rooot to plan goal-oriented wiping motions for
the prototypical wiping actions of absorbing, ~ouccting and skimming. The particle representation
is utilized to simulate the task outcome before exccution and infer the real performance afterwards
based on haptic perception. This way, ‘e 1.hot is able to estimate the task performance and sched-
ule additional motions if necessary. % = evali ate our methods in simulated scenarios, as well as in
real experiments with the humanoi 1 servic. robot Rollin” Justin.

Keywords: Al Reasoning Methou. Act on and Effect Representation, Compliant Manipulation,
Service Robotics.

1. Introduction

Advanced cognitiv ~ c7 pab'.ities will enable future service robots to master everyday household
chores. These robot~ 1eea .- represent, plan, execute, and interpret the required actions and their
effects to the env’ -onme *. Research on neuro-biology, as discussed by Kawato [1], suggests
that humans mainta. ~ de‘ailed internal models for manipulation tasks which can be accessed and
improved to a.hieve high dexterity for almost every activity of daily living including the most
frequent house ~old c'.ores of cooking, organizing and cleaning. For example, in order to clean
a desk with ~ dust-cloth, a human would intuitively wipe along the entire target surface with the
tool in orde. t-, cover all dusty areas. Fundamental to the skillful task execution is a suitable
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Figure 1: Overview of the proposed framework. A particle dist..™"1tion model serves as the basis for the proposed
motion planning algorithm as well as for the haptic effec ... ~~~e method. The methods complement each other
such that the output of the effect inference can be utilized to 2’ an recovery motions in case of detecting performance
errors caused by external disturbances, e. g. collisions v .. hun "ns as visualized.
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representation of wiping motions and the.. <72~ -, i.e. the knowledge that dust is absorbed by
the cleaning cloth and the assumption that dus. particles are often equally distributed on planar
surfaces. Humans are able to infer that ... desired effect (i. e. having the desk cleaned from dust)
must be accomplished after the tool I 1s been in physical contact with the whole region of interest.
However, a human may schedule 7 Iditi,.»" motions in case of poor outcome. Different internal
models may apply to different woin¢ sitrations. For example, if breadcrumbs are recognized on
the desk the human would try f) sk. ™ t'.e particles deliberately off the table and into its hand to
dispose them afterwards.

Haptic perception is often an imp urtant and reliable source of feedback during the execution of
the described wiping moti sns. Even though visual perception is commonly considered the prime
sense in human manipulati,- visual feedback can be unreliable for many wiping tasks including
vacuuming the floor, d stir z surraces, and window wiping, as small dirt particles, dust, and streaks
of water are often hara .~ serc .1ve visually. Especially in the absence of vision it has been observed
that the sense of tc.ca is essential for human task reasoning and effect inference [2]. Flanagan
et al. [3] highlight that hz stic feedback does not only provide humans with the information that
contact occurred *viu. “*.C environment, but moreover provides the basis for effect inference, task
performance r itings, nd even the detection of performance errors. This is done based on com-
parison of the ¢ "nect_.d contact force w.r.t. the internal task model with the actual sensed force.
In case of ..._"'=r contact (i.e. introduced by friction or uneven areas) humans may decide to
replan additic -al wiping motions to improve the cleaning result accordingly. In cognitive science,
this behavior is ussociated with the cognitive control loop [4], which builds on the hypothesis that
humans primarily take conscious action for error correction and novel tasks. This work aims to
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develop similar cognitive reasoning capabilities for robots to qualitatively reas .n about the effects
of their motions and solve even complex wiping tasks despite poor visual fer dbac'

In this article, we combine artificial intelligence (Al) reasoning methods .. 1 compliant robotic
manipulation to solve wiping tasks of different kind with the humanoid se- vice robot Rollin” Justin
[5]. Our contributions extend on our research on manipulation planning “~r w, ‘ng tasks presented
in [6] and the interpretation of wiping motions presented in [7], whk*~h in ~ombination aim on
representing, planing, executing, and interpreting robotic wiping acti’ u»> =s it is visualized in
Fig. 1.

The contributions of this work include () a qualitative partic e dist ibution model to represent
the effects of wiping actions, (iz) an approach to generate whoi *-body wiping motions based on
these representations utilizing effect-oriented policies, and (.., an approach to assess the quality
of wiping motions by estimating contact situations during t: <k _xec 1tion using haptic perception.
This enables (:v) the inference of performance errors aun.' the ~.osequent generation of recov-
ery wiping motions as well as (v) the semantic interpretation >f contact situations by means of
annotated structured logs.

The remainder of this article is structured as follows. The state-of-the-art is covered in Sec.
2. Sec. 3 sescribes representations and related plan. ‘ng methods to generate semantically mean-
ingful whole-body wiping motions. We describe ~nr eftcct inference strategy to estimate the task
performance of real world wiping motions based « n "iaptic feedback in Sec. 4. We conclude with
Sec. 5.

2. Related Work

Cakmak et al. [8] classify manip’..aw.™n actions that characterize human household chores
w.I. t. semantic similarities. They fc 'd ouw that almost half of all household chores are related
to wiping of surfaces in rooms, fur.iiture, ~ other objects. In fact, wiping actions are substantial
for cleaning tasks, such as dustin‘ fur iitu-e with a feather duster, sweeping breadcrumbs from the
kitchen countertop, or collectir g su.~d< of a broken mug with a broom. Accordingly, cleaning
related wiping tasks have bee'. .. vestigated to some extent lately.

The task of wiping a surface is often considered as a coverage path planning problem [9],
where a robot has to find a p: th (i.e. for a cleaning device) connecting all nodes of a graph in
a time- or effort-optimal w.., Hess et al. conducted research on robotic cleaning in a series of
papers [10, 11]. Thev 1nv .stigate the path coverage problem for robotic manipulators. In [10]
they describe an appro.~ 1 to autonomously compute cleaning trajectories for redundant robotic
manipulators guidi-.g a snouge on 3d surfaces. They utilize a variation of the Traveling Salesman
Problem (TSP) an'' resol 2 the joint motions of the robotic manipulator by means of null-space
optimization. Ir f11) ..y learn the effect of a vacuum cleaner moving along a planar surface by
utilizing visua feedb. ck based on color segmentation. The robot can enhance the task execution
for future trials ~< it generates motions that cover only the dirty areas. These works implicitly
assume tha wu..” “~ absorbed upon contact. Martinez et al. [12] investigate planning for robotic
cleaning by wing with a sponge under the assumption that the particles are pushed upon contact.
Do et al. [13] predict appropriate action parameters by learning from experience during wiping
tasks. Okada et al. [14, 15] apply an inverse-kinematics-based programming approach to compute
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whole-body motions for the tasks of sweeping the floor, vacuuming the floc ., and washing the
dishes with a humanoid robot. Lana et al. [16] represent robotic manipula‘’.on .~sks in an alge-
braic form, which incorporates poses, velocities and forces in a simulated ... ~dow cleaning task.
Vanthienen et al. [17] describe table wiping tasks as a set of constraint wi‘a the i7TaSC frame-
work. Ortenzi et al. [18] propose to exploit the environment contact ¢ “nstra.~ts of wiping tasks
in the operational space, to decouple the motion of the robot from *-~ ap,'ied force. Schindl-
beck and Haddadin [19] utilize task-energy tanks to react safely upc. cc ua.  loss. Most recently,
[20] proposed an approach to imitate wiping motions from human de. ‘onstration. The approach
combines impedance control for the execution of wiping motior s with learning by demonstration
methods. Additionally, the authors apply the Path Integral (PI2) algorif 1m to update the imitated
force policy. As a result, the deployed light-weight robot is uule to successfully execute a wood
grinding task repeatedly with different wooden planks. Th - r<.ear :h by Gams et al. applies the
concept of movement primitives learned from visual feedu.~k [7"]. The trajectories are modified
using regression methods, where the feedback is provided thrc 1gh force signals. Eventually, the
robot learns new trajectories that are able to maintain the des’ced contact with the environment.
Recently, Gams et al. proposed an adaption of this appro. ~h by adding a feed forward term that
encodes a complete period of motion [22]. The mc*hod is able to circumvent perturbations and
obstacles and is transferable between different rchats. [2”] consider the coverage problem arising
for a mobile robot such as a autonomous lawn mov =r They propose to sub-divide the search space
into a grid and apply variations of the Spannii... Tree Covering (STC) algorithm to cover the area.

The approaches listed so far mainly focus on the physical part of wiping actions, while mainly
ignoring the semantic meaning of the motic~ 1. contrast, Kunze et al. [24] reason about the se-
mantic effect of the tool interacting with the medium based on a simplified process model. The
authors simulate the effect of a spon ¢ cc ~tacting liquids, namely the absorption of the liquid.
This way, a qualitative effect inferenc ~ can br conducted based on the absorbed and leftover water
particles. Winkler ef al. [25] mainf .in exp. .tation about the outcome of planned manipulations in
pick-and-place scenarios. Based on ,bse vation of relevant task parameters (e. g. gripper forces
during object transitions) a rot ot ca.. ! arn when an action was successfully executed or failed.
Pastor et al. [26] propose to .ea.™ motor skills in form of Dynamic Movement Primitives. Ad-
ditionally they predict the *~~k outcome based on low-level sensor streams e. g. fingertip force
information. The propose'. ap’ roach enables the robot to predict failure situations online.

A related research tepic .. the representation and planning of contact situations. Del Prete et
al. [27] investigate co .tac’ localization on tactile skins to improve the accuracy of force control
strategies for robotic m« tou’ators. This approach does not require a model of the external force.
Most recently, Den .1 et a’ [28] proposed the concept of tactile maps for artificial tactile skins. This
representation is i1 tegrate | into a robot control framework which allows a robot to plan motions
w.T.t. measurer contac.. [n our previous work we have proposed to represent and classify contact
events in force signal: by means of multidimensional time-series shapelets [29].

Furthermore, = nave investigated robotic wiping actions in one of our earlier articles [30].
We develoy ~a o .., brid reasoning framework to plan and parameterize compliant wiping motions
executed by v aole-body impedance controller. The robot was able to schedule wiping actions
for a given high level goal and successfully execute cleaning motions for the tasks of cleaning a
window, scrubbing a mug, and collecting shards with a broom. However, the robot had no internal
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model of the desired effects and was unable to plan effect-oriented tool motior.s nor reason about
its performance.

Robotic wiping gained some interest in the past, however, there has not v_. ~een comprehensive
efforts to cover the cognitive complexity of the problem so far. Consequ *ntl", robots are not yet
able to mirror the humans cognitive capabilities to reason about wipin_ actic~s in detail. In this
work, we propose to tackle this issue by equally representing wiping a-**ons ..~d their effects, plan
goal-oriented motions accordingly, and estimate real world effects t isec on aptic feedback.

3. Planning Wiping Actions in the Effect-Space

The causal relation between the motion parameterizatior anu - effects of wiping tasks is
particularly rich. That is, similar motions that show compar ble .ra, >ctories can produce very dif-
ferent effects depending on how they are executed in term~ o1 conf.ct force and stiffness settings.
In addition, the effects of wiping actions are hardly represe.. able by means of simple numeric
properties e. g. homogeneous transformations. Dependi..~ on } ow much force is applied, a wip-
ing motions may dry a wet surface or remove sticky ai.© Moreover, the successful execution of
wiping tasks requires geometric reasoning as the [ -.puse uf wiping might be the collection, the
distribution, or the absorption of particles. In order to p.~form the commanded tasks successfully
the robot has to carefully select the task paramete. - 1n a continuous parameter space. We propose a
qualitative representation for wiping actions, - “pab. * of describing both the wiping motions itself
and the resulting effects.

3.1. Particle Distribution Model

According to our earlier work in th~ ~lassification of compliant manipulation tasks [31], we
represent robotic manipulation actio’.s w.r.. the semantic contact situation between the manip-
ulated objects and the environmen*. '1..°< b.gh-level of abstraction allows us to define semantic
actions in accordance with the d- scr’ptive manner of the action definitions for automated plan-
ning [32]. To further derive genm.’ ‘ic *10dels, wiping actions are geometrically represented by
the relation between the tool, ' = medium to be manipulated (e. g. particles or liquids), and the tar-
get surface. The medium in wiping ~sks (as defined in [31]) is representative for arbitrary liquids
or particles with different r cop. *rties. In order to incorporate different types of media, we propose
to project a particle distrib. “ir n onto the planar target surface

P=A(,y), (w2, 12), -, (TN, yn) |25y € RA

(1)
Tmin < Tj < Tmax A Ymin < Yi < ymax}y

where N particles ‘z;,y;) are distributed on the target surface (Zmin, Zmax, Ymin, Ymax)- AN exem-
plary particle d*.uibuuun is shown in Fig. 2. The scenario shows a kitchen environment where the
humanoid rob 't Rolli 1" Justin is commanded to collect bread crumbs distributed on a chopping
board. In some .~ .rios, the medium can be perceived visually if the particles are big enough or
the liquid 1. nor «.asparent. However, especially water and other transparent liquids or dust and
other small pa ticles are very hard to perceive in camera images. Consequently, the real distribu-
tion of the medium cannot be modeled by the robot. In this case, we propose to assume a uniform
distribution as it is shown for the initial particle distribution in Fig. 2.
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Figure 2: Change estimation for solid particles in contact wi*' ._ . o.ge during wiping. As the CAD model of the
sponge touches the particles, the particles are moved along the a.. *~tion of motion.

The main purpose of the proposed particl repr. sentation is to have a naive predictive model
of the effects of wiping actions. The particle m~ac! builds the basis to qualitatively reason about
the effects of wiping motions. The term q. ~...2* = reasoning is coined by Forbus [33]. It refers
to simulations that use simplified models. In ~ur case, the simulated particles provide only a
rough estimate of the real process. Tk . . ~rticles do not incorporate contact with each other and
they do not adhere to physical standa 1 mode s. As a result, the model is considered qualitative (in
contrast to quantitative) as the calcriatea , ».ormance metrics provide only rough approximations.
Nevertheless the qualitative modr . ca .« be used to plan and interpret wiping motions. The applied
tool-particle interaction model - ons. 'er’ the exact CAD data of the tool and the position of each
particle. Depending on the ty ,. of the tool and the properties of the medium (i. e. solid particles
or liquids), the contact results in du.2rent effects. For example, if a sponge is simulated to wipe
a liquid, the resulting eff- ct 1. the absorption of the liquid, which is implemented as a delete
operation of the respective - articles. In case of a solid medium, the contact with the sponge
pushes the particles in parllel o the direction of the tool motion. An exemplary simulation of
solid particles pushed .. - ont ct with the sponge is visualized in Fig. 2.

3.2. Cartesian Wi, ing M tions

The particle “*st1,_".on model is not only utilized to simulate the wiping effect, it is also used
to plan the wij ing mc ‘ions. This requires the coverage of the entire particle distribution model by
means of a wa, ~oin* graph in Cartesian space. The surface coverage, i.e. the node distribution
for this gre .., ~ restricted by the current state of the geometric environment Gy, i.e. the volu-
metric mode: or geometric planning of wiping motions. A collision avoidance strategy based on
a collision sphe e model is implemented to explore the target surface as shown in Fig. 3. The
collision sphere is utilized to validate hypothetical node positions during the graph development
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Figure 3: Exemplary collisien sphere . :odel distribution.

procedure. A node position is valid if the spharc is 1.0t in collision with the environment (except
for collisions with the robot, the tool, and the t.rget surface). The collision sphere diameter is
defined as ds = || D yee||, where D, is the a.>a o1 effect of the tool end-effector (e. g. the nozzle
of a vacuum cleaner).

Based on the collision sphere mec’.anisi.  we have investigated three different coverage strate-
gies. A discretized grid (GRID), Rapic'v Ex’ loring Random Trees (RRT) [34], and a Kernel Den-
sity Estimation (KDE). The meth ,ds “re compared in Fig. 4, where red dots mark the resulting
graph nodes.

Discretized Grid: The firs’ baselu. . coverage strategy constitutes a simple grid heuristic. It
is adapted from several state -of-.. =-art approaches that typically rely on direct visual feedback
[11, 12, 13] or simply try t~ « “ver the entire region by means of minimum path length [23]. This
method does not incorpo: *te - ecasoning on the particle model and is therefore considered a non-
cognitive approach. Th: radi.~ r, = d,/2, of the collision sphere is used to calculate the grid
resolution within the F our us 0” the target area. The grid-based strategy is uninformed and may be
applied if no prior knowic o', on the particle distribution is available.

Rapidly Explo ing R.ndom Trees: RRTs [34] is a well established method in research on
path planning and « ¥plor- cion and is therefore used as second baseline algorithm. The algorithm
samples a rancd sm conhiguration q,.,,,; in the free space C, calculates the nearest neighbor q,,.,,,
and extends th. tree st .rting from this configuration towards g,,.,,,, which incorporates the maximal
expansion length .. For our approach ¢ € R? and q,,.;,, = 7. The algorithm is biased to
explore unc.ve eu regions and it is therefore predestined for region coverage. The RRT may be
augmented to 1 “iect nodes that are too far away from the particles to include prior knowledge about
the particle distribution, yet the baseline implementation does not include this feature.
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Figure 4: The coverage strategies utilized to explore the target surface. TF . visualized area corresponds to the obstacle
free chopping board surface.

Kernel Density Estimation: The third strategy is a “vaussia;, KDE to estimate particle proba-
bility regions within the particle distribution P:

K(a)— L3 ol =l o
15

i=1

where h is the bandwidth of the kernels. The .-ulti rariate KDE is visualized as a contour plot
on the right in Fig. 4. This continuous renresel*ation is used to select significant peaks with a
clearance of d, which places the nodes natu.~lly at the position with the highest effect. This is
considered a cognitiive approach as it is aware of the particle distribution and thus most beneficial
if prior knowledge about the distribut’on is . vailable, e. g. perceived by a vision system.

The node distribution builds the b. s to zenerate goal orientated wiping motions. To achieve
this, we introduce Semantic Direc 2d C-rapis (SDGs)

UG = {P,S, G}, 3)

which are specified by the p~+ticle sec P, the semantic goal state .S, that is represented as discrete
PDDL state [35], e.g. (cc 11¢ cted breadcrumbs chopping_board), and the geometric
environment state G that 15 rovided by means of a static scene description of the environment
and the related CAD rata as it 1s shown on the top, right in Fig. 2. Based on this information,
SDGs project a graph s..” ctu’ ¢ on a planar surface, where

e cach node n, repres: nts a waypoint for the Cartesian motion of the Tool Center Point (TCP),

e the edge (n;, . 1) connecting two nodes represents the interpolated tool motion in contact.

SDGs c~n impicment wiping actions of different kind. The desired goal state is thereby repre-
sented by muar s or the change to the particle distribution P,, — P,. In this work, we investigate
three different ‘ctions, namely absorb actions, collect actions, and skim actions. Each action is
related to one particular goal state.
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Figure 5: Top view of the developed graph structures for the three prototypic. ! rem- val actions absorb, collect, and
skim. The goal nodes are marked in yellow. Please note that the goal nc .e ror the collect action is for now manually
defined by the user after the initial region coverage. Accordingly, it may har ent at some branches appear redundant
(such as the short path segment next to the collect goal).

Absorbing: The absorb action is the first investig.‘2d actiyn. It occurs e.g. in vacuuming,
dusting, or soaking up water with a sponge. The intei. ~tio.. .naracteristics between the tool and
the medium (i. e. the absorption) is independent of the to~l - 5tion, as long as contact is made with
the entire region of interest to remove all particles, suc™ that

Pg,absorb =4. (4)

Collecting: The second removal action is to ~u'ecc the medium, where the particles are pushed
upon contact. The goal state S, is geome’ “~allv -epresented as dedicated goal node 7n4,, oOn the
target surface, such that

Pg,collect = {(513177 1)s \ﬂ‘%yQ)a S (meyN) ’xiayi eERA
||( Lgoal,xa ngoal,y) - (%,yz)H S Ts}~

Skimming: Skimming is rele ed o crllecting the medium. Upon contact with the tool the
particles are pushed along the d’recw. ~n / £ motion of the tool. The semantic goal S, for this action
can be described as a geometr.. <tate where all particles are located outside the boundaries of the
target surface, such that

&)

P,y = {($1791)7 (z2,92), - (@n, Un) |23, € RA

6
(SL’, in > I V Tj > Tmax V Ymin > Y V Y > ymax)}- ( )

Depending on the de. ved goal state, SDGs implement context-aware motion generate policies.
These policies hav . to ccrrelate semantically to the goal state of the particle distribution P,. For
example, the desir. d effer t of the absorb action is to remove all particles by getting into contact
with each parti ... to uigger a delete operation. Collecting and skimming, however, require di-
rected tool mc tions t¢ have the particles pushed towards a certain goal area (collect), or pushed
over the edge o. “»~ surface (skim), respectively. Suitable off-the-shelf policies for these issues
can be four, ' 11 z...ph theory:

A suitable nolicy for the absorb action is the Traveling Sales Person (TSP) algorithm. Hess
et al. [10] showed that this is a performant approach to solve unconstrained wiping tasks in a
generalized way. The outcome is a natural curved motion covering all nodes of the graph.
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The collect action requires to direct the graph to a certain goal region, i.e a single root node.
In graph theory this problem is described by a Minimum Spanning Tree (MS” ) |.~1. The distance
between the nodes serves thereby as cost function with a maximum connec’.. " length [, = d.

Skimming is related to collecting and therefore implemented as m Itip' e MSTs. Multiple
nodes outside the boundary of the surface are user-defined as goal. De, »ndi.> on the object that
provides the target surface, only a subset of boundaries may be vali® Fo: “he chopping board,
only the boundary facing the robot is defined as goal region (right n F 2. 7). As a result of this
policy, multiple trees expand towards the closest goal node.

In addition, it is furthermore possible to describe other wiping tasks ‘n a similar way. To outline
an example, the distribution of particles can be described by a un form ¢ sstribution of all particles.
This is similar to tasks where particles are emitted on the *.uget surtace (e.g. painting a wall).
Different tasks may include polishing a car, where repetitive m tio' s are executed. However, the
full coverage of all identified wiping actions would excc 1 th- ,cope of this work. To get an
intuition on the extension towards further tasks, please refer to ,31].

3.3. Whole-Body Joint Motions

The development of Semantic Directed Graphs -~uwus) 1n Cartesian space is only a first esti-
mate for the feasibility of the planned wiping motions. "he collision sphere model is utilized to
check for collision free translational motion of the TC 2 aiong the developed graph structure. How-
ever, the orientation of the tool is not conside ~d u1 il now. Similarly, the joint state of the robot
has to be integrated into the reasoning process . vo ify the overall feasibility. It is most desirable
to move the tool perpendicular to the plan..~ ...2* 'on, such that as many particles as possible are
affected. For some cases it is, however, requirea “0 rotate the tool to circumvent collisions or local
minima in the joint space.

The graph structure of an SDG - »oresen s Cartesian tool motions that serve as the basis for
whole-body robot motions. The un ierlyi.> problem to resolve a Cartesian path into joint motions
is formulated as path following r rob’2m. For each Cartesian pose @ on a Cartesian path X, the
robot has to find a joint velocits g

a=Jle+ (I-JJ0)q, 7

where J' is the generalizs d in' erse of the Jacobian matrix [37]. The joint velocity ¢ and the joint
acceleration ¢ must not ~xcec.' the limits of the robotic manipulators. Moreover, the resulting joint
path @ must not collic 2 w'.h any obstacle nor the robot itself.

Path following algoi. me try to follow a given Cartesian path as exactly as possible, where all
six dimensions of ‘.1e tas™ are tracked (i. e. three translational dimensions and three rotational di-
mensions). Howev 'r, this )oses an unnecessary restriction for wiping tasks. For instance, a sponge
may be rotated ..ong we normal of the target surface to yield better reachability, yet resulting in
a decreased w ning et ect. In any case the overall Cartesian motions are oriented towards the next
node in order to . ="« the degeneration ot the wiping effect. Another example is the cleaning mo-
tion of a wi.do» .. iper which has to be moved orthogonally to the wiper blade in order to achieve
the desired et. :ct. However, rotating the wiper along the main axis of the blade does not impair
the cleaning result. To this end, we propose a path following method that is aware of the free tool
DOF available in the Cartesian space as it is outlined in Algorithm 1.
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Figure 6: Initially, each node n; is oriented towards the next node 7., -+ in the graph. The tool rotation is interpolated
along the Cartesian path, i. e. the edge (n;, n;41) between thi- __ __. .. a pose along this path is in collision (left), or
unreachable, e. g. due to joint limitations (right), the free DOF o1 “e tool are exploited.

Algorithm 1: PathFollowing(q,,., ni1, 0)

Input: The initial joint configuration g, , Le <~ node n;, 1, and the step-size 0
Output: A continuous joint path Q

Tgar <— CalculateToolPose(q,,,, T grasp)
foreach x,,, in IterateFreeDOF(1 11, 10
Q < List()
X < Interpolate(Zyar, Tgo 1 0)
foreach x; in X do
Leef,i — T Lgrasp
q; — FindIK(a:eefy,"
if IsValid(q;) then
| Q[i] < g,
else
| break

if Length(Q) - T.e 1gtF X ) then
| return

The tool pc ses anc the respective TCP poses of the end-effector are computed based on the pose
of the nodes in e S™UG. Each node n; is oriented towards the next node n;,, in the branch. The
resulting ti u... “~ns and orientations for the nodes are utilized to calculate the initial hypothesis
for the start p.> ,€ Z ., and the goal pose xgoy 0f the TCP as formulated in (7). The edge (n;, n41)
in between the 1.odes is interpolated to resolve the constraints of the path following task. Ideally,
all interpolated poses x; are reachable and collision free so that the robot can manipulate the tool
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accordingly. However, in cluttered environments it is unlikely that the edge in setween two nodes
is collision-free while the robot circumvents local minima (see Fig. 6). In eitl r c..~e we backtrack
to the initial pose Ty, select an alternative goal pose Tyoq W.I.t. the frer ZOF of the tool, and
repeat the path following task. The sequence in which the SDG branche ar¢ processed depends
on the wiping action. The absorb motions consists of a single path and - the. fore unambiguous.
The branches developed for the collect and skim actions are resolved ““~rativ .y, starting from the
leaf node closest to the initial tool pose, back-propagating to the roc. nor.c « © the branch.

In order to transform the computed Cartesian motions into whole-u. 1v joint motions, we apply
a local path following method as it is described by Konietschks and !Virzinger [38]. If the local
method is unable to find a feasible path, a global method as propc ed by duaman and Stilman [39]
is applied. This approach constitutes an exhaustive search. A cordinguy, it searches the entire joint
space without violating joint limits, velocity limits, and accc ler.dor limits. The highly redundant
robot can this way resolve local minima on its own. It 1> *here“.e complete within the bounds
of the discrete search space defined by the SDG. Given enoug: time the method is guaranteed to
find a solution if a collision-free path exists. If no fea~ibic nvs.se kinematics solution is found at
all, the respective node is abandoned and the algorithm m. ves on with the remaining nodes of the
branch.

As it is quite common for wiping tasks in ~vervday environments to cover large areas, we
propose to augment the graph nodes n; with reac. af.lity information for the robotic manipulator
in the so called extended Semantic Directed G. -.;hs \ "SDG) representation. This is done by means
of Capability Maps [40], which represent the 1~aci.ability of a robotic manipulator. Capability
Maps can be utilized to rate the position o1 .“e 1uc ot base w. r. t. optimal reachability for a certain
task e. g. cleaning a surface. This information 1., used to reposition the base of the robot during
the manipulation planing procedure us ag > A* algorithm [41]. The motion generation procedure
is not detailed at this point in order .~ focus on the contributions of this work, i.e. the semantic
action representation and the relar.d eftc. -space planning and inference methods. Please refer
to our previous publications for © de’aile’. analysis on the particular topic of whole-body motion
generation and mobile manipul .tion | *?, 6].

3.4. Simulation-based Effect Predic..on and Evaluation

The particle distributi .n r odel introduced in Sec. 3.1 is utilized to predict the effect of the
planned wiping motions in su.mlation as visualized in Fig. 2. As the task performance may depend
on the initial node dis’.ibv 1on on the target surface, this sub-section evaluates the different node
distribution strategies w. t. t'ie investigated wiping actions. The evaluation is conducted in three
different scenarios Scerario I constitutes the chopping board scenario illustrated in Fig. 2. For
scenario II, we ass. 'me ths same environment without the chopping board, where the particles are
distributed on t* . entuc wable surface. Scenario 11l is a car cleaning scenario, where the target area
is approximatc d by a lane aligned with the windshield.

The sponge .t duced with the exemplary wiping task of collecting breadcrumbs is used in
all experin. nuws ... order to obtain comparable results w.r.t. the task performance. A uniform
particle distri. ation is assumed to be able to compare the uninformed methods (GRID, RRT)
with the KDE niethod that exploits the particle model. All three coverage strategies (i. e. GRID,
RRT, KDE) are paired with the three removal actions (i. e. absorbing, collecting, skimming) and
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evaluated w.r. t. the traveled Cartesian distance in contact with the surface, the computation time,
the execution time, and the task performance. The calculation of the comp.tau.  time involves
the node distribution, the base optimization, the path following algorithm, 2-.C All collision checks,
where OpenRAVE [43] is utilized. The execution time is based on the as am’ don of a maximum
velocity of 1rad/s joint speed, and a maximum joint acceleration of °rac, -*>. The maximum
base velocity is limited to 0.5m/s, and a maximum acceleration of *m/.” The performance
measurement is conducted according to the constraint definitions ( .), (* ), .1d (6). Accordingly,
the metric for the absorb action can be described as the number of . ‘eted particles, the collect
action is evaluated based on the number of particles within the radit< r, around the goal node
Ngoal, and the metric for the skim action is the number of partici s pusk zd outside the boundaries
of the target surface. All results are based on the average of f .c triais with different initial particle
distributions. The results are visualized in Fig. 7 and listed i» T.ole 1.

The different coverage strategies vary strongly in pc.‘orm.~.ce for the individual settings.
Therefore, it might be useful for the robot to reason about th. most effective coverage strategy
given a concrete problem definition. In case of lesser ou. v~ ed environments (as for example
posed by the chopping board scenario and the windshiele ~~enario) the KDE mostly outperforms
the other methods w.r. t. the defined performance 1..>frics. However, the KDE coverage strategy
seems to be biased by obstacles as it is less effic’ent for ..e table scenario. In conclusion, a robot
may have to test the available coverage strategies fc. a given scenario in order to figure out and
execute the most effective one. While this ob. .vati. n may be considered as a drawback for one-
time tasks, it is especially interesting for recurrii.” tasks, e. g. industrial manufacturing tasks, such
as polishing the surface of a car. These task. ~au v 2 autonomously optimized w. r. t. the execution

Figure 7: Simu'at’ on-based effect prediction for the collect action in the Chopping Board scenario (top), the absorb
action in the Tab, scenario (center), and the skim action in the Windshield scenario (bottom). The particles contact
behavior is visualized over time (best viewed in a digital copy of this work).
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Table 1: Evaluation of the three scenarios Chopping Board, Table, and Wind “ield.

Chopping Board Table Windshield

GRID RRT KDE GRID RRT KDE C RID RRT KDE

Cart. dist. [m] 1.52 1.41 1.90 434 4.10 3.24 ‘14 4.84 4.69
Absorb  comP- time [s] 45.96 57.12  62.00 144.47 31245 169.92 31404 42321 417.66
exec. time [s] 18.01 2592 2771 41.30 66.96 52475 /.59 111.90 66.11
performance [%] 84.25 85.00  95.75 77.00 79.50 70 50 90.13 90.50 91.00

Cart. dist. [m] 1.54 1.45 1.90 3.68 3.60 292 4.97 4.76 422
Collect comp. time [s] 69.89 68.48 7224 110.92 161.60  2,0.56 885.45 26255  428.05
exec. time [s] 16.17 3242 43.28 65.71 83.36 62.14 112.47 116.26 97.56
performance [%] 86.50 86.75 90.50 70.25 69.25 41.75 48.50 39.25 62.75

Cart. dist. [m] 1.81 1.62 2.01 5.48 475 3.15 5.58 5.65 5.89
Skim comp. time [s] 107.17 4425 90.57 211.14  2¢)34 2,558 32597 21234 199.03
exec. time [s] 32.11 26.51 45.81 113.37 12.7. 112.48 108.18 103.29 96.03
performance [%] 88.00 80.25 97.00 71.75 450 23.00 94.50 88.50 88.50

time or the task performance by iterating over the avau.~le coverage strategies.

One may argue that a greedy algorithm that ign~--- .._ particle distribution would most likely
outperform all of the other coverage methods by mean. ~f planning time. While this may be true,
we argue that the effort measured by the Cartes. n « .. nce as well as the execution time would
increase due to unnecessary repetitions as covered . ‘gions (presumably close to the target region)
may be revisited unknowingly.

In addition, it is often necessary to foll -~ na-ticular procedure to achieve the desired effects
and avoid unwanted ones (e. g. painting a wai. *n a grid, moving from top to bottom, in order to
avoid stroke artifacts). Therefore, we ar~e that it may be beneficial for future robots to provide a
semantically meaningful portfolio of covera, e algorithms that can be selected to the needs of the
task. Yet, we recommend to favor the ."DF strategy as it is the only one that is able to take the
actual dirt distribution into accou .. Y/hile the KDE method is able to reduce planning effort on
known particle distributions, th 0. °r /0 methods generate unnecessary motions if the particle
distribution is not covering th entire surface. This is especially valuable if the dirt distribution
can be estimated in advance (e. g. L, means of visual perception in case of visible media) or if the
robot has to recover from f.alu e situations as it is discussed in Sec. 4.3.

4. Inferring the Effer.s o” Wiping Actions

Up to this point ~f our vork we have utilized the proposed particle distribution model to plan
wiping motions ar 1 prea. -t the wiping effect based on simulated motions. This section shall in-
vestigate real worla vipir g actions and the estimation of the real task performance. This is usually
done by mean of vi~ual feedback as it is described by several research groups [11, 12, 13]. In
contrast, we p. ypose . vision independent feedback method as visual data is often unreliable for
wiping acti~ns for «wo main reasons. First, the medium in wiping tasks may be invisible due to
lighting con.'it"ons or the properties of the medium such as small dust particles, or transparent
liquids. Seconc the simulated experiments indicate that the robot itself is often occluding the ma-
nipulated areas which makes visual perception of the effect only available after the task execution.
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4.1. Compliant Execution of Wiping Motions

The planned wiping motions are executed by the real robot with the ccmpui.~t whole-body
impedance control framework introduced by Dietrich et al. [44]. The cc . ller parameters are
provided by an object-centric knowledge-base. That is, the applied Carte. *ar rorce, the Cartesian
stifftness, and the whole-body control task hierarchy are parameterizea . ~cor. g to the require-
ments of the tool, the surface, and the medium to be manipulated. We .. not «pply a force-control
strategy as the robot is intended to work in close collaboration w th } amans. A hybrid force-
position controller would not allow to safely interact with the robot du, g manipulation. Instead
we apply a soft impedance controller and exploit the compliant jehav, r to command the wiping
motions into the target surface. As a result, our control strategy ~llow’ for safe physical human-
robot interaction while it is still able to get into desired co «act *vith the environment. A force
controller would rather counteract the human during inter\ >~ aon< which is not desirable for a
service robot. For a detailed discussion on this topic, pleasc -=fe. 0 [30].

In a nutshell, we apply a whole-body impedance ~ontroll r to establish compliant contact,
where the controller force f_ is saturated to the neec. ot « ~ .ask and transformed into the joint
space by the Jacobian transposed as it is illustrated in (8). w™ere V' is a virtual elastic potential and
D the damping matrix.

~~r\ T
T:—JTS((-,"— + Dz |,
O'.,'}

(8)
N— - — ——
f
S is the saturation function for the two force w=s f ... = (0V/0x)" plus fypper = Da. The
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external contact force f.,, counteracts “-~ controller force f_. under the assumptions of a static
equilibrium with negligible model ur certain. /. Accordingly, the saturation function & clamps the
controller force to limit the applied conw. ~t “orce.

4.2. Feedback-based Contact Est...~ tior

Our inference method is '. ~ed on the force sensing capabilities of the compliant manipula-
tors of the robot. In particular, we ~xecute the planned wiping motions by means of a compli-
ant whole-body impedanc’ co troller and record telemetry data of the robot. This includes end-
effector forces calculated 1. ~ a joint torque sensor measurements, as well as measured Cartesian
end-effector positions. Wi*h this information we are able to reproduce the executed motions in
simulation and estima.. t'.e cr atact between the tool and the particle distribution w. r. t. real world
sensor readings and cumpu... the real task performance respectively.

At each timestwmp 7, ve record the actual measured end-effector position x,. and the con-
troller forces at the ~» -effector f.. An example path of the computed TCP position is vi-
sualized as bl «ck do *ed line in Fig. 8. The transformation of the TCP is thereby defined as
H., = H,, - I.g_rzllsp, where the homogeneous transformation matrices H . correspond to
the task sp .- ~~ordinates x,. The grasp transformation matrix H g, is assumed to be constant
during the ta. % execution as the soft material of the sponge aligns firmly with the curvature of the
hand. The blue ‘ines on the target surface indicate the desired wiping motions of the sponge TCP
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Figure 8: The recorded Cartesian wiping motion of the robotic many -lator, i.e. the TCP of the sponge it is holding
respectively (black dotted line) and the desired wiping motio.. n contact (blue lines).

in contact with the chopping board. The overall m 'on of the planned collect action is illustrated

in Fig. 8. By coincidence, an arrow-shaped pa . *s fc ‘med pointing towards the goal node 7,44
Each TCP position is related to the correspoi.ling contact force measurement provided by the

structured log. This allows us to infer the se.meuws of motion that are most likely in contact with

the environment. In fact, we are only interested 1 the force normal to the target surface f,,,. We
analyze the normalized contact force
2 4(Fextnmas Fextni)
. /n’i — ext,n,max > ext,n,? : (9)

.f ext,n,min

for each force sample f,, ;. " the example at hand f ¢, e = ON and f o min = —10N.

Only the TCP positions tnat she v a high confidence for contact with the chopping board are
considered in the first plac:. “hat is, we investigate only measurements that show a normalized
force value of [0.9, 1.0], su b chat

Tiepi = 1%iepa | 0.9 < fr; < 1.0}, (10)

i. e. the measureme ats th-t snow only 10% deviation from the desired contact force as it is visual-
ized in Fig. 9. The corres yonding motion is visualized by green dots in the simulation presented
on the left of F' . 10. wiost of the measurements close to the target surface match this constraint
and resemble he desi ed wiping motion. This is already a quite accurate estimate of the contact
motion, yet, son.~ °~ zments were omitted due to lower contact forces introduced by friction and
stick-slip e.*eci . (.=25s). However, these segments cannot be ignored as they participate to the
overall wiping =ffect.

We incorporate these left out yet still contact-rich segments, by applying the Random Sample
Consensus (RanSaC) algorithm [45]. The RanSaC algorithm is often used in computer vision to
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Figure 9: Plot of the external force normal to the target . .. “ace , ., and the corresponding TCP position in z-direction
Zicp,- The measurements with high contact confidence « ; .. 2 emphasized by the green bars.

fit a plane onto surface elements perceived in visual data, such as point clouds computed based on
depth camera images. We propose to ".pply ."e RanSaC algorithm on the Cartesian TCP positions
with high contact confidence x;,; to 1." 2 pl7 ae onto the target surface, such that

N
Sptane,. = RanSaC [ > "l e |, (11)
=0
where Zpjane; constitute the ~easurements within the estimated target plane visualized as purple
box in Fig. 10. All measv.em ntS Tpjane; that fit within the inlier threshold € along the estimated
surface orientation are consi. »red in contact with the surface. The corresponding measurements
are visualized as greer do*, of different brightness. High normalized contact forces f;’i are rep-
resented by bright gree.. -olc s. Darker green colors (eventually fading to black) represent lower
normalized contact rorce” f .. The RanSaC based approach allows us to incorporate all measure-
ments that are pot. ntially in contact with the target surface for contact modeling, and not solely
the data points ~..th iz contact confidence. As motivated in the introduction, this way of haptic
perception allc ws the -obot to estimate the target surface despite poor lighting conditions as they
may occur on ti.~<r-_cent glass panes or reflecting solar panels, for example.

The cox rac. .. ~del for the simulation-based effect prediction in Sec. 3.4 only considers the
volumetric mu (el of the tool in relation to the position of the particles. There are no forces involved
to simulate the wiping effect. However, in real world applications lower contact forces may result
in poor contact situations. Therefore, we propose to incorporate the normalized contact force f;’i
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Figure 10: Left: closeup view of all measurements with high conw.~* con’.dence ${Cp,i (green dots), which are the
basis for the target surface estimation. Right: the estimated targe. . rface visualized as purple box. All positions of
the TCP within this box are considered in contact with the tare=* «=~~ and colored in green. The brighter the color,

the higher the normalized contact force ff”

to model the effect of real world wiping actio<. Tk * enhanced contact model is based on

e the position of the TCP of the tool « .,
e the particle distribution P w.r.t. the tool CAD data,

e and the applied controller forc. f_, res rectively the counteracting contact force f.,,.

By re-executing the recorded mo*.ons in simulation we are able to infer the real world effect
of the previously executed wip’.ag 1. tir ns under consideration of the logged contact forces. We

0.5
---- u=05,06=038
0.4
. — 4=10,0=07
\4 [ PV =1.5,0=0.6
A )3 a
2z
S (2t
=
(=9}
0.1
0.0 5 7 3 8 10

x
Figure 11: Exemplary plots of the probability density function for different contact situations.
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Figure 12: The real collect action executed by Rollin’ Justin (top) comy wred * . e estimated outcome (bottom). The
particle distribution in the bottom row is rotated clockwise, where the up, _. left orner corresponds to the left corner
of the chopping board in the top row. Black chippings of glass are placc. *o visualize the task performance and assess
the effect inference. They are not visually perceived. Instead a uniform disti bution is assumed.

argue that contact forces close to the desired force have : ‘cher probability to produce the desired
wiping effect to the medium. However, the actua. -..iccu uepends on the properties of the tool-
medium-surface tuple as described in our previous inves. 2ations on compliant manipulation tasks
[31]. Among others, the exact tool geometry, th. to . clasticity, the surface friction, the surface
inclination, the medium friction, as well as tt mec "um size and geometry influence the outcome
of wiping actions. Most of these parameters «-e . ot assessable. Therefore, we utilize the log-
likelihood function log(L(x)) to model the -7t Hn a qualitative basis. At every timestamp, the
log-likelihood is computed for each particle in ¢ ~ntact with the tool.

o If fi; > ||log(L(x;)) ||, the ontact behavior is simulated as described in Sec 3.1 (i.e.
push the affected particles in casc ~f ¢ llect and skim actions and delete the particles for the
absorb action).

o If f,, < ||log(L(x;))|| the su. - tation step is skipped without applying the effect and the
algorithm proceeds wit'y the next measurement.

The probability densit fur ction p(x) for the log-likelihood function is visualized in Fig. 11.

The visualized plots shall 1." strate the possibility to simulate different contact situations. It is
defined as

o (log(a) — 2
po)= = 200 1
rTovV2T
where p is the mean and o is the standard deviation of the distribution. These variables can be
altered to simu ~te cc atact models for different tools-medium-surface combinations with varying
properties. Tic approach allows us to avoid a fixed force threshold by exploiting the variance
of the likelih v d function. While a fixed force threshold may be sufficient to distinguish contact
from no contac, it often results in false positives in borderline situations. Utilizing a steeply

parameterized log-likelihood function (e. g. to simulate a window wiper skimming water from a
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window, blue in Fig. 11), even path segments with a lower force measureme’ .« have a chance to
produce the desired outcome. Vice versa, even high contact forces may resulf in .. effect for more
flat log-likelihood functions (e. g. to simulate bristles collecting fine sand, r.. n Fig. 11).

A collect action with a sponge is shown in Fig. 12. The resulting effec est mation over time is
visualized below. Please note that the initial particle distribution is not - “sua.. ' verceived (Which
is of course always an option for visible media). Similarly to the earlis~ =xpc. ments conducted in
Sec. 3.4, we assume a unified particle distribution to emulate the ab .enc . v.” visual feedback. The
minor contact loss observed in Fig. 9 and Fig. 10 does not affect the . verall particle distribution
estimation. Accordingly, all particles are collected on the lower - ight c ~rner of the target surface.

The second scenario showcases a bi-manual example action vhere 1 broom is used to collect
particles on the floor (left in Fig. 13). This experiment is ex .cuted wwice with particles of differ-
ent kind. The robot motion as well as the controller paran =t-.1za ‘on is identical in both trials.
First, the chippings (2 mm - 6 mm) introduced in the prev.. s e "~.nple are distributed on a sheet
of paper on the floor. As the broom swipes over the surface nost of the particles are effected.
Few chippings remain as the bristles of the broom are of 1. o1 .ar nature. Second, small grains of
sand (0.2 mm - 2 mm) are distributed. These particles are «. » small to be collected by the broom as
the bristles bend. This effect can be modeled with w.» particle representation by utilizing a flatter
log-likelihood function.

The third scenario investigates the effect of dife ent tools to a certain medium. In particular,
the robot is commanded to skim detergent fro1. . <ol panel utilizing the rubber blade of a window
wiper in comparison to the bristles of a brush (1 ¢h. in Fig. 13). Since, the brush is not designed
to manipulate liquids, the window wiper ou“eirv.ms the brush in this task. The effect can only
be assessed by means of macro recordings unde. improved lighting conditions as the solar panel
reflects the light such that one canno’ cic. ly distinguish between wet surfaces and reflections.
In fact, the detergent is not perceiv.~le in “ae images recorded with the cameras of the robot,
which would prevent us from appl ying a . sion-based estimation in this case. In the before-after
image, one can see that the winde v v (per cemoves most of the liquid from the solar panel surface,
whereas a layer of detergent re nains °f fizing the brush. Similarly to the other experiments, this
circumstance can be modeled oy ~dapting the parameters of the log-likelihood function. While the
particle distribution is not d~~igned 1o model the influence of the brush on the detergent structure
(e. g. the bubble size), the sim .lated contact with the brush reflects the overall observation of the
real world effect. The ristri.'tion shows local particle variance while the global distribution is
mostly unaltered. Evra though the detergent is invisible to the robot due to the low resolution
cameras, the particle mc el 2 .lows to estimate the poor performance qualitatively. In conclusion,
the applied compu’ atione! model presents a suitable estimation of the real world effect.

Although the ¢ ntact ! ehavior poses an abstraction of the actual process (i. e. the contact be-
tween the tool-r.cdiun-surface tuple as well as the motion of the particles are strongly simplified),
the resulting p itterns n the particle model match the real world observations in general which al-
lows for a quali. v~ assessment. Given the right parameterization of the log-likelihood function,
the appliea ~1ic- . ~10del roughly matches the real world outcome for the showcased scenarios.

While the cesults of the effect inference are quite satisfactory, the parameterization of the
effect model imroduces some limitations. For now, the tool dependent parameters for the log-
likelihood function (i.e. p and o), as well as the maximum allowed contact force f are
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Wiper on Deter, =t Brush on Detergent
p=0,0=12 p=13,6=0.6

At

Broom on Chippings Broom on Sand
p=10,6=0.7 p=156=0.6

Figure 13: Left: a broom is used to coll -t p cticl s. The broom is in general less accurate than the sponge utilized in
the previous example. Some of the ch’'pping. 2t not effected by the broom. The task performance decreases with the
size of the particles as it is observec .>r the fine grained sand. Right: detergent is applied to a solar panel. The robot
executes a skim action with a winoow w1, ~ and a brush in order to remove the liquid. The model parameters y and
o are designed to match the effer . . the two tools on the medium.

defined empirically. H sweer, juast recently it was shown that the task parameters in the context
of wiping motions cau “e (ear «ed by the robot. In particular, Hazara and Kyrki [20] proved that it
is possible to learn . wooa , taning task by human demonstration and even improve the resulting
motions by means of reir “orcement learning strategies. The authors utilize the PI? algorithm to
enhance the imitate. “~~_e profile. Additionally, Do et al. [13] show that it is possible to learn
tool parameter ; inclu 'ing the tool stiffness over time based on the visual observation of the effect.
Utilizing visua. nercs ption, machine learning could be applied to the problem at hand in order
to learn thr _~=»meters of the log-likelihood function and thus autonomously improve the effect
prediction.
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4.3. Failure Detection and Recovery

As already emphasized, we execute wiping motions by means of a whole-uv. 1y impedance
controller [44]. The applied contact force is thereby determined by the .o ‘roller force which
is transformed into the commanded torque (8). The controller force is ‘“er:by saturated w.r.t.
the requirements of the wiping action. This approach is proven to be su. *able “or wiping actions
[30] and allow for safe human-robot interaction likewise [46]. How ... v, as .ae controller is not
designed to adapt the Cartesian position w.r. t. the force measurem’ nts unuxe a hybrid position-
force controller as described in [28]), it is prone to errors arising from ,.morecise localization (see
Fig. 14 left) and external perturbation (see Fig. 14 right). Nev :rthele s, the proposed inference
method is able to detect these execution errors and adapt accordi. oly.

/r
T
<
4
TSI
Failure Scenario 1: Failure Scenario 2:
Imprecise Localization External Perturbation

Figure 14: The two investigated failure scenaricc T eft: contact loss due to imprecise localization (left). Right: contact
loss due to external human perturbation.

The first failure scenario is tb : lo' s of contact due to imprecise localization. In particular, we
tilt the table in front of the robr . to ¢ ~v.ate a rotational localization error. Fig. 15 shows the task
execution in five snapshots. "...~ contact loss is captured in the fourth frame. The commanded
wiping motions are the same as in u.e successful task execution. A plot of the contact force and
the TCP position as well 75 the corresponding TCP motion and the plane estimation are provided
in Fig. 16. The plot alrraay rints at the fact that only few confident contact situations occurred
during the task execu’.on. This gets more obvious in the visualized motion in the simulation
environment. While the ' ft s gments of the arrow-shaped path roughly match the perceived table
height, the path se .inents o. the right are rendered too high and show low contact forces (dark
green and black dcts). Th : purple box is visualizing that the plane estimate is shifted to the right
accordingly (Pl--se ... that the box constitutes only a visual element that does not limit the
target plane ex ensiorn.’. However, a simple comparison of the volumetric model of the sponge and
the particle disw.*huti yn would not be sufficient to estimate the contact situation as the sponge is
still very c. »o "~ *he target surface. By referencing the measured tool motion to the force at the
end-effector \ ' : are able to detect the contact loss and model the effect as visualized in the lower
row of Fig. 15. The final estimation of the particle model is shown to be very similar to the real
breadcrumb distribution on the chopping board (Please refer to a digital copy of this article for
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Figure 15: Failure Scenario I: The tilted table simulates an incorrect localizat’ sn leading to partially poor contact
situations shown in the top row. The estimated particle distribution is su.vn u the lower row.
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Figure 16: Left: a plot of the co .ac force f.,,, and the TCP position in z-direction @, in a failure situation. The
contact loss is evident in the r. fuce « number of confident contact situations ., ; (green bars). Right: the recorded
Cartesian wiping motion in 2 ‘failurc “ituation arising from a tilted table. The green and black path visualizes the actual
measured TCP motion. Thr cor manded path is visualized as blue lines.

optimal picture qu .lity).

The second fai.re sc:2nario showcases a deliberate human intervention. The interaction is
visualized in f*.ume two and four in Fig. 17. The robot is pushed up, such that the sponge looses
contact with t e choy ping board. As the maximum controller force is saturated to satisfy the
contact behavior, ...c robot does not counteract the human and the controller force measurement
is not differ. nt _ruin the nominal case. However, obviously the position of the end-effector does
not match the ‘esired position. Since we apply a RanSaC based approach to estimate the target
plane, our approach is able to detect these outliers and ignore them during the effect estimation
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Figure 17: Failure Scenario II: The robot is pushed twice at the end-eftc..or dv ing task execution as it is shown in
the top row. The estimated particle distribution visualized in the botton. . ~w 1citects this disturbance.
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Figure 18: Left: the plot for the ¢ onw. =t force f,, and the TCP position in z-direction @, , in the second failure situ-
ation. The red bars indicate fal. ~ po’ .tive contacts introduced due to perturbation. Right: the Cartesian wiping motion
for the second failure situatic 1 whe. * the robot was pushed twice at the end-effector. The real world measurements of
the TCP position are here v sual zed as green and red path.

procedure. Simile ly to e first failure scenario, the robot is eventually able to correctly infer
where the wiping 1.otion = have been effective, and where the desired effect was not carried out.
The false posit've measurements are visualized as red bars and the matching red path segments in
Fig. 18. In the »lot on . can see that the contact force stays almost constant during the perturbation
while the positiow .. significantly changed. The interaction right before the two main intersections
of the wipin_ mouuns is a significant impairment for the overall task performance. Some particles
are estimated \ > remain on the chopping board similarly as observed for the real execution.

As argued in the introduction of this article, humans are capable of detecting execution errors
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based on haptic perception, update their internal task models accordingly, anc use the new infor-
mation to recover from the failure situation. Our representation of wiping t-.sks *nd their effects
enables a robot to close this cognitive loop in a similar way for wiping tasks .. particular, utilizing
the output of the effect inference method to replan additional wiping me «ons allows the robot to
recover from possible failures introduced due to poor contact situationc Cou.=quently, the robot
is able to plan the recovery motion directly in the effect-space. As th- =ffec” inference is mostly
matching the task performance of the real world execution, there ic no 1s.7l feedback required.
This makes the proposed approach also applicable to wiping tasks inve. ving transparent liquids or
small dirt particles, e. g. water or dust.

The recovery procedure for the second failure scenario is outli"ed in ' ig. 19. The initial particle
distribution to plan the recovery motion is based on the final .sdmauon of the particle distribution
after the robot was pushed twice at the right manipulator. 7 plin the recovery motion most
effectively, we utilize the KDE strategy to distribute the no=s fc= .ae SDG w. r. t. the regions with
high particle density (red dots in the top left) and replan the collc =t action accordingly. Similarly to
the previous executions, the robot generates whole-borv ju.~t r.otions, executes them, and records
structured logs during run-time. This enables the robot to “=-evaluate the task performance w.r. t.

Figure 19: Top left: KDE for the remaining particle distribution after the second failure scenario. Top right: the
recorded recovery motion and the final particle distribution. Bottom: The eventually successful real world execution.
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the new measurements and infer the improvement qualitatively. In the examp] . at hand, the robot
increased the performance for the correctly accumulated particles from 80 o 1 97 % w.r.t. the
performance metric for collect actions (5). Similarly a recovery plan c- .1 be applied to the
first failure scenario (after the robot is commanded to relocalize itself) or any other scenario with
uncertain contact situations to improve the outcome.

Furthermore, the inference strategy can also be applied in a greed-" fashi. n. That is, the robot
would only plan one particular path segment to clean the surface anc u..7ediately afterwards
interpret the outcome and schedule additional wiping motions accoru ng to the updated particle
distribution model. This would enable the robot to react on-line sn ext ‘rnal disturbances.

4.4. Semantic Analysis with openEASE

A cognitive system should not only be able to reason «he .t ac tions and effects on different
levels of abstraction, but also provide the means to comu. mic.*_ its decisions and observations
to the operator providing semantically enriched task informati 'n. Especially for recurring tasks
such as household chores that include wiping actions this .~ e~ aremely valuable as large amounts
of data is generated continuously over long time perioas. An operator can neither monitor the
process end-to-end nor search through endless da.. streams to investigate performance errors.
Instead, the increasing complexity requires to qu~+v the s ystem based on specific interest, such as
quality control or safety aspects. Possible queries ¢ " .d include requests like "visualize all motions
with an estimated task performance of 80 % ¢ '~we. ” or "highlight all motion segments where a
human collided with the robot”. The openEASL frumework [47] is equipped with the necessary
reasoning mechanisms, visualization techn..ies, und tool-chains to query episodic memories of
robotic manipulation.

In this section, we utilize the open”-A>" framework to close the cognitive control loop [4] for
wiping actions as it was stated in the . ~troduc iion. The robot telemetry data (i.e. motions, torques,
and forces) is therefore augmented ~ith the ,emantic information about desired and undesired con-
tacts, effects on the particle mod ‘. a'.d tF ¢ resulting task performance. These episodic memories
are imported into the openEAS’¢ frai. > ork to make them accessible on a semantic level.

The semantic augmentati »n « € logged data streams allows to query big data based on narra-
tives that are grounded in 2~ ontology. In the example at hand, this allows researchers to query
multiple episodic memor’:s ¢ compliant manipulation tasks at once, by formulating relatively
simple queries based on symi. ls related to physical interaction, such as contact or collision. Ide-
ally, these narratives a ¢ g nerated during runtime by the control program of the robot [48]. This
is possible if all states a..  tr7 asitions are fully observable as it is common for state machines and
symbolic planners In tk= example at hand, this would mean that the procedure (e.g. a wiping
action) logs its cut ent ste e based on planned events, such as the expected contact with the table
surface. Howe® _., as aigued in the introduction, this is often impossible due to difficult lighting
conditions, im orecise localization, or external disturbances that are unpredictable. As a result,
the logged sem.~*~, do not correspond to the pattern of the sensor stream. Moreover, many
systems lac - sy ... 2lic task information, such as teleoperated robots for space operations or min-
imally invasiv - surgery. To circumvent these issues, we propose to annotate the sensor streams
in a post-processing step [49], based on the reasoning mechanisms presented in Sec. 4. To give
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tory('sponge’)
interval(s,

show(justin: *justin_robotl’, M)
= 1463558352.59

= 1463558357.613

= 0:Collision_263a8303b99c fe3c2243750d03
= 1463558355.1015

= 1463558498.32 1
= 1463558504654 ‘
= semco: Collision_bd75d8d9e9c9 1b68d9b64bdI45
= 1463558501.487

semco: 'Collision'),

El)

o : ISi El);

Mis 0.5 * (S +E),
show(trajectory('sponge’),
interval(s, E, dt(0.5))),
show(justin: ' justin_robotl®, M)

@0
Justin Wiping demo
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Figure 20: The openEASE query visualizing trajecic “es in collision as yellow trajectory.

an illustration, the openEASE system can be ¢ . ~riec to visualize all collision events that occurred
during a trial as seen in Listing 1.

Listing 1: Prolog query to request all sponge u. *ectories for all collision events from openEASE.

select all ’'Collision’ events C
get start & end times for each C
calculate middle time point M
visualize sponge trajectory for
the event, sampled at 2 Hz
visualize robot for time point M

owl_individual_of (C, semco:’Co.lisi.n’),
occurs (C, [S, EI),
Mis 0.5 = (S + E),
show (trajectory (’ sponge ),
interval (S, E, dt(0.5')),
show (justin:’ justin_- nbotl’, M).

o d° o° o° o° o

The query language in ope’.EASE is based on Prolog [50]. In the example at hand, the episodic
memory of a particular triax '~ queried for all collisions C. Given the start time S and the end
time E, one can visua'.ze ‘ae frajectory of the sponge at the entire time interval of the collision.
Additionally, one can c. ~ul' e the intermediate time frame M to show the configuration of the
robot in the midd] . of tte event. The result is visualized in Fig. 20. This relatively short and
simple query reve.'s that the robot was interrupted in the center of the chopping board, which
leads to a signi“.cantly uecreased performance. This information would otherwise be unavailable
from feedforw ard dat . and hard to identify based on purely numeric telemetry. The integration
of the framewot.. ‘~*u the openEASE system closes the cognitive control loop [4] as it allows the
robot to qu -ty - p._odic memories of past executions. In the example at hand, the robot would
be potentially ‘ble to identify future failure situations on-line by comparing them to the recorded
deviations of the end-effector in similar situations, which we plan to investigate in the future. This
way, it would also be possible to identify bad localization as it slowly results in lower contact
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forces.

5. Conclusion

This work describes an approach to plan wiping motions in the eff~<t-sp ~~e and infer the ef-
fect based on haptic perception, subsequently. () A qualitative reprecenta..~n of the medium in
wiping tasks was proposed as the basis of the two approaches. (z¢) [he .. resentation was used
to explore the target surface and derive Semantic Directed Graphs (> 1) which enable a robot to
plan Cartesian task motions w.r. t. a desired semantic goal state. “¢22) A path following method for
the manipulators and the mobile base of the robot was develope ' to ex¢ cute the Cartesian wiping
motions. (¢v) The particle distribution model was utilized *. preu... and estimate the effect of
the robotic cleaning actions w.r.t. haptic feedback informa ior. (v The approach was extended
with a log-likelihood based contact model that allows to .*mul~fe different tool-medium-surface
combinations. (vz) The proposed method is capable of detectn. v failure situations occurring from
bad localization and human intervention. (vii) We showed that .he robot is able to plan additional
wiping motions based on the inferred information, in 01>t to successfully accomplish the com-
manded tasks despite prior failure situations. (vi..: cventually, the openEASE framework was
integrated to query episodic memories based or the sy..bolic nature of the task. The approach
was tested in simulation as well as in real world s. 2p .r1i0s with the humanoid robot Rollin’ Justin.

The combination of planning methods anc ~valu ‘tion methods based on a shared effect repre-
sentation is of great potential. In the particular cw:e C'scussed in this work, it allows us to assess the
efficiency of wiping actions executed by ti.> 1vo 2 and improve them directly in the effect-space.
This feature leads to a significant quality boost as the robot becomes aware of its own performance.
As a consequence, the robot may put *'.c  ality of its own motions into question, especially if it
identifies a failure situation, such as t ‘e collis ‘'on with a human. In light of this, we believe that the
contributions of this work present .sefur - ditions towards the full automation of effect-oriented
compliant robotic manipulation. "a tk : fu'ure, we are planning to integrate visual feedback when-
ever applicable. This could not snly , vo" 1de a better estimate on the task performance, but also be
utilized to update the paramef ... of the dirt particle behavior. This is especially crucial for failure
recovery since a biased effect simula.don may result in poorly parameterized recovery motions as
the KDE is influenced by ‘.e r sidual particle distribution.

The proposed planning . =thods may be well suited for 3D surfaces. A possible solution to
this is provided by [17|. They describe an approach to guide a sponge on 3D surfaces with a
robotic manipulator by ~ odi" 1ding the surface into smaller patches that are connected by means
of the TSP algorith .1. Similarly, SDGs could be generated on 3D surfaces. However, the proposed
reasoning method o infer the effect of wiping motions is not directly applicable to 3D surfaces.
That is, the qua’**ative particle distribution model used to simulate the dirt behavior is not based
on physical prpertie. For example, it does not consider gravitational effects or adhesive effects.
An example ot ch a case is provided with the liquid simulated on the solar panel - while the
liquid flow. uc. ~ the panel, the particles remain stationary. Accordingly, a more accurate particle
model has to . : developed before the inference methods can be applied to 3D surfaces.

The insights of this paper allow us to draw conclusions about the relevance of the developed
methods w.r. t. related manipulation tasks that require both physical compliance and intelligent
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decision making. In general it can be stated that it is valuable to plan a task oased on the same
representations that are utilized to evaluate the task performance. This way it 7, po.~ible to improve
the outcome directly in the effect-space. One particular example is found in - .. “ing vegetables with
a knife as it was presented in [51]. The contact force and the cutting moti- n sk ow a relation that is
comparable to that of wiping actions. Therefore, it might be possible to nake ~<sertions about the
cutting performance based on episodic memories and enhance the ta<'- veri. *“mance by adapting
the parameters of the controller accordingly. By further investigating ches - wzics we hope to foster
the development towards a generic concept of intelligent compliant be. ~vior in the future.
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