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Abstract

Advanced cognitive capabilities enable humans to solve even complex tasks by representing

and processing internal models of manipulation actions and their effects. Consequently, humans

are able to plan the effect of their motions before execution and validate the performance after-

wards. In this work, we derive an analog approach for robotic wiping actions which are fundamen-

tal for some of the most frequent household chores including vacuuming the floor, sweeping dust,

and cleaning windows. We describe wiping actions and their effects based on a qualitative particle

distribution model. This representation enables a robot to plan goal-oriented wiping motions for

the prototypical wiping actions of absorbing, collecting and skimming. The particle representation

is utilized to simulate the task outcome before execution and infer the real performance afterwards

based on haptic perception. This way, the robot is able to estimate the task performance and sched-

ule additional motions if necessary. We evaluate our methods in simulated scenarios, as well as in

real experiments with the humanoid service robot Rollin’ Justin.

Keywords: AI Reasoning Methods, Action and Effect Representation, Compliant Manipulation,

Service Robotics.

1. Introduction

Advanced cognitive capabilities will enable future service robots to master everyday household

chores. These robots need to represent, plan, execute, and interpret the required actions and their

effects to the environment. Research on neuro-biology, as discussed by Kawato [1], suggests

that humans maintain detailed internal models for manipulation tasks which can be accessed and

improved to achieve high dexterity for almost every activity of daily living including the most

frequent household chores of cooking, organizing and cleaning. For example, in order to clean

a desk with a dust-cloth, a human would intuitively wipe along the entire target surface with the

tool in order to cover all dusty areas. Fundamental to the skillful task execution is a suitable
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Figure 1: Overview of the proposed framework. A particle distribution model serves as the basis for the proposed

motion planning algorithm as well as for the haptic effect inference method. The methods complement each other

such that the output of the effect inference can be utilized to plan recovery motions in case of detecting performance

errors caused by external disturbances, e. g. collisions with humans as visualized.

representation of wiping motions and their effects, i. e. the knowledge that dust is absorbed by

the cleaning cloth and the assumption that dust particles are often equally distributed on planar

surfaces. Humans are able to infer that the desired effect (i. e. having the desk cleaned from dust)

must be accomplished after the tool has been in physical contact with the whole region of interest.

However, a human may schedule additional motions in case of poor outcome. Different internal

models may apply to different wiping situations. For example, if breadcrumbs are recognized on

the desk the human would try to skim the particles deliberately off the table and into its hand to

dispose them afterwards.

Haptic perception is often an important and reliable source of feedback during the execution of

the described wiping motions. Even though visual perception is commonly considered the prime

sense in human manipulation, visual feedback can be unreliable for many wiping tasks including

vacuuming the floor, dusting surfaces, and window wiping, as small dirt particles, dust, and streaks

of water are often hard to perceive visually. Especially in the absence of vision it has been observed

that the sense of touch is essential for human task reasoning and effect inference [2]. Flanagan

et al. [3] highlight that haptic feedback does not only provide humans with the information that

contact occurred with the environment, but moreover provides the basis for effect inference, task

performance ratings, and even the detection of performance errors. This is done based on com-

parison of the expected contact force w. r. t. the internal task model with the actual sensed force.

In case of irregular contact (i. e. introduced by friction or uneven areas) humans may decide to

replan additional wiping motions to improve the cleaning result accordingly. In cognitive science,

this behavior is associated with the cognitive control loop [4], which builds on the hypothesis that

humans primarily take conscious action for error correction and novel tasks. This work aims to
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develop similar cognitive reasoning capabilities for robots to qualitatively reason about the effects

of their motions and solve even complex wiping tasks despite poor visual feedback.

In this article, we combine artificial intelligence (AI) reasoning methods and compliant robotic

manipulation to solve wiping tasks of different kind with the humanoid service robot Rollin’ Justin

[5]. Our contributions extend on our research on manipulation planning for wiping tasks presented

in [6] and the interpretation of wiping motions presented in [7], which in combination aim on

representing, planing, executing, and interpreting robotic wiping actions as it is visualized in

Fig. 1.

The contributions of this work include (i) a qualitative particle distribution model to represent

the effects of wiping actions, (ii) an approach to generate whole-body wiping motions based on

these representations utilizing effect-oriented policies, and (iii) an approach to assess the quality

of wiping motions by estimating contact situations during task execution using haptic perception.

This enables (iv) the inference of performance errors and the subsequent generation of recov-

ery wiping motions as well as (v) the semantic interpretation of contact situations by means of

annotated structured logs.

The remainder of this article is structured as follows. The state-of-the-art is covered in Sec.

2. Sec. 3 sescribes representations and related planning methods to generate semantically mean-

ingful whole-body wiping motions. We describe our effect inference strategy to estimate the task

performance of real world wiping motions based on haptic feedback in Sec. 4. We conclude with

Sec. 5.

2. Related Work

Cakmak et al. [8] classify manipulation actions that characterize human household chores

w. r. t. semantic similarities. They found out that almost half of all household chores are related

to wiping of surfaces in rooms, furniture, or other objects. In fact, wiping actions are substantial

for cleaning tasks, such as dusting furniture with a feather duster, sweeping breadcrumbs from the

kitchen countertop, or collecting shards of a broken mug with a broom. Accordingly, cleaning

related wiping tasks have been investigated to some extent lately.

The task of wiping a surface is often considered as a coverage path planning problem [9],

where a robot has to find a path (i. e. for a cleaning device) connecting all nodes of a graph in

a time- or effort-optimal way. Hess et al. conducted research on robotic cleaning in a series of

papers [10, 11]. They investigate the path coverage problem for robotic manipulators. In [10]

they describe an approach to autonomously compute cleaning trajectories for redundant robotic

manipulators guiding a sponge on 3d surfaces. They utilize a variation of the Traveling Salesman

Problem (TSP) and resolve the joint motions of the robotic manipulator by means of null-space

optimization. In [11] they learn the effect of a vacuum cleaner moving along a planar surface by

utilizing visual feedback based on color segmentation. The robot can enhance the task execution

for future trials as it generates motions that cover only the dirty areas. These works implicitly

assume that dirt is absorbed upon contact. Martinez et al. [12] investigate planning for robotic

cleaning by wiping with a sponge under the assumption that the particles are pushed upon contact.

Do et al. [13] predict appropriate action parameters by learning from experience during wiping

tasks. Okada et al. [14, 15] apply an inverse-kinematics-based programming approach to compute
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whole-body motions for the tasks of sweeping the floor, vacuuming the floor, and washing the

dishes with a humanoid robot. Lana et al. [16] represent robotic manipulation tasks in an alge-

braic form, which incorporates poses, velocities and forces in a simulated window cleaning task.

Vanthienen et al. [17] describe table wiping tasks as a set of constraints with the iTaSC frame-

work. Ortenzi et al. [18] propose to exploit the environment contact constraints of wiping tasks

in the operational space, to decouple the motion of the robot from the applied force. Schindl-

beck and Haddadin [19] utilize task-energy tanks to react safely upon contact loss. Most recently,

[20] proposed an approach to imitate wiping motions from human demonstration. The approach

combines impedance control for the execution of wiping motions with learning by demonstration

methods. Additionally, the authors apply the Path Integral (PI2) algorithm to update the imitated

force policy. As a result, the deployed light-weight robot is able to successfully execute a wood

grinding task repeatedly with different wooden planks. The research by Gams et al. applies the

concept of movement primitives learned from visual feedback [21]. The trajectories are modified

using regression methods, where the feedback is provided through force signals. Eventually, the

robot learns new trajectories that are able to maintain the desired contact with the environment.

Recently, Gams et al. proposed an adaption of this approach by adding a feed forward term that

encodes a complete period of motion [22]. The method is able to circumvent perturbations and

obstacles and is transferable between different robots. [23] consider the coverage problem arising

for a mobile robot such as a autonomous lawn mower. They propose to sub-divide the search space

into a grid and apply variations of the Spanning Tree Covering (STC) algorithm to cover the area.

The approaches listed so far mainly focus on the physical part of wiping actions, while mainly

ignoring the semantic meaning of the motion. In contrast, Kunze et al. [24] reason about the se-

mantic effect of the tool interacting with the medium based on a simplified process model. The

authors simulate the effect of a sponge contacting liquids, namely the absorption of the liquid.

This way, a qualitative effect inference can be conducted based on the absorbed and leftover water

particles. Winkler et al. [25] maintain expectation about the outcome of planned manipulations in

pick-and-place scenarios. Based on observation of relevant task parameters (e. g. gripper forces

during object transitions) a robot can learn when an action was successfully executed or failed.

Pastor et al. [26] propose to learn motor skills in form of Dynamic Movement Primitives. Ad-

ditionally they predict the task outcome based on low-level sensor streams e. g. fingertip force

information. The proposed approach enables the robot to predict failure situations online.

A related research topic is the representation and planning of contact situations. Del Prete et

al. [27] investigate contact localization on tactile skins to improve the accuracy of force control

strategies for robotic manipulators. This approach does not require a model of the external force.

Most recently, Denei et al. [28] proposed the concept of tactile maps for artificial tactile skins. This

representation is integrated into a robot control framework which allows a robot to plan motions

w. r. t. measured contact. In our previous work we have proposed to represent and classify contact

events in force signals by means of multidimensional time-series shapelets [29].

Furthermore, we have investigated robotic wiping actions in one of our earlier articles [30].

We developed a hybrid reasoning framework to plan and parameterize compliant wiping motions

executed by whole-body impedance controller. The robot was able to schedule wiping actions

for a given high level goal and successfully execute cleaning motions for the tasks of cleaning a

window, scrubbing a mug, and collecting shards with a broom. However, the robot had no internal
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model of the desired effects and was unable to plan effect-oriented tool motions nor reason about

its performance.

Robotic wiping gained some interest in the past, however, there has not yet been comprehensive

efforts to cover the cognitive complexity of the problem so far. Consequently, robots are not yet

able to mirror the humans cognitive capabilities to reason about wiping actions in detail. In this

work, we propose to tackle this issue by equally representing wiping actions and their effects, plan

goal-oriented motions accordingly, and estimate real world effects based on haptic feedback.

3. Planning Wiping Actions in the Effect-Space

The causal relation between the motion parameterization and the effects of wiping tasks is

particularly rich. That is, similar motions that show comparable trajectories can produce very dif-

ferent effects depending on how they are executed in terms of contact force and stiffness settings.

In addition, the effects of wiping actions are hardly representable by means of simple numeric

properties e. g. homogeneous transformations. Depending on how much force is applied, a wip-

ing motions may dry a wet surface or remove sticky dirt. Moreover, the successful execution of

wiping tasks requires geometric reasoning as the purpose of wiping might be the collection, the

distribution, or the absorption of particles. In order to perform the commanded tasks successfully

the robot has to carefully select the task parameters in a continuous parameter space. We propose a

qualitative representation for wiping actions, capable of describing both the wiping motions itself

and the resulting effects.

3.1. Particle Distribution Model

According to our earlier work in the classification of compliant manipulation tasks [31], we

represent robotic manipulation actions w. r. t. the semantic contact situation between the manip-

ulated objects and the environment. This high-level of abstraction allows us to define semantic

actions in accordance with the descriptive manner of the action definitions for automated plan-

ning [32]. To further derive geometric models, wiping actions are geometrically represented by

the relation between the tool, the medium to be manipulated (e. g. particles or liquids), and the tar-

get surface. The medium in wiping tasks (as defined in [31]) is representative for arbitrary liquids

or particles with different properties. In order to incorporate different types of media, we propose

to project a particle distribution onto the planar target surface

P =
{
(x1, y1), (x2, y2), . . . , (xN , yN) | xi, yi ∈ R∧

xmin ≤ xi ≤ xmax ∧ ymin ≤ yi ≤ ymax

}
,

(1)

where N particles (xi, yi) are distributed on the target surface (xmin, xmax, ymin, ymax). An exem-

plary particle distribution is shown in Fig. 2. The scenario shows a kitchen environment where the

humanoid robot Rollin’ Justin is commanded to collect bread crumbs distributed on a chopping

board. In some scenarios, the medium can be perceived visually if the particles are big enough or

the liquid is not transparent. However, especially water and other transparent liquids or dust and

other small particles are very hard to perceive in camera images. Consequently, the real distribu-

tion of the medium cannot be modeled by the robot. In this case, we propose to assume a uniform

distribution as it is shown for the initial particle distribution in Fig. 2.
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Figure 2: Change estimation for solid particles in contact with the sponge during wiping. As the CAD model of the

sponge touches the particles, the particles are moved along the direction of motion.

The main purpose of the proposed particle representation is to have a naive predictive model

of the effects of wiping actions. The particle model builds the basis to qualitatively reason about

the effects of wiping motions. The term qualitative reasoning is coined by Forbus [33]. It refers

to simulations that use simplified models. In our case, the simulated particles provide only a

rough estimate of the real process. The particles do not incorporate contact with each other and

they do not adhere to physical standard models. As a result, the model is considered qualitative (in

contrast to quantitative) as the calculated performance metrics provide only rough approximations.

Nevertheless the qualitative model can be used to plan and interpret wiping motions. The applied

tool-particle interaction model considers the exact CAD data of the tool and the position of each

particle. Depending on the type of the tool and the properties of the medium (i. e. solid particles

or liquids), the contact results in different effects. For example, if a sponge is simulated to wipe

a liquid, the resulting effect is the absorption of the liquid, which is implemented as a delete

operation of the respective particles. In case of a solid medium, the contact with the sponge

pushes the particles in parallel to the direction of the tool motion. An exemplary simulation of

solid particles pushed in contact with the sponge is visualized in Fig. 2.

3.2. Cartesian Wiping Motions

The particle distribution model is not only utilized to simulate the wiping effect, it is also used

to plan the wiping motions. This requires the coverage of the entire particle distribution model by

means of a waypoint graph in Cartesian space. The surface coverage, i. e. the node distribution

for this graph, is restricted by the current state of the geometric environment Gs, i. e. the volu-

metric model for geometric planning of wiping motions. A collision avoidance strategy based on

a collision sphere model is implemented to explore the target surface as shown in Fig. 3. The

collision sphere is utilized to validate hypothetical node positions during the graph development
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Figure 3: Exemplary collision sphere model distribution.

procedure. A node position is valid if the sphere is not in collision with the environment (except

for collisions with the robot, the tool, and the target surface). The collision sphere diameter is

defined as ds = ||Daoe||, where Daoe is the area of effect of the tool end-effector (e. g. the nozzle

of a vacuum cleaner).

Based on the collision sphere mechanism, we have investigated three different coverage strate-

gies. A discretized grid (GRID), Rapidly Exploring Random Trees (RRT) [34], and a Kernel Den-

sity Estimation (KDE). The methods are compared in Fig. 4, where red dots mark the resulting

graph nodes.

Discretized Grid: The first baseline coverage strategy constitutes a simple grid heuristic. It

is adapted from several state-of-the-art approaches that typically rely on direct visual feedback

[11, 12, 13] or simply try to cover the entire region by means of minimum path length [23]. This

method does not incorporate reasoning on the particle model and is therefore considered a non-

cognitive approach. The radius, rs = ds/2, of the collision sphere is used to calculate the grid

resolution within the bounds of the target area. The grid-based strategy is uninformed and may be

applied if no prior knowledge on the particle distribution is available.

Rapidly Exploring Random Trees: RRTs [34] is a well established method in research on

path planning and exploration and is therefore used as second baseline algorithm. The algorithm

samples a random configuration qrand in the free space C, calculates the nearest neighbor qnear,

and extends the tree starting from this configuration towards qnew, which incorporates the maximal

expansion length qdelta. For our approach q ∈ R
2 and qdelta = rs. The algorithm is biased to

explore uncovered regions and it is therefore predestined for region coverage. The RRT may be

augmented to reject nodes that are too far away from the particles to include prior knowledge about

the particle distribution, yet the baseline implementation does not include this feature.

7



Position in x-direction [m]

Po
si

tio
n 

in
 y

-d
ire

ct
io

n 
[m

]

-0.2   -0.1    0.0     0.1    0.2-0
.2

   
-0

.1
   

 0
.0

   
 0

.1
   

 0
.2

GRID RRT KDE

-0.2   -0.1    0.0     0.1    0.2 -0.2   -0.1    0.0     0.1    0.2

Figure 4: The coverage strategies utilized to explore the target surface. The visualized area corresponds to the obstacle

free chopping board surface.

Kernel Density Estimation: The third strategy is a Gaussian KDE to estimate particle proba-

bility regions within the particle distribution P :

K(x) =
1

N

N∑

i=1

e−||P i − x||2/h2

(2)

where h is the bandwidth of the kernels. The multivariate KDE is visualized as a contour plot

on the right in Fig. 4. This continuous representation is used to select significant peaks with a

clearance of ds, which places the nodes naturally at the position with the highest effect. This is

considered a cognitiive approach as it is aware of the particle distribution and thus most beneficial

if prior knowledge about the distribution is available, e. g. perceived by a vision system.

The node distribution builds the basis to generate goal orientated wiping motions. To achieve

this, we introduce Semantic Directed Graphs (SDGs)

SDG =
{
P , Sg, Gs

}
, (3)

which are specified by the particle set P , the semantic goal state Sg that is represented as discrete

PDDL state [35], e. g. (collected breadcrumbs chopping board), and the geometric

environment state Gs that is provided by means of a static scene description of the environment

and the related CAD data as it is shown on the top, right in Fig. 2. Based on this information,

SDGs project a graph structure on a planar surface, where

• each node ni represents a waypoint for the Cartesian motion of the Tool Center Point (TCP),

• the edge (ni, ni+1) connecting two nodes represents the interpolated tool motion in contact.

SDGs can implement wiping actions of different kind. The desired goal state is thereby repre-

sented by means of the change to the particle distribution P t0 → P g. In this work, we investigate

three different actions, namely absorb actions, collect actions, and skim actions. Each action is

related to one particular goal state.
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skim. The goal nodes are marked in yellow. Please note that the goal node for the collect action is for now manually

defined by the user after the initial region coverage. Accordingly, it may happen that some branches appear redundant

(such as the short path segment next to the collect goal).

Absorbing: The absorb action is the first investigated action. It occurs e. g. in vacuuming,

dusting, or soaking up water with a sponge. The interaction characteristics between the tool and

the medium (i. e. the absorption) is independent of the tool motion, as long as contact is made with

the entire region of interest to remove all particles, such that

P g,absorb = ∅. (4)

Collecting: The second removal action is to collect the medium, where the particles are pushed

upon contact. The goal state Sg is geometrically represented as dedicated goal node ngoal on the

target surface, such that

P g,collect =
{
(x1, y1), (x2, y2), . . . , (xN, yN) | xi, yi ∈ R∧

||(ngoal,x, ngoal,y)− (xi, yi)|| ≤ rs
}
.

(5)

Skimming: Skimming is related to collecting the medium. Upon contact with the tool the

particles are pushed along the direction of motion of the tool. The semantic goal Sg for this action

can be described as a geometric state where all particles are located outside the boundaries of the

target surface, such that

P g,skim =
{
(x1, y1), (x2, y2), . . . , (xN, yN) | xi, yi ∈ R∧

(xmin > xi ∨ xi > xmax ∨ ymin > yi ∨ yi > ymax)
}
.

(6)

Depending on the desired goal state, SDGs implement context-aware motion generate policies.

These policies have to correlate semantically to the goal state of the particle distribution P g. For

example, the desired effect of the absorb action is to remove all particles by getting into contact

with each particle to trigger a delete operation. Collecting and skimming, however, require di-

rected tool motions to have the particles pushed towards a certain goal area (collect), or pushed

over the edge of the surface (skim), respectively. Suitable off-the-shelf policies for these issues

can be found in graph theory:

A suitable policy for the absorb action is the Traveling Sales Person (TSP) algorithm. Hess

et al. [10] showed that this is a performant approach to solve unconstrained wiping tasks in a

generalized way. The outcome is a natural curved motion covering all nodes of the graph.
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The collect action requires to direct the graph to a certain goal region, i. e. a single root node.

In graph theory this problem is described by a Minimum Spanning Tree (MST) [36]. The distance

between the nodes serves thereby as cost function with a maximum connection length lmax = ds.
Skimming is related to collecting and therefore implemented as multiple MSTs. Multiple

nodes outside the boundary of the surface are user-defined as goal. Depending on the object that

provides the target surface, only a subset of boundaries may be valid. For the chopping board,

only the boundary facing the robot is defined as goal region (right in Fig. 5). As a result of this

policy, multiple trees expand towards the closest goal node.

In addition, it is furthermore possible to describe other wiping tasks in a similar way. To outline

an example, the distribution of particles can be described by a uniform distribution of all particles.

This is similar to tasks where particles are emitted on the target surface (e. g. painting a wall).

Different tasks may include polishing a car, where repetitive motions are executed. However, the

full coverage of all identified wiping actions would exceed the scope of this work. To get an

intuition on the extension towards further tasks, please refer to [31].

3.3. Whole-Body Joint Motions

The development of Semantic Directed Graphs (SDGs) in Cartesian space is only a first esti-

mate for the feasibility of the planned wiping motions. The collision sphere model is utilized to

check for collision free translational motion of the TCP along the developed graph structure. How-

ever, the orientation of the tool is not considered until now. Similarly, the joint state of the robot

has to be integrated into the reasoning process to verify the overall feasibility. It is most desirable

to move the tool perpendicular to the planned motion, such that as many particles as possible are

affected. For some cases it is, however, required to rotate the tool to circumvent collisions or local

minima in the joint space.

The graph structure of an SDG represents Cartesian tool motions that serve as the basis for

whole-body robot motions. The underlying problem to resolve a Cartesian path into joint motions

is formulated as path following problem. For each Cartesian pose x on a Cartesian path X , the

robot has to find a joint velocity q̇

q̇ = J †ẋ+ (I − J †J)q̇0 (7)

where J † is the generalized inverse of the Jacobian matrix [37]. The joint velocity q̇ and the joint

acceleration q̈ must not exceed the limits of the robotic manipulators. Moreover, the resulting joint

path Q must not collide with any obstacle nor the robot itself.

Path following algorithms try to follow a given Cartesian path as exactly as possible, where all

six dimensions of the task are tracked (i. e. three translational dimensions and three rotational di-

mensions). However, this poses an unnecessary restriction for wiping tasks. For instance, a sponge

may be rotated along the normal of the target surface to yield better reachability, yet resulting in

a decreased wiping effect. In any case the overall Cartesian motions are oriented towards the next

node in order to avoid the degeneration ot the wiping effect. Another example is the cleaning mo-

tion of a window wiper which has to be moved orthogonally to the wiper blade in order to achieve

the desired effect. However, rotating the wiper along the main axis of the blade does not impair

the cleaning result. To this end, we propose a path following method that is aware of the free tool

DOF available in the Cartesian space as it is outlined in Algorithm 1.
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Figure 6: Initially, each node ni is oriented towards the next node ni+1 in the graph. The tool rotation is interpolated

along the Cartesian path, i. e. the edge (ni, ni+1) between this nodes. If a pose along this path is in collision (left), or

unreachable, e. g. due to joint limitations (right), the free DOF of the tool are exploited.

Algorithm 1: PathFollowing(qni
, ni+1, δ)

Input: The initial joint configuration qni
, the goal node ni+1, and the step-size δ

Output: A continuous joint path Q

xstart ← CalculateToolPose(qni
, xgrasp)

foreach xgoal in IterateFreeDOF(ni+1) do
Q← List()

X ← Interpolate(xstart, xgoal, δ)

foreach xi in X do
xeef,i ← xi · xgrasp

qi ← FindIK(xeef,i)

if IsValid(qi) then
Q[i]← qi

else
break

if Length(Q) = Length(X) then
return Q

The tool poses and the respective TCP poses of the end-effector are computed based on the pose

of the nodes in the SDG. Each node ni is oriented towards the next node ni+1 in the branch. The

resulting translations and orientations for the nodes are utilized to calculate the initial hypothesis

for the start pose xstart and the goal pose xgoal of the TCP as formulated in (7). The edge (ni, ni+1)

in between the nodes is interpolated to resolve the constraints of the path following task. Ideally,

all interpolated poses xi are reachable and collision free so that the robot can manipulate the tool
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accordingly. However, in cluttered environments it is unlikely that the edge in between two nodes

is collision-free while the robot circumvents local minima (see Fig. 6). In either case we backtrack

to the initial pose xstart, select an alternative goal pose xgoal w. r. t. the free DOF of the tool, and

repeat the path following task. The sequence in which the SDG branches are processed depends

on the wiping action. The absorb motions consists of a single path and is therefore unambiguous.

The branches developed for the collect and skim actions are resolved iteratively, starting from the

leaf node closest to the initial tool pose, back-propagating to the root node of the branch.

In order to transform the computed Cartesian motions into whole-body joint motions, we apply

a local path following method as it is described by Konietschke and Hirzinger [38]. If the local

method is unable to find a feasible path, a global method as proposed by Huaman and Stilman [39]

is applied. This approach constitutes an exhaustive search. Accordingly, it searches the entire joint

space without violating joint limits, velocity limits, and acceleration limits. The highly redundant

robot can this way resolve local minima on its own. It is therefore complete within the bounds

of the discrete search space defined by the SDG. Given enough time the method is guaranteed to

find a solution if a collision-free path exists. If no feasible inverse kinematics solution is found at

all, the respective node is abandoned and the algorithm moves on with the remaining nodes of the

branch.

As it is quite common for wiping tasks in everyday environments to cover large areas, we

propose to augment the graph nodes ni with reachability information for the robotic manipulator

in the so called extended Semantic Directed Graphs (eSDG) representation. This is done by means

of Capability Maps [40], which represent the reachability of a robotic manipulator. Capability

Maps can be utilized to rate the position of the robot base w. r. t. optimal reachability for a certain

task e. g. cleaning a surface. This information is used to reposition the base of the robot during

the manipulation planing procedure using an A* algorithm [41]. The motion generation procedure

is not detailed at this point in order to focus on the contributions of this work, i. e. the semantic

action representation and the related effect-space planning and inference methods. Please refer

to our previous publications for a detailed analysis on the particular topic of whole-body motion

generation and mobile manipulation [42, 6].

3.4. Simulation-based Effect Prediction and Evaluation

The particle distribution model introduced in Sec. 3.1 is utilized to predict the effect of the

planned wiping motions in simulation as visualized in Fig. 2. As the task performance may depend

on the initial node distribution on the target surface, this sub-section evaluates the different node

distribution strategies w. r. t. the investigated wiping actions. The evaluation is conducted in three

different scenarios. Scenario I constitutes the chopping board scenario illustrated in Fig. 2. For

scenario II, we assume the same environment without the chopping board, where the particles are

distributed on the entire table surface. Scenario III is a car cleaning scenario, where the target area

is approximated by a plane aligned with the windshield.

The sponge introduced with the exemplary wiping task of collecting breadcrumbs is used in

all experiments in order to obtain comparable results w. r. t. the task performance. A uniform

particle distribution is assumed to be able to compare the uninformed methods (GRID, RRT)

with the KDE method that exploits the particle model. All three coverage strategies (i. e. GRID,

RRT, KDE) are paired with the three removal actions (i. e. absorbing, collecting, skimming) and
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evaluated w. r. t. the traveled Cartesian distance in contact with the surface, the computation time,

the execution time, and the task performance. The calculation of the computation time involves

the node distribution, the base optimization, the path following algorithm, and all collision checks,

where OpenRAVE [43] is utilized. The execution time is based on the assumption of a maximum

velocity of 1 rad/s joint speed, and a maximum joint acceleration of 2 rad/s2. The maximum

base velocity is limited to 0.5m/s, and a maximum acceleration of 1m/s2. The performance

measurement is conducted according to the constraint definitions (4), (5), and (6). Accordingly,

the metric for the absorb action can be described as the number of deleted particles, the collect

action is evaluated based on the number of particles within the radius rs around the goal node

ngoal, and the metric for the skim action is the number of particles pushed outside the boundaries

of the target surface. All results are based on the average of five trials with different initial particle

distributions. The results are visualized in Fig. 7 and listed in Table 1.

The different coverage strategies vary strongly in performance for the individual settings.

Therefore, it might be useful for the robot to reason about the most effective coverage strategy

given a concrete problem definition. In case of lesser obstructed environments (as for example

posed by the chopping board scenario and the windshield scenario) the KDE mostly outperforms

the other methods w. r. t. the defined performance metrics. However, the KDE coverage strategy

seems to be biased by obstacles as it is less efficient for the table scenario. In conclusion, a robot

may have to test the available coverage strategies for a given scenario in order to figure out and

execute the most effective one. While this observation may be considered as a drawback for one-

time tasks, it is especially interesting for recurring tasks, e. g. industrial manufacturing tasks, such

as polishing the surface of a car. These tasks can be autonomously optimized w. r. t. the execution

Figure 7: Simulation-based effect prediction for the collect action in the Chopping Board scenario (top), the absorb

action in the Table scenario (center), and the skim action in the Windshield scenario (bottom). The particles contact

behavior is visualized over time (best viewed in a digital copy of this work).
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Table 1: Evaluation of the three scenarios Chopping Board, Table, and Windshield.

Chopping Board Table Windshield

GRID RRT KDE GRID RRT KDE GRID RRT KDE

Absorb

Cart. dist. [m] 1.52 1.41 1.90 4.34 4.10 3.24 4.44 4.84 4.69

comp. time [s] 45.96 57.12 62.00 144.47 312.45 169.92 314.04 423.21 417.66

exec. time [s] 18.01 25.92 27.71 41.30 66.96 52.485 77.59 111.90 66.11

performance [%] 84.25 85.00 95.75 77.00 79.50 70.50 90.13 90.50 91.00

Collect

Cart. dist. [m] 1.54 1.45 1.90 3.68 3.60 2.92 4.97 4.76 4.22

comp. time [s] 69.89 68.48 72.24 110.92 161.60 270.56 885.45 262.55 428.05

exec. time [s] 16.17 32.42 43.28 65.71 83.36 62.14 112.47 116.26 97.56

performance [%] 86.50 86.75 90.50 70.25 69.25 41.75 48.50 39.25 62.75

Skim

Cart. dist. [m] 1.81 1.62 2.01 5.48 4.95 3.75 5.58 5.65 5.89

comp. time [s] 107.17 44.25 90.57 211.14 260.34 255.58 325.97 212.34 199.03

exec. time [s] 32.11 26.51 45.81 113.37 122.76 102.48 108.18 103.29 96.03

performance [%] 88.00 80.25 97.00 71.75 66.50 53.00 94.50 88.50 88.50

time or the task performance by iterating over the available coverage strategies.

One may argue that a greedy algorithm that ignores the particle distribution would most likely

outperform all of the other coverage methods by means of planning time. While this may be true,

we argue that the effort measured by the Cartesian distance as well as the execution time would

increase due to unnecessary repetitions as covered regions (presumably close to the target region)

may be revisited unknowingly.

In addition, it is often necessary to follow a particular procedure to achieve the desired effects

and avoid unwanted ones (e. g. painting a wall in a grid, moving from top to bottom, in order to

avoid stroke artifacts). Therefore, we argue that it may be beneficial for future robots to provide a

semantically meaningful portfolio of coverage algorithms that can be selected to the needs of the

task. Yet, we recommend to favor the KDE strategy as it is the only one that is able to take the

actual dirt distribution into account. While the KDE method is able to reduce planning effort on

known particle distributions, the other two methods generate unnecessary motions if the particle

distribution is not covering the entire surface. This is especially valuable if the dirt distribution

can be estimated in advance (e. g. by means of visual perception in case of visible media) or if the

robot has to recover from failure situations as it is discussed in Sec. 4.3.

4. Inferring the Effects of Wiping Actions

Up to this point of our work we have utilized the proposed particle distribution model to plan

wiping motions and predict the wiping effect based on simulated motions. This section shall in-

vestigate real world wiping actions and the estimation of the real task performance. This is usually

done by means of visual feedback as it is described by several research groups [11, 12, 13]. In

contrast, we propose a vision independent feedback method as visual data is often unreliable for

wiping actions for two main reasons. First, the medium in wiping tasks may be invisible due to

lighting conditions or the properties of the medium such as small dust particles, or transparent

liquids. Second, the simulated experiments indicate that the robot itself is often occluding the ma-

nipulated areas which makes visual perception of the effect only available after the task execution.
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4.1. Compliant Execution of Wiping Motions

The planned wiping motions are executed by the real robot with the compliant whole-body

impedance control framework introduced by Dietrich et al. [44]. The controller parameters are

provided by an object-centric knowledge-base. That is, the applied Cartesian force, the Cartesian

stiffness, and the whole-body control task hierarchy are parameterized according to the require-

ments of the tool, the surface, and the medium to be manipulated. We do not apply a force-control

strategy as the robot is intended to work in close collaboration with humans. A hybrid force-

position controller would not allow to safely interact with the robot during manipulation. Instead

we apply a soft impedance controller and exploit the compliant behavior to command the wiping

motions into the target surface. As a result, our control strategy allows for safe physical human-

robot interaction while it is still able to get into desired contact with the environment. A force

controller would rather counteract the human during interventions which is not desirable for a

service robot. For a detailed discussion on this topic, please refer to [30].

In a nutshell, we apply a whole-body impedance controller to establish compliant contact,

where the controller force f c is saturated to the needs of the task and transformed into the joint

space by the Jacobian transposed as it is illustrated in (8), where V is a virtual elastic potential and

D the damping matrix.

τ = −JT
S

((
∂V

∂x

)T

+Dẋ

)

︸ ︷︷ ︸

f c

,
(8)

S is the saturation function for the two force terms f spring = (∂V/∂x)T plus f damper = Dẋ. The

external contact force f ext counteracts the controller force f c under the assumptions of a static

equilibrium with negligible model uncertainty. Accordingly, the saturation function S clamps the

controller force to limit the applied contact force.

4.2. Feedback-based Contact Estimation

Our inference method is based on the force sensing capabilities of the compliant manipula-

tors of the robot. In particular, we execute the planned wiping motions by means of a compli-

ant whole-body impedance controller and record telemetry data of the robot. This includes end-

effector forces calculated from joint torque sensor measurements, as well as measured Cartesian

end-effector positions. With this information we are able to reproduce the executed motions in

simulation and estimate the contact between the tool and the particle distribution w. r. t. real world

sensor readings and compute the real task performance respectively.

At each timestamp i, we record the actual measured end-effector position xact and the con-

troller forces at the end-effector f c. An example path of the computed TCP position is vi-

sualized as black dotted line in Fig. 8. The transformation of the TCP is thereby defined as

H tcp,i = Hact,i · H−1

grasp, where the homogeneous transformation matrices H∗ correspond to

the task space coordinates x∗. The grasp transformation matrix Hgrasp is assumed to be constant

during the task execution as the soft material of the sponge aligns firmly with the curvature of the

hand. The blue lines on the target surface indicate the desired wiping motions of the sponge TCP
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Figure 8: The recorded Cartesian wiping motion of the robotic manipulator, i. e. the TCP of the sponge it is holding

respectively (black dotted line) and the desired wiping motion in contact (blue lines).

in contact with the chopping board. The overall motion of the planned collect action is illustrated

in Fig. 8. By coincidence, an arrow-shaped path is formed pointing towards the goal node ngoal.

Each TCP position is related to the corresponding contact force measurement provided by the

structured log. This allows us to infer the segments of motion that are most likely in contact with

the environment. In fact, we are only interested in the force normal to the target surface f ext,n. We

analyze the normalized contact force

f ′
n,i =

min(f ext,n,max, f ext,n,i)

f ext,n,min

, (9)

for each force sample f ext,n,i. In the example at hand f ext,n,max = 0N and f ext,n,min = −10N.

Only the TCP positions that show a high confidence for contact with the chopping board are

considered in the first place. That is, we investigate only measurements that show a normalized

force value of [0.9, 1.0], such that

x′
tcp,i =

{
xtcp,i | 0.9 ≤ f ′

n,i ≤ 1.0
}
, (10)

i. e. the measurements that show only 10% deviation from the desired contact force as it is visual-

ized in Fig. 9. The corresponding motion is visualized by green dots in the simulation presented

on the left of Fig. 10. Most of the measurements close to the target surface match this constraint

and resemble the desired wiping motion. This is already a quite accurate estimate of the contact

motion, yet, some segments were omitted due to lower contact forces introduced by friction and

stick-slip effects (t=25s). However, these segments cannot be ignored as they participate to the

overall wiping effect.

We incorporate these left out yet still contact-rich segments, by applying the Random Sample

Consensus (RanSaC) algorithm [45]. The RanSaC algorithm is often used in computer vision to
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Figure 9: Plot of the external force normal to the target surface f ext,n and the corresponding TCP position in z-direction

xtcp,z. The measurements with high contact confidence x′

tcp,i are emphasized by the green bars.

fit a plane onto surface elements perceived in visual data, such as point clouds computed based on

depth camera images. We propose to apply the RanSaC algorithm on the Cartesian TCP positions

with high contact confidence x′
tcp,i to fit a plane onto the target surface, such that

xplane,i = RanSaC

(
N∑

i=0

x′
tcp,i, ǫ

)

, (11)

where xplane,i constitute the measurements within the estimated target plane visualized as purple

box in Fig. 10. All measurements xplane,i that fit within the inlier threshold ǫ along the estimated

surface orientation are considered in contact with the surface. The corresponding measurements

are visualized as green dots of different brightness. High normalized contact forces f ′
n,i are rep-

resented by bright green colors. Darker green colors (eventually fading to black) represent lower

normalized contact forces f ′
n,i. The RanSaC based approach allows us to incorporate all measure-

ments that are potentially in contact with the target surface for contact modeling, and not solely

the data points with high contact confidence. As motivated in the introduction, this way of haptic

perception allows the robot to estimate the target surface despite poor lighting conditions as they

may occur on transparent glass panes or reflecting solar panels, for example.

The contact model for the simulation-based effect prediction in Sec. 3.4 only considers the

volumetric model of the tool in relation to the position of the particles. There are no forces involved

to simulate the wiping effect. However, in real world applications lower contact forces may result

in poor contact situations. Therefore, we propose to incorporate the normalized contact force f ′
n,i
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Figure 10: Left: closeup view of all measurements with high contact confidence x′

tcp,i (green dots), which are the

basis for the target surface estimation. Right: the estimated target surface visualized as purple box. All positions of

the TCP within this box are considered in contact with the target surface and colored in green. The brighter the color,

the higher the normalized contact force f ′

n,i.

to model the effect of real world wiping actions. The enhanced contact model is based on

• the position of the TCP of the tool xtcp,i,

• the particle distribution P w. r. t. the tool CAD data,

• and the applied controller force f c, respectively the counteracting contact force f ext.

By re-executing the recorded motions in simulation we are able to infer the real world effect

of the previously executed wiping motions under consideration of the logged contact forces. We
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Figure 11: Exemplary plots of the probability density function for different contact situations.
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Figure 12: The real collect action executed by Rollin’ Justin (top) compared to the estimated outcome (bottom). The

particle distribution in the bottom row is rotated clockwise, where the upper left corner corresponds to the left corner

of the chopping board in the top row. Black chippings of glass are placed to visualize the task performance and assess

the effect inference. They are not visually perceived. Instead a uniform distribution is assumed.

argue that contact forces close to the desired force have higher probability to produce the desired

wiping effect to the medium. However, the actual effect depends on the properties of the tool-

medium-surface tuple as described in our previous investigations on compliant manipulation tasks

[31]. Among others, the exact tool geometry, the tool elasticity, the surface friction, the surface

inclination, the medium friction, as well as the medium size and geometry influence the outcome

of wiping actions. Most of these parameters are not assessable. Therefore, we utilize the log-

likelihood function log(L(x)) to model the effect on a qualitative basis. At every timestamp, the

log-likelihood is computed for each particle in contact with the tool.

• If f ′
n,i ≥ || log(L(xi)) ||, the contact behavior is simulated as described in Sec 3.1 (i. e.

push the affected particles in case of collect and skim actions and delete the particles for the

absorb action).

• If f ′
n,i < || log(L(xi)) ||, the simulation step is skipped without applying the effect and the

algorithm proceeds with the next measurement.

The probability density function p(x) for the log-likelihood function is visualized in Fig. 11.

The visualized plots shall illustrate the possibility to simulate different contact situations. It is

defined as

p(x) =
1

x σ
√
2 π

e
−
(log(x) − µ)2

2 σ2 , (12)

where µ is the mean and σ is the standard deviation of the distribution. These variables can be

altered to simulate contact models for different tools-medium-surface combinations with varying

properties. This approach allows us to avoid a fixed force threshold by exploiting the variance

of the likelihood function. While a fixed force threshold may be sufficient to distinguish contact

from no contact, it often results in false positives in borderline situations. Utilizing a steeply

parameterized log-likelihood function (e. g. to simulate a window wiper skimming water from a
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window, blue in Fig. 11), even path segments with a lower force measurement have a chance to

produce the desired outcome. Vice versa, even high contact forces may result in no effect for more

flat log-likelihood functions (e. g. to simulate bristles collecting fine sand, red in Fig. 11).

A collect action with a sponge is shown in Fig. 12. The resulting effect estimation over time is

visualized below. Please note that the initial particle distribution is not visually perceived (Which

is of course always an option for visible media). Similarly to the earlier experiments conducted in

Sec. 3.4, we assume a unified particle distribution to emulate the absence of visual feedback. The

minor contact loss observed in Fig. 9 and Fig. 10 does not affect the overall particle distribution

estimation. Accordingly, all particles are collected on the lower right corner of the target surface.

The second scenario showcases a bi-manual example action where a broom is used to collect

particles on the floor (left in Fig. 13). This experiment is executed twice with particles of differ-

ent kind. The robot motion as well as the controller parameterization is identical in both trials.

First, the chippings (2 mm - 6 mm) introduced in the previous example are distributed on a sheet

of paper on the floor. As the broom swipes over the surface most of the particles are effected.

Few chippings remain as the bristles of the broom are of irregular nature. Second, small grains of

sand (0.2 mm - 2 mm) are distributed. These particles are too small to be collected by the broom as

the bristles bend. This effect can be modeled with the particle representation by utilizing a flatter

log-likelihood function.

The third scenario investigates the effect of different tools to a certain medium. In particular,

the robot is commanded to skim detergent from a solar panel utilizing the rubber blade of a window

wiper in comparison to the bristles of a brush (right in Fig. 13). Since, the brush is not designed

to manipulate liquids, the window wiper outperforms the brush in this task. The effect can only

be assessed by means of macro recordings under improved lighting conditions as the solar panel

reflects the light such that one cannot clearly distinguish between wet surfaces and reflections.

In fact, the detergent is not perceivable in the images recorded with the cameras of the robot,

which would prevent us from applying a vision-based estimation in this case. In the before-after

image, one can see that the window wiper removes most of the liquid from the solar panel surface,

whereas a layer of detergent remains utilizing the brush. Similarly to the other experiments, this

circumstance can be modeled by adapting the parameters of the log-likelihood function. While the

particle distribution is not designed to model the influence of the brush on the detergent structure

(e. g. the bubble size), the simulated contact with the brush reflects the overall observation of the

real world effect. The distribution shows local particle variance while the global distribution is

mostly unaltered. Even though the detergent is invisible to the robot due to the low resolution

cameras, the particle model allows to estimate the poor performance qualitatively. In conclusion,

the applied computational model presents a suitable estimation of the real world effect.

Although the contact behavior poses an abstraction of the actual process (i. e. the contact be-

tween the tool-medium-surface tuple as well as the motion of the particles are strongly simplified),

the resulting patterns in the particle model match the real world observations in general which al-

lows for a qualitative assessment. Given the right parameterization of the log-likelihood function,

the applied effect model roughly matches the real world outcome for the showcased scenarios.

While the results of the effect inference are quite satisfactory, the parameterization of the

effect model introduces some limitations. For now, the tool dependent parameters for the log-

likelihood function (i. e. µ and σ), as well as the maximum allowed contact force f ext,n,max are
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Figure 13: Left: a broom is used to collect particles. The broom is in general less accurate than the sponge utilized in

the previous example. Some of the chippings are not effected by the broom. The task performance decreases with the

size of the particles as it is observed for the fine grained sand. Right: detergent is applied to a solar panel. The robot

executes a skim action with a window wiper and a brush in order to remove the liquid. The model parameters µ and

σ are designed to match the effect of the two tools on the medium.

defined empirically. However, just recently it was shown that the task parameters in the context

of wiping motions can be learned by the robot. In particular, Hazara and Kyrki [20] proved that it

is possible to learn a wood planing task by human demonstration and even improve the resulting

motions by means of reinforcement learning strategies. The authors utilize the PI2 algorithm to

enhance the imitated force profile. Additionally, Do et al. [13] show that it is possible to learn

tool parameters including the tool stiffness over time based on the visual observation of the effect.

Utilizing visual perception, machine learning could be applied to the problem at hand in order

to learn the parameters of the log-likelihood function and thus autonomously improve the effect

prediction.
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4.3. Failure Detection and Recovery

As already emphasized, we execute wiping motions by means of a whole-body impedance

controller [44]. The applied contact force is thereby determined by the controller force which

is transformed into the commanded torque (8). The controller force is thereby saturated w. r. t.

the requirements of the wiping action. This approach is proven to be suitable for wiping actions

[30] and allow for safe human-robot interaction likewise [46]. However, as the controller is not

designed to adapt the Cartesian position w. r. t. the force measurements (unlike a hybrid position-

force controller as described in [28]), it is prone to errors arising from imprecise localization (see

Fig. 14 left) and external perturbation (see Fig. 14 right). Nevertheless, the proposed inference

method is able to detect these execution errors and adapt accordingly.

Failure Scenario 2:

External Perturbation

Failure Scenario 1:

Imprecise Localization

Figure 14: The two investigated failure scenarios. Left: contact loss due to imprecise localization (left). Right: contact

loss due to external human perturbation.

The first failure scenario is the loss of contact due to imprecise localization. In particular, we

tilt the table in front of the robot to emulate a rotational localization error. Fig. 15 shows the task

execution in five snapshots. The contact loss is captured in the fourth frame. The commanded

wiping motions are the same as in the successful task execution. A plot of the contact force and

the TCP position as well as the corresponding TCP motion and the plane estimation are provided

in Fig. 16. The plot already hints at the fact that only few confident contact situations occurred

during the task execution. This gets more obvious in the visualized motion in the simulation

environment. While the left segments of the arrow-shaped path roughly match the perceived table

height, the path segments on the right are rendered too high and show low contact forces (dark

green and black dots). The purple box is visualizing that the plane estimate is shifted to the right

accordingly (Please note that the box constitutes only a visual element that does not limit the

target plane extension). However, a simple comparison of the volumetric model of the sponge and

the particle distribution would not be sufficient to estimate the contact situation as the sponge is

still very close to the target surface. By referencing the measured tool motion to the force at the

end-effector we are able to detect the contact loss and model the effect as visualized in the lower

row of Fig. 15. The final estimation of the particle model is shown to be very similar to the real

breadcrumb distribution on the chopping board (Please refer to a digital copy of this article for
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Figure 15: Failure Scenario I: The tilted table simulates an incorrect localization leading to partially poor contact

situations shown in the top row. The estimated particle distribution is shown in the lower row.

t [s]

0.15

0.25

0.35

0.45

-10

0

10

20

0 10 20 30 40 50 60

n
tc
p,
z

Figure 16: Left: a plot of the contact force f ext,n and the TCP position in z-direction xtcp,z in a failure situation. The

contact loss is evident in the reduced number of confident contact situations x′

tcp,i (green bars). Right: the recorded

Cartesian wiping motion in a failure situation arising from a tilted table. The green and black path visualizes the actual

measured TCP motion. The commanded path is visualized as blue lines.

optimal picture quality).

The second failure scenario showcases a deliberate human intervention. The interaction is

visualized in frame two and four in Fig. 17. The robot is pushed up, such that the sponge looses

contact with the chopping board. As the maximum controller force is saturated to satisfy the

contact behavior, the robot does not counteract the human and the controller force measurement

is not different from the nominal case. However, obviously the position of the end-effector does

not match the desired position. Since we apply a RanSaC based approach to estimate the target

plane, our approach is able to detect these outliers and ignore them during the effect estimation
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Figure 17: Failure Scenario II: The robot is pushed twice at the end-effector during task execution as it is shown in

the top row. The estimated particle distribution visualized in the bottom row reflects this disturbance.
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Figure 18: Left: the plot for the contact force f ext,n and the TCP position in z-direction xtcp,z in the second failure situ-

ation. The red bars indicate false positive contacts introduced due to perturbation. Right: the Cartesian wiping motion

for the second failure situation where the robot was pushed twice at the end-effector. The real world measurements of

the TCP position are here visualized as green and red path.

procedure. Similarly to the first failure scenario, the robot is eventually able to correctly infer

where the wiping motions have been effective, and where the desired effect was not carried out.

The false positive measurements are visualized as red bars and the matching red path segments in

Fig. 18. In the plot one can see that the contact force stays almost constant during the perturbation

while the position is significantly changed. The interaction right before the two main intersections

of the wiping motions is a significant impairment for the overall task performance. Some particles

are estimated to remain on the chopping board similarly as observed for the real execution.

As argued in the introduction of this article, humans are capable of detecting execution errors
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based on haptic perception, update their internal task models accordingly, and use the new infor-

mation to recover from the failure situation. Our representation of wiping tasks and their effects

enables a robot to close this cognitive loop in a similar way for wiping tasks. In particular, utilizing

the output of the effect inference method to replan additional wiping motions allows the robot to

recover from possible failures introduced due to poor contact situations. Consequently, the robot

is able to plan the recovery motion directly in the effect-space. As the effect inference is mostly

matching the task performance of the real world execution, there is no visual feedback required.

This makes the proposed approach also applicable to wiping tasks involving transparent liquids or

small dirt particles, e. g. water or dust.

The recovery procedure for the second failure scenario is outlined in Fig. 19. The initial particle

distribution to plan the recovery motion is based on the final estimation of the particle distribution

after the robot was pushed twice at the right manipulator. To plan the recovery motion most

effectively, we utilize the KDE strategy to distribute the nodes for the SDG w. r. t. the regions with

high particle density (red dots in the top left) and replan the collect action accordingly. Similarly to

the previous executions, the robot generates whole-body joint motions, executes them, and records

structured logs during run-time. This enables the robot to re-evaluate the task performance w. r. t.

Figure 19: Top left: KDE for the remaining particle distribution after the second failure scenario. Top right: the

recorded recovery motion and the final particle distribution. Bottom: The eventually successful real world execution.

25



the new measurements and infer the improvement qualitatively. In the example at hand, the robot

increased the performance for the correctly accumulated particles from 80 % to 97 % w. r. t. the

performance metric for collect actions (5). Similarly a recovery plan could be applied to the

first failure scenario (after the robot is commanded to relocalize itself) or any other scenario with

uncertain contact situations to improve the outcome.

Furthermore, the inference strategy can also be applied in a greedy fashion. That is, the robot

would only plan one particular path segment to clean the surface and immediately afterwards

interpret the outcome and schedule additional wiping motions according to the updated particle

distribution model. This would enable the robot to react on-line on external disturbances.

4.4. Semantic Analysis with openEASE

A cognitive system should not only be able to reason about actions and effects on different

levels of abstraction, but also provide the means to communicate its decisions and observations

to the operator providing semantically enriched task information. Especially for recurring tasks

such as household chores that include wiping actions this is extremely valuable as large amounts

of data is generated continuously over long time periods. An operator can neither monitor the

process end-to-end nor search through endless data streams to investigate performance errors.

Instead, the increasing complexity requires to query the system based on specific interest, such as

quality control or safety aspects. Possible queries could include requests like ”visualize all motions

with an estimated task performance of 80 % or lower” or ”highlight all motion segments where a

human collided with the robot”. The openEASE framework [47] is equipped with the necessary

reasoning mechanisms, visualization techniques, and tool-chains to query episodic memories of

robotic manipulation.

In this section, we utilize the openEASE framework to close the cognitive control loop [4] for

wiping actions as it was stated in the introduction. The robot telemetry data (i.e. motions, torques,

and forces) is therefore augmented with the semantic information about desired and undesired con-

tacts, effects on the particle model, and the resulting task performance. These episodic memories

are imported into the openEASE framework to make them accessible on a semantic level.

The semantic augmentation of logged data streams allows to query big data based on narra-

tives that are grounded in an ontology. In the example at hand, this allows researchers to query

multiple episodic memories of compliant manipulation tasks at once, by formulating relatively

simple queries based on symbols related to physical interaction, such as contact or collision. Ide-

ally, these narratives are generated during runtime by the control program of the robot [48]. This

is possible if all states and transitions are fully observable as it is common for state machines and

symbolic planners. In the example at hand, this would mean that the procedure (e. g. a wiping

action) logs its current state based on planned events, such as the expected contact with the table

surface. However, as argued in the introduction, this is often impossible due to difficult lighting

conditions, imprecise localization, or external disturbances that are unpredictable. As a result,

the logged semantics do not correspond to the pattern of the sensor stream. Moreover, many

systems lack symbolic task information, such as teleoperated robots for space operations or min-

imally invasive surgery. To circumvent these issues, we propose to annotate the sensor streams

in a post-processing step [49], based on the reasoning mechanisms presented in Sec. 4. To give
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Figure 20: The openEASE query visualizing trajectories in collision as yellow trajectory.

an illustration, the openEASE system can be queried to visualize all collision events that occurred

during a trial as seen in Listing 1.

Listing 1: Prolog query to request all sponge trajectories for all collision events from openEASE.

owl_individual_of(C, semco:’Collision’), % select all ’Collision’ events C

occurs(C, [S, E]), % get start & end times for each C

M is 0.5 * (S + E), % calculate middle time point M

show(trajectory(’sponge’), % visualize sponge trajectory for

interval(S, E, dt(0.5))), % the event, sampled at 2 Hz

show(justin:’justin_robot1’, M). % visualize robot for time point M

The query language in openEASE is based on Prolog [50]. In the example at hand, the episodic

memory of a particular trial is queried for all collisions C. Given the start time S and the end

time E, one can visualize the trajectory of the sponge at the entire time interval of the collision.

Additionally, one can calculate the intermediate time frame M to show the configuration of the

robot in the middle of the event. The result is visualized in Fig. 20. This relatively short and

simple query reveals that the robot was interrupted in the center of the chopping board, which

leads to a significantly decreased performance. This information would otherwise be unavailable

from feedforward data and hard to identify based on purely numeric telemetry. The integration

of the framework into the openEASE system closes the cognitive control loop [4] as it allows the

robot to query episodic memories of past executions. In the example at hand, the robot would

be potentially able to identify future failure situations on-line by comparing them to the recorded

deviations of the end-effector in similar situations, which we plan to investigate in the future. This

way, it would also be possible to identify bad localization as it slowly results in lower contact
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forces.

5. Conclusion

This work describes an approach to plan wiping motions in the effect-space and infer the ef-

fect based on haptic perception, subsequently. (i) A qualitative representation of the medium in

wiping tasks was proposed as the basis of the two approaches. (ii) The representation was used

to explore the target surface and derive Semantic Directed Graphs (SDG) which enable a robot to

plan Cartesian task motions w. r. t. a desired semantic goal state. (iii) A path following method for

the manipulators and the mobile base of the robot was developed to execute the Cartesian wiping

motions. (iv) The particle distribution model was utilized to predict and estimate the effect of

the robotic cleaning actions w. r. t. haptic feedback information. (v) The approach was extended

with a log-likelihood based contact model that allows to simulate different tool-medium-surface

combinations. (vi) The proposed method is capable of detecting failure situations occurring from

bad localization and human intervention. (vii) We showed that the robot is able to plan additional

wiping motions based on the inferred information, in order to successfully accomplish the com-

manded tasks despite prior failure situations. (viii) Eventually, the openEASE framework was

integrated to query episodic memories based on the symbolic nature of the task. The approach

was tested in simulation as well as in real world scenarios with the humanoid robot Rollin’ Justin.

The combination of planning methods and evaluation methods based on a shared effect repre-

sentation is of great potential. In the particular case discussed in this work, it allows us to assess the

efficiency of wiping actions executed by the robot and improve them directly in the effect-space.

This feature leads to a significant quality boost as the robot becomes aware of its own performance.

As a consequence, the robot may put the quality of its own motions into question, especially if it

identifies a failure situation, such as the collision with a human. In light of this, we believe that the

contributions of this work present useful additions towards the full automation of effect-oriented

compliant robotic manipulation. In the future, we are planning to integrate visual feedback when-

ever applicable. This could not only provide a better estimate on the task performance, but also be

utilized to update the parameters of the dirt particle behavior. This is especially crucial for failure

recovery since a biased effect simulation may result in poorly parameterized recovery motions as

the KDE is influenced by the residual particle distribution.

The proposed planning methods may be well suited for 3D surfaces. A possible solution to

this is provided by [10]. They describe an approach to guide a sponge on 3D surfaces with a

robotic manipulator by subdividing the surface into smaller patches that are connected by means

of the TSP algorithm. Similarly, SDGs could be generated on 3D surfaces. However, the proposed

reasoning method to infer the effect of wiping motions is not directly applicable to 3D surfaces.

That is, the qualitative particle distribution model used to simulate the dirt behavior is not based

on physical properties. For example, it does not consider gravitational effects or adhesive effects.

An example of such a case is provided with the liquid simulated on the solar panel - while the

liquid flows down the panel, the particles remain stationary. Accordingly, a more accurate particle

model has to be developed before the inference methods can be applied to 3D surfaces.

The insights of this paper allow us to draw conclusions about the relevance of the developed

methods w. r. t. related manipulation tasks that require both physical compliance and intelligent
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decision making. In general it can be stated that it is valuable to plan a task based on the same

representations that are utilized to evaluate the task performance. This way it is possible to improve

the outcome directly in the effect-space. One particular example is found in cutting vegetables with

a knife as it was presented in [51]. The contact force and the cutting motion show a relation that is

comparable to that of wiping actions. Therefore, it might be possible to make assertions about the

cutting performance based on episodic memories and enhance the task performance by adapting

the parameters of the controller accordingly. By further investigating these topics we hope to foster

the development towards a generic concept of intelligent compliant behavior in the future.
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