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Abstract

Through deep learning and computer vision techniques, driving manoeuvres
can be predicted accurately a few seconds in advance. Even though adapting
a learned model to new drivers and different vehicles is key for robust driver-
assistance systems, this problem has received little attention so far. This work
proposes to tackle this challenge through domain adaptation, a technique closely
related to transfer learning. A proof of concept for the application of a Domain-
Adversarial Recurrent Neural Network (DA-RNN) to multi-modal time series
driving data is presented, in which domain-invariant features are learned by
maximizing the loss of an auxiliary domain classifier. Our implementation is
evaluated using a leave-one-driver-out approach on individual drivers from the
Brain4Cars dataset, as well as using a new dataset acquired through driving
simulations, yielding an average increase in performance of 30% and 114% re-
spectively compared to no adaptation. We also show the importance of fine-
tuning sections of the network to optimise the extraction of domain-independent
features. The results demonstrate the applicability of the approach to driver-

assistance systems as well as training and simulation environments.
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1 INTRODUCTION

1. Introduction

With 1.3 million deaths and 30 million injuries occurring yearly worldwide,
road traffic accidents are the main cause of death for people aged 15-29, and
represent a cost to governments of, on average, 3% of national GDPs [1]. A high
proportion of those accidents occur during manoeuvres such as changing lanes
and turning [2]. Advanced Driver Assistance Systems (ADAS) aim at increasing
road safety by taking partial control of the car or by providing the driver with
extra information when such manoeuvres could be dangerous [3|. It has been
demonstrated that, thanks to recent developments in deep learning and com-
puter vision, it is possible to predict manoeuvres a few seconds in advance and
with high accuracy, by monitoring the driver’s behaviour inside the vehicle and
using information from the car itself (e.g. speed) and the environment (lanes
configuration, presence of intersections, etc.). In particular, advances in Convo-
lutional Neural Networks (CNN) now allow accurate extraction of head-, face-,
and gaze-related features from videos [4, 5], while Recurrent Neural Networks
(RNN) enable the models to take into account the temporality of an action, i.e.
the order in which certain actions are performed or specific events occur [6].
However, while most recent proof-of-concept models for manoeuvre anticipa-
tion have achieved good results, little attention has been given to the problems
arising from the practical implementation of such systems. One of the main
concerns is their ability to generalise on subjects that were not part of the orig-
inal training set. In real world applications, it is likely that ADAS installed on
commercial cars will be "blind" to the driving style of new subjects. Re-training
such systems may not feasible due to the lack of labelled examples for a new
driver. While there are examples of deep neural networks trained to anticipate
actions and objects in videos through unsupervised learning [7], most of the
examples found in literature are not able to learn temporal relationships be-
tween features, or work exclusively with video inputs [8]. This is a problem in
manoeuvre anticipation tasks, since it has been demonstrated that multi-modal
inputs and the temporality of events are crucial to obtain quick and accurate
predictions. Moreover, if they are not re-trained, classic deep neural networks
tend to not generalize well when features in the test and training sets have dif-
ferent marginal distributions. Examples could include cases in which the driver
has peculiar driving habits or mobility limitations, so that, for instance, they
cannot turn their head fully. It is however plausible to assume that there exist

common patterns and latent features in the actions of most drivers which are
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1.1 Aim 1 INTRODUCTION

common regardless of the vehicle, driving style, or situation [9].

This assumption represents the basis of domain adaptation, a type of trans-
fer learning technique which enables previously trained models to adapt to
other datasets containing unlabelled observations [I0]. Amongst the various ap-
proaches, domain adaptation applied to deep neural networks has been proven
to be extremely effective to learn domain-invariant features from the input data
even when the labels of the target distribution are unknown [1I]. This enticing
result is obtained by optimising a discriminative classifier while simultaneously
maximising the loss of an auxiliary domain classifier. This technique has been
proven to work not only with image inputs, but also with time-series observa-
tions [12]. Using this method, we hypothesize that a model can be trained to find
features in sequential input data which are not only discriminative of specific
manoeuvres, but also shared between the training set (large and labelled) and a
fully or mostly unlabelled small test set - such as video segments of a new driver
performing unknown manoeuvres. Finding such latent features may, however,
be difficult when the inputs are multi-modal time-series. This type of input is
common in state-of-the-art manoeuvre anticipation models, which integrate the
driver’s behaviour with information from the vehicle and the environment - such
as lane configuration, car speed, and GPS data [I3]. The network does not only
need to learn the dependencies within a single time-series, but also across input
sequences with possibly very different resolution (sparse vs. dense) or even data
types (e.g. categorical vs. continuous). An effective sensory fusion approach is

therefore required.

1.1. Aim

Given the problem of adaptation and generalization capabilities of multi-
modal models for driver-assistance systems, we present an investigation of the
application of the domain-adversarial training method to implement domain
adaptation on a Recurrent Neural Network for manoeuvre anticipation. More
generally, this paper proposes domain adaptation as a promising approach to
improve the performance and generalization ability of machine-learning-driven
ADAS. We aim at showing that domain-adversarial models are particularly
beneficial in situations where either the drivers or the driving settings —or both—

may differ considerably to those used to train the model.
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1.2 Method and Structure 1 INTRODUCTION

1.2. Method and Structure

In order to evaluate our approach, we designed three experiments, which
are introduced in the following paragraphs and discussed more in depth in Sec-
tion [6] Before presenting the results of the experimental work, we provide a
bibliographical review of the most recent published work on action prediction,
maneuver anticipation, and domain adaptation. We then present a technical
overview on Recurrent Neural Networks. Finally, we describe the architecture
of our models and the most salient features of both the Brain4dCars and our own
dataset, including a detailed explanation of the data collection process. The
experimental set-ups consist of the following;:

Experiment 1 We first propose an expansion of the architecture proposed
by Jain et al. [I3] (Brain4Cars), which includes the driver’s gaze as an addi-
tional input, features a higher number of stacked recurrent layers, and performs
enhanced sensory fusion by combining Long Short Term Memory (LSTM) and
Gated Recurrent Unit (GRU) layers, amongst other improvements. We replicate
the experiments presented in the original paper, training and testing the LSTM-
GRU model on the Brain4Cars dataset using simple 5-fold cross-validation. This
experiment is aimed at showing that the performance of our architecture is com-
parable to state-of-the-art models for maneuver anticipation in non-adaptive
tasks. Additionally, we also test the model on a new set of driving videos ob-
tained using an immersive virtual simulation setup, providing a performance
baseline upon which to evaluate the results of the subsequent experiments.

Experiment 2 We then present a Domain-Adversarial RNN, inspired by
Ganin et al. [I1], in which our LSTM-GRU network from Experiment 1 serves
as the feature extractor. We train and test the DA-RNN using a cross-validated,
leave-one-driver-out approach on individual drivers from the Brain4Cars dataset,
comparing its performance to the non-domain-adaptive LSTM-GRU trained
without the target driver.

Experiment 3 Finally, we implement the same domain-adversarial ap-
proach to study how the network, trained only on the Brain4Cars data, adapts
to our new dataset, in which the drivers and the driving set-up —e.g. position
of the mirrors, windows, and the camera— differ from the Brain4Cars dataset.

The results confirm that, without adaptation, the model is not able to pre-
dict manoeuvres from observations in which the features have very different
marginal distributions compared to the training set. We conclude discussing

the potential applications of the domain-adversarial approach to apply domain
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adaptation in commercial ADAS, driving training set-ups, and simulation envi-

ronments.

The crucial contributions of this work can thus be summarised as follows:

e An improved LSTM-GRU Neural Network architecture for manoeuvre an-

ticipation.
e An original dataset of observations from a driving simulation setup.

e A proof of concept for the application of a Domain-Adversarial RNN for
domain adaptation on driving data, which employs the LSTM-GRU ar-

chitecture to classify observations from the new dataset.

2. Related Work

The majority of studies relying on driving data do not concern themselves
with the adaptation of the system to different datasets or their ability to per-
form well on new drivers; those who aim at anticipating manoeuvres are not
an exception. Samples from all test subjects are often shuffled together before
the training-test split [I3]: while this enhances a classifier’s performance, it will
likely cause it not to generalise and scale well in real-world applications. Once
an ADAS is installed on a car, it will have been trained on a large number of
drivers, but there is no guarantee that it will work well with a completely new
subject without re-training. In this work we tackle this problem by applying
the domain-adversarial training technique to encourage a Recurrent Neural Net-
work to adapt to a smaller, unlabelled sets of driving data in which the features
may have different marginal distributions. To obtain meaningful results we also
decided to design an improved model for manoeuvre anticipation, addressing
some of the shortcomings of previous work. In this section we provide a brief
survey on the most recent research on action prediction and manoeuvre antic-
ipation, as well as on the latest techniques in the area of domain adaptation,
with special focus on those applied to deep learning and sequential data. For
an in-depth review of the general field of domain adaptation, we suggest the

papers by Jiang [14] and Patel et al. [15]

2.1. Action Prediction

Predicting future actions differs from simple classification tasks, in that the

alm is to anticipate an event with as little data as possible. One way to do
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this practically is by setting a threshold, processing the data at each time-step
of an input sequence of observations, and only making a prediction when the
probability of the corresponding output is above that threshold. To do so, a
network needs to be able to remember past states and observations within a
single time-series, in order to learn the temporal relations between latent fea-
tures in that sequence. Most recent examples of action anticipation models do
this by using LSTM- or GRU-based architectures [16], [I7, 18], [19]. LSTMs and
GRUs are specific types of RNN units which are able to remember and for-
get previous states through a number of modulating gates [20, 2T]. They have
been proven to solve the problem of vanishing gradients, which affects heavily
"vanilla" recurrent networks, and thus are able to perform very well with long
time series [22]. This aspect makes them more suitable to process sequential ob-
servations than regressive models such as Gaussian Mixtures and non-recurrent
Neural Networks, or Hidden Markov Models (HMMs), which assume that each
observation’s probability only depends on the current state and are thus not
suitable for modelling contextual effects and long sequences [8]. Despite these
shortcomings, HMMs have been shown to produce promising results, especially
compared to approaches that do not employ deep learning [13]; they could
therefore provide an excellent alternative in cases where the high computational
requirements of RNNs cannot be met, for instance in mobile applications. A
further improvement on the HMM approach is represented by Markov Decision
Processes, which have been shown to provide reliable and accurate predictions
for long-term driving risk inference [23].

In order to make predictions within a few time-steps, rather than simply clas-
sifying an action when the whole sequence has been processed, a recent trend
has been to implement custom loss functions which exponentially increase with
time. Later classification mistakes are penalised more heavily than earlier ones:
the model is thus encouraged to provide a confident prediction as soon as pos-
sible. In multi-class tasks such as manoeuvre anticipation, these functions are
often modifications to the standard cross-entropy loss. Aliakbarian et al. [24]
included this type of time-dependent loss in a multi-stage LSTM architecture
that manages to predict actions accurately with only a small percentage of video
sequences, by learning context- and action-related features independently. Chan
et al. [25] used the exponential loss only for positive examples in a binary clas-
sification task to predict driving accidents, also including it in a LSTM-based
RNN.

6 10.1016/j.robot.2019.02.007
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2.2. Manoeuvre Anticipation

Models for manoeuvre anticipation are similar to those for action prediction;
the differences are the specificity of the subject’s movements (mostly head and
eyes) and the type of contextual information obtained from the environment.
At the time of writing, the most recent and possibly complete approach to an-
ticipate driving manoeuvres has been proposed by Jain et al. [I3] (Brain4Cars).
Their model implements an LSTM-based architecture with high-level sensory
fusion to process multi-modal observations, using facial landmarks, head pose,
car speed, GPS information and lane configuration. An exponential loss func-
tion was also included, which was proven not only to successfully encourage
early predictions, but also to act as a regulariser. In addition, they provided a
complete dataset of driving videos, showing the driver and the outside environ-
ment in the few seconds before turns and lane changes. Because of Brain4Cars’
promising results, in this work we used their architecture and dataset respec-
tively as benchmark and for evaluation purposes.
An area of improvement identified by the Brain4Cars team lies in the addition
of eye tracking information to the model’s inputs. Gaze direction, in fact, has
been shown to generally correlate with the direction of the subsequent move-
ment [26], 27, 28] [29]. Including gaze direction as an additional feature vector
is particularly important in the context of manoeuvre anticipation: eye move-
ments to look in the mirrors or at objects on the road may not necessarily be
accompanied by a movement of the head, but may provide information about
the direction of a consequent manoeuvre. It has been argued that the choice
not to implement it is justified by the difficulty of obtaining accurate measure-
ments of gaze direction without using specialised hardware [I3]. Fletcher and
Zelinksy [30], for instance, successfully implemented an ADAS which analyzes
driver inattentiveness using gaze tracking, and Ravichandar et al. [8] used prior
probabilities based on the eye gaze to enhance the accuracy of their action-
prediction model; both works were carried out using ad-hoc tracking cameras.
However, recent studies have shown that it is in fact possible to estimate gaze
direction accurately from videos captured by regular high definition cameras
131, 132].
While it is clear that eye tracking may provide additional benefits to infer the
intentions of a driver, adding additional sensors to the model requires optimal
sensory fusion in order for deep networks to perform well [33]. Indeed, a share
of the recent literature has focused on improving the integration of the multi-

modal data coming from both inside and outside of the car. For instance, Doshi
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et al. [34] used a relevant vector machine (RVM) model to detect lane-change
intent; they exploit the ability of the RVM to obtain a sparse data representa-
tion of the dataset, thus performing sensory fusion by automatically choosing
discriminating features from multi-modal signals. Tawari et al. [35] developed
a "Merge and Lane Change Assist" system in which sensory fusion is achieved
by encoding all constraints (spatial, temporal, as well as legal) into a compact
probabilistic representation [36]. Jain et al. [I3] used a solution similar to
those proposed by Sung et al. [37] as well as Yang and Eisenstein [38], which is
not to join the features before feeding them to the network, but rather to con-
catenate their high-level representations through learnable layers of the neural
network. This is a very simple and scalable solution that only requires simple

modifications to the architecture of the network.

2.8. Domain Adaptation

Domain adaptation is a type of transfer learning where two domains (source
and target) share their feature space but have different marginal distributions
[12]. It attempts to solve the issue of enabling a model trained on a certain
dataset (source domain) to perform well on a differently distributed dataset,
of which the labels are completely or partially unknown [9]. This problem has
been investigated in computer vision [39] 40}, 41| and natural language process-
ing [42] using a variety of different approaches to reduce the discrepancy be-
tween the two domains, including alignments of the subspaces [41], parameter
augmentation [43], domain-invariant projection [44], and instance re-weighting
[45]. Purushotham et al. [12] point out that these techniques are not able to
capture the temporal dependencies in sequential data, and those which do (for
instance through a Bayesian approach [46] or RNNs [47]), cannot accurately
infer non-linear relationship. Deep learning approaches, on the other hand,
have proven successful in capturing time dependencies and complex, non-linear,
domain-invariant relationships through domain adaptation. Examples include
marginalised denoising autoencoders [48], ad-hoc CNN architectures [49], and
feature embeddings [50].

Out of the deep learning approaches, one of the most elegant and easy-to-
implement solutions is the Domain-Adversarial Neural Network (DANN), de-
veloped by Ganin et al. [II]. DANNs perform domain adaptation by learning
domain-invariant features through a neural network architecture composed of
three sections: a feature extractor, a discriminative classifier, and an adversarial

domain classifier, whose loss is mazimised through a special gradient reversal
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layer. The domain classifier’s role is to encourage the feature extractor to find
latent representations of the features which are domain-invariant [12]. In par-
ticular, this type of domain adaptation aims at creating a common subspace
for the source and target domains, so that the trained model can classify exam-
ples from the target domain without having access to the labels of the target’s
training set [II]. The ability to adapt in an unsupervised manner is particularly
appealing for manoeuvre anticipation models, as it would allow them to gen-
eralise well to new drivers simply by retraining them using a set of unlabelled
driving videos as the target domain. While this method has been originally
carried out using a CNN for the feature extraction stage, Purushotam et al.
applied the technique of adversarial training on a RNN (R-DANN) and a vari-
ational RNN (VRADA), in order to capture temporal relationships from one
domain to the other [I2]. Our paper introduces the same concept applied to
manoeuvre anticipation, expanding on the simpler R-DANN architecture and
using an LSTM-GRU network as the feature extractor.

Lastly, since finding domain-invariant features in multi-modal time series can
be challenging and computationally expensive, it has been suggested that fine-
tuning the feature extractor section on the source dataset can yield to an im-
proved performance without sacrificing domain invariance [5I), [IT]. This has
been shown to be effective even in non-adaptive cases of time-dependent fea-
tures [24], and its application to the manoeuvre anticipation problem will also

be demonstrated in this paper.

3. Model for Manoeuvre Anticipation

In order to apply the domain-adversarial approach to manoeuvre anticipa-
tion, we first propose an improved RNN architecture based on LSTMs and
another closely-related type of gated layer, the GRU. Both prevent the gradient
of the loss function from either vanishing or exploding during backpropagation
thanks to the activation functions of the layers’ gates, which are learnable and
create sums of activations over which the derivatives can distribute [I3], 52].
The gradient can thus propagate for a long time, allowing long time-series to
be processed. Before illustrating our model, we provide a brief explanation of

these two layers.

3.1. LSTM and GRU
The structure of a typical LSTM can be seen in Fig[Tal It consists of a mem-

ory cell (¢), which allows information to be accumulated over long sequences,
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Figure 1: Diagrams of Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU).

and three gates. The forget gate (f) controls how the information in the mem-
ory cell is updated, deleted, or stored; the input gate (¢) takes in current ob-
servations and writes new values to the memory cell; and the output gate (o)
computes the hidden output based on the content stored in the memory cell [52].
At every time-step ¢ of a time-series observation, the operations are computed
in the following order: the activations of the input (i;) and forget gates (f;)
are calculated, and the memory cell is updated (¢;). Subsequently, the output
of the cell is finally produced as a hidden representation (h;) depending on the
activation function of the output gate (0;). The inputs into each unit are the
observations (z;), the previous cell state ¢;_1, and the output h;_; from the
LSTM at t — 1 [13]. The process is defined by the following equations:

iy = tanh(Wyxe + Whihe1 + Weieioq + by) (1)
fi =o(Wysxy + Wishi—1 + Wepe—1 + by) (2)
0y = tanh(Woxy + Wiohe—1 + Weeei—1 + by) (3)
ce=f © ¢c—1 +i; © tanh(Wyexy + Wiyehi—1 + b.) (4)
h; = o0; ® tanh(c;) (5)

where W, are the weights and b, the biases. ® is the Hadamart product, also
known as element-wise or point-wise vector product. [53| [13].
The GRU, pictured in Fig[TB] is similar to the LSTM, but is lacking the memory
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cell and the output gate [54]. It is defined by the following equations:

re = o(Wyrxy + Whehi—1 + b)) (6)
zt = 0(Wysay + Wishe—1 +b.) (7)
h; = tanh(Wopze + Wiy, (r: @ hi—1) + by) (8)
hy =2z ®hi_1 4 (1—2) O h, (9)

As it can be seen, the number of operations computed at each time-step is
lower than for the LSTM. It was also found that GRUs outperform LSTMs in
specific situations, for instance when no dropout is used [55, 53]. This can be
explained by a lower tendency to overfit due to the reduced complexity. While
the introduction of dropout makes LSTM better choices in most situations,
using GRUs lowers computation and training time by reducing the number of
learnable parameters. They thus represent a valuable option.

Throughout this paper, LSTM and GRU operations will be referred to as:

(hta Ct) = LSTM(CBt, ht—17 Ct—l) (10)
(ht) = GRU(ZDt, htfl) (].].)

8.2. Anticipation Framework

To build our model we followed the framework for manoeuvre anticipation
proposed and defined by Jain et al. [I3], which we summarise here. The inputs
to the model at training time are represented by N time series in the form
of {(x1,...,®7)i,yi}X 1, in which x; is the set of features at time-step ¢, and
i is the index of the sequence. y = [y!,...,y’] is the representation of the
action occurring at the end of the sequence when ¢ = T, with y; standing for
the probability of the sequence leading to event j. In our case, J = 5: four
manoeuvres (turning right, turning left, lane change right, lane change left),
plus going straight as the default action. During training, each manoeuvre is
represented by a one-hot-encoded vector. At test time, an observation vector
x; is received by the model at every time-step. A probability threshold p;j is
chosen, so that when, and only when, any 47 > p¢s, a prediction of the respective
manoeuvre will be made. At ¢t = T, if no manoeuvre has been predicted with
sufficient confidence, the default action (going straight) will be predicted.

The inputs x consist of the matrices of the head features (composed of facial

features and head pose), ¢ = [¢1,...,Pr|; of the gaze, v = [y1,...,~7|; and
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of the environmental features, n = [11,...,nr|. Each element ¢, ¢, and n; is
a vector containing the respective individual features. The feature engineering

and data processing pipelines are described more in detail in Section [f]

3.8. Network Architecture

Action
Head Features Eye Gaze
i @ Y :
' v
i Context
LSTM (64) LSTM (64) e ——
Environment
H 1
!
GRU (128) L LSTM (128)

Fully Connected
tanh (128)

]

Fully Connected
softmax (5)

Figure 2: Architecture of our model. Sensory fusion is performed by learning the con-
catenation of higher-level representations of the features at different points in the network.

The structure of our architecture, shown in Fig[2] was inspired by the sen-
sory fusion approach proposed in previous work, in which the inputs are not
concatenated before going through the network, but rather after the first re-
current layer(s) as high-level features [13, B7, B8]. We enhanced this idea by
incorporating the concept of action- and context-dependent features proposed
by Aliakbarian et al. [24]. They showed that, for a similar type of anticipation
problem, this structure performs better than two parallel recurrent layers which
disregard the action-context distinction. The concatenation occurs at two dif-
ferent places in the network: first the representations of the head features ¢;
are concatenated with those of gaze ~;, after each of them has gone through an
LSTM layer (Eq and . Their concatenation is then passed through a GRU
layer (Eq[14). The rationale for this choice is as follows: when an event can be
classified in a main type (manoeuvre vs. going straight, i.e. no manoeuvre)

and a sub-type (each of the four manoeuvres), a two-layered RNN architecture
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enables each of the two layers to specialise in the two predictions. This idea was
proposed and successfully tested by Xiao et al. [56]. In our case, the first LSTM
learns the main event type, while the following GRU learns which manoeuvre
is performed. A GRU layer was preferred to a second LSTM in order to limit
the increase in complexity.

The output of the GRU layer is then concatenated with the hidden output of a
third LSTM layer whose inputs are the environmental features n; (Eq. This
concatenation is then fed to a fully-connected dense layer (Eq [13]. Finally,

the last softmax layer provides the classification probabilities for the five classes

(Eq[T7).

z¢ = tanh(Wy[h{; h)] + by)
y; = softmax(W,z; + b,)

16
17

(h{,€}') = LSTMy (¢, by, ¢f_y) (12)
(hi,c/) =LSTM, (v, h{_1,¢/ 1) (13)
(ki) = GRUa([h{; hi], hi_y, ¢ y) (14)
(h{, /) = LSTM,(ne, hi_y, ¢i_y) (15)
(16)

(17)

Because of the high number of learnable parameters (> 18 x 10%), dropout

was applied to both the recurrent and dense layers of the network. A dropout of
0.6 was set to the LSTM and GRU recurrent connections (recurrent dropout),
while a dropout of 0.7 was set to the output of every layer [57, 58]. Additionally,
the bias of the recurrent layers was initialised to 1, in order to improve the
model’s performance and training [53] 22].
In order to encourage the model to anticipate early, we implemented the loss
function shown in Eq[I8] which weighs each term of the cross-entropy categorical
loss with an exponential term, as a function of time. The loss will be greater at
larger values of ¢, thus rewarding the network for predicting the right class as
early as possible [24] 25] [13]. yi represents the probability of event j computed
by the model at time-step ¢.

09D g(y]) (15)

Ly=ZZ

N T
—e
j=1t=1

The network was trained through backpropagation with gradient-based opti-

mization; we chose the Adam optimiser [59)] for its simplicity, robustness, and
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low computational cost [60]. The learning rate was set to 1 x 10~2; the other
parameters were set to the values suggested in the original paper: 5; = 0.9,
Ba =0.999, € = 1 x 10~8, without temporal decay. We implemented additional

regularization by using early stopping, with a patience of 80 epochs.

4. Domain-Adversarial RNN

L, L,
%

Target

Masking

Target Domain

» Maneuver

Beatures Label (3)

Maneuver Classifier Gy(‘; By)
Domain Classifier G4(-; 04)

Label (¢
Gradient E ?

7| Reversal

Backprop Forwardprop ; d - X & L
~ a6, 'd loss

Figure 3: DA-RNN. The proposed architecture for domain-adversarial training of our model
to achieve domain adaptation. Left (red): the feature extractor, consisting in the LSTM-
GRU network show in in Fig without the last softmax layer. Top right (green): manoeuvre
classifier. Bottom right (blue): Domain classifier. Diagram style inspired by Ganin et al. [I1].
(Better viewed in colour.)

Our DA-RNN, pictured in Fig3] is made up of three sections, divided in two
main branches. The first section employs the LSTM-GRU network described
in Section (except for the last softmax layer) as a feature extractor. Its
role is to learn the latent relationships between the features in the observation
sequences. After the latent features are extracted, their hidden representation
is fed into two branches: the first one is a discriminative classifier for manoeuvre
anticipation, composed of a single softmax layer; the second one is an adversarial
domain classifier. The key part of the latter is the gradient reversal layer: during
the forward pass, the input is left unchanged, while during backpropagation, the
gradient is negated and multiplied by a constant, A (lower section of Fig. The
loss of the domain classifier is thus maximised, thereby encouraging the feature
extractor to find representations of the features which are domain-invariant

[12]. Conversely, the label classifier’s loss is minimised in order for the features
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to also be discriminative of the manoeuvres. The manoeuvre loss L, is the
time-dependent exponential function in Eq[I8] while the domain loss Ly is the
regular binomial cross-entropy loss function. The total loss is given by Eq[I9}

the effect of \ is discussed more in detail in Section [6l
Ltot = Ly - ALd (19)

To train the model, half of each input batch is filled with samples from the source
domain, and half from the target domain [IT]. Since the latter, by assumption,
contains fewer observations, target samples are used more than once in each
epoch. This should not unfairly help the manoeuvre classifier, since L, is only
dependent on samples from the source domain: the observations belonging to the
target domain are "hidden" from the manoeuvre classifier by assigning them a
loss weight of 0 through the boolean mask (represented by the "target masking"
block in Fig. The loss contribution from the samples of the source domain is
left unchanged by assigning them a loss weight of 1. This approach is equivalent
to computing L, first using only transformed samples from the source domain,
and then computing L4 using the combined batches. However, our method
allows for the weight updates to be computed in a single forward- and back-
pass, significantly cutting down training time. At test time, inference is made
on samples from the target domain not included in the training set, removing
the boolean mask from the model. The performance is evaluated only on the

prediction of the manoeuvre classifier.

5. Data Collection and Processing

5.1. BrainjCars Dataset

The dataset used as a benchmark for testing our anticipation architecture
was developed by Brain4Cars [I3]. At the time of writing and to our knowledge,
it is the most complete dataset which includes synchronized recordings of the
driver’s upper body and the road in front of the car. It consists of 700 observa-
tions, each including a pair of videos with a duration of 5 seconds: one showing
the driver’s face inside the car, and the other one the road ahead, outside of the
car. The videos are recorded at 30 frames-per-seconds, for a total 150 frames
per video. Additional data is provided for each frame, including lane configura-
tion, speed, and presence of intersections ahead of the car. Every observation

is associated with a manoeuvre, performed at the end of the 5 seconds. The
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numbers of observations for each manoeuvre is as follows: {Going straight =
234, Changing Lane Left = 124, Changing Lane Right = 58, Turning Left =
123, Turning Right = 55}. The format of the features in the dataset is similar
to that illustrated in Section 5.3 and 5.4. For a more in-depth explanation, we
refer the reader to the original work by Jain et al. [I3]. The dataset is publicly

available on the Brain4Cars website[l]

5.2. Our Dataset

In order to build our own dataset for a more extensive evaluation of our
model and the domain adaptation approach, we created a driving simulator set-
up following a standard structure for research [61], [62] and the same video format
of the Brain4Cars data. While the Brain4Cars dataset represents an excellent
resource, we believed it necessary to have access to a dataset where both the
drivers and driving conditions are different from the Brain4Cars dataset in order
to evaluate the domain-adaptation capabilities of our model. In practice, the
goal is to mimic a real-life situation in which a commercial product may be
applied to vehicles that are substantially different in size and/or position of
mirrors, conducted by unseen drivers. A driving simulator was chosen in order
to collect data quickly and in a controlled environment, using a combination of
highway and city driving conditions. Similar virtual simulation setups have been
frequently used for validation of ADAS and statistical approaches to driving
style predictions [63, [64] [65].

We used the commercial game Euro Truck Simulator 2 EL including an unofficial
modification which allows the player to drive a car instead of a truck. This
specific game has been chosen among other driving simulator software due to
the realism of the physics engine, the quality of the graphical output on the main
view and rear mirrors, as well as the compatibility with the instrumentation.
The setup, pictured in Fig[] consisted of a three-screen high-resolution display
system (CPU Intel i7-3930K and GPU NVidia GTX 960) and driving equipment
with pedals, gears, and a steering wheel with force-feedback (G27, Logitech,
CH). A commercial web-cam (HD Pro C920, Logitech, CH, at resolution 1080p),
placed on the middle screen, was pointed towards the face of the driver. The

three-screen setup allowed to have a field-of-view of about 200°. Car data from

Thttps://braindcars.com
28CS Software, 2012, https://eurotrucksimulator2.com/
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Figure 4: The setup for our data collection process.

the game engine was obtained using an unofficial telemetry server EI, whose
output are JSON blocks containing a large number of information such as
orientation, speed, acceleration, steering angle, etc.
Five (5) different subjects were asked to play for a time between 30 and 50
minutes, driving both in cities and on highways. They were asked to respect road
rules and to behave as if they were in a real car (looking at mirrors, turning their
head when needed, etc.) The game screen and the driver’s face were recorded
synchronously using the Open Broadcaster Studio Open Source software El We
aimed at minimizing the variance in the data caused by differences in the camera
placement, as well as avoiding time intervals in which the tracking does not
capture the facial landmarks due to the camera being partially covered by the
driver’s hands on the wheel. We therefore positioned our camera always in the
same position on top of the central monitor, directly in front of the driver seat.
In order to match the Brain4Cars dataset format, we extracted 5-second videos
of the desired manoeuvres using the Boris Open Source video annotation tooﬂ
[66] to annotate the manoeuvres in the raw footage. A custom Python script was
written to cut up the 5 seconds preceding the onset of each manoeuvre (defined
as the moment when the wheel touches the lane markings or when it starts
turning at the intersection [13]), using a combination of Open Source OpenCV
libraryﬂ and FFmpeg video conversion tooﬂ The final dataset comprises 113
videos: {Going straight = 32, Changing Lane Left = 21, Changing Lane Right
= 19, Turning Left = 24, Turning Right = 17}. The number of observations is
smaller than those in the Brain4dCars dataset, as its aim is to provide the target

Shttps://github.com/Funbit /ets2-telemetry-server
4https://obsproject.com/
Shttp://www.boris.unito.it/

Shttp://opencv.org/

Thttps:/ /www.ffmpeg.org/
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samples for a domain adaptation problem; in a real-life situation, target sets
will always be considerably smaller than source sets.

Our dataset has been made available as Open Access on Zenodo with the
following DOI: http://dx.doi.org/10.5281/zenodo.1009540.

5.3. Feature Fxtraction and Processing

To extract features from the videos of both datasets we used OpenFace,
an open-source toolkit that provides facial landmark tracking, head pose es-
timation, and gaze tracking, from videos and images, using a combination of
Conditional Local Neural Fields (CLNF) and CNNs [32]. It is capable of high
performance real-time tracking using regular cameras, making it an attractive
option for ADAS. Once the data was extracted from the videos, we followed the
feature processing pipeline defined by Jain et al. [I3], with slight modifications
to binning intervals, labelling of the environmental features, and feature scaling.
We were interested in obtaining the movements of the facial landmarks, the head
pose, the direction of the gaze, as well as environmental informations — namely
lane configuration, presence of intersections ahead in near proximity, and speed
of the car. A time-series is constructed for each sample in the datasets, with each
frame representing a time-step in the observation sequence x;. Data analysis

and processing, feature engineering were carried out in Python 3.

5.4. Action-related Features
5.4.1. Facial Landmarks and Head Pose

We represent the movement of the driver’s head with the motion of the fa-
cial landmarks, using a binning approach. We took the velocity of each of the
68 landmarks between consecutive frames, calculating the horizontal motion as
Saface = glace _ mff(ie, in pixels and in the image space; and the angular mo-
tion in the x — y plane as 679 = arctan2(dy/*°¢, jzf2°¢), in radians. These
values were binned to create histogram features. Six (6) bins were chosen for
the horizontal motion:

{6 < =5; -5 < dx < —2.5;—2.5 < dx < 0;0 < dz < 2.5;2.5 < dz < 5;0x > 5}
pixels, while for the angular motion we used four (4) bins:

{0<0<7/2; w/2<0<7; m<0<37m/2; 3n/2 < O < 27} radians.

Negative values refer to motions towards the left-hand side of the image and the
right-hand side of the driver.

The head pose was also included using the Euler angles representation [R, (apitcn),
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Ry (oyaw), R (cwrou)| as it was shown to improve the performance [13,67]. Over-

all, the histogram features and head pose form the head features ¢ € R'3.

5.4.2. Eye Gaze

Information about the driver’s gaze was also obtained through OpenFace’s
output, which provides a 3D direction vector for each eye, normalised and in
world coordinates. We took the average components of both eyes, and applied
a Butterworth low-pass filter (4th order, sampling frequency of 30Hz, cutoff
of 1.66 Hz) in order to eliminate noise deriving from tracking inaccuracies and
natural saccades. The filter introduces a minimal delay which was proven to
not be detrimental to the model, and it can be applied in real time. To create
the feature vector we take the x and y component of the gaze direction vector
(which correspond to the horizontal and vertical direction in the image plane),
scaled between -1 and 1, to create histogram features, similarly to the head
features. The bins chosen are:
{-1 < dz < =0.5;-0.5 < dz < 0;0 < oz < 0.5;0.5 < dx < 1} pixels, in
the image space. Identical bins were chosen for dy. In this case we used the
direction components rather than the inter-frame velocity since we found that
it correlates better with the driver’s intention. We define v € R® as the gaze

features.

5.5. Context-related Features (Environment)

The environmental context is expressed by n € R*. The first two features
are boolean variables expressing the presence of a lane to the left and to the
right of the car, respectively. The third feature is also boolean, and indicates
the presence of an intersection ahead and in the near proximity of the car. For
the purpose of this study, these three values were labelled manually for each
observation. In a practical implementation, this information could be extracted
automatically through lane detection algorithms [68 [69] fused with GPS data.
Finally, the fourth value is the speed of the car in km/h. This value is provided
in the Brain4Cars dataset, and was measured by the physics engine of the game

in our dataset.

6. Experiments

In this section we present the results of the experiments conducted on the

Brain4Cars’ and our dataset, using the features extracted according to the
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method described in Section Bl We first tested the network for manoeuvre
anticipation on the two datasets separately, shuffling samples from all drivers
before the training-test split, as done by Jain et al. [I3]. We show that the new
architecture and additional features yield to an improvement in the performance
of the model. We then investigated the applications of domain adaptation to
our model via domain-adversarial training, in two ways: a) employing a leave-
one-out approach on each driver in the Brain4Cars dataset, in order to study the
possibility of personalising a model in a partly-unsupervised manner; b) using
the entirety of the BraindCars dataset as the source domain and our dataset
as the target domain, in order to study how the approach works with different
feature distributions. In both cases, we attempted to increase the performance
of the models through fine-tuning —meaning initializing the weights of certain
layers with weights from a pre-trained model—, and we studied the effect of vary-
ing the value of the domain loss multiplier .

To evaluate the results, four measures were used. Three of them provide the
multi-class classification score for the predicted action, namely: precision, recall
and F1 score [70]. The fourth measure is the time-to-prediction (TTP), repre-
senting how many seconds before the onset of the manoeuvre the prediction is
made. When calculating precision, recall, and F1 score, the "going straight"
predictions are not considered, as it is considered the baseline state. The prob-
ability threshold was set to 0.9 for all experiments, since this value was shown
to yield the most confident and quick predictions [I3]. This means that at each
time-step ¢, a prediction is made only if at least one of the 5 outputs of the
models is > 0.9. We trained all models with batches of size 128.

6.1. Ezxperiment 1: Manoeuvre Anticipation

The first experiment was performed using the LSTM-GRU architecture de-
scribed in Section [3.3] on the Brain4Cars dataset, without domain adaptation,
in order to evaluate its performance as a feature extractor. Samples from all
drivers were shuffled, and a test set was set aside taking 15% of the total ob-
servations. 5-fold cross validation was used, with the 5 validation subsets each
making up a different 20% of the training set. Training and validation sets
were normalised jointly before the split. Following Jain et al.’s approach, we
augmented the training set by extracting subsequences of random length (Tsysp)
from the original observation, with 50 < T, < 150. These additional sam-
ples were used as additional training examples, thereby adding redundancy and

additionally decreasing the risk of over-fitting [I3]. More sub-samples were
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taken from under-represented classes, thus balancing the class ratios. For the
Brain4Cars dataset, this led to a total of 2160 training samples; 312 for ours.
The results are shown in Table [I] We compare our performance with Jain et
al.’s LSTM model [I3]. It can be seen that our network performs better for all
manoeuvres, reaching a higher F1 score as well as a higher time-to-prediction.
We theorise that this improvement is due partly to the additional information
given by the gaze direction. Indeed, excluding the gaze-related features, the
performance of the model was observed to drop by up to 1-1.5%. However, we
attribute the improvement especially to the enhanced sensory fusion (including
the action-context structure). Indeed, a parallel structure in which the hidden
representations of all three inputs are concatenated after the initial recurrent
layers performs marginally worse than Brain4Cars’ model. This shows that
simply adding more features does not necessarily improve the performance of a
model if it is not accompanied by rational modifications in the architecture.

In addition, it was noticed that the added complexity of the network caused a
strong tendency to overfit, despite the high dropout, the early-stopping criteria,
and the redundancy in the training data. However, it is likely that the number
of samples is not large enough; bigger datasets should alleviate this problem
and further enhance the model’s performance. Lastly, we report that including
the car’s speed as part of the environmental features was detrimental to the
performance of the model, and, for this reason, it was excluded in the subse-
quent experiments. This may be due to the fact that, especially in sequences
leading to lane changes or driving straight, maneuvers may not be correlated
with specific ranges of speed values; further analysis should be carried out on
the subject. However, we observed that excluding any of the other features used
by Jain et al. [I3] from either dataset worsens the performance considerably.

This was confirmed experimentally through 5-fold cross-validation.

Changing lane Turning All manoeuvres
Prec. Recall F1 TTP Prec. Recall F1 TTP Prec. Recall F1 TTP
(%) (%) (%) () (%) (&) (%) () (%) (&) (%) ()
B4C 95.4 857 888  3.42 685 785 721  3.78 820 821 820 3.58
B4C w/ Head pose / / / 90.5 874 883 3.16
LSTM-GRU (ours) 96.5 905 936 3.90 91.1 909 91.0 4.06 92.3 90.8 91.3 3.98

Table 1: Manoeuvre anticipation on the Brain4Cars dataset. Results of the non-
adaptive LSTM-GRU network on a test set comprised of observations from all drivers. Results
reported from Brain4Cars (B4C) are taken directly from the paper [13].

The same model was also tested on our dataset, using a similar procedure.
The results, illustrated in Table [2] show that the performance is lower than for

the Brain4Cars dataset. This is most likely due to the lower number of samples,
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and the fact that in a simulation setting, drivers tend to do less emphatic head
and eye movements. Conversely, fine-tuning the network by pre-training its

weights using the Brain4Cars dataset improves the performance.

Prec. Recall F1 TTP

%) (%) (%) ()

No Pre-Training 82.0 82.1 82.0 3.9
Pre-trained on B4C 89.4 92.2 90.8 4.1

Table 2: Manoeuvre anticipation on our dataset. Results of the non-adaptive LSTM-
GRU network on a test set comprised of observations from all drivers, without and with
fine-tuning.

Overall, these results show that our model represents an improvement over
the most recent LSTM-based approach in manoeuvre anticipation, and prove
that our dataset can be used reliably with a comparable performance. Moreover,
it was shown that fine-tuning can be a powerful approach to enhance the model’s

capability if a larger, more reliable dataset is available.

6.2. Experiment 2: Domain Adaptation on Different Drivers

In order to investigate how a trained model can learn to adapt to a small set
of unlabelled driving videos belonging to a subject not included in the training
set, we manually separated the videos of each individual driver in the Brain4Cars
dataset from each other. We then ran our DA-RNN using observations from all
drivers except one as the source domain, while, as the target domain, we used
the samples from the remaining driver. Once trained, the model was tested on a
set of samples from the target domain not included in the training set, all from
the same driver. This was done for each driver separately, and the results were
averaged. In addition, we fine-tuned the networks by initializing the weights of
the LSTM-GRU feature extractor by pre-training them on the source domain.

The results are shown in Table Bl

Prec. Recall F1 TTP
%) %) (R 6

No adaptation 60.9 57.7  58.0 3.8
DA-RNN 71.7  66.5  68.1 3.9
DA-RNN w/ Fine Tuning 777 75.6 76.8 3.8

Table 3: Performance of the DA-RNN, using a leave-one-out approach on the Brain4Cars
dataset, averaged over 6 drivers. (A = 1.10)

From the results it is clear that when the test driver is not part of the

training set, the model does not perform well without adaptation. However,
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when the model is trained with the domain-adversarial training, an absolute
improvement of more than 10% can be observed. A further improvement is
obtained by pre-training the weights of the feature extractors on the source
domain, yielding an increase in performance of almost 20% compared to the
non-adapting model. This is because, by initializing the weights with values
that are known to produce accurate predictions, the network is already trained
to find features that are discriminative of the manoeuvres.

Additionally, we found that the hyperparameter A, which is the constant
multiplier of the domain classifier’s loss during backpropagation, plays a key
role in feature extraction. The higher its value, the higher the influence of the
domain classifier loss, meaning a stronger push towards domain invariance in
the feature extractor. The network will therefore tend to find features that are
shared by the two domains, but which are not necessarily discriminative. A
small A\, on the other hand, will cause the extracted features to be less domain-
invariant but more effective to classify the maneuvers in the source domain
samples. For our experiments, we found that a value ~ 1, meaning an equal

weighting of the losses from the two classifiers yielded the best performance.

6.3. Ezperiment 3: Domain Adaptation on Our Dataset

The third experiment was performed to attempt a transfer of information
between the Brain4Cars data and our dataset. Being able to adapt a model to
observations in which the features are distributed very differently can be im-

portant in applications such as driver training, Virtual Reality simulations, and
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Figure 5: Marginal distributions of the Brain4Cars and our datasets. Box plots of
the horizontal velocity of the facial landmarks for both datasets.
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autonomous driving research. Figl5|shows that the two distributions are indeed
very different: the head movements made by the drivers in a real-world driving
scenario have a higher within-manoeuvre variance than those driving a simu-
lator, but a smaller variance between the different manoeuvres. The fact that
the subjects were asked to perform the same movements as in a real-setting,
however, makes it plausible that it is possible to find latent features which are
shared by both datasets. Moreover, the fact that fine-tuning the model using
one dataset improves the performance on the other provides additional sup-
port to this theory. Table [4]illustrates the results of three different approaches:
1. Training and validating the model on the Brain4Cars dataset, and testing it
on our dataset (no adaptation); 2. Training the DA-RNN using the Brain4Cars
dataset as source domain and our dataset as target domain; 3. Training the
DA-RNN using the BraindCars dataset as source domain and our dataset as
target domain, with fine-tuning (i.e. initializing the weights of the feature ex-
tractor by pre-training our LSTM-GRU network on the Brain4Cars dataset.)

Prec. Recall F1 TTP
(%) (%) (%) ()

No adaptation 27.3 31.5 29.0 3.8
DA-RNN 475 387 426 4.0
DA-RNN w/ Fine Tuning 72.6 55.1 62.7 4.0

Table 4: Performance of the DA-RNN, with the Brain4Cars dataset as source domain
and our dataset as the target domain. (A = 1.10)

The first striking observation is the extremely poor performance of the model
without adaptation. We infer that when the marginal distribution of the fea-
tures in two domains are very different, a non-adaptive model fails to generalise.
The DA-RNN, in comparison, performs better, with an increase in F1 score of
12 percentage points and an increase in time-to-prediction of 0.2s. The most
critical improvement was registered when the feature extractor was fine-tuned
on the source domain, with an F1 score of 62.7%. The overall performance
is still lower than the case of Experiment 2, when the drivers belonged to the
same dataset (i.e. driving in similar conditions), but much higher than the no-
adaptation case. These relative improvements in performance are comparable
to the ones found in recent works performing similar domain adaptation tasks,
such as the ones reported in the original DANN paper by Ganin et al. [I1].
Overall, these results confirm the hypothesis that there exist latent features

shared by datasets of observations in which similar driving tasks are performed,
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but in largely different settings; moreover, they highlight the need of an adap-

tive approach for the practical implementations and personalizations of ADAS.

The models were created, trained and tested using Python 3, using the
deep learning framework Keras 2.0 with the TensorFlow 1.2 backend. Network
training was run on a machine with CPU Intel Core i7-7700K and GPU NVidia
GTX 1080, and 32GB of memory.

The code of the architecture of the DA-RNN can be found at https://

github.com/michetonu/DA-RNN_manoeuver_anticipation.

7. Conclusions

In this paper we proposed and tested a Domain-Adversarial Recurrent Neu-
ral Network for adaptive driving manoeuvre anticipation. Trained on a large
source dataset of driving observations, our DA-RNN is able to adapt to smaller,
unlabelled sets of observations by maximizing the loss of a domain classifier
used as an auxiliary output. To extract domain-invariant features from multi-
modal time-varying data, we designed a multi-stage LSTM-GRU architecture
based on Ganin et al.’s DANN [11], which uses a CNN as feature extractor, and
Purushotham et al.’s R-DANN [I2], which instead uses vanilla RNN layers. In
order to apply it to the problem of manoeuver anticipation, we expanded on
the work done by Jain et al.[I3], adding eye gaze direction to the set of input
features used to predict driving actions. An alternative approach to carry out
advanced sensory fusion is implemented by learning the concatenation of the
hidden representations of the features through recurrent layers. The LSTM-
GRU section of the network was proven to outperform state-of-the-art work
on non-adaptive manoeuvre anticipation tasks. We also present a new dataset
obtained through a driving simulation set-up, and made it available for public
use.

The evaluation of the DA-RNN was carried out initially using a leave-one-out
approach, in which the observations of each individual driver in the Brain4Cars
dataset was left out from the training set and used as target domain. An in-
crease of 17 percentage points in F1 score was registered when the DA-RNN'’s
feature extractor was pre-trained on the source domain. The results show the
potential of domain-adversarial training to adapt models to new drivers with-
out the need to retrain them with additional labelled examples. In a real-world

scenario, observations to be used as the target domain could be captured auto-
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matically during the first drive, eliminating the necessity for manual labelling.
The second evaluation consisted in using the BraindCars dataset as the source
domain and our dataset as the target domain, with the same feature space but a
different feature distribution. We reported an improvement in F1 score by 114%
(32.7 percentage points) compared to the non-adaptive case, when the model’s
weights are fine-tuned. Overall, we demonstrate that the domain-adversarial
approach represents a promising approach to increase the flexibility and gener-
alization capabilities of commercial ADAS through domain adaptation.

We conclude that non-adaptive models are not able to generalise well in con-
texts a) where the target driver was not part of the training set, and b) where
the features in the target domain have a very different marginal distribution,
which is the case when the driving set-up in the target set differs from the one
used to collect the training data. Adaptive models will therefore be necessary
for ADAS installed in commercial vehicles, and will prove helpful in virtual sim-
ulations and driving training tasks. In order to further validate the approach in
the context of assisted driving, additional tests should be conducted on a larger
target dataset obtained in real-life conditions. Larger and more diverse driving
video datasets will enable even higher performances, as one of the bottlenecks
of our approach was found in the network’s tendency to overfit, due to the com-
plexity of the architecture and the relatively small size of the datasets. This
work sets the bases for further research aimed at enabling adaptive deep neural

networks to reach performances comparable to fully supervised models.
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