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Abstract 

This work details the design and simulation results of a bioinspired minimalist algorithm based on C. 

elegans, using autonomous agents to forage for attractant energy sources. The robotic agents are 

energy-constrained and depend on the energy they forage to recharge their batteries, which is 

significant as the foraging task is one of the canonical testbeds for cooperative robotics. 

The algorithm consists of 6 input parameters which were simulated and optimised in 9 unbounded 

environments of varying difficulty levels, containing attractant sources which robots would then have 

to forage from to maintain energy levels and survive the entirety of the simulation. 

The robots running the algorithm were then optimised using Evolutionary Algorithms and the best 

solutions in all 9 environments were categorized with the use of clustering techniques. The clustering 

results highlighted the different strategies which emerged. Ultimately across the 9 environments, 6 

different strategies have been identified. The results demonstrate the applicability of the proposed 

algorithm to localise attractant sources and harvest energy in different scenarios using the same core 

algorithm. 

 



 

 

1.   Introduction 

The main goal of the work is to develop and test a bio-inspired reactive foraging algorithm to robots 

with limited sensing capabilities. The proposed algorithm was optimised in 9 different environments 

and the results were processed with statistical tools.  

In sophisticated sensory systems for robotics, some issues emerge, such as; storing and handling an 

extensive amount of data, the weight of hardware components and the expense of these components, 

and dependency on high sensor precision. In a different approach, low-cost minimalistic robots, with 

limited and inexpensive sensing and processing capabilities, may be applied for solving similar 

problems either as a collective of independent individuals or as a swarm. Recent developments in the 

field of autonomous systems and swarm robotics, combined with miniaturized and low-cost electronic 

devices are setting the groundwork for a new class of robots: capable of performing unsupervised tasks, 

autonomously managing energy resources. When combined with the developments in the field of 

smart and biodegradable materials, some recent works even envision autonomous robots completing 

a life cycle and eventually, dying [1,2]. As a critical aspect on the path to autonomy, energy 

management usually requires balancing the pursuit of a robot's primary objective with the acquisition 

and maintenance of its energy supplies [3-7].  

In this work, the problem of finding attractants in unknown environments by mobile robots with limited 

and inexpensive sensing abilities is addressed by a minimalist algorithm designed and based on C. 

elegans' chemotaxis. As in the living organism, the motions of the robots depend on limited sensory 

data and are governed by a simple set of rules for turns/reversals and for the speed, based on 

availability, variation and concentration of attractants [8-10]. The algorithm works with the 

information of one noisy single-pixel analogue sensors and a set of 6 input parameters controlling the 

sensitivity to attractants and tolerance to changes in its concentration, as well as a tolerance for sensor 

noise. A similar problem formulation was used by [11], consisting of a homogenous unbounded 2d 

environment with a number n of robots that are initially placed in arbitrary positions and facing 

arbitrary directions, they also have only one sensor, however whilst the robots in [11] were embodied, 

preventing overlap, key in measuring aggregation and dispersion, the robots in our simulations were 

not embodied. 



 

A tailored program was developed to create environments, simulate multiple robots running the 

Foraging Algorithm, and to process the results. The third-party free program FEX-GODLIKE1 was 

connected to the program as a module to perform the optimisation with Evolutionary Algorithms. As 

the robots were not embodied, there was no reason to expend computational resources with a 

simulation of physical aspects. Using the framework developed for this work we were able to optimise 

the use of computational resources, and that made it possible/feasible to run the 229,959 function calls 

in the optimisation step and the further 21,744 function calls during cross-trial and clustering steps, 

which although feasible still took a considerable amount of computational hours, 3,318 to be exact. 

The foraging task was chosen as it is already considered a benchmark problem in cooperative robotics, 

consisting of several sub-tasks, including efficient exploration, physical collection, transport, homing 

and depositing [12-15]. As we envisioned this algorithm possibly being applied to swarm robotics the 

foraging task seemed like a great equalizer to start with. Allowing the robots' behaviour to be evaluated 

on the completion of a task which could have varying levels of difficulty, permitting and even pushing 

the robots to evolve better strategies for the completion of this task. The foraging algorithm’s 

performance was explored in 9 different environments of varying sizes and with varying concentrations 

of energy sources, some more challenging than others. The controlling parameters were independently 

optimised for each environment using evolutionary algorithms. The costs are obtained from a based 

on the performance of a population of identical simulated agents with the candidate genome. 

As demonstrated by models, foraging energy in its essence encompasses a basic trade-off, in which 

energy is spent in an attempt to obtain more [16]. As the evolutionary survival of a species depends 

heavily on the ability to effectively forage resources, the most efficient foraging behaviours are 

expected to have been selected, regardless of the size and complexity of the animal [17,18]. 

Caenorhabditis elegans' is an ideal source of inspiration for developing bio-inspired low-cost robots as 

its foraging strategies had to evolve to make the most of its simple nervous system and anatomy. C. 

elegans is a free-living roundworm which, despite its remarkable simplicity, displays a considerable 

repertoire of behaviour including foraging, mating, feeding and threat avoidance, as well as 

rudimentary learning, memory and social behaviour [19-26]. 

The exploratory behaviour of C. elegans emerges from a close interaction of sensory and motor 

neurons, with a few interneuronal relays in between. The organism moves towards more favourable 

surroundings by chemotaxis, thermotaxis, and aerotaxis, and evades noxious or harmful conditions 

through avoiding or escaping behaviours. The exploratory behaviour of C. elegans can be decomposed 
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in simple steps as forward and backward movements, turns, and reversals, that can also be coupled 

into more complex movements, as short and long reversals, pirouettes, and omega turns (in which the 

animal bends its body to perform a turn of approximately 180˚) [19-21,27-30]. Several works 

investigating C. elegans’ exploratory behaviour identified pattern variations according to: the presence 

or absence of food; its (short-term) memory about the environment; and its internal state of hunger 

[19-21,28,31,32]. Three distinct states are identified by [19]: Feeding (Dwelling), Local Search, and 

Dispersal. When exposed to food, the animals dwell within the peak of the source by performing 

frequent short reversals. The presence of food also induces a slowing response on C. elegans [19,31,32]. 

Experiments presented in [19] show that the feeding speed reaches about 10% of the animal's foraging 

speed. According to [31], food-deprived individuals presented an enhanced slowing response 

compared to well-fed animals. This shows that the food-induced slowing response relates to the 

internal state of the animal. This frequency immediately drops by a third after the extinction of the food 

source and continues to drop until almost approaching zero after 30 minutes. On the other hand, long 

reversals and omega turns are rare while the animals are feeding, increasing immediately after the 

sources extinguish, and dropping slowly to match the rate of short reversals [19]. 

The results were processed using a novel set of techniques developed by the authors, named Genetic 

Analysis. The best solutions evolved in each environment were then combined before being grouped 

into "species" using clustering techniques (k-means++) on the basis of genetic similarity. The results 

show a very strong relationship between genetic similarity and environmental similarity, as well as the 

emergence of several behavioural patterns adapted to different environments. In a further step, each 

species was tested in environments which it had not evolved in originally.  

The results lead to two distinct conclusions, one practical and one more academic. From a practical 

perspective, the results suggest that, when suitably tuned, minimalist C. elegans-inspired foraging 

algorithms can lead to effective navigation to unknown targets even in the presence of repellents and 

under the influence of a significant sensor noise. From an academic perspective, the work 

demonstrates that even simple models can serve as an interesting and informative testbed for 

exploring fundamental evolutionary principles.  

This algorithm would not have been possible without the direct influence of evolutionary robotics, 

which allowed the algorithm to develop independently. The core idea behind evolutionary robotics is 

that the controllers for robotic systems can be evolved and optimised in simulated environments, using 

principles and techniques inspired by concepts of darwinian Evolution and of the survival (and 

reproduction) of the fittest. An initial population is randomly created and tested under certain 

environmental conditions, each individual being a vector of controlling parameters. The fittest 



 

individuals are allowed to reproduce and this process is repeated until a solution that satisfies the 

performance criterion is found, or it hits the stopping criteria [33,34].  

The key to the application of these algorithms is in their simplicity, and adaptability, as I hope to make 

the code I wrote openly available, it is likely that further applications will arise organically. It is ideally 

suited for minimalist autonomous robots as it does not require complex hardware.   

Overall, the results obtained up to present demonstrate a promising application of bio-inspired 

behavioural algorithms in the development of autonomous mobile robots. As the algorithm is inspired 

by a remarkably simple organism, and therefore would not require complex or costly technologies 

(such as geolocation modules or machine vision systems) these results may also contribute to the 

advance of energy-efficiency and low-cost autonomous robots.  These robots would be affordable and 

able to remain in the field for long periods without human interference, ideally suited to  such 

applications as agriculture, pest control or monitoring, water monitoring and the overall monitoring of 

natural systems such as freshwater, forests and the monitoring of invasive species.  

Regardless of the application, most of the autonomous robots would potentially benefit from nature-

based algorithms aimed at finding optimal strategies for dealing with trade-offs related to tasks and 

system maintenance. 

The best 25 evolved solutions from each environment were then combined before being grouped into 

"species" using clustering techniques (k-means++) on the basis of genetic similarity. The results show a 

very strong relationship between genetic similarity and environmental similarity, as well as the 

emergence of several behavioural patterns adapted to different environments. In a further step, each 

species was tested in environments other than the one it evolved in. 

The results demonstrate the applicability of the proposed algorithm to localise attractant sources and 

harvest energy in different scenarios using the same core algorithm. 

Results indicate that due to the emergent pattern future applications may be applied to swarm 

robotics. Although in this instance they do not communicate or sense each other, it has been noted that 

in other works swarm robotics may also consist of very minimalist hardware and algorithms, which is 

interesting in the context of swarm robotics as complex communication devices are also expensive, 

and emerging patterns can definitely be observed in this algorithm already [11,35].  

Furthermore, the work demonstrates a novel application of bio-inspired concepts in the context of the 

Evolutionary Robotics akin to speciation, using the same algorithm a range of patterns of emergent 

behaviour appear, similar to the evolution of different species from a common ancestor. The clustering 



 

and further characterization based on genetic similarity is, we believe, a novel approach and highly 

useful allowing to different strategies to emerge instead of a single best. Furthermore this approach is 

interesting particularly for biologically inspired algorithms as this links closely to the way a living 

organism may evolve, instead of showing a single best species it shows patterns of emergent behaviour 

allowing for comparisons between species and their performance in different environments instead of 

merely a one-size-fits-all approach to evolutionary algorithms. 

These low-cost autonomous robots, working as individuals, solve the problem of locating attractants 

in unknown environments by using limited and inexpensive sensors and a minimalist algorithm 

designed based on C. elegans chemotaxis. 

2.   Chemotaxis and Reactive Algorithms 

Reactive algorithms are ideal for minimalistic, low-cost or disposable robots as they do not demand 

complex or expensive hardware resources. As highlighted by [36], reactive chemotaxis algorithms when 

suitable for a given application provide fast, simple and cost-effective solutions. Several authors 

emphasize the importance of energy-efficient systems for exploration robots which may be used for 

overland or underground, sea, air, or for space exploration [36-39]. Since their systems require the 

optimal use of energy resources, when it comes to using robots for long term exploration, it is important 

that they will have a certain degree of autonomy. Remote access for control is costly both in terms of 

battery use and the price of the equipment required, and oftentimes can be prone to delays, faults, or 

interruptions.  

Reactive algorithms can also offer a cheaper alternative for disposable robots to be utilised in harmful 

or infeasible environments for humans or animals and that could destroy or require the robots to be 

disposed of afterwards. Other applications are environments that are too widespread for other more 

complex robots to be deemed cost-effective or in long-term autonomous robots operating in 

unstructured environments [39,40]. Some applications for these algorithms include: spotting light 

sources which would enable them to use solar panels to recharge the batteries; detecting pollutants or 

hazardous gases in the air and identifying the source; discovering toxins or hazardous chemicals in 

water; spotting radiation, fire and overheating. 

Many authors investigate reactive chemotaxis algorithms and robot applications to spot chemicals in 

the air and odour plumes  



 

[37,38,41-48]. Reference [36] presents two different strategies for detecting odour plumes: passive and 

active. In the passive approach, the robots adopt a stationary monitoring state in the absence of any 

sensory cues, only breaking into movement and searching for the odour source once chemicals are 

detected. In the active approach, robots can either perform a linear search or a random walk, actively 

looking for chemicals in the search field. Once an odour source is discovered, gradient-based 

algorithms are applied to follow the chemical trail. Some of the algorithms tested by the authors are 

bio-inspired by organisms such as the Silkworm Moth, the Dung Beetle, and the bacterium E. coli. These 

are compared with one another and with a gradient-based algorithm. All of these algorithms require a 

stereo chemical sensor and an air-flow sensor (this latter due to the peculiarities of the odour plumes), 

with the exception of the E. coli algorithm which requires only a single chemical sensor. 

In this work we present a minimalist reactive foraging algorithm for autonomous mobile robots based 

on C. elegans' chemotaxis and food-induced slowing response, which is then evolutionarily optimised 

under different environmental conditions. 

3.   Algorithm Design 

The foraging algorithm inspired by C. elegans' chemotaxis is composed of two key behaviours: runs and 

turns, controlled by a set of six parameters (g1:6), also referred to in this work as the genome, as shown 

in Table 1: 

Table 1 - Set of input parameters for the C. elegans' bio-inspired minimalist algorithm (genome) 

GENE PARAMETER APPLICATION 

g1 VarAngle controls the variability of the angle of a turn; 

g2 NoiseTol controls the tolerance of the robot to the variation in sensed light 

g3 BaseProb sets the base probability of turning, in the absence of any change in sensed light level 

g4 ProbMult sets the multiplier (divisor) of the base turning probability when light decreases ( increases) 

g5 Sigm𝛼 sets the steepness of the sigmoid curve that controls speed according to the sensor reading 

g6 Sigm𝛽 defines the offset of the sigmoid curve that controls speed according to the sensor reading 

 

At each time step (t), each Robot (R) adjusts its speed and turn probability according to its sensor 

reading and possibly makes a turn. The agent’s battery level is updated according to the intensity of 

light it is currently exposed to (iin), as well as how much was spent on moving (iout) and running basic 

systems (iBMR): 

 



 

Also at each time step, the simulation program updates robots’ positions, checks for extinguished light 

spots (replacing them with new ones if necessary) and checks which robots are ‘alive’ – a robot 

permanently ‘dies’ if its battery is depleted (Fig.1). 

The reasoning process on each time step (t) starts when the agent acquires the sensor reading 

(SensValR
t) for light intensity (Light) at its current position [x,y], which includes some sensor noise (2). 

ΔSensorValRt is then obtained from the current and previous sensor readings (3) in order to calculate 

the probability of initiating a turn (ProbTurnR
t). 

 

 

If   ΔSensorValR
t is sufficiently positive, ProbTurnR

t decreases, whereas if it is sufficiently negative, 

ProbTurnR
t increases. If the current and the previous values are sufficiently similar (as determined by 

NoiseTol), then ProbTurnR
t maintains the value of BaseProb (Fig.1). 

Once ProbTurnR
t is set, a random number (0 to 1) is generated and, if it is less than or equal to ProbTurnR

t, 

the robot will perform a turn (Fig.1). When performing a turn, the yaw (Δθ) will be calculated using 

another random number (between -1 and 1), according to: 

 

Also, speed is modulated by an inverse logistic function, controlled by the combination of the current 

sensor reading and the input parameters Sigm𝛼 and Sigm𝛽, according to: 

 

As the behaviour of the agent is modulated without reference to any internal state variables, this is 

classed as a reflex-agent model. 

 

We conducted some early experiments with noiseless sensors and found that the agents were able to 

survive the entire simulation time in all 9 environments, making for rather incomparable  results as all 

of the robots managed to reduce their costs to 0. We therefore included substantial sensor noise in all 

further experiments, which is also more realistic since all real sensors (particularly low-cost sensors) 

are subject to noise.  



 

4.   Simulation and Experiment Design 

The foraging algorithm was implemented and tested in robots simulated in virtual environments, as a 

requirement for the optimization with evolutionary algorithms (Fig.2). Virtual environments are 

preferable for a number reasons, as mentioned by [14]; limitation to the robots themselves (battery life, 

sensors, memory, and localization) and their environments (size, and complexity), furthermore, 

physical experiments take much longer to run their course allowing for only a few runs per treatment.  

For these reasons it was decided that a virtual simulation would be more appropriate. The virtual 

robots are capable of moving forward at variable speed and turning to any direction (0-360˚), and are 

equipped with a single light sensor, a battery, and a solar panel. Aiming at future application on 

physical platforms, all the robot’s parameters are grounded in real hardware (Table 2). 

Table 2 - List of robot parameters, their respective functions and standard simulation values 

ROBOT 

PARAMETER 

STANDARD 

VALUE 
APPLICATION 

 0.5m/s Maximum locomotion velocity 

 1.0A Optimum solar current 

 1.4A Motor draw at maximum power 

 0.2A Basal Metabolic Rate: cost of running systems when not moving 

 6Ah Battery capacity 

 20% Initial battery charge 

 1% Sensor Noise 

 

3.1. Simulation 

The virtual environments consist of simulated 2D fields populated with gaussian light spots of varying 

peak intensities, which the robots must use to recharge their batteries (Fig.2). The position of the light 

spots is unknown by the robots and changes randomly throughout the simulation, so they must rely on 

the temporal gradient of local light intensity to tell whether they are moving in an advantageous or 

disadvantageous direction. The included sensor noise means that only relatively steep gradients can 

be reliably sensed, effectively limiting the detection radius of these light spots. 

The behaviour of the robots (agents) is a result of the interaction between the environmental conditions 

and the combination of the input parameters (g1:6) tuning the foraging algorithm, which we called the 

robot’s genome. The algorithm controls two basic movement components - runs and turns - by 

regulating the speed (and hence energy cost) of locomotion and the probability of turning. Speed 

regulation responds to instantaneous light value, while turn probability responds to the change in light 



 

value over time. The intensity of light perceived by the robots is contaminated by normally-distributed 

sensor noise with variance equal to 1% of the maximum light intensity (aimed at representing the 

imperfection of the dispersion of chemical cues in water or air, as well as the inherent noise of real 

sensor hardware).  

Each simulation includes 100 identical robots (with the same genome) foraging light sources in a virtual 

environment over a certain period of time. Each environment is a square field with wrapping 

boundaries populated with 6 light spots of varying intensity and duration (Fig.2 and Fig.3). For this 

work, a set of 3 field sizes and 3 light intensity ranges were tested (Fig.4). As the simulation starts, the 

position of each light spot is randomly assigned, along with its intensity (within the range for that 

environment) and duration. The light intensity at a distance from the centre decreases according to a 

Gaussian curve. Each extinguished light spot is replaced by a new random instance so the number of 

light spots is constant during the whole simulation. For use in later analysis, the average amount of 

light available per square meter was calculated at each time step and averaged over the total 

simulation time to obtain the Light Index of each environment. 

The total simulation time (T=24 hours) is divided into time steps (ts), in which the control algorithm is 

applied. Although each simulation runs with 100 identical robots, there is no interaction between them 

and their reasoning processes are independent of each other. Besides making behavioural patterns 

more visible in the graphical plots, another reason for simulating many identical robots is to improve 

the assessment of a candidate genome by averaging individual’s scores (Fig.2 and Fig.3). 

3.2. Behavioural Evolution and Optimisation 

The algorithm’s input parameters (g1:6) were optimised for 9 different environments, with varying field 

sizes and quality of resources (Fig.4). As a preliminary measure of the level of difficulty, we calculated a 

Light Index for each environment (total light available averaged over time and space). The resulting 

ranking (from easiest to hardest) is SR, SA, MR, MA, LR, SP, LA, MP, LP. The 25 best individuals evolved 

in each environment (225 individuals in total) were later merged and classified into 6 different species 

using clustering techniques (Fig.5). 

For each environment, a population of solutions was obtained using multi-objective optimisation with 

Evolutionary Algorithms [49-53] and the Matlab Program FEX-GODLIKE2. Differential Evolution (DE) was 

chosen after showing the best results when compared to Genetic Algorithms (GA) and Particle Swarm 

Optimisation (PSO) in preliminary tests. DE was able to find lower costs than the other EAs without 

                                                                    
2 Copyright © 2018, Rody Oldenhuis. Copyright © 2006, Joachim Vandekerckhove. Available at 

<https://github.com/rodyo/FEX-GODLIKE>. Access on 03/03/2019. 



 

taking much longer than GA (quickest). The number of individuals per generation was set to 200, as this 

number achieved better results in most of the calibration experiments when compared to 100, 400 and 

800. The maximum number of function evaluations was set to 100,000, although most optimisation 

cycles converged before 30,000. Differential Evolution parameters were set as 95% probability of a new 

genome to be inserted in the population and [-1.5 , 1.5] as lower and upper boundaries of the scaling 

parameter. 

The performance of each genome (parameter set) was measured according to 3 objectives and 

averaged by the number of samples (100 robots). 

Table 3 - List of Optimisation Objectives (J1:3) 

Objective 1 (J1) percentage of total simulation time that each robot survived. 

Objective 2 (J2) residual energy stored in the batteries at the end of the simulation.  

Objective 3 (J3) percentage of the field explored by each robot. 

 

The first objective is the most important of the three, representing the capacity of robots to survive in 

the environments. The second objective is complementary to the first and was introduced as a means 

of ranking solutions which survive the entire simulation. The third objective was introduced to 

encourage exploration and penalize genomes whose original placement happened to be more 

favourable. 

The corresponding Costs (J1:3) are obtained by subtracting the normalized objective from one. Although 

Objective 1 takes precedence over the others in this study, all the three were treated equally in the 

optimisation step. The multi-objective approach was favoured over combining objectives into a single 

fitness function because it improves the diversity of the solutions and preserves the resolution of the 

results for the further steps of the study. To do so, the method of Non-Dominated Sorting (NDS) [52] 

was applied to rank and compare solutions (genomes) in each generation. 

As the algorithm and simulated environment are both stochastic, some measures were adopted to 

compensate for this randomness. Each simulated instance of an environment is created with the same 

random seed, meaning that the position, intensity and duration of every light spot will behave the exact 

same way every time a different genome is simulated in that environment. Also, the score of each 

genome is calculated by averaging the scores of 100 identical robots, which start the simulation in 

different random positions (x and y) in the field. The exact behaviour of individual robots will differ due 

to the stochastic nature of the turning behaviour. 



 

At the end of the optimisation step, all the individuals (genomes) were ranked according to Objective 1 

(with objectives 2 and 3 used to break ties) and the best 25 from each environment were selected for 

further analysis. 

3.3. Characterization of Evolved Genomes 

This step explored the similarities and differences among the best solutions optimised for each 

environment by using clustering techniques to find patterns in the combination of the input parameters 

(genomes). We used the k-means++ algorithm [54] to cluster datasets composed by the best 25, 50, 75, 

and 100 genomes from each environment (all grouped together).  

We also tested 4 distance metrics: squared euclidean distance; sum of absolute differences; one minus 

the cosine of the included angle between points (treated as vectors); one minus the sample correlation 

between points (treated as sequences of values). For each of these methods combined, we tested k 

values (number of clusters) from 1 to 20. The best fit for the clustering was found with 25 of each 

environment (225 genomes), squared euclidean distance, 20 replications, and up to 500 iterations. 

When applying any clustering method, the number of clusters is a key parameter, and using too many 

or too few will make the results uninformative. The quality of any given clustering was quantified in 

terms of the accumulated sum of point-to-centroid distances. When this was plotted against cluster 

number (Fig.6), there was no clear single “elbow” on which to base the choice of optimal cluster 

number. As such, the representativeness of the clusters was further quantified based on a comparison 

between the performance of the individual cluster members and the cluster centroid in all 9 

environments (Section 3.3.1).  

Each application of k-means++ ran with up to 500 iterations and 10 repetitions. On top of that, we ran 

k-means++ clustering 10 times for 3 to 10 clusters (values greater or less than this were clearly 

unsuitable). Ultimately six clusters (K=6) were chosen for this analysis as it provided a balance between 

optimal accuracy and readability of results. In order to facilitate the discussion that follows, each 

cluster will be referred to as a Species. 

3.3.1. Cross-Trials of Evolved Genomes and Centroids 

In this step, the best 25 individuals from each environment (a total of 225) were tested outside their 

native environment. Each simulated instance of the 9 environments was exactly the same as the one 

used in the optimisation step. 



 

The same procedure was adopted for each cluster centroid and the clustering scheme was chosen 

based on the accuracy of the results obtained for the cluster centroid and all its members (Fig.7) 

 

 

5.   Experimental Results and Discussion 

4.1. Parameter Optimisation for Different Environments 

In this step, the algorithm’s input parameters (g1:6) were optimised in 9 different environments. To keep 

the results consistent, all the simulated instances of a certain environment were exactly the same. All 

the optimisation cycles converged between 100 and 200 generations, before the maximum number of 

function calls were reached (Table 4).  

There is a strong correlation (-0.83) between the optimised Cost 1 values and Light Index for each 

environment. However, there is some discrepancy in the order (easiest to hardest) according to the two 

metrics. Specifically, the ranking of environments in terms of the optimised values of Cost 1 (low to 

high) is: SR, MR, SA, LR, MA, SP, LA, MP, LP (Fig.8, Table 4), while the ordering with respect to Light Index 

(total light available in the field, averaged by time) is: SR, SA, MR, SP, MA, LR, LA, MP, LP (Fig.9). In 

general, rich environments perform better in practice than their Light Index would predict. This is a 

logical outcome because there are no “traps” (light spots whose peak intensity is too low to provide a 

net positive battery current over and above the current consumption). 

Furthermore, it must be acknowledged that the optimisation process is stochastic so some solutions 

may be local optima (we are investigating this with more experiments). More generally, the Light Index 

may not capture all relevant aspects of the spatio-temporal light distribution (we are investigating 

alternative metrics). 

 

Table 4 - List of Environments, Experiment Numbers and Optimisation Results 

ENVIRONMENT 
Function 

Eval. 

Minim. 

Cost 1 

Minim. 

Cost 2 

Minim. 

Cost 3 

Number of Non-

Dominated 

Solutions 

Light 

Index Field Size 
Quality of 

Resources 

S 

(150) 

R 10,636 0.000 0.673 0.673 75 40.752 

A 37,093 0.018 0.869 0.869 13 27.614 

P 9,534 0.523 1.000 1.000 8 13.807 

M R 37,699 0.000 0.809 0.809 13 18.338 



 

(225) A 38,256 0.426 0.986 0.986 6 12.422 

P 9,844 0.724 1.000 1.000 13 6.211 

L 

(300) 

R 32,246 0.253 0.952 0.952 12 10.241 

A 40,797 0.671 0.998 0.998 11 6.935 

P 12,854 0.719 1.000 1.000 32 3.468 

 TOTAL: 228,959      

 

4.2. Cross-trials 

In a broad view, we can distinguish two basic groups: one composed by species evolved in Rich and 

Average environments, and the other composed by species evolved in Poor environments: 

❏   Genomes evolved in Rich and Average environments exhibit quite similar performance 

across all Rich and Average environments, generally achieving costs quite close to those of the 

native populations in these environments. They all performed significantly worse than the 

native populations and the other group in Poor Environments (Fig.10). 

❏   Genomes evolved in Poor environments exhibit quite a similar performance in the Poor 

environments, generally achieving costs quite close to those of the native populations, but 

performing significantly worse than the native populations in Rich and Average environments. 

Surprisingly, the genomes evolved in LP outperform the native populations in SP and in MP 

(Fig.10). 

4.3. Characterization of Evolved Genomes 

The results of genotype clustering (Fig.11) reveal some striking patterns. Firstly, at most two species 

feature in each of the 9 environments, with a single species present in five of these. It is also noticeable 

at a first glance that some pairs of clusters are more similar to each others' than to the other clusters (1 

and 2, 3 and 4, 5 and 6), which will also be discussed further ahead. 

The two species from Large Poor (LP) environments (Sp5 and Sp6) appeared to have minimised sigmoid 

position (g6) at the same time that they have maximised sigmoid steepness (g5) (the resulting sigmoids 

are shown in Fig.13). Therefore they evolved to stop suddenly in partially favorable conditions which 

other species would not consider favourable enough to reduce speed or stop. That explains why they 

perform worse in the other environments because they fall into light spots with low intensity (traps), 

missing the better quality food sources available in Rich and Medium environments. 



 

These two Species (Sp5 and Sp6) have also minimized the value of Base Probability of Turn (P0_turn/g3). 

This, combined with relatively high values of Noise Tolerance (g2), means they have evolved an 

unexpected strategy where they virtually never turn, instead moving straight until they hit a light spot 

and stop, exploiting the wrapping boundaries of the world. It can be observed that in these two species 

native to LP, the values of Probability Multiplier (g4) and Turn Variation (g1) are distributed across a 

broad range (particularly when considering Species 5 and 6 together). This makes sense because their 

evolved strategy means that these genes are irrelevant (because they don’t turn). In fact, observation 

of the simulated behaviour suggests that Species 5 and 6 actually exhibit virtually identical behaviour. 

Given that only genes 1 and 4 are functionally irrelevant, they are subject to random genetic drift. The 

clustering algorithm (which is concerned with gene values rather than behaviour) appears to have 

separated these into two species mainly on the basis of high / low values of g4.  

The Large Poor (LP) environment was the only one in which a strategy using no turns at all evolved, and 

as a result the genetic profiles of Species 5 and 6 are strikingly different from all others (see Fig.12). 

Focussing on Species 1 to 4, the differences are more subtle but still significant. Most notably, when 

comparing Species 3 and 4 (evolved in Poor environments SP and MP) to Species 1 and 2 (evolved in 

Rich and Average environments), there is a striking difference in the sigmoid genes (g5 and g6). 

Comparing the resulting shapes of the sigmoids (Fig.13) shows that Species 3 and 4 will stop much more 

suddenly and in lower quality light sources than Species 1 and 2. This is a necessary adaptation to the 

low-quality energy sources available in Poor environments. 

When comparing Species 3 and 4 to each other, the only somewhat significant difference in again in the 

sigmoid genes (g5 and g6). The light intensity required to bring robots to very low speeds is similar, but 

Species 4 has a sharper transition (Fig.13). The behavioural relevance of this is unclear, and the fact that 

these two species perform very similarly in cross-trials (Fig. 6) and are both native to MP (although only 

Species 3 is native to SP) suggests that it is minimal. 

Finally, when comparing Species 1 and 2 the only significant genetic differences are in g4 and g6 (see 

Table 5). The difference in  g6 means that Species 1 (found primarily in Rich environments) slows down 

at somewhat higher light levels than Species 2 (found primarily in Average environments), which is a 

subtle but logical adaptation to higher consistency of good quality energy sources found in Rich 

environments. The fact that Species 1 has a somewhat higher value of ProbMult (g4) is consistent with 

the fact that Rich environments will, on average, have higher intensity light spots and hence steeper 

light gradients. This means that a sensed change in light intensity is more likely to be due to the 

underlying gradient (as opposed to sensor noise), and therefore warrants a stronger effect on turning 

probability. 



 

Table 5 - Decoded Centroid Genome of each species and respective standard deviation 

 

GENE 

g1 g2 g3 g4 g5 g6 

VarAngle NoiseTol BaseProb ProbMult Sigm𝛼 Sigm𝛽 

SPECIES 

1 
109º 

± 33º 

1.64 

± 0.17 

0.003 

± 0.001 

180.7 

± 29.9 

11.8 

± 4.52 

0.27 

± 0.07 

2 
112º 

± 31º 

1.59 

± 0.12 

0.003 

± 0.001 

160.4 

± 38.7 

11.8 

± 3.49 

0.16 

± 0.05 

3 
92º 

± 33º 

1.35 

± 0.11 

0.004 

± 0.004 

150.3 

± 61.2 

36.7 

± 26.60 

0.08 

± 0.04 

4 
85º 

± 29º 

1.41 

± 0.17 

0.004 

± 0.001 

179.7 

± 19.8 

73.7 

± 24.41 

0.11 

± 0.03 

5 
236º 

± 110º 

2.95 

± 1.01 

0.000 

± 0 

169.0 

± 56.8 

91.1 

± 7.06 

0.00 

± 0 

6 
298º 

± 52º 

3.62 

± 0.73 

0.000 

± 0 

35.2 

± 27.5 

94.1 

± 4.22 

0.00 

± 0 

 

6.   Conclusions 

The work presented here leads to two distinct conclusions, one practical and one more academic. From 

a practical perspective, our results suggest that, when suitably tuned, a minimalist C. elegans-inspired 

foraging algorithm can lead to effective navigation to unknown targets even in the presence of 

significant sensor noise. Furthermore, it suggests that this approach could be used to achieve long-

term autonomy by allowing robots to seek out energy sources in their environments. Our simulations 

used realistic physical parameters (speed, current, battery capacity, etc), but these results would 

benefit from validation on real hardware. 

From an academic perspective, the work demonstrates that simple models can serve as an interesting 

and informative test bed for exploring fundamental evolutionary principles. Despite having only six free 

parameters in the behavioural model and two in the environment model, we have achieved results 

representative of the evolutionary differentiation of species. The work replicates, in a very simplified 

form, the way that modest changes in environmental conditions lead to evolutionary adjustments (see 

differences between Species 1 to 4, or between a pigeon and a dove) while sufficiently extreme changes 

can result in the same building blocks being used in fundamentally different ways (see differences 

between Species 5/6 and 1 to 4, or a penguin and a dove). Furthermore, our approach of grouping 

solutions evolved in different environments and then analysing these on the basis of genetic (as 

opposed to behavioural) similarity is novel, to the best of our knowledge, and yielded significant results 

that aligned very well with behavioural outcomes. 



 

 

 

Figure 1 - Flowchart of the control algorithm applied at each time step of a simulation. Top: 

overview. Bottom: detailed flowchart of processes of setting direction (left) and setting speed (mid-

right). Bottom-right: conceptual illustration of the simulation and of the robot. 

 

 

 



 

 
 

Figure 2 - Graphical plots of the simulation of an average genome evolved in a small environment, 

rich in resources (SR). White spots represent attractant resources. Pink dots represent each clone 

robot running the foraging algorithm with the same genome. Asterisk-shaped cyan marks represent 

dead robots. At the beginning of the simulation (0'00), some robots are found to have been 

fortunate to be placed right in a spot of light. At 0'14 to 0'30, many robots are observed to have 

found light spots. In 1'14, some of the clone robots started to run out of battery (and die). Right 

after 1'14, a light spot at the top-centre of the screen extinguishes, being instantly replaced by 

another one, in the bottom right. From 1'15 to 1'21, the dispersion of the robots that were feeding in 

the extinguished light spot can be observed. 

 

 



 

 
 

Figure 3 - Comparison of two individuals/genomes evolved in a small environment, rich in 

resources (SR), observed at time 0'00". Genome A (left) is less evolved than B (right). White spots 

represent attractant resources. Pink dots represent each clone robot running the foraging 

algorithm with the same genome. 

 

 

 



 

 

Figure 4 - Simulated Environments. Left: environmental parameters Field Size (small, medium, 

large) and Quality of Resources (poor, average, rich). Right: Set of 9 environments resulting from the 

combination (3-by-3) of the environmental parameters. 

 



 

 

Figure 5 - Diagram of the methods of virtual evolution of individuals and classification into species.  

 

 



 

 

Figure 6 - The Accumulated sum of Point-to-centroid distances for different cluster numbers. 

 

 

 

Figure 7 - Compared performance of cluster centroid (black line) and cluster members (colour 

lines), each tested in the 9 environments. Clusters obtained from the best 25 genomes evolved in 

each environments (225 in total). The tight grouping of the cluster members and cluster centroids 

indicate that the clustering was effective, with each cluster representing class of solution (species). 

 



 

 

 

Figure 8 - Minimization of Costs 1, 2 and 3 for all the 9 environments. Each line represents the 

optimisation of parameters g1:6 for a given environment. The model was optimised using the 

Differential Evolution algorithm with 200 individuals per generation.  

 

 



 

 

Figure 9 - Light Index versus Minimised value of  Cost 1 in all Environments. Pearson Correlation 

Coefficient: -0.826; Spearman Correlation Coefficient: -0.9 

 

 

 

Figure 10 - Performance of the best genomes (25 of each environment) in all the 9 environments.  

 



 

 

 

Figure 11 - Results of Genotype Clustering. Top: all members of the six clusters represented as 

spider plots (coloured lines) and the cluster centroid (black lines). Each radial axis of a spider plot 

represents a value (g1:6) of the input vector. Bottom: Distribution of members of each cluster within 

the population of each environment. 

 



 

 

Figure 12 - Bar chart with DNA composition of each species. 

 

 

Figure 13 - Variation in the shape of the speed sigmoid function for the centroid of each cluster. 
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