
Earth-fixed Trajectory and Map online estimation: building on GES sensor-based SLAM
filters
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Abstract

This paper addresses the problem of obtaining an Earth-fixed trajectory and map (ETM), with the associated uncertainty, using
the sensor-based map provided by a globally asymptotically/exponentially stable (GES) SLAM filter. The algorithm builds on an
optimization problem with a closed-form solution, and its uncertainty description is derived resorting to perturbation theory. The
combination of the algorithm proposed in this paper with sensor-based SLAM filtering results in a complete SLAM methodology,
which is directly applied to the three main different formulations: range-and-bearing, range-only, and bearing-only. Simulation and
experimental results for all these formulations are included in this work to illustrate the performance of the proposed algorithm under
realistic conditions. The ETM algorithm proposed in this paper is truly sensor-agnostic, as it only requires a sensor-based map and
imposes no constraints on how this map is acquired nor how egomotion is captured. However, in the experiments presented herein,
all the sensor-based filters use a sensor to measure the angular velocity and, for the range-only and bearing-only formulations, a
sensor to measure the linear velocity.

Keywords: SLAM, Procrustes Problem, Perturbation Theory, Mapping, Robotics.

1. Introduction

Search and rescue, surveillance, and the automatic inspec-
tion of critical infrastructures and buildings, such as bridges,
electric power lines, dams, and construction sites, have been
recently acknowledged as challenging and promising applica-
tion scenarios for the use of unmanned aerial vehicles (UAVs)
(see [1, 2, 3, 4, 5, 6] and references therein). Navigation and
positioning systems are of the utmost importance in the de-
velopment of these vehicles, particularly in mission scenarios
where geo-referencing is not possible. Near these structures,
the global positioning system (GPS) signal can be severely de-
graded and the magnetic field is locally distorted, precluding
the use of GPS receivers and magnetometers. Therefore, either
indoors or outdoors, relative positioning systems are fundamen-
tal to accomplish any given mission, avoid collisions, or even
to maintain stability.

The use of aided navigation techniques, such as simulta-
neous localization and mapping (SLAM) algorithms, aims at
solving this problem without using these, possibly compro-
mised, sensing devices. SLAM is one of the most important
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parts of any autonomous system, and has been the subject of
an extensive body of work by the research community. Aside
from a myriad of variations on filtering techniques, applica-
tions, and sensors, there are three fundamental types of SLAM
problems: range-and-bearing SLAM (RB-SLAM), range-only
SLAM (RO-SLAM), and bearing-only SLAM (BO-SLAM).
Landmark measurements for the latter sub-problems have a
lower dimension than the considered mapping space, since a
single noise-free observation provides only a line or surface
as an estimate for the relative position of the landmark. Con-
versely, the more usual SLAM problem is sometimes referred to
as range-and-bearing SLAM to underline the case where all the
relative coordinates of measured landmarks are readily avail-
able. The interested reader can see [7] and [8] for a thorough
survey on the algorithms proposed in the first decades of SLAM
research, [9] for a specialized review of visual SLAM, [10] for a
more up to date review focused in the recent theoretical achieve-
ments and [11] for an overarching survey on the history and
remaining present and future challenges of SLAM, e.g., robust-
ness and scalability, within others.

Being an intrinsically nonlinear problem, SLAM formula-
tions tried to tackle two difficult theoretical challenges that are
connected: algorithm inconsistency (see [12] and [13]) and
convergence/stability (see [14], [15], [16] and [17]). Even
though more involved strategies have since appeared, the robo-
centric framework proposed in [18] aimed at tackling the incon-
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sistency of EKF-SLAM while keeping the convergence prob-
lem open. It has also been used for computational gains,
as in [19]. A natural evolution was to fully embrace the
robocentric/sensor-based concept and free the filtering process
of the pose of the vehicle. This was the approach considered
in previous works by the authors, where globally asymptoti-
cally stable (GAS) sensor-based SLAM filters for 2-D and 3-D
RB-SLAM were proposed, see [20] and [21] respectively. This
trend was then applied successfully to RO-SLAM [22] and BO-
SLAM [23] filters with exponential convergence (GES). These
filters represent all landmark positions in the vehicle/sensor co-
ordinate frame, making the positioning of the vehicle in the map
trivial by construction (i.e. at the origin and aligned with the
sensor frame) and consequently, not included in the state vec-
tor. The framework of the sensor-based SLAM filter is then
completely independent of the inertial frame, as every input
and state are expressed in the body-fixed frame. Nevertheless,
most SLAM algorithms perform the mapping and localization
in an inertial reference frame, as many applications require the
inertial (or Earth-fixed) map and the trajectory of the vehicle.
Examples of such applications are the fusion of maps resulting
from different vehicles running separate sensor-based SLAM
filters, or the same vehicle in different complementary scans of
the environment, for which a consistent description of the maps
and their uncertainty are of great relevance. For that reason,
recovering the pose of the vehicle is important, and it is possi-
ble to do by matching the Earth-fixed map and the sensor-based
map provided by the SLAM filter.

The authors have proposed a two-part strategy to tackle the
problem of developing an online SLAM algorithm for un-
manned aerial vehicles with global convergence properties.
This strategy encompasses: (i) a sensor-based SLAM filter
which estimates the landmark map and other vehicle related
quantities expressed in the body-fixed frame; and (ii) an Earth-
fixed Trajectory and Map (ETM) estimation algorithm resulting
from an optimization problem with closed-form solution, which
uses the sensor-based map estimate of the SLAM to provide
a fully characterized uncertainty approximation for this highly
nonlinear problem.

The approach presented in this paper generalizes the dual
algorithm for the bidimensional RB-SLAM case proposed in
[24], and the tridimensional RB-SLAM case first presented
in [25]. In comparison with these preliminary conference
works, which were examples of this idea applied to range-and-
bearing sensor-based filters, this paper now presents: (i) the n-
dimensional uncertainty characterization of the complete algo-
rithm (which includes the computation of the new map as well
as that of the pose); (ii) new simulations for the range-only for-
mulation that explore the overall behaviour, as well as some of
the decisions in the design of the algorithm; and (iii) results of
new experiments for range-and-bearing SLAM in its bidimen-
sional and tridimensional formulations, using a LiDAR and a
Kinect camera respectively, as well as a larger experiment for
bearing-only SLAM using a monocular camera and data from a
widely available dataset, the Rawseeds dataset [26, 27]. In the
proposed dual strategy, the pose of the vehicle can be estimated
by matching the sensor-based and inertial maps, assuming that

an initial Earth-fixed estimate is available. This counters the
pure sensor-based framework, where the map obtained with the
SLAM algorithm is expressed in the body-fixed frame. There-
fore, in order to test the proposed algorithm, it is necessary to
obtain sensor-based maps from other sources: the experiments
presented herein complement previous purely sensor-based re-
sults in [20, 22, 21, 23].

The problem that underlies the algorithm proposed in this pa-
per can be reduced to the computation of the transformation that
maps two sets of points (Earth-fixed and sensor-based). This is
usually called the Procrustes Problem [28]. Its generalization
for rotation, translation and scaling has been subject of exten-
sive research in areas such as computer vision applications, and
can be traced back to [29] and [30]. The statistical character-
ization of this problem has also been the subject of study in
works such as [28], [31], and [32]. However, some rather limit-
ing options were taken, namely, the absence of weighting of the
point sets, the use of small rotations, or the same covariance for
all landmarks. This work proposes a methodology for obtain-
ing the inertial map and the pose of the vehicle corresponding
to a body-fixed map produced by a sensor-based SLAM filter,
which builds on the n-dimensional formulation of the orthogo-
nal Procrustes problem in [33] along with the thorough uncer-
tainty characterization therein. It must be noted that [33] only
deals with the equivalent of computing the pose in one partic-
ular instant, as opposed to an online computation of the pose
along with the update of the inertial map. This is achieved re-
sorting to perturbation theory, by considering arbitrary rotations
and translations, individual weights, and individual covariance
matrices for the landmarks of the inertial map. The results in
this paper also hold for n-dimensions, which means that they
can be applied directly to existing 2-D and 3-D algorithms, as
shown by a variety of simulated and experimental trials herein
reported.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an overview of the overall algorithm of which
this work is an integral part, including the description of the
generic sensor-based SLAM filter that complements this work.
In Section 3, the ETM algorithm is described in detail, includ-
ing the problem formulation, the uncertainty characterization,
and the underlying Procrustes problem. Simulation results us-
ing a sensor-based RO-SLAM filter are presented in Section
4, and experimental results of three different implementations
of sensor-based filters (2-D RB-SLAM, 3-D RB-SLAM, BO-
SLAM) using different exteroception sensors are detailed in
Section 5. Finally, concluding remarks and some directions for
the future are presented in Section 6.

Notation. The superscript E indicates a vector or matrix ex-
pressed in the Earth-fixed frame {E}. For the sake of clar-
ity, when no superscript is present, the vector is expressed in
the body-fixed frame {B}. In is the identity matrix of dimen-
sion n × n, and 0n×m is a n by m matrix filled with zeros. If
m is omitted, the matrix is square. S(a) is a special skew-
symmetric matrix, henceforth called the cross-product matrix,
as S(a) b = a × b with a,b ∈ R3. The skew operation is invert-
ible, with S−1(S(a)) = a. The generalized anti-commutation
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matrix S̄[a] ∈ R
n(n−1)

2 ×n defined in [33, Definition 2] is also
necessary. For n = 3 it reduces to S(a), and for n = 2 it is
S̄[a] := aT S(1). The matrix norm of a generic matrix A is de-
fined as the Frobenius norm ‖A‖2 = tr

(
AAT

)
, and the deter-

minant is denoted as det(A) or |A|. The expected value of any
quantity is denoted by the symbol 〈.〉.

2. The complete methodology: an overview

The algorithm proposed in this paper was designed to com-
plement a sensor-based SLAM filter, as part of a SLAM
methodology that provides estimates in both the body-fixed
frame and the local inertial/Earth-fixed frame. The final objec-
tive is to build a system that integrates a backend that performs
the mapping in a relative frame, thus guaranteeing convergence
and consistency, as well as a frontend that fixes that map to an
Earth-fixed, or inertial, frame while providing the pose of the
vehicle and the map expressed in the new coordinates. A dia-
gram of the overall structure of the proposed SLAM methodol-
ogy is presented in Fig. 1: (i) the exteroception sensor for each
particular formulation provides data from which landmarks are
detected and associated with the map. The particulars of the as-
sociation process depend on the type of formulation and can be
found in their respective papers [20, 21, 22, 23]; (ii) the mea-
surement innovation vector is computed, and the observed/non-
observed landmark sets are updated; (iii) the GES Kalman fil-
ter uses the proprioception data and the innovation to update
the relative map and any vehicle variables (linear velocity, rate
gyro bias, etc). Finally, (iv) this is then fed to the ETM algo-
rithm proposed in this paper, which serves as the frontend and
computes the pose and Earth-fixed map. A brief description of
the sensor-based filter is provided in the next subsection, as an
introduction to the ETM algorithm further detailed in Section
3. For an in-depth overview of the contents of this section, with
expanded system design, observability results, and practical re-
sults, see [34].

2.1. Sensor-based SLAM

Building on the idea of robocentric filtering, [20] and [21] ad-
dress the problem of designing a navigation system in a sensor-
based framework for a vehicle capable of sensing the relative
positions of landmarks in a previously unknown environment,
in 2-D and 3-D respectively. This is done resorting to a purely
sensor-based SLAM filter where no linearization or approxima-
tion is used whatsoever and pose representation in the state is
suppressed, therefore avoiding its pitfalls. Due to the successful
application of this strategy, further filters were designed in [22]
and [23] for sensor suites measuring only ranges or bearings to
landmarks. This subsection presents a brief overview of the fil-
ters proposed in those papers, which are shown to have globally
asymptotically/exponentially stable error dynamics and serve
as groundwork for the Earth-fixed Trajectory and Map estima-
tion algorithm proposed in this work.

2.1.1. System design
Let {E} denote the local inertial frame, hereafter referred to

as the Earth-fixed frame, and {B} denote the body-fixed frame,
also known as the sensor-based frame, and R(t) ∈ SO(n),
n = 2, 3, the rotation matrix that relates {B} and {E}. This
satisfies Ṙ(t) = R(t)S(ω(t)), where ω(t) ∈ R

n(n−1)
2 is the an-

gular velocity, expressed in body-fixed coordinates. Let also
Ep(t) ∈ Rn denote the position of the origin of {B} described in
{E}, and v(t) ∈ Rn the velocity of the vehicle relative to {E}, ex-
pressed in {B}. The position and a map of the environment can
be obtained using a SLAM algorithm, considering that the vehi-
cle is equipped with: (i) a sensor that can measure information
about the relative position, distance or direction, of landmarks,
either naturally extracted from or artificially placed in the en-
vironment; as well as (ii) a triad of orthogonally mounted rate
gyros; and, optionally, (iii) a sensor capable of measuring the
linear velocity v(t).

In SLAM state-space formulation, the full state vector x(t) ∈
Rnx , can be decomposed into vehicle specific variables depen-
dent of the application, and landmark variables. These last con-
tain the relative position and any further information regarding
the corresponding landmark. Consider now that the N land-
marks are divided in two different sets, depending on their visi-
bility status: MO := {1, . . . ,NO} containing the NO observed or
visible landmarks and MU := {NO + 1, . . . ,N} containing the
NU unobserved, or non-visible, ones. Landmarks belonging to
MO will have some kind of system output associated, which
leads to the definition of

yi(t) = f(pi (t)), i ∈ MO

where yi(t) can be equal to pi (t), ‖pi (t)‖, or pi (t)
‖pi (t)‖

, depending on
whether the SLAM filter is based on range-and-bearing, range-
only, or bearing-only measurements, respectively. Combining
this information with the dynamics of the relative position of
each landmark expressed in {B}, denoted as pi (t), it is now pos-
sible to write the generic nonlinear systemṗi(t) = −S(ω(t)) pi (t) − v(t) i ∈ M

y j(t) = f(p j (t)) j ∈ MO
. (1)

Note that this system implies that the landmarks pi (t) are static
in the Earth-fixed frame {E}, i.e.,

E ṗi(t) = 0, ∀i ∈ M.

Depending on the chosen output equation, this system can be
seen as linear time-varying (LTV), and, in the situations where
it cannot, the authors in [22], [21], and [23] have transformed it
with a suitable state augmentation and output transformation to
yield an LTV-like system of the formẋ(t) = A(t, y(t),u(t))x(t) + B(t, y(t),u(t))u(t)

y(t) = C(t, y(t),u(t))x(t)
. (2)

where x(t) ∈ Rnx is the augmented state, y(t) ∈ Rny is the
(possibly) transformed output, u(t) ∈ Rnu is the system in-
put, and A(t, y(t),u(t)) ∈ Rnx×nx , B(t, y(t),u(t))Rnx×nu , and
C(t, y(t),u(t))Rny×nx are the dynamics, input and output matri-
ces that define the LTV system.

3



Figure 1: Diagram of the overall SLAM algorithm.

2.1.2. Observer design

In the referred papers, the observability analysis of each
transformed system (2) is performed and conditions for the uni-
form complete observability are found. This analysis leads to-
wards the design of a state observer, such as the Kalman fil-
ter for linear time-varying (LTV) systems, with globally expo-
nentially stable error dynamics. It is also shown this observer
converges exponentially fast to the true state of the nominal
nonlinear system (1), thus effectively doubling as an observer
for that system. The implementation of a SLAM filter for the
resulting LTV system follows naturally with a linear discrete-
time Kalman filter [35, 36], as all the sensors and the process-
ing units are sample-based. Thus, the resulting discrete sys-
tem is assumed to be perturbed with zero mean Gaussian noise,
the measurements are assumed to be uncorrelated, and the esti-
mates of the filter are characterized by their mean x̂k and covari-
ance Σxk , where tk = t0 + k Ts, Ts is the sampling time, k ∈ N0,
and t0 is the initial time.

2.2. Problem Statement

To complement the sensor-based filter, and due to the pos-
sible interest in obtaining Earth-fixed estimates for the vehicle
pose and the environment map, there is a need for a strategy that
takes the body-fixed map and the initial position and attitude as
inputs and is able to compute for each time instant the current
Earth-fixed map and the pose of the vehicle. For that purpose,
the problem addressed in this paper is that of designing an al-
gorithm to compute the Earth-fixed trajectory and map based
on the information provided by a sensor-based SLAM filter as
detailed in subsection 2.1. The idea is to write an optimization
problem that can be related to the orthogonal Procrustes prob-
lem, and provide a characterization of the resulting uncertainty
using perturbation theory.

3. Earth-fixed Trajectory and Mapping

This section formulates an optimization problem with a so-
lution that corresponds to an estimate of the transformation be-
tween the body-fixed frame {B} and the Earth-fixed reference
frame {E}, yielding the algorithm here proposed. An error func-
tion is defined and then used to construct a cost function for the
optimization problem. The algorithm builds on the derivation
in [33] and the uncertainty characterization proposed therein,
and aims at estimating, in real time, both the vehicle trajectory
and the Earth-fixed map described in the same frame, with the
respective uncertainty characterization.

3.1. Formulation and Solution of the Problem

The fundamental idea is to use the known sensor-based land-
marks pi to formulate an optimization problem with a closed-
form solution to enable the real-time estimation of the trans-
formation from {B} to {E} at each time instant k, which is de-
fined by the position and orientation of the vehicle in {E}, re-
spectively denoted as Epk ∈ Rn and Rk ∈ SO(n). This can
be accomplished in several ways, however, the computation of
the resulting transformation uncertainty depends highly on the
choice of error that is minimized. Considering that the initial
pose of the vehicle in {E} is known a priori in any SLAM algo-
rithm, as everything is then rooted back to that initial position
and orientation. By design, the sensor-based filter provides a
landmark map in the body-fixed frame, which means that the
Earth-fixed map is readily available in the first instant. Assum-
ing that the Earth-fixed landmarks considered for the ETM al-
gorithm are static, as the vehicle navigates through the environ-
ment maintaining visibility with some of the previously visible
sensor-based landmarks, it is always possible to compare the
sensor-based map with that initial Earth-fixed map, which can
be updated with new landmarks as they appear. This compari-
son fits precisely in the definition of the orthogonal Procrustes
problem.
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Figure 2: Summary of the work performed with the objective of designing the
Earth-fixed Trajectory and Map estimation algorithm, showing the focus on
the uncertainty of the Procrustes problem in [33] and the complete algorithm
described in this paper.

Definition 1 (The orthogonal Procrustes Problem). The
problem of finding the translation and rotation that best
describe the transformation between two related sets of points
is called the Procrustes problem, named after a character in
Greek mythology who made his victims fit his bed by either
stretching their limbs or cutting them off [37].

A closed-form solution to a particular formulation of this prob-
lem was first found in [38]. However, the uncertainty of that
solution when the two sets are perturbed by noise is still a sub-
ject of research. In order to allow the use of this existing possi-
bility in the problem at hand, it is necessary to have a measure
of the resulting uncertainty. That is the focus of [33], where
perturbation models consisting of deterministic and perturbed
parcels are used to allow the computation of the covariances
for the rotation and translation estimation errors as shown in
Figure 2. Thus, [33] lays the foundation for the design of the
Earth-fixed algorithm presented here, not only because it pro-
vides a method to compute the pose of the vehicle with its un-
certainty characterization, but also because the methodology
used therein can then be also applied to the step of updating
the Earth-fixed map, allowing its uncertainty characterization
as well. In summary, the proposed algorithm resorts to the so-
lution of the orthogonal Procrustes problem presented in [33]
to obtain the transformation between the sensor and Earth-fixed
frames at each time instant, thus yielding the vehicle trajectory
in the Earth-fixed frame. However, this implies that there is al-
ready a known Earth-fixed map of landmarks Epi , i ∈ M. With
the static assumption, and having the sensor-based map, it is
always possible to estimate the pose of the vehicle, using the
Procrustes solution, and to initialize the Earth-fixed map by us-
ing the current vehicle pose estimate. Furthermore, it is also
possible to update the current estimate of each landmark of the

Earth-fixed map.
In general, at a given time instant k, if E p̂k and R̂k are known,

the update for each Earth-fixed landmark estimate can be com-
puted using

E p̂ik = R̂kp̂ik + E p̂k, (3)

for all i ∈ {1, . . . ,NM}. This algebraic loop may be averted if
it is noticed that, as the landmarks in {E} are static, there is
also an equality between Epik−1

and Epik . This step is of the
utmost importance in the design of the algorithm, and yields
the following error function

Eeik = E p̂ik−1
− R̂kp̂ik −

E p̂k, (4)

for k > 0, that represents the error between the previous esti-
mate of the Earth-fixed landmark and its sensor-based homolo-
gous at time k, rotated and translated with the estimated trans-
formation. Naturally, dynamic landmarks cannot be dealt with
by this strategy, but that is outside the scope of the algorithm.
In fact, if dynamics landmarks are mapped, their dynamic be-
haviour will prevent future data associations and lead to their
being eventually discarded. The pair

(
Rk,

Epk

)
can be obtained

using the optimization problem(
R∗k,

Ep∗k
)

= arg min
Rk ∈ SO(n)

Epk ∈ Rn

G
(
Rk,

Epk

)
, (5)

considering the cost function

G
(
Rk,

Epk

)
=

1
NT

NT∑
i=1

σ−2
ik ‖

Eeik‖
2.

The complete uncertainty present in the error function (4) is
dependent on the uncertainty of the landmark estimate in each
frame. However, in order to use the full uncertainty of the error
function, the rotation from {B} to {E} would have to be known,
which is not possible before solving the problem. For that rea-
son, the uncertainty is approximated by the largest eigenvalue
of each covariance summed, thus providing a conservative esti-
mate of the uncertainty present in each pair

(
Epik−1

,pik

)
. This is

represented by σ2
ik

, which is conservatively defined as

σ2
ik = λmax(ΣE pik

) + λmax(Σpik
)

≥ λmax(ΣE pik
+ RkΣpik

RT
k ).

Note that the number of landmark pairs used in the ETM algo-
rithm, NT , may be different from the available number of land-
marks, N, depending on the set of pairs of landmarks used in the
optimization problem. It may be beneficial to use only a subset
containing, for instance, the most recently visible (or least un-
certain) landmarks in the sensor-based frame and their Earth-
fixed analogous, provided that the dimension of the resulting
sets is greater, if possible, than a predefined threshold. Other
possibility is to choose the subset of sensor-based landmarks
whose filtered estimates have already converged. Reducing the
number of landmarks makes the algorithm more computation-
ally efficient, and the threshold may be imposed to guarantee
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the numerical robustness and statistical consistency of the al-
gorithm (see [33, Section 5] for more information on this). As
mentioned before, the optimization problem (5) is in fact the or-
thogonal Procrustes problem as solved in [29] and [28], whose
uncertainty characterization is proposed in [33]. From the orig-
inal optimization problem it is known that the optimal transla-
tion is given by

Ep∗k =
1∑NT

j=1 σ
−2
jk

NT∑
i=1

σ−2
jk

(
E p̂ik−1

− R∗kp̂ik

)
= µEk

− R∗kµBk

(6)

which is the vector that translates the weighted centroid of the
sensor-based landmarks µBk

rotated to {E} to the weighted cen-
troid of the Earth-fixed landmarks µEk

. The optimal rotation is
given by

R∗k = Uk diag (1, · · · , 1, |Uk ||Vk |) VT
k , (7)

where Uk and Vk come from the singular value decomposition

UkDkVT
k = svd

NT∑
i=1

σ−2
jk

(
E p̂ik−1

− µEk

) (
p̂ik−1
− µBk

)T
.

The Earth-fixed map estimate at instant k is computed us-
ing the update equation (3), following the computation of the
optimal translation and rotation using the sensor-based map es-
timate of instant k and the Earth-fixed estimate of the previous
iteration.

The work presented in this section, including the estimates
for the vehicle pose, given by (6) and (7), and the update equa-
tion (3), allows the real-time computation of the vehicle trajec-
tory and the Earth-fixed map. However, the ETM algorithm
here described assumes the knowledge of the uncertainty of
both the Earth-fixed and sensor-based landmark estimates. The
latter is directly provided by the SLAM filter, but the former is
yet to be described. The scope of this section is also to provide
uncertainty descriptions of the estimates yielded by this algo-
rithm, using perturbation theory and building on previous work
proposed in [33].

3.2. Earth-fixed pose uncertainty characterization

The solution of the optimization problem (5) is based on the
weighted orthogonal Procrustes problem. When dealing with
sets of points stochastically perturbed as inputs, the result is it-
self perturbed and therefore it is important to look at the pair
rotation-translation that is the solution along with a suitable un-
certainty description. In [33] the authors studied thoroughly
the underlying uncertainty and derived analytical expressions
for the first and second moments of the stochastic outputs, the
translation and rotation, as well as cross terms that characterize
the anisotropic uncertainty of the problem, not imposing as-
sumptions on the actual rotation and translation. For the prob-
lem at hands, this is done assuming the error models

pik = p(0)
ik

+ ε p(1)
ik

+ O(ε2) (8)

and

Epik = Ep(0)
ik

+ ε Ep(1)
ik

+ O(ε2), (9)

for the input landmark sets, while the translation and rotation
follow the models

Ep∗k = Ep(0)
k + ε Ep(1)

k + O(ε2) (10)

and

R∗k =
(
In + ε S($) + O(ε2)

)
R(0)

k , (11)

where ε is the smallness parameter, the notation O(εm) stands
for the remaining terms of order m or higher, (.)(0) are the zero
order terms or true values, and the first order terms, (.)(1), are
assumed to follow a known distribution with zero mean and co-
variance matrices defined by Σ(.) = 〈(.)(1)(.)(1)T

〉. The resulting
covariances for the rotation error $ ∈ R

n(n−1)
2 and for Ep∗k are

thoroughly defined in [33, page 214], where they are denoted
by Σω and Σt. In this paper, however, they are henceforth pre-
sented as Σ$k and ΣE pk .

3.3. Earth-fixed map uncertainty characterization

The Earth-fixed map estimation depends on the translation
and rotation estimates, as well as on a sensor-based map. Then,
it is expected that the associated uncertainty will include terms
related to the uncertainty of each one of these components, as
well as cross covariance terms. Recall that the Earth-fixed map
estimate is calculated with the update equation (3). Using this
expression and the error models (8), (9), (10), and (11) it is
possible to write

Ep(0)
ik

= Ep(0)
k + R(0)

k p(0)
ik

(12)

and

Ep(1)
ik

= Ep(1)
k + S($k) R(0)

k p(0)
ik

+ R(0)
k p(1)

ik
. (13)

Looking at (12), it is confirmed that Ep(0)
ik

is the true quantity.
Furthermore, from (13), it can be seen that Ep(1)

ik
has zero mean,

since all the quantities that compose it are themselves true quan-
tities or have zero mean. The covariance matrix of the landmark
position estimate is given by

ΣE pi jk
= 〈Ep(1)

ik
Ep(1)

k j

T
〉

= ΣE pk + R(0)
k Σpi jk

R(0)
k

T

+ 〈Ep(1)
k p(1)

jk

T
〉R(0)

k
T

+ R(0)
k 〈p

(1)
ik

Ep(1)
k

T
〉

+ S̄T[R(0)
k p(0)

ik

]
Σ$k S̄

[
R(0)

k p(0)
jk

]
+ S̄T[R(0)

k p(0)
ik

]
Σ$k

E pk + ΣT
$k

E pk
S̄
[
R(0)

k p(0)
jk

]
+ S̄T[R(0)

k p(0)
ik

]
〈$kp(1)

jk

T
〉R(0)

k
T

+ R(0)
k 〈p

(1)
jk
$T

k 〉S̄
[
R(0)

k p(0)
jk

]
,
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where the covariances ΣE pk and Σ$k , and the cross-covariance
Σ$k

E pk are denoted as Σt, Σ$, and Σ$t in [33, pages 214-215].
The cross-covariances between the translation and the body-
fixed map and between the rotation and the body-fixed map can
be computed using 〈t(1)r(1)

j
T
〉R(0)

k and 〈ω(1)r(1)
j

T
〉R(0)

k, detailed in
[33, Section D, supplementary material]. Finally, the cross-
covariances between sensor-based landmarks p(1)

ik
at time k and

older Earth-fixed landmarks Ep(1)
ik−1

for all i and j are assumed to
be zero.

3.4. Implementation details

For the initialization of the Earth-fixed Trajectory and Map-
ping (ETM) algorithm, the traditional SLAM approach can be
followed, by assuming that the transformation between Earth-
fixed and sensor frames is known at time k0, thus yielding nat-
urally the landmark map in {E} from the sensor-based map in
{B},

E p̂i0 = R0p̂i0 + Ep0,

with
ΣE pi j0

= R0Σpi j0
RT

0 .

Therefore, all the estimated Earth-fixed quantities are computed
with respect to the initial pose. In a range-and-bearing formula-
tion, where relative positions of landmarks are readily available
on first observation, the use of this strategy is straightforward.
However, for its use in conjunction with range-only or bearing-
only filters, special care must be taken. Due to the fact that
the algorithm uses the first observation as an Earth-fixed esti-
mate, the algorithm can only be used when the uncertainty is
low enough. Therefore, the first Earth-fixed pose estimate may
not correspond to the beginning of the run. However, it is possi-
ble to use a GES smoothing filter to improve the initial sensor-
based map estimates and then compute the missing trajectory.

It is important to notice that in this procedure, an inertial
landmark is only updated if the associated uncertainty decreases
in that iteration. Thus, in each iteration, the candidate inertial
landmarks covariance matrix is computed, and a measure of the
uncertainty in each ΣE pik+1

is compared to its previous value.
If the uncertainty is raised, then the old covariance is kept and
the cross-covariances between an updated landmark and a non-
updated one is set to zero, i.e., ΣE pi jk+1

= 0 for all j , i. There
are many possible measures of the covariance, from the volume
of the covariance ellipsoid (proportional to the determinant of
ΣE pik

) to the size of its largest axis (the maximum eigenvalue).
In this work, the trace of ΣE pik

is used.
In the event that the attitude of the vehicle is provided by an

external source, such as an AHRS [39], then only the Earth-
fixed position and map need to be estimated using (6) and (3).
In that case all the cross-terms involving $k are zero and Σ$k

must be either estimated or provided by the AHRS. Further-
more, if a relative map is obtained in a world-centric frame-
work, as in [40], the position and Earth-fixed map can still be
found as before, and then all the occurrences of R(0)

k p(.)
ik

are sub-
stituted by the correspondent quantity in the world-centric rela-
tive map and all quantities involving $k disappear.

4. Simulation results: Range-only SLAM

The ETM strategy proposed in this paper is completely in-
dependent of the source of the sensor-based map that serves as
input. This means that, as long as it is possible to extract a co-
herent map using range and/or bearing measurements, the ETM
algorithm will be able to match that evolving map to a frame
fixed to the initial pose. However, depending on the source
there are some particularities that influence the result. For ex-
ample, in range-and-bearing or bearing-only procedures where
landmark association is not perfect, the Earth-fixed pose and
map obtained may be impaired by erroneous associations.

To show a situation where this does not occur, consider
the sensor-based range-only SLAM filter proposed by the au-
thors in [22]. This filter uses distances to landmarks and mea-
surements of linear and angular velocities, yielding as output
the body-fixed map (along with other auxiliary quantities). It
should be noted that the association of landmarks is known
for range-only frameworks, since each beacon that communi-
cates with the on-board transceiver sends an identified acous-
tic/electromagnetic signal. Therefore, it is possible to tag each
of the landmarks in the map. A simulated environment was
devised in Matlab to better explore several aspects of the al-
gorithm and showcase its performance (a complete description
of this environment can be found in [41, Appendix C]). This
tries to emulate the fifth floor of the North Tower at IST. It con-
sists of a 16 by 16 by 3 m corridor, where 36 landmarks were
put in notable places such as corners and doors, with random
heights. Since landmarks in range-only SLAM are not observ-
able for all trajectories, the simulated trajectory is designed to
excite the system in all directions to guarantee observability of
the map (see [22] for further details). The aerial vehicle is ini-
tialized on the ground and, after take-off, makes several laps
around the corridor, as shown in Figure 6. The total distance
travelled is 294 meters in 627 seconds, at an average speed of
0.469 m/s, while one single loop of 58 m along the corridor
takes 124 s. All the measurements are assumed to be perturbed
by zero-mean Gaussian white noise, with standard deviations of
σω = 0.05 ◦/s for the angular rates, σv = 0.03 m/s for the lin-
ear velocity, and σr = 0.03 m for the ranges. Taking advantage
of the simulated environment, several runs are performed with
different decision factors for the update step of the algorithm:
the trace of the covariance of the individual landmark, the de-
terminant, the largest eigenvalue (all with comparable accuracy
in the resulting estimates). An additional run with updates ev-
ery time-step is also provided. Statistics for the results of es-
timating position, attitude and maps for these four variants are
presented in Tables 1, 2, and 3. There the mean, standard de-
viation, and root mean square of the absolute trajectory (A.2),
absolute attitude (A.3), and relative pose errors (A.4) (see Ap-
pendix AppendixA for the definitions of each of these errors)
are presented for the three products of the algorithm: position,
attitude, and map. The statistics of a single landmark (see Fig-
ure 4) are also shown in the “1 Landmark” column of Table
3. To allow a better understanding of the performance of the
ETM algorithm, the results for the sensor-based quantities fed
to it are also presented: average landmark error norm and its
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(a) Position estimation error.
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(b) Attitude estimation error.

Figure 3: RO-SLAM: Evolution of the vehicle pose estimation error with uncertainty bounds.

Table 1: Errors for the RO-SLAM simulation results (mean±standard deviation · RMSE), with the different ETM update criteria.

Alg. Position (ATE) [m] Attitude (AAE) [deg]

ETM, trace decrease 0.142±0.115 · 0.183 1.273±0.806 · 1.507
ETM, determinant decrease 0.133±0.091 · 0.161 1.183±0.619 · 1.335
ETM, λmax decrease 0.151±0.115 · 0.189 1.211±0.844 · 1.476
ETM, unrestricted updates 0.511±0.334 · 0.611 4.679±2.549 · 5.328

Table 2: Pose errors (RPE) for the RO-SLAM simulation results (mean±standard deviation · RMSE), with the different ETM update criteria.

Alg. ∆ = 1 frame [m] ∆ = 1 sec [m] ∆ = 1 min [m]

Trace 0.002±0.008 · 0.008 0.016±0.024 · 0.029 0.258±0.134 · 0.291
Det. 0.002±0.007 · 0.007 0.015±0.020 · 0.025 0.242±0.122 · 0.271
λmax 0.002±0.008 · 0.008 0.016±0.024 · 0.029 0.255±0.135 · 0.288
Unrest. 0.002±0.001 · 0.002 0.012±0.008 · 0.014 0.225±0.111 · 0.251

Table 3: Absolute map errors for the RO-SLAM simulation results (mean±standard deviation · RMSE). On top, the sensor-based RO-SLAM results, and below the
ETM results with the different update criteria.

Algorithm 1 Landmark (ALE) [m] Map (AME) [m]

Sensor-based RO-SLAM 0.296±0.457 · 0.544 1.145±6.172 · 6.277
ETM, trace decrease 0.029±0.026 · 0.039 0.171±0.137 · 0.219
ETM, determinant decrease 0.058±0.001 · 0.058 0.170±0.132 · 0.215
ETM, λmax decrease 0.053±0.009 · 0.054 0.179±0.141 · 0.228
ETM, unrestricted updates 0.338±0.397 · 0.521 0.583±0.391 · 0.701
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(a) With covariance trace as decision factor.
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(b) Without restrictions.

Figure 4: RO-SLAM: One particular landmark position error and uncertainty, with two different runs of the algorithm.

(a) Full map.
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(b) Detail of one sensor-based landmark.
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(c) Detail of one Earth-fixed landmark.

Figure 5: RO-SLAM: The spatial evolution of the map covariances. On the left, overlapped snapshots of the Earth-fixed map taken every second. On the center,
details of the evolution of the input sensor-based covariance for one of the landmarks in the map, taken every 100 seconds and rotated to the Earth-fixed frame. On
the right, the corresponding output Earth-fixed covariance every second, respectively. In this figure, the darker the colour of the ellipse the later in the run it appears.

standard deviation for the same single landmark and the whole
map.

Figure 3(a) shows the evolution of the vehicle position esti-
mation error for a typical simulation in solid blue and the ac-
companying 3σ uncertainty bound. It can be seen that the error
is kept at a low level and that the algorithm manages to keep
consistent estimates throughout the run. This assertion is con-
firmed by Figure 3(b), which shows the attitude estimation error
in solid blue and the 3σ uncertainty bounds. Since the attitude
estimates provided by ETM are in the form of a rotation ma-
trix, the attitude estimation error is immediately accessible as
explained in (A.1). This, as the position error, is always low
and inside the confidence interval provided by the uncertainty
characterization. Note that the uncertainty characterization de-
pends solely on the sensor-based map and the vehicle attitude.

Since the trajectory contains periodic repetitions of the pose
of the vehicle, and consequent loop closings occur constantly
throughout the run, the computed uncertainty shows also a pe-
riodic nature. However, there are clear peaks in the position
uncertainty, identified for each direction with a vertical dashed
line. The poses corresponding to these peaks are depicted in
Figure 6(a) following the same colour code.

To understand the impact of restricting updates to uncertainty
decreases, consider Figure 4. On the left side (Figure 4(a)), the
evolution of the error and corresponding uncertainty when the
decision to update is based on the decrease of the trace of the
covariance, and on the right side (Figure 4(b)) the results for
unrestricted updates. It can be seen that not requiring an un-
certainty decrease renders the estimates unstable since the un-
certainty has a rising trend with local decreases. This is con-
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firmed in the average results shown in Table 1, where the errors
are considerably larger and with higher variance than in the re-
stricted versions. On the other hand, using the covariance trace
as the factor provides a fast convergence in all directions, as do
the other restricted versions. Furthermore, the overall map error
throughout the run is decreased from the sensor-based estimates
to the Earth-fixed ones, which is an interesting and expected ef-
fect. Indeed, the inertial model is exact, as the landmarks re-
main constant, which allows for its uncertainty to decrease over
time as more measurements are obtained.
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(a) Top-view of the map.

(b) 3-D map.

Figure 6: RO-SLAM: Earth-fixed map and trajectory with uncertainty bounds
for both landmarks and equally time-spaced poses. Top-view of the map with
the floor blueprint in the background.

To provide a general overview of the results of the ETM al-
gorithm, Figure 6 shows the estimated trajectory and map at
the end of the run. The small quadrotor indicates the pose
at the current moment, the blue line is the estimated path,
the red dashed line is the ground truth, the purple (green) el-
lipses/ellipsoids are the landmarks visible (occluded) at the cur-
rent time. The ellipses along the path represent the 3σ bounds
for the pose estimates at that point. The black circumferences
and red circles are the real landmark and vehicle positions, re-

spectively. These figures show that the map and the estimated
trajectory are quite accurate and the uncertainty characteriza-
tion is consistent with the real level of error displayed.

Finally, Figure 5 shows the spatial evolution of the uncer-
tainty of the whole Earth-fixed map and a detail comparing the
varying uncertainty of a sensor-based landmark, which rotates,
increases and decreases throughout the run, and the correspond-
ing uncertainty of the Earth-fixed estimate. The ellipses from
covariances estimated by the ETM procedure (Figures 5(a) and
5(c)) are taken every second and help visualize the convergence
of the uncertainty and the shapes it assumes throughout time.
To better understand the behaviour of the procedure, the uncer-
tainty ellipses for the same sensor-based landmark are also pre-
sented in Figure 5(b), where the various ellipses were obtained
with intervals of 100 seconds and transformed to the Earth-fixed
frame for a fair comparison. In all of these sub-figures of Fig-
ure 5, the darker the colour of the ellipse the later in the run it
appears.

5. Experimental results

This section provides experimental results for the perfor-
mance and consistency evaluation of the ETM algorithm cou-
pled with the sensor-based SLAM filters in [20], [21] and [23].
Since the ETM algorithm works in cascade after the sensor-
based filter, its performance is obviously dependent on the in-
dividual performance of the latter. The separation of the es-
timation process in these two stages aims at providing a less
uncertain and consistent Earth-fixed trajectory and landmark
map. This assertion is grounded on the notion of performing
control, decision, and loop-closing procedures in the sensor-
based frame, lessening possible effects of nonlinearities in the
filter. However, the final Earth-fixed result is still affected by the
nonlinearity inherent to the problem of arbitrarily transforming
maps between coordinate frames, which is common in EKF-
based SLAM algorithms. It should be noted, that, while the
uncertainty characterization is approximate, it is usually possi-
ble to have always more than 10 landmark pairs in ETM itera-
tions, hence guaranteeing that the uncertainty characterization
is valid, as shown by the extensive tests in [33]. In summary, the
results reported in this section serve as practical validation of
the approach proposed in this paper as a whole and, while still
an indication of the performance of its integral parts, these have
to be viewed together. Those that include position and attitude
ground truth are summarized in Tables 4, 5, and 6, and Figure
7 provides a graphic overview of each experimental setup. An
in-depth report is provided in the remainder of the section.

5.1. Range-and-bearing SLAM
The first of the experiments in this paper combines a sensor-

based SLAM filter for range-and-bearing measurements with
the ETM algorithm. Three runs are detailed: (i) a 60 m long
2-D experiment using a LiDAR without ground truth [20] for
which a video can be found in [42]; (ii) a 20 m long 3-D exper-
iment using an RGB-D camera with ground truth; and (iii) an
80 m long 3-D experiment using an RGB-D camera with par-
tial ground truth (both detailed in [21]) for which a video can
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Table 4: The sensor suites for all the experiments documented in this section.

Quantities Sensors

Landmark position LiDAR (RB-2D) / RGB-D camera (RB-3D)
Landmark bearing Monocular camera (BO)
Linear velocity Odometry (BO) / Estimated by the SLAM filter (RB-2D,RB-3D)
Angular velocity IMU (RB-2D,RB-3D,BO)
Ground truth No GT (RB-2D) / VICON Motion capture (RB-3D) / Industrial cameras + laser scan matching (BO)

Table 5: Errors for the experimental results (mean±standard deviation · RMSE)

Algorithm Position (ATE) [m] Attitude (AAE) [deg]

RB-SLAM (Run 3-D, #1) 0.097±0.076 · 0.124 3.695±3.673 · 5.209
BO-SLAM 1.220±0.494 · 1.316 0.429±1.074 · 1.156

be found in [42]. The sensor suites of the RB-SLAM filters that
feed the ETM algorithm in these experiments are composed of
only two sensors each: a LiDAR or RGB-D camera to measure
relative positions of landmarks and rate-gyros for the angular
velocity. The filters output the map, the linear velocity and the
rate-gyro biases, all expressed in body-fixed coordinates.

5.1.1. 2-D RB-SLAM results
An instrumented quadrotor was hand-driven along a path of

about 60 meters in an indoor environment with a loop, as shown
in Figure 8, at an average speed of 0.4 m/s. The trajectory de-
scribed by the vehicle starts near the middle and moves coun-
terclockwise until some of the first landmarks detected are once
again visible, at the lower right corner. This custom quadrotor
UAV, property of ISR, is equipped with a MEMSENS nanoIMU,
a Maxbotix XL sonar for altitude measurements, and a Hokuyo
UTM-30LX laser scanning device that provides horizontal pro-
files of the surroundings. These are fed to a landmark detec-
tion algorithm, where the data is processed into clusters and a
robust line detection strategy is implemented, which builds on
the basic split and merge algorithm, see [43], using a reduced
space Hough transform parameter fitting for each line, in a sim-
ilar way to the algorithm proposed in [44]. Afterwards, a corner
identification procedure is used to obtain the desired point land-
marks. Further details about the experimental setup regarding
the sensor-based SLAM filter can be found in [20].

Besides the optimization-based Earth-fixed trajectory and
map (ETM) estimation algorithm proposed in this paper, these
experimental results also describe the traditional approach of
augmenting the sensor-based SLAM filter with the pose of the
Earth-fixed frame, hereafter denoted as the AugETM algorithm.
This is done by including the initial position in the filter state
as an artificial landmark and the orientation represented as the
yaw angle, as described in more detail in [24]. With this sim-
ple implementation, it is possible to filter the Earth-fixed posi-
tion as an (un-observable) landmark in the map. This functions
as a kind of dead-reckoning, where the position and orienta-
tion are obtained by integration of the linear and angular ve-
locities (and their associated uncertainties), with the difference
that the former is not measured but estimated by the SLAM fil-

ter. Therefore, there is a significant difference between the two
algorithms, as the uncertainty in the AugETM always grows,
contrary to the ETM that reflects the combined uncertainty of
the two maps.

Using either one of these methods, the trajectory of the ve-
hicle and a consistent map in the Earth-fixed frame can be ob-
tained. The Earth-fixed maps computed using both the ETM
and AugETM algorithms are presented in Figure 10, featuring
the final results of the experimental trial. The landmarks and
their respective 95% confidence bounds are shown in three dif-
ferent styles (solid magenta, dashed yellow, and dash-dotted
light blue), denoting respectively the three sets of landmarks
used for the loop closing step (as described in [20]): i) recently
visible landmarks, ii) old landmarks, and iii) intermediary land-
marks. For the Earth-fixed maps, the trajectory of the vehicle
and the respective 95% confidence bounds are shown (in dash-
dotted green for ETM and in dashed dark blue for AugETM),
whereas the laser sensor readings are shown in solid light gray.
For completeness, the Earth-fixed coordinate frame, which was
added to the filter as an unobservable landmark, is shown in
the sensor-based map (axes shown in red and green, position
and uncertainty in dark blue), along with the vehicle trajecto-
ries computed using both ETM and AugETM, respectively, in
green and dark blue. The main aspects to retain from these
intricate figures are the quality of the Earth-fixed map gener-
ated by the algorithm and the smaller landmark uncertainty of
the Earth-fixed map generated using the ETM, when compared
with the one generated using the AugETM approach.

In the sensor-based framework, as there is no vehicle local-
ization uncertainty and the full map rotates and translates when
the vehicle moves, the uncertainty of the non-visible landmarks
increases with time, thus enabling a consistent sensor-based
map estimation. Conversely, in the Earth-fixed map the land-
marks are assumed static and, therefore, the landmark position
uncertainty is always non-increasing, whereas the vehicle pose
uncertainty may increase indefinitely unless a loop closure sce-
nario occurs. The time evolution of the orientation and posi-
tion uncertainties, using both ETM and AugETM approaches,
are presented in Figure 9. It can be seen that the pose uncer-
tainty computed with AugETM increases even when the vehi-
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(a) RB-SLAM: Run 2-D – Instrumented quadrotor
for data acquisition.
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(b) RB-SLAM: Run 2-D – Laser profile with
detected features.

(c) RB-SLAM: Run 2-D – Picture of the region in
Figure 7(b).

(d) RB-SLAM: Run 3-D – Instrumented AscTec
Pelican quadrotor for data acquisition.

(e) RB-SLAM: Run 3-D – Kinect RGB picture with
detected features.

(f) RB-SLAM: Run 3-D – Kinect pointcloud
corresponding to Figure 7(e).

(g) BO-SLAM: Instrumented ground robot used in
the experimentis in the Rawseeds dataset ([26]
and [27]).

(h) BO-SLAM: Picture of a typical space with
detected features.

(i) The blueprints of the regions covered in all trials.

Figure 7: Information on the experimental setup of each trial described in this section. From top to bottom: RB-SLAM in 2-D, RB-SLAM in 3-D, BO-SLAM. On
the left, the data acquisition platforms for each algorithm. On the bottom right, the locations of the acquisition of each picture/LiDAR scan.

Table 6: Pose errors (RPE) for the experimental results (mean±standard deviation · RMSE)

Algorithm ∆ = 1 frame [m] ∆ = 1 sec [m] ∆ = 1 min [m]

RB-SLAM (Run 3-D, #1) 0.004±0.007 · 0.008 0.070±0.062 · 0.093 0.220±0.132 · 0.256
BO-SLAM 0.029±0.028 · 0.041 0.044±0.032 · 0.055 0.344±0.138 · 0.371

cle is immobilized (first 50 seconds), whereas the pose uncer-
tainty computed by the ETM algorithm remains constant. The
standard state augmentation method is based on the open-loop
integration of the state of the sensor-based filter, noting that the

velocity disturbance noise, necessary for the consistency of the
sensor-based filter, is also integrated to obtain the Earth-fixed
frame position. Conversely, the ETM algorithm uses the best
landmark position estimates in both {B} and {E} frames to com-
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Figure 8: RB-SLAM: Run 2-D – Map and trajectory in the Earth-fixed frame,
obtained using the optimization-based Earth-fixed trajectory and map algo-
rithm, with the floor blueprint on the background.

pute new estimates of the Earth-fixed map and vehicle pose.
The result is notorious when comparing the Earth-fixed land-
mark uncertainties arising from each method in Figs. 10(b) and
10(c). The heading of the vehicle is also shown in Figure 11,
where it can be seen that both transformations provide coherent
results and, notably, that the effects of the magnetic distortions
inside buildings can be devastating. Note that the heading so-
lution provided by the external attitude filter is utterly wrong,
which is a consequence of relying on the IMU magnetometer
readings while indoors.

In the experimental results presented in [20], the moments
just before and right after the loop closure are shown for the
sensor-based map. Loop closings happen when associations
between landmarks in the old and recent sets are found, after
searching periodically using an implementation of the JCBB
algorithm [45]. Even though the loop closing occurs in the sen-
sor space, using only information from the sensor-based SLAM
filter, this transition instant is also presented for the Earth-fixed
map generated for the ETM algorithm, in Figure 12, where a de-
tailed version of the map of Figure 10(b), for the first loop clos-
ing instant, is presented. The landmark associations between
the current and old sets are shown in solid black and the fused
landmarks positions and uncertainty bounds obtained after the
loop closure are also depicted in solid black. These results in-
dicate that the Earth-fixed map provided by the proposed ETM
algorithm is also consistent.
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Figure 9: RB-SLAM: Run 2-D – Vehicle pose uncertainty in the Earth-fixed
frame, using the augmented state approach AugETM (in solid light blue and
dotted dark blue) and using the optimization-based approach ETM (in dashed
green and dash-dotted yellow).

5.1.2. 3-D RB-SLAM results
The above results were complemented for three dimensions

by a series of experiments conducted in the Sensor-based Co-
operative Robotics Research Laboratory - SCORE Lab of the
Faculty of Science and Technology of the University of Macau.
The setup consists of an Asctec Pelican quadrotor equipped
with a Microstrain 3DM-GX3-25 inertial measurement unit
working at 50 Hz and a Microsoft Kinect camera, at 10 Hz
(see [41, Appendix D] for further details on the experimental
setup.).The experiments consisted in moving the quadrotor in-
side a 8m×6m room (usable area of 16 m2) equipped with a
VICON motion capture system [46, 47], a state-of-the-art opti-
cal system that records the movement of objects or people with
millimetric resolution in 3-D, by means of infrared marker-
tracking. This system provides accurate estimates of the posi-
tion, attitude, linear and angular velocities of any vehicle placed
inside the working area with the correct markers. Aside from
the fact that a full tridimensional approach is used here, there
are several aspects of the results herein described that differenti-
ate them from the 2-D case, as the process by which landmarks
are obtained and the existence of ground truth to validate the
results. In summary, the sensor-based SLAM filter used for
these experiments relies on RGB-D (colour and depth) images
acquired by the Kinect. The RGB images are fed to a SURF
implementation [48], which detects a 64-dimensional descrip-
tor of features on the 2-D pictures of the environment. These
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(b) Earth-fixed frame, {E}, using ETM algorithm.

−12 −10 −8 −6 −4 −2 0 2 4 6

−10

−5

0

5

10

 

x [m]

 

y
 [

m
]

Trajectory

Laser profile

Curr. LMs

Old LMs

Gap LMs

(c) Earth-fixed frame, {E}, using AugETM
algorithm.

Figure 10: RB-SLAM: Run 2-D – Maps and trajectories in the sensor and
Earth-fixed frames. Note that the y-axis scale must be inverted so that the
frames used in the algorithm are correctly defined, since the vehicle uses the
north-east-down convention.
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Figure 11: RB-SLAM: Run 2-D – Heading of the vehicle relative to the Earth-
fixed frame, with 2σ confidence bounds, provided by: an external attitude fil-
ter based on magnetometer readings (solid red); the augmented state approach
AugETM (dashed dark blue); and the optimization approach ETM (dash-dotted
green).
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(a) Before loop closure.
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Figure 12: RB-SLAM: Run 2-D – Detailed view of the map and trajectory in
{E}, using ETM algorithm, before and after the loop closing procedure.

features are then matched to a pointcloud built with the depth
image. A greedy association process based on the Mahalanobis
distance and the 64-D descriptor is used to associate new mea-
surements with existing data. Technical details on the actual
implementation can be found in [21]

The results of two different experiments are detailed here.
In the first experiment, depicted on Figures 13-15, the vehi-
cle does not leave the area covered by the VICON system and,
as such, ground truth is always available. The second, longer,
experiment consists of a small lap inside the lab followed by
a larger exploration of the outside corridor as shown in Fig-
ure 16. In both runs, the vehicle is hand-driven at an average
speed of around 0.4 m/s. Figures 13 and 14 depict the posi-
tion and orientation estimates against the ground truth and 95%
uncertainty bounds for the first run. It can be seen that the es-
timates are rather close to the ground truth, and, although there
are some moments where the algorithm is somewhat optimistic,
the overall performance shows consistency. However, the ver-
tical performance is worse than the horizontal one, which is
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Figure 13: RB-SLAM: Run 3-D, #1 – Evolution of the position estimates with
ground truth and uncertainty bounds. Horizontal trajectory (top two figures),
Vertical trajectory (bottom).
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Figure 14: RB-SLAM: Run 3-D, #1 – Evolution of the estimation error of the
Euler angles with uncertainty bounds. From top to bottom: roll, pitch, and yaw.

quite accurate. This is further apparent in Figure 14, where the
pitch and roll are shown to be estimated with higher relative er-
ror. This is most likely due to the lack of vertical motion by
the vehicle (the trajectory is mostly two-dimensional), and the
reduced angle-of-view of the Kinect camera which limits the
vertical separation of landmarks (smaller baseline). Note that
for this filter there is no odometry, and all the linear informa-
tion is being extracted by the association of landmarks detected
in the Kinect pointclouds. Furthermore, this data is also correct-
ing online the bias and any drift introduced by the rate gyros.
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Figure 15: RB-SLAM: Run 3-D, #1 – Top-view of the Earth-fixed map and
trajectory with ground truth and uncertainty bounds.

For this reason, it would be very beneficial to have a trajectory
that excites equally all directions as well as larger horizontal
and vertical fields of view to, respectively, better capture turns
and better differentiate vertical motion. All these aspects con-
tribute to fewer information to extract from the measurements
and consequently worsen the estimation performance. Further-
more, there exists inconsistency in the attitude, which can be
explained by the intrinsic nonlinearity of the problem, made
more extreme by erroneous associations and movements with
large rotations of the camera. Note that in the second run (Fig-
ure 18) this effect is much less noticeable. The ending result of
the run is shown in Figure 15 where a top-view of the Earth-
fixed map is depicted along with the estimated trajectory and
ground truth, demonstrating the good performance of the over-
all algorithm. In this figure, it is noticeable that a number of
landmarks appears inside the lab due to the presence of obsta-
cles not indicated in the blueprint shown in Figure 16 (the lab is
the first room on the left), especially the protection net (see Fig-
ure 7(e)) whose knots are identified as landmarks several times.

Figures 16, 17, and 18 depict the results of the second, larger,
run. In the second run, the vehicle starts inside the usable area
of the lab and, after a small lap inside the room, it is hand-
driven outside the room into the corridor shown in Figure 16
travelling a total of 80 meters at an average speed of 0.4 m/s.
Please note that the VICON system is only available inside the
working area of the lab, and that is why ground truth disap-
pears after around 45 s into the run. In Figure 16, a top view of
the Earth-fixed map along the estimated trajectory (solid blue),
shows the floor blueprint which allows a qualitative validation.
In that figure, the ground truth trajectory (dashed red) obtained
from the VICON is also shown. The trajectory starts inside the
lab and ends in the middle of the corridor, marked by the blue
triangle. The small ellipses are the 2-D projection of the 3σ un-
certainty ellipsoids. The landmark map can be clearly related
to objects in the blueprint which once more indicates the good
performance of the algorithm.

The vehicle has full 3-D motion, as the attitude in Figure 18
and the vertical position in the bottom of Figure 17 reveal. In
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Figure 16: RB-SLAM: Run 3-D, #2 – Top-view of the Earth-fixed map and trajectory with ground truth, uncertainty bounds, and floor blueprint.
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Figure 17: RB-SLAM: Run 3-D, #2 – Evolution of the position estimates with
ground truth (available in the first 60 seconds) and uncertainty bounds. Hori-
zontal trajectory (top two figures), Vertical trajectory (bottom).

the latter, the Euler angles of the vehicle are depicted along with
ground truth, when available, and the 3σ uncertainty bounds
provided by the uncertainty description derived in this paper.
As for the position estimates, once again the horizontal perfor-
mance is better, as there is a drift in the vertical estimate that
was not present in reality. It can be seen that the algorithm per-
forms very well while the ground truth is available, with low
and consistent uncertainty.

5.2. Bearing-only SLAM

The final part of this experimental section reports the use of
the ETM algorithm in conjunction with another sensor-based
SLAM filter, this time tailored for bearing-only measurements
aided by linear and angular velocity measurements. The filter
is proposed in [23] and is tested with real data from datasets ac-
quired by the Rawseeds Project (see [26] and [27]). A black and
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Figure 18: RB-SLAM: Run 3-D, #2 – Evolution of the Euler angles estimates
with uncertainty bounds against the ground truth (available in the first 60 sec-
onds). From top to bottom: roll, pitch, and yaw.

white camera is used to survey the environment and, as in the
3-D RB-SLAM experiments above, a SURF [48] implementa-
tion allows the extraction of natural features from the obtained
images. The remaining data sources are the wheel encoders
which provide body-fixed linear velocity and simulated angu-
lar velocity. Even though it is possible to obtain the angular
velocity (or angular displacements) from both the wheel en-
coders and the inertial measurement unit present in the robot,
both have very high errors (standard deviations above 1.5◦/s).
This results in a very distorted trajectory, when dead-reckoning
the body-fixed linear velocity provided by the odometry and ei-
ther angular velocities. Bearing-only (and range-only) SLAM
algorithms rely greatly on the quality of the ego-motion mea-
surements that drive them, in this case the linear and angular
velocities. This is particularly relevant when the field of view
of the camera is limited to a region in the front of the vehi-
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cle, because, when turning, the camera will quickly lose track
of features that help correct motion information. The avail-
able benchmark solution to monocular SLAM provided in the
dataset, based on the algorithms in [49] and [50], shows pre-
cisely both how the monocular camera filtering results can be
poor, due to the limited field-of-view and the large distance,
and how the odometry is extremely deficient in turns. For these
reasons, the authors decided to use an artificial measurement of
angular velocity, taking the measurement provided by the scan
matching procedure and adding artificial noise with a realistic
standard deviation of 0.15◦/s – obtained from the data in the
3-D range-and-bearing experiments detailed previously. This
noise level can easily be found nowadays in off-the-shelf IMU
like the Microstrain 3DM-GX3-25. The dataset also provides
ground truth from a system based on industrial cameras, visual
tags mounted on the robot, and ad hoc software in select parts
of the trajectory. This ground truth is complemented by what
is called extended ground truth, available for all the trajectory,
which is computed using scan matching from the laser scanners
in the robot. More details of the experimental setup are given in
[23]. The travelled distance in this run is 774 m in 29 minutes,
with an average speed of 0.4 m/s, and, since the trajectory is
purely two-dimensional, only horizontal results are shown here
and on the video available at [42].

Figures 19 and 20 depict, respectively, the estimation error
of the pose of the vehicle and the estimated map and trajectory.
In Figure 19(a), the absolute estimation error (in solid blue)
is accompanied by the uncertainty bounds at σ level (dashed
red) and 3σ (dashed yellow). It can be seen that the uncer-
tainty characterization is, in some cases, very conservative, but
the consistency is maintained throughout the long run. Further-
more, the error is low, with its norm averaging at 1.2 metres.
The attitude in this problem is reduced to the yaw angle, whose
estimation error is presented in Figure 19(b) in blue with the
uncertainty bounds, clearly demonstrating consistency, even if
conservative, and a low level of error (average norm of 0.4◦).

Finally, in Figure 20, the estimated Earth-fixed map and the
vehicle trajectory are depicted, along with the ground truth for
the latter and the executive drawings of the area. To avoid over-
crowding the figures with too much information, the landmark
map and corresponding uncertainty ellipses are presented alone
in Figure 20(a) and the trajectory, ground truth, dead-reckoned
odometry, and uncertainty ellipses at fixed intervals are shown
in Figure 20(b). Even though there is no ground truth for the
estimated map, since the landmarks are obtained through fea-
ture detection, the executive drawings allow a good qualitative
evaluation of the result. As to the trajectory, it can be observed
that the complete SLAM algorithm corrects the odometry with
low error, even though the last part of the map has much higher
uncertainty than the rest. It should be noted that in the sensor-
based BO-SLAM filter no dedicated loop closure procedures
are used, which may explain this effect.

These experiments were designed to practically validate the
optimization-based Earth-fixed Trajectory and Map estimation
algorithm presented in this paper, as part of an integrated two-
step SLAM filter, with the demonstration of consistency and
good performance of the proposed uncertainty characteriza-
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Figure 19: BO-SLAM: Evolution of the estimation error of the vehicle pose.
On top, the two horizontal coordinates of the position estimation error, and on
the bottom, the attitude estimation error in the form of the yaw error.

tion. Furthermore, they allow the performance assessment of
the ETM algorithm under real-world conditions, using the pro-
posed formulation of the Procrustes problem and implementing
it in each time-step to address a relevant robotics issue, SLAM.

6. Conclusions

This paper proposed an optimization-based algorithm that
is part of a novel methodology for simultaneous localization
and mapping. The algorithm, fully characterized uncertainty-
wise, provides estimates of the landmark map and of the at-
titude and position of the vehicle in an Earth-fixed frame, us-
ing only the body-fixed map provided by existing globally con-
vergent filters. Building on the body-fixed map provided by
the sensor-based filter, the problem of obtaining the Earth-fixed
trajectory and map was formulated using an orthogonal Pro-
crustes problem approach. The resulting optimization problem
has a closed-form solution and a statistical description of the
obtained Earth-fixed map is also proposed building on previ-
ous work by the authors. Furthermore, the performance and
consistency of the algorithm were validated in simulation for
a range-only SLAM formulation and experimentally for range-
and-bearing and bearing-only formulations. These results, with
ground truth data, showed also the good performance of the
SLAM algorithm as a whole.

With respect to future work, the authors identify one main
course of action, consisting of the optimization of the imple-
mentation for real-time, which is of paramount importance for
achieving a truly online filter that can be used with autonomous
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(a) Landmark map with uncertainty ellipses. (b) Trajectory with ground truth and uncertainty.

Figure 20: BO-SLAM: The two-dimensional Earth-fixed trajectory and map, with ground truth, executive drawings, and uncertainty bounds.

ground or aerial vehicles. Furthermore, performing new range-
only experiments for sensor-based SLAM to solve the techni-
cal issues found in [22] is an important future step, to have a
complete experimental validation of the ETM algorithm for all
SLAM formulations.

AppendixA. Error computation

Let P ∈ SE(3) represent the transformation from the body-
fixed frame {B} to the Earth-fixed frame {E}, encoding both the
rotation R and the translation Ep, such that[

Epi
1

]
= P

[
pi
1

]
.

Then,P is in fact a representation of the pose of the vehicle and
is given by

P =

[
R Ep
0 1

]
.

It is a matter of computation to see that the inverse transforma-
tion is given by

P
−1 =

[
RT −RT Ep
0 1

]
and that

P
−1
P =

[
RT R 0

0 1

]
= I = PP−1

Given its properties, it makes sense to define the pose estima-
tion error as

BEP = P−1
P̂ =

[
RT R̂ RT (E p̂ − Ep)

0 1

]
.

In order to have the translational error expressed in the Earth-
fixed frame, this error can be multiplied by the actual rotation,
yielding

EP =

[
R 0
0 1

]
BEP

[
RT 0
0 1

]
=

[
R̂RT E p̂ − Ep

0 1

]
.

from where the translational and rotational errors can be ex-
tracted to give

ep = Ep − E p̂,

and
ER = R̂RT .

This last error function is an orthonormal matrix in SO(n), and,
as such, can be parametrized by an angular error. This is a
minimal representation, obtainable using the exponential map
[51]

R = expm (S(θ))

with θ ∈ Rn×(n−1)/2. Therefore, the rotation error is then given
by

eθ = S−1
(
logm(R̂RT )

)
. (A.1)
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With these definitions, it is possible to evaluate both the po-
sition and attitude estimation error of any navigation algorithm.
However, since these are vector quantities, it is advantageous
to obtain scalar quantities for performance evaluation. The first
two are the absolute trajectory error (ATE) given by

AT E(k) = ‖epk‖ =
∥∥∥Epk −

E p̂k

∥∥∥ (A.2)

and the absolute attitude error (AAE) given by

AAE(k) = ‖eθk‖ =
∥∥∥∥S−1

(
logm(R̂RT )

)∥∥∥∥ . (A.3)

These allow an evaluation of the global consistency of the algo-
rithm at a given point. Finally, the relative pose error measures
the local accuracy of the trajectory over a fixed time interval
∆. It encodes the drift of the trajectory, something that can be
useful in certain systems. This is given by

RPE(k,∆) =

∥∥∥∥∥∥[I 0
] (
P
−1
k Pk+∆

)−1
(
P̂
−1
k P̂k+∆

) [0
I

]∥∥∥∥∥∥
=

∥∥∥∥R̂T
k

(
E p̂k −

E p̂k+∆

)
− RT

k

(
Epk −

Epk+∆

)∥∥∥∥ (A.4)

which combines rotational and translational errors in a single
metric, sometimes used in the literature (see, for example, [52]).

Finally, the metric for the quality of a map can be evaluated
by the absolute landmark estimation error

ALE(i, k, F) = ‖Fpi −
F p̂i‖,

for a particular landmark i expressed in frame {F}. When eval-
uating the complete map, the absolute map error is

AME(k, F) =
1
N

N∑
i=1

ALE(i, k, F).

Naturally, each of these metrics can then be averaged through
the run, its standard deviation and root mean square also com-
puted to provide a better and comparable overall view of the
performance.
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