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1. Introduction

Space robots represent a promising technology for on-orbit
servicing and assembly. They can be applied to refuel, repair, and
upgrade existing satellites [1, §55.1], to deorbit space debris [2],
or to build large telescopes or space stations. In the past thirty
years, the investigation of such complex systems led to intense
theoretical and experimental research [3], as well as to the first
in-orbit technology demonstrators. The task of grasping a co-
operative target satellite with a space robot was performed in
the Engineering Test Satellite VII (ETS-VII) and Orbital Express
missions [1, §55.1]. The ETS-VII mission [4,5] was operated in
space from 1997 to 1999, and demonstrated for the first time the
successful approach and docking with a target object in orbit by
means of a robotic arm.

The design of controllers for orbital robotic systems presents
a number of challenges from the point of view of dynamics,
sensing, and actuation. Some of the major challenges are the
dynamic interaction between the spacecraft and the arm, which
needs to be taken into account in order to ensure stability and
achieve high-performance, and the heterogeneity of the actuators
available for control, each one presenting different advantages
and limitations. The drives of the arm and the momentum ex-
change devices can provide internal torque at high rates [2], but
they cannot provide external forces and torques to control the
inertial motion of the robot. Furthermore, the drives of the arm
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are normally capable of providing a much higher torque than the
momentum exchange devices. On the other hand, thrusters can
be commanded only in discrete on-off mode and at low control
rate [2], but they are capable of providing external force and
torques. Furthermore, thrusters consume precious nonrenewable
fuel, reducing the useful life of the space robot in orbit, while
the drives of the arm and the momentum exchange devices use
electrical power, which is renewable in orbit thanks to the solar
arrays of the spacecraft.

In the early control concepts, attention was given to the pos-
sibility of completely turning off the spacecraft’s actuators, re-
sulting in a system for which the arm is commanded to realize
an end-effector task while the spacecraft is left free-floating [6-
10]. Within this concept, a kinematics-based control was then
presented in [7] based on the use of the so-called generalized
Jacobian matrix. The dynamics problem was treated in [8], where
a transposed Jacobian approach was used to design the end
effector control, and the stability of the method was addressed.
The analysis of redundant free-floating robots was studied first
in[11,12], and in more recent works [13-15]. The trajectory plan-
ning problem was analyzed in [16-18]. The transposed-Jacobian
control of a free-floating robot in presence on nonzero initial
momenta was treated in [15]. The impedance control for a free-
floating robot was presented in [19,20], based on a feedback
linearization approach. The problems of the contact dynamics and
the impedance matching were discussed in [21-23].

Recently, it was observed how a pure free-floating strategy
might have limited applicability [19,24]. Firstly, the drift induced
on a free-floating robot by a single accidental or voluntary con-
tact can lead to singularity of the arm within short time, as
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observed via numerical simulation in [19], and experimentally
in [24]. In such cases, the use of the thrusters to at least sta-
bilize the translational motion is unavoidable. Secondly, attitude
pointing might be required by missions relying on a spacecraft-
mounted relative sensor, e.g. the e.deorbit mission of the Euro-
pean Space Agency [2]. In such cases, thrusters or momentum
exchange devices may be required to control also the rotation of
the spacecraft.

Thrusters-only coordinated control strategies were proposed
in the literature to simultaneously control the arm, the attitude
of the spacecraft, and to stabilize the translational motion [25-
30]. However, when momentum exchange devices, e.g. reaction
wheels (RWs), are available on board, methods relying exclusively
on thrusters may cause an unnecessary high fuel consumption
and may be affected by other limitations, such as discretiza-
tion [29]; a better solution would be to also make use of reac-
tion wheels in the controller algorithm. Combining thrusters and
reaction wheels may allow achieving the requirements with a re-
duced fuel consumption and increased performance. Although the
coordination of thrusters and momentum exchange devices is not
new in the field of single-body space systems, to the best of the
authors’ knowledge there is a substantial lack of methods to co-
ordinately steer the thrusters, the momentum exchange devices,
and the arm in case of a multibody system. A control strategy was
derived in [31], which uses the thrusters for controlling the trans-
lation of the spacecraft and the momentum exchange devices for
controlling the rotation, while the arm is commanded to follow
a desired trajectory. However, the requirement of controlling the
translation of the spacecraft leads to increased fuel consumption
during the pre-contact phase of the robotic operation. A different
and more fuel-efficient requirement of controlling the translation
of the center-of-mass (CoM) of the whole space robot may be
enforced for stabilizing the translational motion, as observed
in [30,32]. Compared to a base-control strategy such as [31], a
CoM-control approach employs ideally! no thrusters during the
pre-contact phase, because the CoM naturally conserves. Com-
pared to a free-floating strategy, a CoM-control approach can
stop the inertial drift during the post-contact phase. Compared
to a switching strategy that employs free-floating control during
the pre-contact phase and base control during the post-contact
phase, a CoM-control approach allows using a single continuous
controller and thus bypassing the main limitations of a switching
approach. These are, for example, the requirement of contact
detection for defining the switching condition, the possible occur-
rence of chattering or frequent switching due to measurements’
uncertainties and/or nonuniform contact, and the necessity of
a hybrid continuous-discontinuous stability proof of the ideal
closed-loop system.

In this work, a control method is developed to regulate the
CoM and the angular momentum of the whole space robot, the
attitude of the spacecraft, and the pose of the end-effector; the
tasks are achieved by a suitable coordinated actuation of the
thrusters, the reaction wheels, and the arm. For this purpose,
the method implements a dynamics transformation that features
a total decoupling of the internal motion of both the reaction
wheels and the arm from the external motion, and an inertial
decoupling of the internal RWs and arm motion. Furthermore,
the transformation features a decoupled allocation structure that
assigns the end-effector and attitude control inputs only to the re-
action wheels’ and the joints’ actuators, and not to the thrusters.
To stabilize the translational motion, the method enforces a con-
trol of the translation of the CoM of the whole space robot

1 In other words, considering only the multi-body body behavior of the
system and no uncertainties on thrusters and measurements.

(previously introduced in [32]) instead of a control of the transla-
tion of the spacecraft. Thanks to the dynamics transformation and
to the control of the CoM, ideally zero fuel consumption during
contact-free maneuvering is achieved, and the full stabilization
of the system in the post-contact phase is still ensured. The
contributions of the paper are:

o the transformation of the dynamics;

e the development of a coordinated control of the attitude of
the spacecraft, the position of the CoM of the whole space
robot, and the pose of the end-effector, which achieves
ideally zero fuel consumption in pre-contact operations;

o the proof of stability;

e an experimental validation of the approach using a full 3D
hardware-in-the-loop simulator (see Fig. 1).

Note that the transformation of the dynamics is different than
the one derived in [30] and [32] because in [30] the attitude and
end-effector control inputs are assigned to the thrusters torques;
furthermore, [30] results in an inertially-coupled attitude and
end-effector dynamics. In [32] the attitude cannot be controlled.

The paper is structured as follows: Section 2 introduces the
main equations. Section 3 describes the decoupling of the dynam-
ics. Section 4 presents the proposed controller and the stability
analysis. Section 5 presents the experimental results. Section 6
analyzes the effects of real thrusters. Finally, concluding remarks
are drawn.

2. Preliminaries
2.1. Problem statement

A space robot is considered, which is composed of a spacecraft,
a serial-chain manipulator with n,, revolute joints, and a system
of n,, reaction wheels with fixed gymbal.

The total number of degrees of freedom (DOFs) of the moving
bodies is 6 +n, where n = n, + n, is the total number of
robot joints. The spacecraft is equipped with a set of n, thrusters,
which exert forces and torques. The operational scenario involves
the maneuvering of the space robot in the proximity of a target
object (see Fig. 2) that is stationary in the inertial space. This
may include the tasks of inspecting, capturing, or servicing a
nontumbling object in orbit. No orbital or environmental forces
are considered, because they are in practice considerably smaller
than the control ones [2].

The problem addressed is the efficient coordination of joint
drives, reaction wheels, and thrusters, so as to simultaneously
regulate the pose of the end-effector, the attitude of the space-
craft, and the CoM and the angular momentum of the whole
space robot. At this purpose, we seek at a controller satisfying
the following two fundamental properties:

1. maneuvers of the arm and of the attitude of the spacecraft
shall be entirely accomplished by the electrical drives of
the reaction wheels and the arm, and not by the thrusters;

2. the thrusters shall only stabilize the angular momentum of
the system and regulate the position of CoM of the whole
space robot.

2.2. Notation

Fig. 2 shows a schematic representation of the system com-
ponents. The following frames are considered: a base frame B
attached to the spacecraft, an end-effector frame &, a frame 7
attached to a target object, and a frame C located at the CoM of
the whole space robot with axes fixed w.r.t. the inertial space.
The joints of the reaction wheels are denoted by q,, € R™, the
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Fig. 1. The On-Orbit Servicing Simulator at DLR RMC: detail of the micro-macro
space robot simulator.
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-
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Fig. 2. Schematic representation of components of the space robot: a
manipulator mounted on a thrusters- and reaction wheels-equipped spacecraft.

joints of the arm are denoted by g, € R"™. The quantities f), € R>
and 7, € R? denote the base force and torque about B acted
upon by the thrusters and expressed in frame B. Let us denote
Py € R? and R,, € SO(3), the position vector from a general
frame X to a general frame ) expressed in frame X, and the
corresponding rotation matrix, respectively. The so-called Adjoint
transformation is used:

R
Ay = [ o

wherein the operator [ -] indicates the skew-symmetric matrix
of the vector argument. Let us generally denote v, € R> and
wy € R as the linear and angular velocities of a frame X
relative to the inertial frame 7 expressed in X, respectively. The
symbol vy = [v] wI]T € RS indicates the corresponding 6DOF
velocity. The symbols 0 and E indicate the zero and identity ma-
trices of suitable dimensions. The notation diag(a, b, c) indicates
the diagonal matrix obtained from the scalars a, b, ¢, whereby
blkdiag(A, B) indicates the block-diagonal matrix obtained from
the matrices A and B.

A
[pxg ny:| GRGXG, (1)
Xy

2.3. Kinematics and dynamics

The end-effector body velocity is given by

ve = Aep(q,, )V +.’em(qm)qm’ (2)

where J,,(q,) € R®"™ is the manipulator Jacobian matrix. For
the derivation of the dynamics model the following assumption
is made:

Assumption 1. Each reaction wheel is a rotational symmetric
rigid body, whose rotation and symmetry axes coincide.

The dynamics of the space robot in absence of contact is
computed [33] as

My My, Mpny | v,
M M, O i,

M, 0 M, |Lin
M(qy,)
Co Cow Com| [ Fb
+ Cwb Cw 0 qu) = tw £ (3)
Cmb 0 Cm qm Tm
C(qnw vb7qwaqm) v f

where v e RS™™ and f e RS*"; M(q,) € RO+WxE+n  and
C(qy, Vb, 4y, ) € RETWXE+M are the inertia and Coriolis/

. . . T .
centrifugal matrices, respectively; F, = [f; =] € RS is the

wrench of the thrusters at the base; 7, € R™ and t,, € R™
are the wheel and joint torques, respectively. The expression
of the dynamic matrices is reported in Appendix A. From now
on, the functional dependency of the matrices is omitted for
the sake of readability; it will be recovered only when explic-
itly needed. Denoting p € R? the linear momentum, and I € R3
the angular momentum around C, the generalized momentum
h=[p’ lT]T € RS is given by

h = A, (Myvy + My, + Mpnd,) - (4)
The velocity of the CoM v, € R? is obtained as
1 1
ve=—p=—Qch, (5)
m m

where Q. = [E 0] € R3*6. In the next section, the transfor-
mation of the dynamics into an advantageous decoupled form is
addressed.

3. Decoupled dynamics
3.1. Internal velocity

In [24], the motion of the end-effector frame was decomposed
into an internal one due to the joints and an external one as a
whole. This was achieved by application of the concept of internal
velocity, which allows the decoupling of the internal end-effector
dynamics from the momentum dynamics. The same concept is
stated here for general frames and for the case in which reaction
wheels are present in the system.

The “external motion” is defined as the part of the motion
related to the kinetic momentum of the system. In turn, the
internal motion v € RS of the general frame X is defined as
its motion vy when the external motion is zero; in other words,
when the momentum is zero, v, must coincide with vi™:

h=0 — v,=v". (6)

Let us consider the end-effector frame. Its velocity can be written
by eliminating v, from (4) and (2), as

ve =AM, 'ALh — AeyM,, "My, @, + I, (7)

where J = Jon — Aebe’]Mbm € R5*™ js the so-called general-
ized Jacobian matrix [7,8] of the end-effector. Then, by setting
h=0 in (7), it is clearly seen that the end-effector internal
velocity is

v;nt = _AebM;1Mbwqw +]:miIm» (83)
and that (7) can be rewritten as

ve =AM, AL + v, (8b)
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Notice that in the presence of reaction wheels, the end-effector
internal velocity (8a) is not a function of the joint velocities of the
arm only, as in [24], but it also depends on the velocities of the
wheels. This is explained by the fact that the reaction wheels are
dynamically coupled with the base, which is in turn dynamically
coupled with the arm, resulting in an indirect coupling of wheels
and arm.

Considering the base frame, by similarly setting h = 0 in (4),
the base internal velocity is given by

vyt = —M; "M, — My My, (9a)
and (4) can be rewritten as
vy = M, 'ALh + vi". (9b)

In this work, the base translation is not controlled, so let us
consider only the angular part of (9), which is given by:

)" = —Q,M; My, q,, — QuM; 'Myng,,,
wp = Q,M, 'ALh + o},

where Q, = [0 E] € R®*S.
For later reference, let us compactly write (8a), (10a), as

Vi‘m = [Tew Tem] q="T.q,
)" =[Tow Tom]|q=Teyq.

where T, € R®", T, € R>", and ¢ = [, ¢[,]" € R". The sub-
matrices are Te, = —AepM, 'Mp,, € RO, Ty = J% € R,
Ty, = —QuM; 'My,, € R**™, and Tpyn = —Q,M, 'Mpy € R¥>m,

The advantage of the velocities v and wf,”[ in comparison
to v, and wy, is that they allow transforming the dynamics in a
decoupled form in which end-effector and attitude control inputs
are not actuated by thrusters, but only by internal actuators. This
will be demonstrated in the next section.

3.2. External-internal decomposition

Based on (4), (8a) and (10a), the following transformation I" €
R15%(6+1) s defined:

-T -T -T
5111[ Acb My Acb My, Acb My, },b
Ve = 0 Tey Tem qw s (12)
w'bm 0 Thw Tom qm
r
The generalized forces transform through
Tb aF
T, | =0T | Fi |, (13)
Tm T;',nt

with a. € R®, F" ¢ RS and ™ e R? being new control
inputs: a, is the virtual centroidal acceleration , ™ is a virtual
end-effector wrench, and i is a virtual base torque.

For the derivation of the dynamics in the transformed space,

the following two assumptions are made:

Assumption 2. The set of reaction wheels is nonredundant,
i.e, n, = 3, and nonsingular.

Assumption 3. The arm is nonredundant, i.e., n,, = 6.

Resolution methods for redundant kinematic chains are avail-
able in the literature of floating robots [13-15] which might
be applied to the present case. However, the extension of the
method to redundant arms is omitted herein for brevity and will
be subject of future work.

The mapping I'(Rp, q,,) is not rank constant because is func-
tion of Ry and q,,. Based on the triangular form (12), and consid-
ering that A (Ry, q,,)"My(q,,) is always full rank, T'(Rp, q,,) is
singular when

Te(q,)
T(q,) = |75 "
(@) [Tb(qm)]
is singular, meaning also that the singularity of I'(Ry, q,,,) depends
only on the joints. Thus, when T(q,,) is nonsingular, the inverse
of I'(Ry, q,,,) is well defined, and is used to transform (3) as [34,
p. 32]:
M:' 0 07 h
0 Me Meb l'liem
0 M, M,]||o"

Ch __é:h __EtTJh h a
+{Cn  Co  Cop ||V |=|F | (19
Con  Che Cy oy 7"

where M, = A,"M,A,' € R® is the inertia of the whole system
around ¢ and M = [Me Mo,

My, M,
associated to the end-effector and base system. Notice that the
momentum is inertially decoupled from the rest of the system, as
a consequence of the use of the internal velocities v™ and ™.
Note that this advantageous decoupling does not hold when using
v, and @} instead of vfem and m;','". However, despite this advantage
the internal dynamics in (14) is still fully coupled. In order to
avoid interference of the base dynamics into the end-effector
dynamics, it is convenient to adopt an alternative parametrization
of the internal motion to achieve a complete decoupling. This is
derived in the next section.

} € R is the inertia matrix

3.3. External-internal decomposition with internal decoupling

Considering Assumptions 2 and 3, it is n = 9. For nonsingular
configurations of T,, i.e., such that rank(T.) = 6, T, possesses
a null space of dimension 3. Then, a new base velocity can be
defined as the projection of the base internal angular velocity into
the null space of the end-effector internal velocity, as

v int

W, = Tb(.], with Tb = TyN,, (15)
and where
N! =E-T]T!" e R™" (16)

is the dynamically-consistent projector of wf,"t onto the null space
of the Jacobian matrix related to vﬂ". Given a general matrix P €
RS*P, the notation P¥ € RP*S indicates the dynamically-consistent
pseudo-inverse [35] of P, defined as

_ _ —1
Pt =M 'P’ (PM 1PT) . (17)
Based on (15), a new set of internal velocities is defined as
vl [Te]. s
[&)Zm =17, q=Tq. (18)

with T € R In turn, let us define a new transformation
T e R15*(6+M) 35

ﬁ [ ASMy AMy, AL My, Vb
ve = 0 Tew Iu-em qw s (19)
(:);)m 0 Ty, Tpm qm

r
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where Tp,, € R¥>™ and Tpm € R3™ are the sub-matrices of the
partitioning Ty = [Tj, Tpn] € R>™ The generalized forces
transform as

Fb ac
T, | =5 [ F . (20)

vint

Tm T;)n
where fi“t € R® and r”" € R? are new control inputs. By apply-

ing a snmllar reasoning as in Section 3.2, given the triangular form
(19), I'(Rp, q,,) is singular when T(qm) is singular. Thus, when

T(q,,) is nonsingular, the inverse of I'(R;, q,,) is well defined and
is used to transform (3) to the form

M- o o|[h

0 M 0 v
0 0 Mj| |
M
o ¢ | [n] [e
+ley o o=l =]F | @D
* * * v int i
Con  Che Cy w;sn TZm
c

Notice that in (21) the system is completely block-decoupled in
the inertial terms; namely, not only the momentum but also the
internal end-effector and base inertial terms are now decoupled.
The dynamics (21) can be further simplified by considering that
the Coriolis and centrifugal vector terms are zero for the momen-
tum equation (see Appendix A), i.e., Cph — CXvi" — CiT & = 0.
Considering this, and defining a centroidal control wrench

F. € R® such that a. = M_'F,, the dynamics (21) simplifies to

h=~F,

M* 0 l-’int C* C mt j_.i"f
[OMH +le el o] + 6= e | (229)

Notice that the form (22) is triangular, i.e., the external dynamics
is completely decoupled from the internal one. This allows to
straightforwardly design controllers for the external and internal
motion in a cascaded fashion, as done in [24], i.e., designing the
momentum control loop independently from the internal loop. It
is relevant to note that the subblocks in (22) are not all equivalent
to those associated to the end-effector and base motion in (14).
In fact, it can be proven that My = M}, but M # M,. Lastly, it is
remarked that the following properties hold for the matrices in
(22b):

(22a)

M, =C:+C7, (23a)
M, =C;+C;T (23b)

In the next section, it will be demonstrated how a coordinated
controller can be derived based on the dynamics (22), and its
beneficial decoupling properties will be analyzed.

4. Coordinated control

The objective of the control is to regulate the pose of the frame
£, the position of C, and the orientation of the frame B3, around
desired values that are fixed in the target frame 7. Furthermore,
the total angular momentum shall be dumped to stop any inertial
drift.

Let us define a set of error coordinates: X, € R? is the CoM
position error, X, € R® is the end-effector pose error, and X, € R>

the base attitude error. The time-derivatives of the errors can be
related to the absolute velocities, as:
X, =Jzve, X = Jz, @b, (24)

wherein J;, € R®*® and J;, € R**? are the Jacobian matrices of
coordinates representation. For orientation, the vector part of the
error quaternion is used [36]. The exact expressions of X;, X., Xp,
Js,., and J; can be found in [30, Sect.IV].

The controller of the external motion is designed as
= —QIK.x. — Dyh,

Xe =,

(25a)

where K, € R3*3 is a symmetric, positive definite stiffness
matrix, D, € R%*® is a positive definite momentum gain matrix.
The controller (25a) ensures that the CoM is stabilized around a
desired position and that any residual momentum is extracted
from the system. The controllers for the end-effector and base

tasks are designed as
ll‘lt -
-7'- .’ Kexe D.v, — C*T mt,

vmt _ _]bebXb

(25b)

Dywy, (25¢)

where K, € R®*® and K, e R>*3 are symmetric, positive
definite stiffness matrices, and D, € R®*® and D, € R3**3 are
positive definite damping matrices. The controllers (25b) and
(25¢) include a PD-like term, whereas (25b) includes an additional
term for compensating the Coriolis and centrifugal coupling of the
base into the end-effector. This term is necessary for the proof of
stability shown in Section 4.1.

4.1. Stability analysis

The closed-loop dynamics resulting from the application of
(25) in (22) results in the state-space form (see Appendix A)

x=f. x=|j% |€D=R". (26)

The details of (26) are given in (55) in Appendix A. Note that the
27 < 2(64+n) = 30 because the RW angles are not controlled and
are not a state of (3). Let us first define a region that excludes the
singularities of T'(Ry, q,,), as

Q= {x €D : omin (f‘(g(kc,ie,kb))) > o} , (27)

where the function g : R'> — R™ is a local one-to-one map-
ping such that q,, = g(x., X, X,), see Appendix A. The singular-
ities excluded from the region £2 may in general be a non-zero
dimensional subset of D.

The proof is based on the application of conditional stability the-
ory [37, p. 45]. The formulation in [38] is used herein, whose main
result is reported here for the subcase of stability of equilibrium
points:

Theorem 1 (Conditional Stability [38]). Let zo be an equilibrium
point of 2 = f(z), and let V(z) be a C! function such that V(z) > 0,
V(z9) = 0 and V(z) < 0. If zq is asymptotically stable conditionally
to the largest positively invariant set A within {z :V(z)= 0}, then
z¢ is asymptotically stable.

The proof of stability of (26) is conducted on a hierarchical
basis, proving the successive convergence of nested subsets [39]
by recursively applying Theorem 1. The following subsets are
defined:

A1={xeR:h=03% =0}, (28)
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A ={xe2:h=0%=0y"=%=0}. (29)
Note that 0 € A; C A; C £2. The main stability result can be
now stated:

Proposition 1. Consider the system (26). Under the Assumptions 1,
2, and 3, the equilibrium point x, = 0 is asymptotically stable.

Proof. The proof is performed in three steps, proving first the
asymptotic stability conditionally to A, then the asymptotic
stability conditionally to .4; and, lastly, the asymptotic stability
of the equilibrium point without any restrictions.

Step 1. Asymptotic stability of x, conditionally to A,

In A, the conditions h = 0 and vé’" = 0 are applied to (55). Let
us consider the Lyapunov function candidate

1 1
3 Ib“tTMZ”b’" + szKbxb, >0, VyeAd:

which satisfies Vj,(xo) = 0. Its time-derivative is

Vy = X # Xos (30)

cintT 1 inT -
Vp = o Mbw;)"t + zw;,”t Mb o +bebxb =
% m[T C* % mt D/ int K 1 v mtTM* ~ int
(1O _.’ bxb + zwb »@p +
cintT T > v in v int 1vmtT #) ~int
O T Ky =~ Dyl + 56} (Mb - 2c)

= o™ Dy <0, VX € A2, (31)

wherein (55e), (55f), and (23b) are used. Then, V, is negative
semi-definite, and the stability conditionally to A, is proven.
To prove convergence, LaSalle’s invariance pr1nc1ple is applied.
It can be seen in (55e), that &} =0 implies X, = 0, so x, is
asymptotically stable conditionally to A;.

Step 2. Asymptotic stability of x, conditionally to A,

In A; the condition h = 0 is applied to (55). Theorem 1 is
applied considering A = A, and restricting all the statements to
the subset .A;. Let us then consider the function

1 mtT 1
M* mt +

2 Ve 2

which satisfies V,(x,) = 0. Its time-derivative is

V, = R KX >0, VyeA, (32)

. int T o i 1 * L ;
Ve — vleﬂ[ szlenf + = 2 mt M mt +xel(evlent —

1 .
in[T( C* mt -D, mt_] Kexe) . 5 lntTMevient+
v T K™ = " D™ <0, Vy e A, (33)

wherein (55c), (55d), and (23a) are used. Then, V, satisfies the
conditions of Theorem 1. By inserting b = 0 and vi" = 0 in (55¢),
it can be seen that .4 is the largest invariant set such that
Ve(x) = 0. Then, the further requirement of asymptotic stability
of x, conditionally to A = A, is guaranteed by Step 1. By
application of Theorem 1, it follows that yx, is asymptotically
stable conditionally to A;.

Step 3. Asymptotic stability of x,

The asymptotic stability is proven by application of Theorem 1,
considering A = A;. Let us consider the function

1 1 .
= 5hTh + imechC >0, Vxe, (34)

which satisfies Vi,(x,) = 0. Its time-derivative is
Vi = h'h+ mX[K X = h" (~Dyh — Q1K X)
+ h'QIK.x = —h"Dyh < 0, Vx € 82, (35)

where (55a) and (55b) are applied. Then, V} satisfies the condi-
tions of Theorem 1. By inserting h = 0 in (55a), it can be easily

seen that A, is the largest invariant set such that Vh = 0. Then,
the requirement of asymptotic stability of x, conditionally to
A = A, is guaranteed by Step 2. By applying Theorem 1, it follows
that x, is asymptotically stable. O

4.2. Controller properties

Writing (20) explicitly and considering a. = M, ' F,, the ac-
tuators can be related to the new control inputs, as:

T
1 [ 2 21z
Tw | = MEle:1AZ:-b TT wa ]:e

ew J
Tm ~int

(36)
MEme_u‘Zb Tgm me b

From the zeros in (36), it is possible to see that the allocation
of the actuators has a triangular pattern. More specifically, the
thrusters wrench F}, is only activated to control the global motion
and not to actuate either the end-effector or the base attitude
task. One important feature of this triangular structure is that
the thrusters are not used to realize the end-effector task but to
realize the only tasks that cannot be actuated by any other device:
the control of the inertial location of the CoM and the dumping
of the angular momentum. This structure is a property of the
internal velocities and holds with both sets of external-internal
decompositions T and T".

Another important feature can be observed based on the spe-
cial conserving properties of the momentum. After the momen-
tum transient vanishes, the system converges to a stationary
situation in which the CoM remains fixed in the inertial space
and the momentum remains zero. Therefore, during the entire
time of robot maneuvers that do not involve contact or CoM
relocation, it will remain X, = 0, h = 0, and in turn F, =
0. Hence, with the proposed controller, all end-effector or base
attitude maneuvers that do not involve contact will require no
thrusters and will be entirely accomplished by the coordinated
actuation of the arm joints and the reaction wheels. The thrusters
will be activated only after contact, and their use will be limited
to stopping the inertial drift and restoring the CoM location.
The main advantage of the above-mentioned features is that the
system consumes ideally zero fuel for contact-free robot and base
attitude maneuvering. After contact, it consumes only the amount
of fuel needed to dump the momentum and restore the CoM.
Furthermore, note that this feature is automatically implemented
by a single unified continuous controller, and no switching be-
tween controllers is required; this is an advantage compared to
a hybrid strategy involving discontinuous switching between a
free-floating controller and one implementing a control of the
base translation.

5. Experimental validation

The proposed control method has been validated on the On-
Orbit Servicing Simulator (OOS-Sim) hardware-in-the-loop facil-
ity at the German Aerospace Center (DLR). The facility exploits
industrial robots to simulate the spacecraft dynamics in a gravity-
free environment. A test arm is mounted on a simulator arm
in a micro-macro configuration (see Fig. 1). The simulator arm
reproduces the dynamics of the spacecraft based on a real-time
model integration. The test arm is a torque-controlled KUKA KR4+
lightweight robot (&~ 17 kg) with seven degrees-of-freedom, and
the simulator arm is a position-controlled KUKA KR120 industrial
robot. Note that with this system the space robot controller can
be evaluated taking into account real dynamics, sensor noise,
time delay, control discretization, and model uncertainties of the
test arm. On the other hand, the spacecraft dynamics is obtained
via software simulation of a real-time model. The parameters
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of the spacecraft, as well as the simulated nonidealities of the
spacecraft can be adapted depending on the specific scenario. In
the present work, a rigid spacecraft has been simulated. The rigid
body parameters of the spacecraft were: mass m® = 150kg,
inertia I, = diag(22.8, 14.1, 18.8) kg m?. Three equal reaction
wheels with 4.7 kg mass and 0.0425 kg m? rotor inertia were
simulated, with rotation axes aligned with the principal axes of
the spacecraft. The control sampling frequency was 1 kHz. The
RW limitations were simplistically modeled as a saturation of 0.3
N m. The thrusters were simplistically modeled as a deadzone
of 0.5N in translation and 0.5 N m in rotation. No thrusters
distribution and time-modulation have been considered in the
experiment; the behavior with realistic thrusters was addressed
by means of numerical simulations and will be discussed in
Section 6. More information regarding the facility can be found
in [40].

A representative scenario is considered, in which the end-
effector is commanded to reach desired locations in the inertial
space, and accidental or voluntary contact happens. The scenario
may be divided in the following phases:

e “pre-contact”: the end-effector is steered towards the de-
sired locations while no contact force acts on the space
robot;

e ‘“contact”: a contact force acts on the space robot and trans-
fers momentum to it;

e “post-contact”: the contact has terminated and the space
robot is subject to the effects of the momentum induced by
the contact.

The aim of the following experiments is to validate the controller
for the pre-contact and post-contact phases. The analysis of the
contact phase would require additional study, and is not treated
in the present work. Two sets of experiments were performed:

1. a series of contact-free end-effector maneuvers, to validate
the controller in a representative pre-contact situation;

2. a series of experiments in which the end-effector keeps its
current position while accumulated momentum is dumped
by the thrusters, to validate the behavior in a representa-
tive post-contact situation.

In both series of experiments, the state of the base was recon-
structed using the simulated model, whereas the end-effector
state was reconstructed based on the forward kinematics of the
test arm. The CoM and momentum states were reconstructed
from the base state and the measurements of the joint angles
(see [32]). In a space robot without reaction wheels, the base
state can be reconstructed based on IMU, gyro, LIDAR, joint en-
coders [41]. For a space robot with reaction wheels, the same
method could be extended with an additional measurement of
the angles of the wheels. For tumbling targets, target motion
prediction may be employed in the estimation algorithm [41,42].
The behavior of the robot during both series of experiments can
be seen in the accompanying video.

5.1. Experimental results: pre-contact phase

A sequence of two end-effector maneuvers was tested. For
each maneuver, the end-effector was commanded to reach a
desired pose and then to come back. In the first maneuver, a dis-
placement Ap, =[35, 0,—25]cm of the position and
A¢, = [0, —20, 0]deg of the rotation (roll, pitch, and yaw an-
gles) was commanded to the end-effector. In the second maneu-
ver, an end-effector displacement of Ap, = [23.5, —27, —30] cm
and A¢, =[—6.7, —6.7,30] deg was commanded. The second
maneuver excites three-dimensional effects more pronouncedly.
During all maneuvers, the attitude of the spacecraft and the CoM

of the whole robot were commanded to hold the initial values. No
contact or initial momentum were simulated in this set of exper-
iments. The stiffness gains used were K, = blkdiag(Ke irasi, Ke rot)
for the end-effector, where K, s = 1000E N m~}, Keror =
70ENmrad™', K, = 3350E Nmrad™', and K. = 700EN m™'
were used for the attitude and the CoM, respectively. The EE
and attitude damping gains were designed using the method
in [34, p. 36] based on the inertia in the initial configuration. The
momentum gain was Dy, = blkdiag(D,, D;) where D, = 3.93E 571
was used for the linear momentum, and D; = 16Es~! for the
angular momentum.

Fig. 3 shows the results for both maneuvers; the second ma-
neuver starts at t = t,. The figure shows the time responses
of the end-effector position, the attitude of the spacecraft, the
CoM of the whole robot, and the velocity of the reaction wheels,
as well as the forces and torques actuated by the thrusters, the
reaction wheels’, and the joints’ drives. It can be observed that the
end-effector successfully converged to the desired position after
maneuvering. The attitude of the spacecraft was displaced due
to the robot motion, but the control action successfully restored
it after the maneuver had finished. A longer-lasting oscillation
of the attitude of the spacecraft was observed during the lateral
maneuver and it was related to the more pronounced excitation
of the 1DOF null space of the arm, which was only indirectly
damped through the natural friction in the joints. The position of
the spacecraft freely moved and was displaced to new locations
after each maneuver. On the other hand, the CoM stayed in
place and was not affected by the end-effector control. This is
a property of the proposed decomposition of the internal and
external forces in (36): in a nominal starting condition in which
the CoM error and the momentum are zero, the thrusters com-
mand F, does not get activated during end-effector and attitude
maneuvering and, consequently, the CoM does not get excited
by the coordinated controller. Thanks to this property, the end-
effector maneuvers were accomplished entirely by the joints of
the arm and the reaction wheels only, as observed in Fig. 3, and
exactly zero fuel was consumed. The experiment confirmed the
main property of the proposed actuation decomposition, namely,
during the pre-contact phase nominally no fuel is consumed by
the control.

The steady-state joint torque in Fig. 3 was due to the static fric-
tion in the joints of the arm.? Although the maximum robot speed
was limited by the low torque capability of the wheels, the RW
torque was within the allowable limit of 0.3 Nm for the consid-
ered maneuver, proving that the controller is implementable with
realistic wheels. Lastly, the RW velocity was low and well below
the limits of common devices, e.g. 5000 rpm, and returned to zero
after each maneuver ended. Based on this, in accordance with the
conservation of the zero initial momentum, the actuation can be
interpreted as a mutual exchange of momentum between arm
and reaction wheels, with the wheels’ momentum returning to
zero as soon as the arm comes to rest.

5.2. Experimental results: post-contact phase

Experiments were conducted to validate the effectiveness of
the CoM and momentum dumping tasks in a post-contact situa-
tion, i.e., one in which the CoM velocity and the angular momen-
tum are nonzero. A series of impulses along different directions
was given manually to the end-effector by using a rod. Note that
the contact is given only as a mean to excite the momentum
of the system and not to analyze the behavior of the system

2 This is explained by the fact that the static friction torques represent a

constant disturbance for the PD-like controller (25); at equilibrium, the constant
disturbance is balanced by nonzero control torques.
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Fig. 3. Response during pre-contact phase.

during contact. The contact wrench needed for the simulation
of the spacecraft motion was approximately reconstructed using
measurements of the joint torques of the test arm, the details of
the reconstruction are omitted for brevity. Note that an accurate
reconstruction of the contact wrench is not necessary, being the
contact used just as a mean to induce some momentum in the
system. For the sake of simplicity, the motion of an eventual
target object in the post-contact phase was not considered, and
the frame 7 was assumed stationary. This assumption holds well
for massive target objects and may be removed in future work.
In these experiments, the same gains were used except the ones
of the end-effector, which were K¢ o = 500ENmM™!, K ;o =
35ENmrad~!.

Fig. 4 shows the reconstructed applied contact force, the CoM
position, the angular momentum, and the commanded thrusters
forces and torques in the inertial frame. First, observe in Fig. 4
that after each contact the correct CoM location was restored and
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Fig. 4. Response during post-contact phase.

the momentum was dumped. This means that, when the linear
and angular momenta got excited, the controller promptly re-
acted, behaved stably, and accomplished the desired task. Second,
observe in Fig. 4 that the impulses were given along different
directions and that the controller behaved properly in every
direction. The thrusters automatically fired in reaction to the ex-
ternal force. As soon as a CoM displacement was generated along
a direction, the thrusters forces reacted in the same direction, but
opposite sign.

5.3. Discussion of the experimental results and limitations

The series of experiments confirmed that the method is suc-
cessful in regulating the end-effector pose, the attitude of the
spacecraft, and the CoM of the whole robot simultaneously.
Furthermore, the experiments confirmed that in the pre-contact
phase the control is realized without any use of thrusters, whereas
in the post-contact phase the thrusters are automatically acti-
vated to restore the proper inertial location of the system and
to dump the angular momentum injected by the impulse. This
minimalistic use of the thrusters is the main advantage of the
proposed method and leads to reduced fuel consumption and
improved performance, as preliminary observed in [30], and
further analyzed in Section 6.

We point out that a deeper analysis would be needed in
order to claim applicability of the same controller also to a
contact phase. In particular, the theoretical analysis herein shall
be extended to the presence of an applied contact wrench; fur-
thermore, the problem of the impedance matching with a floating
target shall be addressed.

In the pre-contact experiments, a longer-lasting oscillation of
the attitude was observed during the lateral maneuver and is
interpreted as an effect of the arm redundancy. In absence of
null-space control, the null-space motion is dissipated entirely
by the natural friction in the joints of the robot, which in turn
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Fig. 5. Thrusters system composed of 24 thrusters arranged on a cubic structure.

reacts on the spacecraft and induces a disturbance on the attitude.
The interaction between nullspace, friction, and attitude could be
mitigated by implementing a controller of the nullspace, and will
be subject of future investigation. .

The control method requires that the T(q,,) be nonsingular;
at singularity, a loss of controllability along a singular direction
may happen. The method could be extended with a singularity
avoidance [34, p. 38] to limit the occurrence of singularity. In
practice, suitably pre-planned trajectories [18,43] are normally
employed to limit the occurrence of singularities, and may be
employed also in the present case.

6. Performance with discrete thrusters

Numerical simulations were carried out to validate the appli-
cability of the controller considering a representative thrusters
system. The thrusters system is composed of a redundant set
of n, = 24 thrusters® providing full actuation capability on all
translational and rotational components. The thrusters are ar-
ranged on a cubic geometry (see Fig. 5), which is a simplified but
still meaningful one for the purpose of investigating the control
behavior; the optimization of the thrusters geometry for design
purposes is not part of the present study. The cube has an edge
length of 1 m, and its center is located on the origin of the frame B
(see Fig. 5). On each vertex, three thrusters are mounted, pointing
along the x,y,z directions of the frame 3.

All thrusters are the same and have the following properties:
thrust Uy, = 10N, Minimum Impulse Bit (MIB) 0.15N s, and
minimum valve activation time Atp, = 15ms. The satellite
control signal F} is sampled at a Ty, = 300 ms rate. On the other
hand, the joint and RW control signals, t,, and t,, respectively,
are sampled at a Tjyje = Ty = 1ms rate.

6.1. Thrust distribution

To resolve the thrusters redundancy, an optimization problem
is solved, which takes into account the geometry of the thrusters
system, the limitations of the commendable thrust, and a certain
optimization criterion. Denoting by u € R™ the stacked vector
of the desired thrust levels of all thrusters, the satellite control
wrench F;, can be related to u, as

Fp = Wu, (37a)

3 Note that such level of thrusters’ redundancy is common in space systems
(e.g., see [2]).

where W e RS*™ is the so-called thrust distribution matrix,
which is constant and is computed based on the given cubic ge-
ometry. No thrusters misalignments are considered in the present
work. Eq. (37a) represents an equality constraint for the opti-
mization problem, and is augmented with the following set of
inequality constraints that model the thrust as upper-bounded
and positive-only:

0 < u; < Upax, (37b)

where u; € R denotes the ith component of the vector u,
i.e., the thrust of the ith thruster. The optimization criterion is
the minimization of the fuel consumption; at this purpose, the
following cost function is considered:

] = Z uj.
i=1

By adopting (37c¢), an optimal solution for u is seek at that limits
conflicting actuation of the thrusters and thus minimizes the fuel
consumption. The selection of the thrusters based on the solution
of the linear programming problem (37), is a classic method in
the space engineering practice [44,45] and is solved online by
application of the simplex algorithm [46] within the Ty, sampling
interval.

(37¢)

6.2. Thruster model and control

The thrusters are inherently discrete devices that can be op-
erated only in on-off mode. A Pulse-Width-Modulation (PWM)
is employed herein to modulate the continuous values u; com-
manded to the ith thruster to a signal u; that can assume either
0 Or Upay [47-49].

Given the continuous thrust u; requested over the control
interval Ty, a rectangular pulse of amplitude uq and variable
duration is commanded to the thrusters. The pulse is centered
at the middle of the control interval and its duration is computed
such to yield an equivalent total impulse of the continuous signal,
i.e., such that it holds u;Ty; = umaexAt;; a deadzone is then set on
the signal At; to model the minimum valve activation time Atp,.
Based on this, the command to the valve of the ith thruster is
modeled in simulation as

uj uj )
Ati = (L)lmﬁTsa[ Umax Tsar = Atmin .

uj
—LT < Atpin-
Umax - Sat min

The At; signal is discretized with a time step of Ty,m = 3 ms.
6.3. Simulation results

A unified scenario involving contact as well as contact-free
maneuvering was simulated to analyze the effects of the real
actuation during a representative capture operation. A sequence
of two end-effector maneuvers was first commanded, then a
contact was simulated. For each maneuver, the end-effector was
commanded to reach a desired pose and then to come back. In
both maneuvers, a displacement Ap, = [35; 0; —25]cm of the
position and A¢, = [0; —20; 0] deg of the rotation was com-
manded to the end-effector. The contact consisted in a pure
force f, .y = [—10; 0; O]N at the end-effector lasting 0.3s. The
simulated robot had the same kinematics and dynamics param-
eters as those used in the experimental facility. Joint friction
with a viscous coefficient of 1.5 was modeled in the simu-
lation. An initial velocity vp(tp) = 3 mm/s of the spacecraft
was simulated in order to render the effects of initial nonzero
momentum present in practical systems. A disturbance torque
Tpq = [5; 5;5]- 107* Nm around the base was simulated to model
the effects of environmental forces in orbit.
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Fig. 6. Performance of the proposed control with discrete thrusters.

One main effect of the thrusters is the necessity of reduc-
ing the bandwidth due to discretization. Considering the sam-
pling time T, of the thrusters control signal, the bandwidth
of the momentum closed-loop system (55a) was decreased to
ensure stability; the CoM and momentum gains were decreased
such to result in a bandwidth at least 20 times lower than
the sampling frequency. The new gains were: K. = 160EN m™",
D, = 1.878Es™!, and D; = 1Es™'. On the other hand, the end-
effector and the attitude gains could be left equal to the ones used
in the pre-contact experiment because with the proposed control
the control inputs 5-"8 and 7" are not actuated by the thrusters
signal F}, but only by the (fast) torques of the wheels and the
arm, e.g. T, and t,,, respectively (see (36)).

Fig. 6 shows the induced external force, as well as the time
responses of the end-effector position, the spacecraft’s attitude

error, the CoM position error, and the angular momentum. Fur-
thermore, it shows the control forces acting on the system: the
torque commanded to the reaction wheels, and the resulting force
£, € R? and torque 7, € R? actuated by the thrusters, given by

[ib] = Wu, where u € R™ denotes the stacked vector of the
b

thrusts u; of the ith thruster, resulting from the PWM modulation.
All vector quantities in the plots are expressed in the inertial
frame. Therein it can be observed that the controller worked
successfully when considering real thrusters, both during the pre-
and post-contact phases. Namely, the end-effector maneuvers
were successfully accomplished, and the spacecraft’s attitude was
restored after each robot maneuver. After contact, the deviation
induced on the attitude was successfully recovered. The CoM
error and the angular momentum behaved stably and were kept
around zero; however, they reached a limit cycle and did not
converge to zero. This is an effect of the minimum valve activation
time of the thrusters Atp,, which via (38) results in a minimum
actuable thrust and thus in a discontinuity of the control signal
Fp around zero. This can be observed also in the plot of the
reconstructed force and torque in Fig. 6, where it is possible
to see that nonzero, albeit sporadic, force and torque were ap-
plied in the pre-contact phase. These nonzero force and nonzero
torque originate from the nonzero initial momentum modeled in
the simulation: at init, the thrusters react as a consequence of
the momentum dumping task, then, in turn, the limit cycle is
triggered.

The advantages of the proposed control strategy are now
analyzed by comparing it with another one which enforces the
same requirements but uses only thrusters. More specifically, the
proposed controller is compared with the one in [30], which
regulates the CoM of the whole system, the attitude of the space-
craft, and the pose of the end-effector, by using only thrusters.
The same scenario is considered for both controllers, namely, the
same sequence of two end-effector maneuvers is commanded,
the same contact is given to the robot, and the same initial
conditions are set for the simulation.

One first difference is that the thrusters-only strategy [30] re-
quires reducing the bandwidth of also the attitude system (55a).
This is due to the fact that, when using thrusters to actuate the
attitude task as in [30], the effect of the low sampling time Ty,
plays an important, detrimental role for the tuning of the attitude
task. Furthermore, the exact tuning of the bandwidth of the
attitude task is not a trivial one, because in [30] the attitude and
end-effector task are completely coupled and nonlinear. Herein,
maximum attitude gains still yielding a stable behavior were
empirically designed, and were K, = diag(12, 10, 10)N m rad~".
The end-effector and CoM gains were the same used for the
proposed control.

Fig. 7 shows the results for the controller [30]. As observed
therein, the end-effector maneuver was successfully
accomplished, and the system behaved stably after contact. Fur-
thermore, a similar limit cycle was observed on the CoM re-
sponse, as a consequence of the minimum valve activation. A
big displacement of the attitude was however induced during
the end-effector maneuver. Interestingly, the attitude deviation
in case of thrusters actuation was bigger than the one obtained
in case of RW actuation, although the thrusters are capable
of providing a higher torque than the RWs. This behavior is
interpreted as the joint consequence of the high level of inertial
coupling between attitude and end-effector of controller [30], and
the limited allowable attitude gains due to the low sampling rate
of the thrusters.

Another important difference can be observed in the recon-
structed thrusters force and torque in Fig. 7. Therein it is observed
how the thrusters were intensively used in the pre-contact phase
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Fig. 7. Performance of the thrusters-only control [30] with discrete thrusters.

in order to counteract the attitude deviation induced by the end-
effector maneuver. In contrast, by exploiting the reaction wheels,
the proposed controller avoided almost completely any activation
of the thrusters during the entire pre-contact phase, saving a
considerable amount of fuel. This can be seen also in Fig. 8, which
shows a comparison of the active thrusters and the consumed fuel
at a given instant for the proposed strategy and the one in [30].
The fuel consumed by the thrusters is computed as [50]

1 [T

Z dt,

where I, is the specific impulse of the thruster and where
g =9.8ms~2 is the gravitational acceleration at sea level;
herein, it is used Iy, = 70 s. Observe in Fig. 8 how the thrusters-
only strategy required intense thrusters activation during the en-
tire duration of the test sequence, and, therefore, a higher amount
of fuel than the combined thrusters and RWs strategy. During
the pre-contact maneuvering phase, the thrusters-only control
consumed fuel due to the CoM limit cycle, for regulating the atti-
tude, and for cooperating in the actuation of the end-effector task;

(39)
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Fig. 8. Comparison of the thrusters usage and the fuel consumption in case of
the thrusters-only strategy [30] and the proposed thrusters+RW strategy.

in contrast, the combined thrusters and RWs strategy control
consumed fuel only due to the limit cycle. Furthermore, during
the contact the RWs strategy exhibited considerably less fuel
consumption. Finally, after the contact a comparable amount of
fuel was consumed by both strategies due to the limit cycle, and
to dump the angular momentum, but the thrusters-only version
still exhibited a higher thrusters activity and faster fuel consump-
tion despite no end-effector maneuver had to be counteracted in
that phase. In total, for the given test sequence, the thrusters-
only control required approximately 290% more fuel than the

proposed combined thruster and RWs method.
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6.4. Discussion of the simulation results

The simulation results confirmed that the proposed control
works properly when the actuation is accomplished by a rep-
resentative thrusters system. The main effects of the discrete
thrusters were the necessity of suitably reducing the bandwidth
of the CoM and angular momentum systems due to the low
sampling Ty, and the appearance of a limit cycle due to the
minimum valve time Aty;,. These are typically known effects
from satellite control, and are unavoidable considering the above-
mentioned properties of practical thrusters. The tuning of the
magnitude and frequency of the limit cycle is a common problem
in the engineering practice [51,52], and could be addressed by
varying the parameters K, Ts, and Tp,m based on some trade-
off between accuracy of the CoM position and fuel consumption.
The effect of the limit cycle on the proposed control is that during
the pre-contact phase the fuel consumption is not exactly zero,
as in the case of ideal actuation, but a small amount of fuel is
consumed.

The comparison with the controller [30] confirmed the advan-
tage of the proposed control strategy in terms of performance
and fuel consumption. The improved performance of the atti-
tude control during end-effector maneuvering is interpreted as
being related to the inertial decoupling of the proposed control,
whereas in the controller [30] the attitude and end-effector sys-
tems are inertially coupled, leading to attitude disturbances that
cannot be promptly compensated with the low allowable gains
of [30].

The improved fuel consumption of the proposed strategy is
related to two main aspects. Firstly, no thrusters effort is wasted
to actuate the end-effector task, thanks to the proposed external-
internal decomposition. Secondly, the attitude control task is exe-
cuted by the reaction wheels, which require only electrical power,
and not by the thrusters. These two characteristics altogether lead
to a substantial improvement of the fuel consumption.

7. Conclusions and future work

A fuel-efficient control method for the coordination of
thrusters, reaction wheels, and joints of an orbital robot was
derived. A dynamics transformation was introduced, which al-
lowed separating the attitude and end-effector controllers from
the thrusters, and achieving the property that ideally zero fuel is
consumed in the pre-contact phase. Pre- and post-contact exper-
iments successfully validated the method. Numerical simulations
confirmed that the controller may work with realistic thrusters
and showed the advantage of the proposed strategy in terms
of fuel efficiency and performance. Future work may endow the
controller with a null-space control action, and may investigate
the applicability of the method to the case of a tumbling target.
Furthermore, the extension of the theoretical framework of the
proposed method to the contact case will be addressed.
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Appendix A. Dynamic matrices

The body velocity of the jth body can be expressed as a
function of the generalized velocity v, as

v = [Ajb(qm) Jiw ]jm(qm)] v

Ji(@n) € R

(40a)

where J;,, € R®™ and Jj,(q,,) € R®*™ are the Jacobian matrices
mapping the RW velocities and the velocities of the joints of the
arm, respectively, into v;. Note that, since the reaction wheels
and the arm are on separate kinematics chains, for all bodies of
the reaction wheels it holds J;,(q,,) = 0, and for all links of the
arm it holds J;,, = 0; additionally, for the reaction wheels Aj, is
constant because each reaction wheel forms a single-body chain.
By convention, the Oth frame is coincident with the base frame
B; in turn, it is Agp = E, Jo,, = 0, and J,(q,,) = 0
The dynamics matrices in (3) are computed as [33]

m) = Dj(qm)TAij(qm), (41)
qms Z’](qm [A a] v] a] v] )]J qm
NOF
+ .’j(qm) A1), (42)
where AY) € R6*6 is the body inertia of the jth and where

a;(v;)) € R<® denotes the so-called small adjoint matrix

RIS A
aj(vj) = |:[w6] [[:)fj]] A}. The sub-blocks of the inertia matrix in

(3) are given by

Mo(Gn)=) _ Ai(dn)" A Ajp(g,,) € REC, (43)
J
My, = ZAjb(qm )TA](]).’]w € Rﬁxnu,’ (44)
J
Min(@)=>_ Aip(@)" A Tj(q) € RO, (45)
M, =Y J7, A0, € R, (46)
J
Mn(qy,) AJ;(qy) € R (47)

= Z]]m(qm )T
J

Closed-loop equations

Lemma 1. Given the gynamically consistent nullspace transforma-
tion (15), it holds T,T, = E.

Proof. Using (15) and the dynamically consistent pseudoinverse
n (17), Tb can be written as

o - _ - -1
T, =M 'N'T! (TbNeM 1N§T,§) . (48)

Then, in order to be be"i = E, it must be

T,M 'N'T! (TbNeM_lNZTg)il —E, (49)

where (48) was wused. By right-multiplying (49) times

(TbNeI\_/I_lNZTg), it is obtained:

T,M 'N'T! = T,N.M 'N'T}. (50)

Inserting the transpose of (16) into (50), it is

T,M 'NIT] =T, (E — T*T,)M 'N'T], (51)
0=—T,T*T.M 'N'T!. (52)

Now, given the well-known property Tel\_/f]NZ = 0 of the

dynamically-consistent projector NZ [34, p. 56], it is seen that
(52) is always satisfied, proving that TbT: =E O
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To find the closed-loop equations, let us compute the inverse
of (18), as [53]

q=TH" + T e (53)

e

Then, by inserting (53) into (11b), and then applying (10b) and
Lemma 1, it is possible to write

wp = &) + TpTHvi" + Q,M, AL h. (54)

The closed-loop equations are then found by inserting, (5), (8b),
(54), and (25), into (22) and (24), as

h+Dwh + QK % =0, (55a)
. 1

X = 7Qcha (55b)
Ml + Covi + Doy + T K X, (550)

= — (€}, + DeAsM; 'Al) h,

Xe = J;, v + Jz, AsM; AL, (55d)
MG + Coay" + Dydoy" +J3 Ko (55¢)
=(—C;,—DyT, T} v —(C;, +DyQ,M, AL,) h,

X =Jz,@p" +Jz, ToTovy" +J5, @M, 'Alph. (55f)

o #
The matrices M, M}, My, Ty, T, T,, and Ae, in (55) are
functions of q,,; the matrix Ay is function of g, and X,; the

matrices C; and Cj are functions of q,,, X, vs, q,,, and q,,. The
dependency on vy, q,, and @, is replaced with h, v, and &}"

using the inverse of (19). To replace the dependency on q,,

let us consider the kinematics relation X, = h(X., X, q,,,). In a

local region, the relation is one-to-one and the inverse can be

written, as q,, = (X, X, X,). Then, (55) is an autonomous sys-
) T

tem with state y = [hT ;}Z vL"fT iz QL”‘T ig] € D, and

domain D = {x € R¥ :  g(X, &, &) is one-to-one}.

Momentum Coriolis-centrifugal terms

Herein it is shown that the momentum Coriolis-centrifugal
vector terms in (21) are zero. Let us preliminary rewrite (4)
compactly, as

h=Lv, L=A; [M, M,, Myy,], (56)

and report the formulas for the transformation of the inertia and
Coriolis/centrifugal matrix in (21), as

M=1"MP", (57)
C=17" (c — Mf”f") il (58)

According to the Newton’s third law, only external forces do
change the total momentum of the system. Therefore, projecting
the base external wrench F; around C, it must be

h=A] 7, (59)
Let us now rederive h taking the time derivative of (56), as
h=Lv+Lo=(L-LM'C)v+LM'f, (60)

where (3) is applied. By algebraic manipulation it can be shown
that LM~' =[A;] 0 0], thus (60) reduces to

h=(L-LM'C)v+Aj Fy. (61)

Comparing (59) and (61) for all v € R" and F}, € RS, a constraint
for the motion is then obtained as [54]

(L-LM'C)v=0. (62)

Thanks to the constraint (62) it is then shown that the Corio-
lis/centrifugal vector terms are identically zero for the momen-
tum equation in (21). In fact, it holds

h .
€| vt [ =7 (€ MPTE) Bt | wi
‘:);]n[ ‘:);]n[

= P TME! (fM”c - r) v

=M (fM’1C _ f) v

-M'(L-LM7'C)v

=0, (63)

where (19), the block-diagonal inertia in (21), and the momentum
constraint (62), are applied.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.robot.2020.103564.
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