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Abstract

Drone racing is becoming a popular sport where human pilots have to con-
trol their drones to fly at high speed through complex environments and pass
a number of gates in a pre-defined sequence. In this paper, we develop an
autonomous system for drones to race fully autonomously using only onboard
resources. Instead of commonly used visual navigation methods, such as si-
multaneous localization and mapping and visual inertial odometry, which are
computationally expensive for micro aerial vehicles (MAVs), we developed the
highly efficient snake gate detection algorithm for visual navigation, which can
detect the gate at 20HZ on a Parrot Bebop drone. Then, with the gate detec-
tion result, we developed a robust pose estimation algorithm which has better
tolerance to detection noise than a state-of-the-art perspective-n-point method.
During the race, sometimes the gates are not in the the drone’s field of view. For
this case, a state prediction-based feed-forward control strategy is developed to
steer the drone to fly to the next gate. Experiments show that the drone can fly
a half-circle with 1.5m radius within 2 seconds with only 30cm error at the end
of the circle without any position feedback. Finally, the whole system is tested
in a complex environment (a showroom in the faculty of Aerospace Engineering,
TU Delft). The result shows that the drone can complete the track of 15 gates
with a speed of 1.5m/s which is faster than the speeds exhibited at the 2016
and 2017 IROS autonomous drone races.
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1. Introduction

First person view (FPV) drone racing has been a popular sport in recent
years, where the pilots have to control the drones to fly through gates decorated
by LED lights at fast speed. In the field of robotics, drone racing has raised
the question: how can drones be designed to fly races by themselves, possibly
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faster than human pilots? To start answering this question, the world’s first
autonomous drone race was held in 2016 [I]. In this drone race, the drones
were asked to fly through square, orange gates in a predefined sequence using
onboard resources. To increase the level of challenge for gate detection, unlit
gates were used in the race. The rules were simple: the one who flies furthest
will win the race, and if two drones arrive at the same gate or complete the
full track, the fastest time counts. The winner of the 2016 race (the team from
KAIST) flew through 10 gates (the distance is around 50m) within 86s [2] and
the winner of the 2017 race (the team from INAOE) flew through 9 gates (60m)
within 194s, which are much slower than the FPV drone race players. Compared
to the FPV drone race, the task of autonomous drone race is more challenging
because the drone has to navigate, perceive, plan and control all by itself using
only scarce onboard resources, representing a considerable challenge for areas
such as artificial intelligence and control.

Autonomous drone racing can be seen in the more general context of high-
speed flight. In fact, before the autonomous drone race, there are several on
flying through circles or gaps. To the best of our knowledge, the first research
on quadrotor’s flying through circles is [3]. In their work, the drone can fly
through a thrown circle and three fixed circles with fast speed. In [4], the drone
can fly through a tilted narrow gap. In both studies, a VICON motion capture
system is used to provide the state estimation for the drone and the position
of the gap or circles is known a priori. Lyu et al. [5] use an onboard camera
to detect the gap and the drone could navigate itself through the gate. But
the image processing is done off-board. In their experiment, the background of
the gap is a white wall which makes the gap to be detected relatively easily.
Loianno et al. [6] for the first time use onboard resources to detect a window,
plan the trajectory and control the drone to fly through a window. In their
work, visual inertial odometry (VIO), which is computationally quite expensive
for our drone, is used to provide the state estimation to the drone. In Falanga et
al.’s [7] work, a drone with a fish-eye camera can detect a black and white gap
and design a trajectory through the gap using only onboard resources. In [§],
deep-learning-based optical flow is used to find any arbitrary shaped gap with
an NVIDIA Jetson TX2 GPU. But the drone has to execute a fixed sideways
translational motion to detect the gap before going through it, which slows
down the drone. The studies above aim at motion planning, object detection or
onboard perception, so in most of these studies only one gap is flown through
and there is no solution on how to fly through the next gate after passing through
the previous one.

Multiple studies have focused directly on autonomous drone racing, design-
ing a strategy that will allow to fly an entire trajectory. In [J], a simulated
drone learns how to minimize the time spent to finish the race track, by learning
from two different PID controllers. Although an interesting approach, it ignores
several of the real-world aspects of drone racing, such as restricted onboard
computation or how to deal with accelerometer biases. NASA’s Jet Propulsion
Laboratory has developed an autonomous racing drone controlled by AI, which
can fly almost as fast as the racing drones controlled by expert human FPV



pilots.[I0, [IT] They use VIO for navigation which is computationally relatively
expensive. Kaufmann et al. develop a strategy that combines a convolutional
neural network (CNN) and minimum jerk trajectory generation.[I2] In their
work, an in-house quadrotor with an Intel UpBoard and a Qualcomm Snap-
dragon Flight Kit which is used for VIO, is used as the platform. In [2], a
systematic solution for the IROS autonomous drone race 2016 is presented. In
their work, an NVIDIA Jetson TK1 single-board computer and a stereo camera
are used for a visual servoing task. They finally passed through 10 gates within
86s and won the race. We will use their result as a benchmark to compare our
research result.

In this paper, we present a solution for autonomous drone racing, which
is computationally more efficient than the solutions discussed above. For the
gate detection, a novel light-weight algorithm, “snake gate detection”, is de-
scribed and analyzed in detail in Section [3] Instead of using a common, purely
vision-based perspective-n-point (PnP) algorithm, we combine the onboard at-
titude estimate with the gate detection result to determine the position of the
drone. We show that this is more robust than the PnP method. Then, a novel
Kalman filter is introduced that uses a straightforward drag model to estimate
the velocity of the drone. Two control strategies to control the drone to go
through the gate and find the next gate are discussed in Section[d In Section 5]
flight tests are performed with a Parrot Bebop 1 drone, by replacing the Parrot
firmware with our Paparazzi autopilot code. All algorithms run in real-time on
the limited Parrot P7 dual-core CPU Cortex A9 processor, and no hardware
changes are required as the vision algorithms use the frontal camera and other
sensors already present in the Bebop. The flight experiments are done in a com-
plex and narrow environment (a showroom displaying aircraft components in
the basement of Aerospace Engineering, TU Delft)ﬂ The result shows that the
drone can fly through a sequence of 15 gates autonomously using only onboard
resources in a very complex environment with a velocity of up to 1.5m/s.

2. System overview

The quadrotor hardware used as experiment platform in this work is a com-
mercially available Parrot Bebop 1 (Figure. However, all Parrot software was
replaced by own computer vision, own sensor drivers and own navigation and
control using the Paparazzi-UAV open-source autopilot project.[I3] Only the
Linux operating system was kept. The most important characteristics are listed
in Table[I] It should be noted that the image from the front camera as used by
our autopilot in this work is only 160 x 350 pixels and all the processing for the
drone race takes place on the Parrot P7 dual-core CPU Cortex 9 (max 2GHz),
although the Bebop is equipped with a quad core GPU.

The structure of the system is shown in Figure 2| For visual navigation, a
novel algorithm, snake gate detection, is implemented to detect the gates. It

IThe video of the experiment is available at: https://youtu.be/bwFOTAjCSil



Figure 1: The Parrot Bebop 1 is used as experiment platform. The software is replaced by
the Paparazzi UAV open-source autopilot project

Table 1: List of onboard sensors used in the experiment

camera a 6 optical elements and 14 Mega pixels sensor
a vertical stabilization camera (not used in this work)
processor Parrot P7 dual-core CPU cortex 9 (max 2GHz)
IMU MPU 6050
sonar < 8m

outputs the coordinates of detected gates’ corners, which are then sent to the
pose estimation block. In pose estimation block, the coordinates of the gate
corners on the image plane would be projected to 3D space, which provides the
relevant position between the drone and the gate. For attitude and heading ref-
erence system (AHRS), a classic complementary filter [I4] is employed. At last,
the position measured by the front camera, attitude estimation from AHRS and
IMU measurement are fused by a Kalman filter to provide a position estimate.

In terms of control, when the target gate is in the field of view, a PD con-
troller (Control block in Figure [2)) is used to steer the drone to align with the
center of the gate. After passing through the gate or there is no gate in the field
of view, a prediction-based feed-forward control scheme is employed to steer
the drone to the next gate, which will be further explained in Section 4. An
adaptive incremental nonlinear dynamic inversion (INDI) controller is used as
low-level attitude controller [I5].

The race track can be divided into two parts. The first part is the approach-
ing gate part where the target gate can be used by the drone for navigation.
The other one is after gate part, which starts from the point where the drone
passing through the gate and ends at the point where the drone can see the
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Figure 2: The structure of the autonomous system

next gate. The different race tracks can be seen as the different combination of
these two parts. Thus, at first , due to the space restriction of our experimental
environment, we simplify the race track to a two gates track which can be seen
in Figure [3] Most of our experiments are done and analyzed in this simplified
race track with the ground truth measurement provided by Opti-track. At last,
the system is moved to a more complex and realistic drone race track to be

verified.

Figure 3: A simplified race track



3. Vision navigation

In the FPV drone race, gates are usually decorated with LEDs in order to
be easily recognized by drone pilots. Drone pilots can then use the gates to
navigate themselves to approach the gates. Inspired by FPV drone race, in our
research, we also use gates for navigation since their simple shape and relatively
large size make them relatively easy to be extracted and their projection on the
image plane can provide information such as position and attitude of the drone.
In this section, we first present an efficient gate detection method to extract
the four corners of the gate on the image plane. Next, the position of the four
corners of the gate is projected to 3D space combining AHRS reading. At last,
a Kalman filter providing position estimation by fusing the vision measurement,
the IMU measurement and the onboard AHRS reading is discussed.

3.1. Gate detection

Gate detection can be accomplished by multiple different computer vision
methods, such as Viola and Jones[16], Hough transform[I7] and deep learning[I8],
19]. In this article, we propose a novel gate detection algorithm called snake
gate detection which is lightweight and easy to be implemented onboard.

We search the gates based on their colors on an distorted image because
the undistortion procedure for each image can slow down the whole detection
procedure. (Figure [4]) Luckily, our detection method can still work properly on
this distorted image. The search starts by randomly sampling [20] in the original
image. If a random point Py hits the target color (gate’s color), we continue
searching 'up and down’ to find points P; and Ps. It should be noted that this
search can search along the edge of the oblique bar of the gate. (Figure
To prevent that the algorithm may find some small color blocks which have the
same color as the gate, we introduce a threshold, which is called the minimum
length threshold or. If |Py — Pa|| < o, this search would be terminated.
Then, we use P; and P, as start points respectively to search ’left and right’
to find P3 and P4. Similar to the vertical search, the horizontal search can
also search along the oblique bar and the result would be checked by o to
ensure that the detection is not too small and hence unlikely to be a gate. The
algorithm can be found in Algorithm [I} It should be noted that while small o,
may lead to acceptance of some small detections which in most cases are false
positive detections, large oy, can lead to the result that some gate in the image
are rejected. The selection of oy, will be discussed later in this section.

If the gate’s image is continuous in the image plane and the gates’ edges are
smooth, snake gate detection should find all four points. (Figure However,
due to varying light conditions, some parts of the gate may get overexposure
or underexposed which may lead to color deviation. For example, in Figure
part of the lower bar gets overexposed. In this case, P4 will not reach the
real gate’s corner. Hence, a refining process is employed to find the real gate’s
corner. To refine the detection, a square with minimum length including four
points is firstly obtained. (Red square in Figure Then four small squares
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(a) If the gate is continuous on image
plane, snake gate detection algorithm
should find all four corners P;, Ps, Ps3
and Py

(b) When the gate is not continuous
on image plane, first a square Sp, Sa,
S3 , S4 with minimum length includ-
ing Py, P2, P3 , Py is found. Four

small squares centering at S; are then
found. In these small squares, a his-
togram analysis helps to refine our esti-
mate of the gate’s corners in the image

Figure 4: An example of snake gate detection.

centering at S; are found.(Four gray square in Figure The raw detection is
refined by finding the centroid of the patch around each rough corner.

In one image, in most cases, the number of detected gates Ny is larger than
the number of real gates in the image N,;. It can be caused by duplicated
samples on the same gate, which are true positive detections and do not affect
the performance of navigation. The other reason for Ny > N, is the false
positive detections, which affects the accuracy of navigation significantly and
should be eliminated. Here, another threshold, color fitness threshold oy, is
introduced to help decrease the number of false positive detection.

of = 1)

where N, is the total number of pixels on the polygon whose color is target
color and N is the number of pixels on the polygon.

Only the gates whose cf > 0. will be accepted as detected gates. Similar
to minimum length threshold o, the selection of 0.y also affects the detection
accuracy significantly.

To evaluate the performance of the snake gate detection algorithm, 600 on-
board images with/without gate are used to test the algorithm.(Figure [5) The
ROC curve with varying oy, is shown in Figure[6l It should be noted that the
detection is done 10 times with one o to obtain the statistical result. The
x-axis of ROC curve is average of false positive detection per image and the
y-axis is true positive rate. To make the trend in Figure [6a] clearer, we enlarge



Algorithm 1 snake gate detection

1: procedure SNAKEGATEDETECTION (image)
2 for i = 1:maxSample do

3 Py = randomPoint()

4 if isTargetColor(Pg,image) then

5: [P1,P2] = searchUpDown(Pg,image)

6 if ||P1 — P2|| > o, then

7 P3 = searchLeftRight(Py,image)

8 P, = searchLeftRight(Ps,image)

9 if |P; — P3|l > o OR ||P2 — Py4|| > o then

10: [S1,52,S3,S4] = findMinimalSquare(P1,P5,P3,Py)
11: detectedGate = refineCorner(S1,S2,S3,S4)

12: if checkColorFitness(detectedGate) > o,y then
13: return detectedGate

14: end if

15: end if

16: end if

17: end if

18: end for

19: end procedure

local part of the ROC curve by using logarithm coordinate system in Figure
From ROC curve, it can be seen that when o is small (o < 15), the
number of the false positive detections decreases significantly while o, increases
without sacrificing TPR.That is because o, helps to reject the small detections
caused by small color blocks of the environment. When o, > 35, however, TPR
decreases sharply, the reason is that oy, is too large to accept true positive de-
tections. oy, = 25 can give the optimal option with low FPs/image and almost
highest TPR. Then, with o7, = 25 , we draw another ROC curve with varying
ocf, which is shown in Figure m It can be seen that with increasing o.¢, false
positive detections decrease without significantly decreasing of TPR.

In autonomous drone race 2017, we tuned o, through experimental trial-and-
error and accept the detection with highest color fitness, from which, the ROC
point is plotted by red circle in Figure [6] and Figure [} It is remarkably close
to the optimal thresholds one would pick, given this more extended analysis.
Please note that the algorithm used in the 2017 drone race only accepted the
gate with the highest color fitness, and not every gate that was over the color
threshold. It should also be noted that the method described above can be used
for tuning o7, and cf automatically. However, manually labeling and running
snake gate detection on the dataset for each set of parameters is time-consuming
especially when the drone needs to be deployed in a new racing track with limited
preparing time.

It should be noted that the true positive rate in above figures is the statistical
result on the entire dataset. In order to evaluate how good or bad a true positive



Algorithm 2 search in vertical direction (search in horizontal direction is sim-
ilar)

1: procedure SEARCHUPANDDOWN(PO, image)
2 P, = Py, P> = Py, done = false
3 while !done do

4 if isTargetColor(P;.xz,P1.y — 1) then

5: Piy=Pry—1

6 else if isTargetColor(P;.2 — 1,P;.y — 1) then
7 Pix=Piz-1

8 Piy=Pry—1

9: else if isTargetColor(Py.z + 1,P;.y — 1) then
10: Piz=Pix+1

11: Pl.y:Pl.yf 1

12: else

13: done = true

14: end if

15: end while

16: done = false

17: while !done do

18: if isTargetColor(Ps.xz,P1.y + 1) then

19: Poy=Pry+1

20: else if isTargetColor(Py.z — 1, P;.y + 1) then
21: Pyx=Pyzx—1

22: ng = ng +1

23: else if isTargetColor(P;.2 + 1,P1.y + 1) then
24: Pox=Pyx+1

25: ng = ng +1

26: else

27: done = true

28: end if

29: end while

30: return Py, P,

31: end procedure

rate of 0.46 is, one has to take additional factors into account. Importantly, the
distance between the drone and the gate can significantly affect the detection.
Figure [8 shows how the true positive rate changes with the change of distance
between the gate and the drone. It is very clear that when the drone gets closer
to the gate, the snake gate detection has a higher true positive rate, reaching
70% at close distances.

Figure [J] shows the detection result while the drone approaches the gate.
In the beginning, the distance between the drone and the gate is large which
leads to false negative detections. Once the drone starts detecting the gate, it
can detect the gate most of times. However, there still exist some false negative



(a) Ture positive detection (b) Ture positive detection and (c) False negative detection
false positive detection

Figure 5: Examples of the snake gate detection results. The first row are original onboard
images with detection results. The second row are corresponding masks

detections. But these false negative detections could be handled by filters which
will be explained in details next section.

When the drone is close to the gate (< 1m), only part of the gate can be
seen. In this scenario, snake gate detection will not detect the gate. A second
detection called histogram gate side detection is employed to replace snake gate
detection when the position estimate from the Kalman filter is < 1m. (Figure
This detection algorithm accumulates the number of target color pixels by
each column. Then two peaks of the histogram which represent two sidebars
of the gate can be found. Later, the position of these two bars can be used by
pose estimation to extract relative position between the gate and the drone.

3.2. Pose estimation

When a gate with known geometry is detected, its image can provide the
pose information of the drone. The problem of determining the position and
orientation of a camera given its intrinsic parameters and a set of n correspon-
dences between 3D points and their 2D projections is called Perspective-n-Point
(PnP) problem. [2I] In our case, 4 coplanar control points (gate corners) are
available which leads to a unique solution.[22] However, PnP is sensitive to the
mismatches of 3D points and 2D points which in our case is inevitable because
the vibration and complex environment. Therefore, these methods are usually
combined with RANSAC scheme to reject noise and outliers. Unfortunately, the
fact that only four corner points are available on one gate limits the effectiveness

10
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Figure 6: The ROC curve with the change of o,.

of such a scheme. In this section, a novel algorithm combining gate detection
result and the onboard AHRS attitude estimation will be derived to provide the
pose estimation of the drone.

Since we are using a fish-eye camera, a calibration procedure should be done
first [23]. Then, the camera can be simplified as a pinhole camera model. (Figure
According to the similar triangle principle, we have

[}

LEL- 75 .

p

Assume that each pixel’s size is d, and length d, and the principle points’
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Figure 8: When the drone approaches the gate, true positive rate becomes larger because of
larger and clearer gate on image plane

coordinate is (Cy, Cy), we could transfer the pinhole model [2| to

L]z
u d 25 Cx
L’] 0 % ZT‘; " [OJ ®)

To write the pinhole model |3 in homogeneous coordinates, we have

W] [f 0 G|
vl=10 f, Cy i (4)
1 0 0 1]|T
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Figure 9: While the drone approaches the gate, there still exist some false negatives which
may caused by light condition and distortion.

Figure 10: When the drone is close to the gate, only a part of the gate can be seen. A
histogram of target color in x axis is employed. Two side bars can be found by the two peaks
of the histogram

where f, = f/ds, fy = f/dy. u, v,C; and Cy are in pixel unit. From Figure
it can be seen that the 3D point P, the image point P’ and the focal point
O, are on one line. Thus, the direction of the light ray from O, to P can be
described by a bearing vector v which can be expressed in camera frame by

(u - Cﬂc)/fm
= |(v— Cl’y)/fy (5)

v
V=17
v

NORORO

To express vector v in earth frame, we introduce 2 rotation matrices §Rg and
RE. RE is the rotation matrix from camera frame C to body frame B which is
a fixed matrix. %g is the rotation matrix from body frame B to earth frame F
consist of three Euler angle v, 6 and ¢, which can be measured from onboard
AHRS system. Thus, bearing vector v could be expressed in the Earth frame
FE by

13
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Figure 11: A pinhole camera model. O, is the focal point and the origin of camera frame
OcXcYeZe. fis the focus. O;X;Y;Z; is image frame. P is a 3D point in space and P is its
image point on image plane

vy vg
v = vg = 5}%53%3 v; (6)
v v<

z

A line passing through point P with direction v can be written as
L(p,v) =p+ Av, X € [—00, +0] (7)

The perpendicular distance D(t;p,v) of a point t to line L(p, v) is

D(t;p,v) = [[(p—t) = (P~ t)"V)v[, (8)

According to the pinhole model, 4 light rays with bearing vectors v; from four
corners of the gate should intersect at the focal point t ( Figure, which is the
position of the drone. The bearing vectors can be calculated by the four points’
images on the image plane and camera’s intrinsic parameters. This intersection
point could be calculated analytically. However, due to the detection error of
the gate’s corners, bearing vectors can be wrongly calculated, for example, in
Figure[12|four light rays do not intersect at one point.(gray line) Thus, there is no
analytical solution of camera’s position. Instead of finding analytical solution

14



of camera’s position, a numerical solution is found that finds a point whose
distance to the four light rays is minimum. Hence, estimating the position of
the drone can be converted to an optimization problem that finds an optimal
point t which has minimal distance to 4 light rays, which can be expressed
mathematically by

min > D(t:pi,v:) )

i=1

which is a least squares problem.

P2

Figure 12: Four light rays from four corners of the gate with bearing vector v;, which could be
calculated by four corner’s images on image plane and camera’s intrinsic parameters, should
intersect at focal points. (red line) However, wrong bearing vectors from wrong detections
could make the light rays not intersect at one point.

When the drone is close to the gate, only two sidebars can be detected by
the histogram method. With the position of bars on the image plane, the pose
of the drone can be estimated by geometrical principle. In Figure [I3] oy and
aq are calculated by the position of the image of two bars on image plane and
intrinsic parameters. Then we have

T
=——a
v 5 2
1 _ Ys
siny  sin(ag + a2) (10)

xp, =T1COS Q|
Js .
Yp =— — ripsSimog
2
where g, is the length of the gate. Hence, based on the detection of the

histogram peaks in the image (corresponding to a; and as), we can deduce the
lateral position of the camera with respect to the gate (x5 and yp).

15
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Figure 13: The top view of the position of the drone and the gate

A simulation is done to test the performance of our algorithm and compare it
with a standard PnP method. For simulation, artificial gates are created, which
are projected onto a virtual pinhole camera image. Since gate detections contain
image noise and outliers, a set of real gate detections are compared with ground
truth data. Based on this test the vision method experiments will therefore
contain image noise with a standard deviation of 3.5 pixels. The Root Mean
Squared Error (RMSE) is used to evaluate the performance of both algorithms.
The result is shown in Figure |14 where each point represents a thousand trails
of the position estimation algorithm in the presence of pixel noise. It can be
seen that the error varies mainly as a function of distance to the gate. The
LS method uses prior knowledge of the attitude and heading of the vehicle to
obtain a more accurate position estimate. To study the effect of attitude error,
noise with a variance of 0, 5 and 15 degrees is added to the attitude and heading
estimates. It is clear from the figure that the LS method has far higher accuracy
in RMSE compared to the PnP method, even in the presence of relatively large
noise in the attitude estimate.

Also, the histogram position estimation method is evaluated in simulation.
Similar to the LS method, pixel noise with a standard deviation of 3.5 is intro-
duced. Figure[I5|shows the results of the position RMSE in the horizontal plane
in x and y-direction. The experiment is performed with a heading angle of -30,
0 and 30 degrees. From the figure, it can be observed that the position error of
this method is relatively low. However, in reality, the method is only effective
up to a maximum distance of 1.5 meters, due to the possible background color
leading to spurious histogram peaks that are hard to filter out.

3.8. Vision-IMU state estimation

In order to close the control loop, state estimation is essential since the
measurements (in our case, distance from vision, acceleration and angular ve-

16
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Figure 14: Simulation result of P3P and LS method. With the incrementation of the distance
between the drone and the gate, both methods’ error increase. However, LS method has much
less error than P3P.
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Figure 15: X and Y histogram position RMSE as function of distance to the gate

locity from IMU) are inevitably noisy and biased. A common approach for
state estimation is the Kalman filter and its variants such as extended Kalman
filter(EKF), Unscented Kalman Filter(UKF) and Particle filtering. In the field
of UAVs, 15-states (position x, velocity v, attitude ¢ and IMU bias b) Kalman
filter is used commonly in many scenarios. It first integrates angular rate to
gain rotation matrix from body to earth RE. Next, RE is used to rotate accel-
eration measured by the accelerometer to earth frame. Then, the acceleration
will be integrated twice to gain the position. And finally, position measure-
ment will be used to correct the position prediction. Usually, UAVs’ onboard
IMUs are low-cost MEMS which suffer from biases and noise severely. During
the prediction phase, the bias of accelerometer is integrated twice which may
cause the prediction to deviate from the real position over time. If the position
measurement has a relatively high frequency, the deviation of the position pre-
diction could be corrected before it diverges. At the same time, the bias of IMU
could also be estimated as states in the system and it should converge in short
time. However, in our case, position measurements come from onboard image
processing which has a low rate of around 20 HZ and the drone may cover signif-
icant durations without vision measurements. In this case, position prediction
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may deviate largely before new position measurement comes. Thus, the bias
estimation converges slowly. In this section, we adopt the drone’s aerodynamics
model to the prediction model in Kalman filter which has a better performance
than classic 15-states Kalman filter.

The kinematics of the drone can be described by

X=V (11)

To express V in body frame, we have

x'E UB
JE | =RE(6,60,v) vg (12)
3B vy,

E E E B B B

where,z™, y", 2™ are the drone’s position in earth frame E. v;’,v,’,v;” are
the drone’s velocity in body frame B. One property of the onboard accelerom-
eter is that it measures specific force Fg in body frame B instead of vehicle’s
acceleration. The specific force in Z? direction is mainly caused by thrust T
under the assumption that the thrust of quadrotor is aligned with ZZ. The
force acting on X® and Y® can be caused by many factors, for instance, blade
flapping, profile drag, and translational drag. But they could be approximated

as a linear function, assuming that the indoor environment has no wind: [24]

e = [ 2] B o

Y

where k; and k, are drag coefficient which could be identified off-line. With this
property, the accelerometer can actually provide the information of velocity of
the drone by

0Bl ke 0] [am—b2
=5 w) as

m

where a]' and a]" are the measurement of accelerometer. b7 and bY are the bias
of accelerometer. Combine equation [I2] and equation [I4] we have

m

PP ke 0 0] ' [am—0b®
yE = §Rg(¢7 97 ’(/)) 0 ky 0 a;n - bg (15)
2B 0 0 1 vB

z

In equation the bias only needs to be integrated once to predict the
position of the drone instead of being integrated twice in original 15-states
Kalman filter, which could help to decrease the error of prediction.
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As mentioned above, the onboard AHRS system is a complementary filter,
which on a low level fuses accelerometer and gyro data to estimate the attitude of
the drone. It can directly provide the attitude estimation to the outer loop. The
AHRS fusing only IMU data may introduce a bias to the attitude estimation.
In this paper, we assume that this low level attitude estimation bias can be
neglected. Hence, AHRS and accelerometer reading can be used as inputs to
propagate the prediction model

According to Newton’s laws of motion, the motion of the drone can be
described as

o5 0 am — be P vB
?g =RE (0| + |a —bY| — |q| % vg (16)
Uy, g al’ — b r vy

where ¢ is gravity factor and p,q,r are angular velocity in body frame B
measured by the gyro. Since in equation[I5 body velocity has already had mea-
surements from the accelerometer, in equation we omit the first 2 equations
and only leave the last equation combining with which results

b am by
B a;"beJrgcosﬁcosngJrqax e _pY =
ky ky

b (17)

With the assumption that gyro’s bias is small, which can be neglected and
the accelerometer’s bias changes slowly,
. b 0
b, = [bY]| = |0 (18)
bz 0

Combining equation equation and equation we have the process
model for EKF as:

x = f(x,u) (19)

with states and inputs defined by

X = [IEvyEsz7UzBab§7bZ7b(Zl]T (20)
u= [¢767w7a;n7a;naa/;n7p7 q]T (21)

Then, a standard EKF predict/update procedure will be done to estimate
the states, which can be found in Appendix.

To evaluate the performance of the visual navigation method described in
this section, a flight test with a simplified two-gates track where the drone flies
through two gates cyclically is done. (Figure [3) A first experiment aims to
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gather onboard data to be analyzed off-line. Hence, Opti-track system is used
to provide accurate position measurements to make the loop closed. It should be
noted that only in straight parts, the gate is in the drone’s filed of view and the
snake gate detection algorithm is done onboard, while the pose estimation and
EKF are done off-board. The outer-loop controller is a PD controller combining
Opti-track measurements to steer the drone to align with the center of the
gate. In the arc parts, the gates are no longer available for navigation and the
drone navigates itself to fly along an arc only by state prediction without the
involvement of Opti-track, which will be explained in details in next section.
The filtering result is shown in Figure During the straight part (purple
vision measurements), the EKF runs state prediction and measurement update
loop and the estimated states curves (red) coincide with ground truth curves
(blue) well. The error distributions between estimated states and ground-truth
states are shown in Figure[I7] All histograms are centered around 0 error. But
there are still a few estimation errors above 0.2m in both x error and y error
distribution which explains the fact that a few arcs end up at points which are
more than 0.5m from target endpoint, which could be seen in next section. To
make readers clearer to the experiment set up and result, a 3D ground truth
and estimation result can be found in FigurdIg|
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Figure 16: Extended Kalman filter result. The straight part flight is done with Opti-track.
The vision pose estimation is done onboard. The arc part is done only by state prediction
without the involvement of Opti-track.
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Figure 18: Experiment setup. The drone takes off from the ground and flies an oval cyclically.
In straight parts, Opti-track is used to help the drone align with the gates, while vision
detection is done onboard for logging. In the arc parts, a feed-forward control with state
prediction is employed, which explains the reason the arcs end up at slightly different points.

22



4. Control strategy

Like classic control strategy of quadrotor, our control system is also divided
into a inner-loop controller which stabilizes attitude of the quadrotor and a
outer-loop controller which steers the quadrotor along the desired trajectory.
For the inner-loop controller, an INDI controller is employed on-board[I5].

For outer-loop control, we have two different control strategies for straight
parts and arc parts respectively (Figure . During the straight part where
the drone faces the gate and the gate is available for visual navigation, a PD
controller is used to command a roll maneuver to steer the drone to align with
the center of the gate while the pitch angle is fixed to a certain degree 6y and
the heading is fixed to the same direction as the gate.

b = —kpi) — kay
0. = 6o (22)
wc - Oo

where subscript ¢ means command and position y is defined in local frame
whose origin is fixed at the center of the gate.

Arec parts (feed-forward controller)

Straight parts (PD controller)

) Detection

Figure 19: Two control strategies used in the experiment. When the drone faces the gates
(straight parts), A PD controller combined with the Kalman filter is used to steer the drone
to align with the gate. After passing through the gate, the drone switches to a feed-forward
controller to fly an arc which ends in front of the next gate.

At the point the drone flies through the gate, no position measurement is
available. Thus, the outer-loop controller has to be switched to a pure feed-
forward controller relying on state prediction to turn a coordinated arc which
ends in front of the next gate. To derive the control law in the arc, we first
introduce body fixed earth frame F' (Figure whose origin OF is at the mass
point of the drone, X* is along the heading of the drone, Z¥" points to the
earth. In other words, the only non-zero Euler angle from E to F' is yaw which
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is the same with the drone’s yaw angle. To express Newton second law in F' we
have

Figure 20: Body fixed earth frame F' whose origin OF is at the mass point of the drone, X ¥
is along the heading of the quadrotor, Z¥ points to the earth. The rotation matrix from E
to F is RE(¥). The rotation matrix from B to F is RE(¢,6)

ov
Z° Q =F 2
atF+ XV (23)

where % is the derivative of v in F', F is the force acting on the drone

F
and  is angular velocity of Frame F' with respect to earth frame E. During
the arc, the drone’s heading is supposed to be tangent to the arc to maintain a
zero sideslip turn, the angular velocity of F' with respect to E should be

0 0
Q=|0| = (l)p (24)
e
To express equation [23]in scalar form, we have
vl
Y% | =Ry |0 +R5 |0| + |a, | — x |v (25)
o g T az% v v?
ot "
where T is the thrust of the drone and
ak k. 0 0 vl
ai =RE10 k, O|RE vi (26)
a, 0 0 k; v
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During the arc, we would like to keep the altitude not changed, which in

this frame means at the same height as at the start of the arc. Thus to make

F
9. —0in equation ﬁ, we can have

at
F
—g—a;
T=——= 27
cos @ cos ¢ (27)

F
Y

) . .
In the arc, g - should be enforced to 0, substitute equation [27|to the second

line of equation [25] we have,

F2
(aF I
1 Yy T

—aq—aF
g—az

) cos 6

d)c = tan™ (28)

Similar to the straight part, pitch command 6. is also fixed to a certain
value. To conclude, during the arc maneuver, the control inputs are

elt) = [ Wy

Fo_ vEm?
be(t) = tan—1 L@ — ()t) 0c(t) (29)

ec (t) = 90

The flight test result can be found in Figure The drone enters the arc at
red points and starts feed-forward control with the control strategy in equation
29 In a feed-forward arc maneuver, §. = —5°, r = 1.5m and each arc takes
around 2s. Before entering the arc, the drone is steered by the feedback control
strategy in equation At the same time, visual navigation is running to
estimate the states of the drone which also tells the drone where to start to turn
an arc. Thus in each lap, red points are slightly different from each other which
is caused by filtering error. It could also be seen that the endpoints (yellow
points) of arc maneuver has a distribution with larger variance compared to
that at entry points. It is mainly because that state prediction in principle is
an integration based method, which may be highly affected by the accuracy
of initial states. In table [2| it is clear that the error at entry point in the x
direction is much less than the one in the y direction. As a result, the error in
the y axis at the endpoints is larger than that in the x axis. This error can also
be caused by model inaccuracy and the disturbance during the arcs. Thus, the
pure feed-forward control strategy is only effective for short time durations. In
our case, 2s is enough to steer the drone to the next gate where visual navigation
is available and feedback control strategy can be switched on again.

After the arc, the drone will detect the gate again and the detection will
correct the filtering error. Thus, there will be a jump in the filtering result
(Figure . For the feed-back controller, the control target is to steer the drone
to y = 0. In fact, this is a simple step signal tracking or a way-point tracking
problem. Simulations are done to check the feasibility of the proposed controller
to steer the drone through the gate. The simplified drone model is
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Figure 21: The flight test result of feed-forward control. The start points of the arcs (red points)
slightly differ from each other because of the filter error. The end points of the arcs have a
larger variance because the arc maneuvers are based on state prediction which is affected by
model accuracy and initial state estimation.
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Figure 22: During the arc maneuver, the drone will not detect the gate. Thus, the state
estimation is purely based on the prediction (red arc). However, due to the model inaccuracy
and the sensors’ bias, the predicted trajectory will diverge from the ground-truth trajectory
(blue curve). After the turn, the drone will detect the gate again and the estimated position
will jump to the ground-truth position. In fact, although there is a jump in the state estimation
(red curve), the real-world trajectory should be continued (blue curve).
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Table 2: Feed-forward control accuracy distribution

Axis Entry speed variance o, Position error variance o,

X 0.0043m/s 0.0296m
Y 0.0106m/s 0.8087m
T = vy
U=y (30)

vy = gtan ¢ + kyv, cos? ¢

where x and y are the position of the drone and v, is the velocity of the drone
in y direction. In this model, we neglect z because in the real-world flight, the
altitude is controlled by a separate controller which can keep the altitude to be
a constant. v, is the input of the model because in our real-world experiment
setup, 0 is set to be a constant which leads to a constant velocity in x direction.
¢ is another input of the model. A PD controller is employed to steer the drone
toy =0by ¢ = ky(k,(0 —y) — vy), where k, =1 and k, = 2. The simulation
result can be found in Figure 23]

yiml

(a) vz = 1.5m/s (b) ve =2m/s

Figure 23: The simulation result of the drone’s passing through the gate. Whether the drone
can pass through the gate depends on its initial position xg,yo and its forward speed vg.
In each figure, 10000 simulations are done with different initial points zo € [—5m,0m],yo €
[=3m,3m]. The area to the left of the black curve is the set of the points, from which the
drone can pass through the gate. Obviously, when the forward speed gets larger, the feasible
initial points become less.

Figure [23|is the simulation result with the forward speed v, = 1.5m/s and
vy = 2m/s. In each figure, 10,000 trajectories are simulated with their own
initial points zg € [—5m,0m],yo € [-3m,3m]. The points to the left of the
black curves are the initial points from which the drone can pass through the
gates. It can be seen that when the drone’s speed gets higher, the number of the
feasible initial points gets smaller. In other words, the drone needs more distance
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to adjust its position to pass through the gate. In our real-world experiment
set up, for example, the forward speed is around 1.5m/s and the position error
in y axis is 0.8m as shown in Table 2] The drone needs a margin of 2m in z
direction to steer itself through the gate safely.

5. Full track experiment setup and result

In the previous sections, we have discussed the proposed visual navigation
method and control strategies and the results of the experiments designed to
verify our method in laboratory environment. In this section, we integrate
all subsystems and move to a more challenging and realistic environment, a
showroom in the basement of the Faculty of Aerospace Engineering, TU Delft
where many aircraft components are displayed, to test the performance of our
method. In this showroom, we placed five 1m x 1m gates in the corridor which
is surrounded by dense showcases and aircraft components such as aircraft flaps,
rudders, yokes and so on. The five gates are shown in Figure 24 Compared
to the IROS 2017 autonomous drone racing, this track has smaller gates, much
denser obstacles and the background of the gates is complex which in all put
many challenges for the drone to fly the whole track fully autonomously.

In this track, the drone takes off from ground and flies through the whole
track with § = —5° or # = —7°, which lead to the forward speed to be around
1.5m/s and 1.8m/s respectively, which is faster than the winner in autonomous
drone race in 2016 who flew through 10 gates with 86s [2], whose velocity is
around 0.5m/s. The onboard images and the flight result can be found in
Figure 4] and Figure

The environment is not equipped with a ground truth position system, there-
fore only estimated data is available. However, analyzing the estimated trajec-
tory does give an insight of the flight and estimation performance in general.
It can be observed that during some parts of the track some rapid changes in
position occur. These jumps in position estimate occur once the next gate is
first detected after a long period without seeing a gate. During this period the
position estimation only relies on the integration of the drag based velocity. Er-
rors in this prediction introduce an accumulating drift in the position estimate,
which is corrected when a gate detection is available again. After the correction,
the lateral position controller has enough time to steer the drone through the
gate.

During the experiments, although in most cases the drone can pass through
the gate, there are still some failure cases (the drone crashes to the gate). They
are caused by non-detection of the gates or very late detection when the drone
is already very close to the gate. In these two scenarios, the drone has to control
itself purely based on prediction or the drone has no time to adjust its position.
In our basement experiment, the poor quality of the onboard images leads to
these non-detection problems. In terms of the open-loop control strategy, with
the estimated linear aerodynamic model, we find that the control performance
is very accurate in a short time. For example, after the second gate, there is a
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(e) Onboard snake gate detection (f) Onboard histogram detection

Figure 24: Five gates are placed in a dense obstacle track. The gates are placed in narrow
corridors and are surrounded by dense obstacles such as aircraft flaps, rudders and yokes. The
first two row images are the environment around the gates and the last row are the onboard
images with detection results.

pole that is close to the arc (Figure , but the drone never crashed into this
pole.
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Figure 25: 3 independent flight trajectories in the basement. It should be noted that these
trajectories are the position estimation result of the flight instead of ground-truth trajectories.

6. Conclusion and future work

In this paper, we present a systematic scheme to accomplish the task of
autonomous drone racing, as held by TROS in 2017. In our work, a novel
and computationally efficient gate detection method is implemented onboard a
Parrot Bebop 1 drone with all algorithms executed at 20 HZ frequency. With the
detected gates, we employ a pose estimation scheme combining onboard AHRS
estimation, which has higher accuracy than the commonly used P3P method.
Then a more efficient Kalman filter is implemented onboard which converges
faster than a traditional 15-states Kalman filter. In terms of the control strategy,
a prediction-based feed-forward control strategy is used to control the drone to
fly in the short time intervals without position measurements. And finally,
the whole system is tested in a showroom with dense showcases and aircraft
components. In this flight test, the average speed reached 1.5m/s which is
higher than the speeds exhibited at the autonomous drone races in 2016 and
2017.

There are multiple directions for future work. For instance, the visual process
is essentially based on color detection. Higher robustness in the visual processing
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may be reached by employing machine learning methods in computer vision.
Also, a PD-controller is used to steer the drone through the gate, which makes
the trajectory sub-optimal and can on the long term lead to overshoot. This
can be improved, e.g., by utilizing optimal control methods. We hope that such
future improvements will allow further augmenting the flight speed, hopefully
approaching human pilot performance.
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Appendex: Extended Kalman filter

(1) Predict states based on equation

Kpp—1 = Xp—1 + £ (X1, u5-1)T (31)

(2) Linearize and discretize the system

kal == 2f(x(t),u(t))|x(t):ﬁk71

ox
Cpip—1 = I+Fp 4T (32)
0
Hk = &h(x(t)”x(t):ik\k—l

(3) Calculate prediction covariance matrix Pz_q

Pk :‘I’k|k71Pk—l<I)’]£|k_1 + Qr-1 (33)

where Q_1 is system noise covariance matrix.

(4) Calculate Kalman gain and update prediction.
6% = Ky, {Zi — h[Xp 1, K]}

Ky = Py Hy [Hy Py Hy + Ry) ™! (34)

X = Xpjp—1 T 0Xg

33



where R}, is sensor noise covariance matrix.

(5) Update the covariance matrix of state estimation error

P, = (I - KiHp)Py (I - KpHy)" + K Ry K]

34

(35)
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