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Abstract. The evolution of Intelligent Transportation Systems in re-

cent times necessitates the development of self-awareness in agents. Be-

fore the intensive use of Machine Learning, the detection of abnormalities

was manually programmed by checking every variable and creating huge

nested conditions that are very difficult to track. This paper aims to in-

troduce a novel method to develop self-awareness in autonomous vehicles

that mainly focuses on detecting abnormal situations around the consid-

ered agents. Multi-sensory time-series data from the vehicles are used to

develop the data-driven Dynamic Bayesian Network (DBN) models used

for future state prediction and the detection of dynamic abnormalities.

Moreover, an initial level collective awareness model that can perform

joint anomaly detection in co-operative tasks is proposed.

The GNG algorithm learns the DBN models’ discrete node variables;

probabilistic transition links connect the node variables. A Markov Jump

Particle Filter (MJPF) is applied to predict future states and detect

when the vehicle is potentially misbehaving using learned DBNs as filter

parameters.

In this paper, datasets from real experiments of autonomous vehicles

performing various tasks used to learn and test a set of switching DBN

models.

Keywords: Intelligent Transportation System (ITS), Autonomous ve-

hicles, Dynamic Bayesian Network (DBN), Hellinger distance, Abnor-

mality detection.
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1 Introduction

Due to the rise of the population in the cities, the vehicles grow exponentially,

leading to congestion and pollution. Consequently, road accidents increase dra-

matically due to numerous reasons such as lack of contextual data, distracted

and reckless driving, adverse weather conditions, animal crossing, unsafe lane

changes, etc. These factors show the importance of making the vehicles ”self-

aware” in order to ensure safety in driving. The future autonomous vehicles will

use these self-awareness processes to solve different tasks in different environ-

ments that never were considered previously for decision making or problem-

solving, such as trajectory planning or collision avoidance, or abnormality de-

tection. The new learning capabilities from observing the environment or the

autonomous vehicles’ own states of behavior create new possibilities for problem-

solving in new situations of the real traffic scenarios. So, developing self-aware

models will improve the general decision and the navigation in the autonomous

vehicles facilitating the improvement of the incremental self-capabilities, such as

fault-tolerant decisions based on own perception or communication capabilities

in dynamic environments.

Self-awareness (SA) is a broad concept that describes the cognitive property

of an agent. In the case of artificial agents like intelligent vehicles (IVs) [1], the

concept of SA is an ability to observe themselves and the surrounding environ-

ment through the various exteroceptive and proprioceptive sensors and process

the sensory data to learn and maintain a contextual representation of the system

[2]. Nowadays, the emergent techniques and algorithms in Machine learning allow

for the learning of data-driven models that can provide self-awareness function-

alities. Self-awareness functionality can be extended to ’collective self-awareness’

by utilizing the shared data between the agents and learn models from the multi-

sensory data collected from agents performing co-operative tasks. However, the

in-depth analysis of communication schemes is beyond the scope of this paper.

Here we have shown the co-operative communication scheme used in the experi-

mental scenarios to collect data sets and an initial level collective self-awareness

model to represent agents’ joint tasks.

Dynamic Bayesian Networks(DBNs) are probabilistic models representing

the multi-sensory temporal data sequences at different abstraction levels [3]. In

this work, we have used a specific category of DBN models called Switching Lin-

ear Dynamic Systems (SLDS) [4]. In SLDS, a sequential combination of linear

dynamic models can be used to represent a non-linear dynamic model. The dis-

crete variables in the higher levels of the SLDS represent switching variables (or
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superstates). These switching variables are associated with the linear dynamic

models defined in the DBN’s continuous state level.

The proposed methodology for learning the data-driven models for agents’

self-awareness functionality has been verified with the data sets collected from

autonomous vehicles performing co-operative and individual driving tasks of

different scenarios.

The main contributions of this paper can be summarized as follows:

1. A method to learn switching Dynamic Bayesian Network (DBN) models

from the pairs of exteroceptive and proprioceptive sensory data sequences. Such

learned models can detect abnormal behaviors in real-time (online phase) by

testing the models with the data sets extracted from different experiences.

2. Performance analysis of the pair based DBN models was conducted to

check the best pair based feature to detect abnormal situations in the surround-

ing environment. Considered the data sets collected from co-operative driving

scenarios along with a scenario consists of one agent.

The remainder of this paper is organized as follows. Section 2 presents a

survey of the related work. In section 3, the proposed method is described by

defining principles exploited in the training phase and the anomaly detection

steps involved in the model the test phase. Section 4 summarizes the experimen-

tal setup in addition to the description of the research platform used. Section 5

presented abnormality measurement results of model testing, made analysis, and

comparison. Finally, section 6 concludes the paper by including possible future

research lines.

2 State of the art

This section explains some of the related work regarding the development of self-

awareness in agents. Over many years, self-awareness has been studied in multiple

research disciplines, such as cognitive sciences, psychology, and philosophy [5, 6,

7, 8]. The concept of self-awareness is widely studied in biology, which has been

reproduced in artificial systems to enrich the capability of autonomy in different

fields, including machine learning and robotics [9, 10]. Moreover, in [11, 12], the

different aspects of self-awareness are discussed.

Here we consider DBNs learned using sensorial data recorded during training

experiences as generative models capable of allowing a SA agent to predict states

in future similar testing experiences. Additional probabilistic inference features

related to DBN models allow the SA of the agent to detect possible abnormalities

in new experiences. Prediction, estimation, and abnormality detection are the
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emergent (i.e., data-driven) SA features discussed in this paper as a collective

property of a set of agents aiming to perform the same task.

Developing self-awareness in agents has been shown to help an agent in-

crease confidence when executing autonomously tasks and explainability of its

own actions in terms of emergent SA models learned. Human efforts in different

areas can take advantage, and in some fields, this can increase confidence in

autonomous systems so allowing the human to reduce its overcontrol work. An

Intelligent vehicle [13] can be seen as a straightforward example of an agent: it

perceives information from the surrounding environment and uses obtained in-

formation to make decisions autonomously in different situations. However, this

does not always imply that the IV can explain to itself and to the human user

the causal sequence of events that carried it to make decisions. Self-awareness

addresses within Artificial Intelligence the set of techniques/models that allow

agents/machines to describe the relationship between perceptions and actions

the agent has to do to perform a task. In this context, Machine Learning and

Deep Learning, etc. are increasingly used to obtain SA models in a data-driven

way, and self- driving vehicles [14] can benefit from such methods. Machine

Learning techniques capable of dealing with uncertainty to learn the SA model

from multisensory signals coming from the vehicle’s sensors are particularly use-

ful. Such models can be of the generative type, so allowing predictions of future

or lower-level states of the agent in consideration to be made when analyzing

new data sequences.

In recent years, the research in intelligent and autonomous vehicles occupies

a prominent place in the field of ITS. In [15], the authors propose an approach

to develop a multilevel self-awareness model learned from an agent’s multisen-

sory data. Such a learned model allows the agent to detect abnormal situations

present in the surrounding environment. In another work [16], the learning of

self-awareness models for autonomous vehicles is based on the data collected by

different maneuvering tasks performed by a human driver. In this work, visual

perception and position data are used as modalities, and the cross-correlation

between different modalities is analyzed for detecting abnormal situations. On

the other hand, in [17], the authors propose a new architecture for mobile robots

with a model for risk assessment and decision making when detecting difficul-

ties in the autonomous robot design. In [18], the authors proposed a model of

driving behavior awareness (DBA) that can infer driving behaviors such as lane

change. In [19], an approach to detect abnormalities in dynamic systems by the

models learned from the different features of an agent is presented. Moreover,

it examines the most precise model to detect abnormal situations. However, it
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involves one agent and doesn’t highlight the issue of co-operative driving.

In most of the related works, either the data from one entity is used, or the

objective was limited; for example, in [18], the aim was to detect lane changes

either on the left or right side of the considered vehicles. In this work, we have

considered the data from the real vehicles and developed pair based switching

DBN models for each vehicle and, finally, obtained the performance comparison.

Moreover, shown an initial level collective DBN model and performance com-

parison has been made with the results obtained from single pair based DBN

models.

3 Proposed method

This section discusses how to model “intelligence” and “awareness” into vehicles

to generate “ Self-aware, intelligent vehicles.” Such intelligent vehicles should be

provided of sensors to perceive internal as well as external states. Intelligence in

this context is often related to the capability of using perceptions to allow the

vehicle to adapt to variations in external situations. However, the system cannot

be considered self-aware until the vehicle is not provided with the capability to

observe perception and actions it has successfully done until a given moment.

Then, organize them in a data-driven way into models capable to statistically

predict at different hierarchical levels future states in case a similar situation

and task to perform once again. This prediction capability should be inherent to

the SA model, which has to be capable of deriving conditional models based on

available knowledge (e.g., state at a previous instant) to derive predictions (e.g.,

future state). Models that have this capability are called generative models [20].

The concept of anomaly arises when the SA model has a further inference

capability: it can estimate whether current observations are in line or not with

predictions of variables at whatever level in the model. This work uses this frame-

work to define abnormality: a dynamic anomaly is found by a SA model when

the states the model predicts mismatch the current sensory observations. In this

sense, the emergent self-awareness property in vehicles derives from two aspects:

1) to learn generative SA models from normal sensor experiences (Dynamic

Bayesian Network (DBN) models are here used); 2) to associate to such models

a general inference mechanism capable of performing predictions and of detect-

ing dynamic anomalies. The latter capability can be defined as self-evaluation

of models available in the vehicle: if a given SA model has the capability of pre-

dicting the future states efficiently, i.e., the ground truth observations from the

vehicle’s sensors confirm predictions, than the vehicle is ensured that a certain
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level of homeostasis (dynamic stability) will occur in next moments performing

the same actions it did in past experiences.

The capability of understanding when homeostasis conditions cannot be met

with available models, i.e., anomaly detection, is so an important self-awareness

step to allow an agent to start making decisions based on different strategies than

normal known ones. The intelligent vehicles used in this work are equipped with

one lidar of 16 layers and 360 degrees of Field of view(FOV), a stereo camera,

and position/control encoder devices to make available information about the

internal and position state during different tasks being performed. In this work,

we mainly concentrated on such latter low dimensional multi-sensory observed

data: namely the position (odometry) and control signals of the vehicle (e.g.,

steering, power, and rotor velocity ). In this work, position data are considered

exteroceptive information as the relative position is used with respect to the

environment around it. This information can be obtained, e.g., by GPS or by

Localization techniques using exteroceptive sensors like lidar and cameras. How-

ever, here we consider as already available in low dimensions (coordinates with

respect to environment) such data as extracted by sensor ad hoc algorithms.

On the other hand, the agents’ control signal is here used as an example of

proprioceptive sensory data.

Considering directly low dimensional data sensor observations makes it easier

here to analyze how to learn pair-based switching DBN models, i.e., the genera-

tive models here used, and to associate anomaly detection tools to them. Exten-

sion to higher dimensional data (i.e., directly mapping lidar and video cameras

observations as random variables into DBNs) requires methods based on prob-

abilistic versions of tools like Variational Autoencoders(VAEs) and Generative

Adversarial Networks(GANs) to be studied in detail to allow joint learning of

mapping of high dimensional sensory observations into DBN states and predic-

tion models as shown in [21, 22]. The extension to such high dimensional sensors

of the SA model goes beyond the scope of this paper. Instead, here, we use

low dimensional sensory data to explore the simultaneous SA awareness onto

multiple vehicles jointly cooperating in a task. This case shows how collective

awareness can rise as a direct extension of appropriate self-awareness models of

individual agents in each vehicle.

The proposed method is divided into two phases: offline training and online

testing. A block diagram representation is shown in Fig. 1. In the offline train-

ing phase, the vehicles learn probabilistic filtering models from the multisensory

data sequence while they perform a reference situation task. Each vehicle learns

a set of models from the different combinations of the vehicle’s control and po-
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sition information. In the online test phase, each DBN model inside a vehicle

is used as parametric knowledge of a filter that makes inference on the corre-

sponding sensory data. Each filter is provided with an additional computational

method that allows it to estimate its own level of fitness(anomaly detection) by

comparing the states it can generatively predict with the sensors’ current obser-

vations. The abnormality occurs in the environment are detected as deviations

from expected modeled behaviors. A filter called Markov Jump Particle Filter

(MJPF) [23, 24] is applied to the learned DBN models to perform the filtering

operation of prediction and update. The filter is modified to allow it to also es-

timate abnormalities at different abstraction levels as a required SA capability.

3.1 Offline training phase

In this phase, the considered agents (i.e., vehicles) learn the vocabulary and

dynamic/hierarchical models of the switching DBN from the observed extero-

ceptive and proprioceptive sensorial data that originate from the current agent’s

experience defining their normal behavior.

DBN models are of a generative type, and learning them implies learning the

conditional probabilities that relate their variables. Therefore, observing a se-

quence of data and learning conditional functions within the DBN will allow the

agent to predict variables not yet observed based on evidence collected until that

moment. This makes the model appropriate for capturing causal relationships

at the basis of SA.

The grey shaded area in Fig 1 shows the block diagram representation of

the training phase. The various steps involved in switching DBN model learning

have been described below.

Estimation of Generalized states

The method assumes a synchronization operation is available on the considered

multisensory data. Exteroceptive based position data and three pairs of vehicle

control signals are considered in this paper as a case study. An initial generalized

filter [25] is applied to the sequence of data variables to estimate so-called gen-

eralized states (GSs). Generalized states are the variables here used to describe

anomalies with respect to to a given DBN model. Using GSs allows the agent

to estimate a new DBN model capable of predicting in a better way in future

those anomalies coming from sequences statistically similar to the one that has

generated such anomalies. Generalized states are generalized coordinates that

allow each variable in the DBN to describe its own dynamics as part of the



8 D.T. Kanapram, P. Marin-Plaza, L. Marcenaro et al.

O
b

servatio
n

s 
fro

m
 veh

icle

P
re-p

ro
cessin

g
o

f d
ata

G
en

eralized
 erro

r 
estim

atio
n

 u
sin

g
 

in
itial filter

C
lu

sterin
g

 b
y G

N
G

s

S
tate 

tran
sitio

n
 

m
atrix 

estim
atio

n

D
B

N
 m

o
d

els 
learn

ed

D
B

N
 2

(S
-P

)

D
B

N
 3

(V
-P

)

D
B

N
 4

(S
-V

)

T
rain

in
g

 p
h

ase: V
eh

icle iC
ab

 N
(o

fflin
e)

O
d

o
m

etry

S
teerin

g
 an

g
le-p

o
w

er
(S

-P
)

M
JP

F
 1

M
JP

F
 2

M
JP

F
 4


A

b
n

o
rm

ality 
m

easu
rem

en
ts: 

X
-Y

,S
-P

, V
-P

, S
-V


F

u
tu

re 
trajecto

ries

P
rep

ro
cessin

g
 o

f o
b

served
 d

ata

T
est p

h
ase: V

eh
icle iC

ab
 N
��
�
���
�
�

G
ro

u
n

d
 tru

th
 o

b
servatio

n
s (p

air b
ased

 featu
res) : X

-Y
, 

S
-P

, V
-P

, S
-V

O
d

o
m

etry
(X

-Y
 

p
o

sitio
n

s)

S
teerin

g
 

an
g

le (S
)

V
elo

city 
(V

)

P
o

w
er 

(P
)

S
teerin

g
 an

g
le-

velo
city(S

-V
)

V
elo

city-p
o

w
er(V

-P
)

D
B

N
 1

(X
-Y

)

M
JP

F
 3

O
d

o
m

etry
(X

-Y
)

S
teerin

g
 an

g
le

(S
)

V
elo

city (V
)

P
o

w
er (P

)

G
N

G
 1

G
N

G
 2

...
G

N
G

 n

G
N

G
 1

G
N

G
 2

...
G

N
G

 n

G
N

G
 1

G
N

G
 2

...
G

N
G

 n

G
N

G
 1

G
N

G
 2

...
G

N
G

 n

F
ig

.1:
B

lo
ck

d
iagram

:
tra

in
in

g
a
n

d
test

p
h

a
se

o
f

sw
itch

in
g

D
B

N
m

o
d

el



Self-awareness in IV: Feature based abnormality detection 9

random information. Therefore, conditional probabilities in a DBN formed by

GS variables allow predictions of the dynamic evolution of states such variables

represent with advantages in the inference process.

The generalized state of a continuous state variable associated with a given

sensory data c can be defined as:

X̃c
tk

= [Xc
tk

Ẋc
tk

Ẍc
tk
· · · Xc,(L)

tk
]ᵀ, (1)

where (L) indicates the L-th time derivative of the state.

The l-th time derivative of GS at the time tk can be written as:

X
(l)
tk

=
X

(l−1)c
tk

−X(l−1)c
tk−1

∆tk
, (2)

where X
(0)
tk

= Xtk and ∆tk is the uniform sampling time for all variables

considered. In this work, the derivatives inside the generalized state(GS) are

limited L=1, i.e., only the state and its derivative are included in the GS. This

is because we used a DBN with limited memory (a two-slice DBN) so that

dynamical models depend directly only on variables in the previous slice. In

the case of low dimensional observations (and consequently states), this implies

that local interslice dynamic models can be considered as well approximated by

linear equations between GSs. So the model learned with GSs can capture the

considered agent dynamics as piecewise linear. DBNs with longer memories imply

higher-order derivatives so that additional learning tools would be required with

respect to those here discussed. In the future, the work here presented could be

extended by including higher-order GSs.

In a vehicle agent, an initial DBN has to be assumed as known that embeds

basic dynamic conditions. In this case, a DBN is used that assumes that there

will not be any force acting on the agent between two consecutive time instants

but random Gaussian perturbations. The corresponding filter can be defined in

terms of GSs: the state vector at tthk+1 time instance will remain same w.r.t the

state vector at tthk . So that the filter produces derivatives of states as errors. So

GSs estimated by such an initial filter represent jointly for each given state X,

errors, i.e., derivatives of X. GSs can therefore be seen as pairs (state, error)

that are produced in this case by an initial filter associated with initial DBN.

Mainly we have considered four pairs of GSs data for DBN model learning,

such as odometry(X − Y ), steering-power (S −P ), velocity-power (V −P ), and

steering-velocity (S − V ).
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Construction of discrete level of DBN model

This section explains the process involved in learning the vocabularies of dis-

crete level variables, as well as dynamic models, transition probabilities, and

co-occurrence matrices between variables of the DBN model, i.e. all conditional

probabilities that can decompose the joint probability of the DBN in a set of

causally meaningful conditional probabilities, making it a generative model.

This work considers a hierarchical switching 2-Time Slice DBN (2T-DBN)[26]

as a generative filter that can predict future states of the considered entities

(i.e., vehicles). Fig.2 shows the representation of the DBN model, continuous

level constitutes the generalized states, and discrete level represents the hierar-

chically higher semantic vocabulary and correlation among them. Each of the

discrete level variables belongs to a particular dynamical model in the continuous

state space. Thus, the considered switching DBN model can represent non-linear

dynamics by a set of linear dynamic models.

To model the discrete level of the DBN (orange shaded area in Fig. 2), the

discrete switching variables that represent the meaningful information have to

be learned from the generalized states estimated from the outcomes of the initial

filter on a given data sequence. A clustering algorithm called Growing Neural

Gas (GNG) [27] is used to group generalized states samples collected as output

of a previous filter associated with a DBN (in this case, the initial filter). Each

cluster of samples defines a different switching variable of the newly learned

DBN.

In general, clustering can be described as the process of organizing a collec-

tion of k-dimensional vectors into groups whose members share similar features

in some way. A k-dimensional vector represents each one of such groups called

a code vector (other names used are centroid and node). There are many algo-

rithms available for clustering: K-means [28], Self Organising Map(SOM) [29],

Neural Gas(NG) [30], Growing Neural Gas(GNG) [27], Density-based spatial

clustering of applications with noise (DBSCAN)[31], etc. The SOM algorithm

can compress large multidimensional datasets into a fixed number of represen-

tative units. However, the dimension of the representative units (clusters) needs

to be defined before, and it may sometimes cause not intuitive for representing

the characteristics of data structure.

In contrast to the SOM, GNG is an unsupervised, adaptive, and incremen-

tal neural network that learns topologies; it grows during the learning process

and does not require users to define the number of representative units called

nodes beforehand. Such a dynamic property is an advantage over other cluster-

ing algorithms for using it in many applications. DBSCAN is a density-based
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clustering algorithm that finds a number of clusters starting from the estimated

density distribution of corresponding nodes. Although it has many advantages,

such as discovering arbitrarily shaped clusters and robust detection of outliers,

the algorithm sometimes fails to identify clusters in those situations of varying

density of considered data or if the dataset is too sparse. The dataset considered

in this work is sparse and multidimensional so that we have chosen the GNG

algorithm by considering its advantages over other clustering algorithms.

The GNG produces a set of nodes, and each of the nodes represents a cluster.

The cluster can be described in terms of global statistical properties of the

samples grouped in it: mean and co-variance is parameters here used. In the

proposed method, GSs components (i.e., state and errors) ( Eq.1) obtained from

the initial filter are separately clustered by the GNG. For example, in the case

of control S − P modality clustering is applied separately to GSs components

written as below:

GNG1 = [stk ptk ]ᵀ (3a)

GNG2 = [ṡtk ṗtk ]ᵀ (3b)

In GNG, each node groups a subset of data samples that are closer with

respect to a defined distance metric to the centroid of the node. The nodes

obtained by each GNG define a set of letters that can be used to describe the

new DBN to be learned. The collection of nodes generated by the GNGs of

modality S − P can be written as below:

V 0
SP = {a1, a2, ..., ap} (4a)

V 1
SP = {b1, b2, ..., bq} (4b)

where p and q represents the index of clusters obtained by the state and

derivative GNGs, V 0
SP and V 1

SP represent the group of letters(nodes) produced

by GNG1 and GNG2 respectively.

Each GNG produces clusters (i.e., vocabularies of letters) that have to be

coupled to define a single dynamic behavior: to define how to couple letters

describing states and derivatives; time co-occurrence is used. Clusters of states

and derivatives that are activated simultaneously are associated with a pair of

letters to generate different switching variables for the DBN model. Each pair

can form a word and an example belong to S − P modality is provided below:

WSP
i = [V 0

m, V
1
n ] (5)

where V 0
m represents the mth element of the set of nodes generated by GNG1

and V 1
n is the nth element of node belong to GNG2. Each pair can be called as a
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word, and a unique label is assigned to each word. The list of words, along with

assigned labels, form a dictionary as below.

Dsp = {β, β1, · · ·βL} (6)

where βl is Wl. Gl and Gl represents the unique label assigned for word Wl.

Dictionary is a high-level hierarchy switching variable that explains the system

states from a semantic viewpoint.

Furthermore, the transition probability matrices have been estimated based

on the timely evolution of such letters. The transition matrix consists of the

probability of activating nodes from state and derivative space at the next time

instance by knowing the currently activated nodes. The green and blue coloured

arrows in Fig. 2 represents the transition probability between discrete variables.

The model above can be extended to the case of collective awareness: when

two GSs DBNs associated with two agents in a swarm in a collective ensemble are

available. Collective awareness can be modeled as additional, conditional prob-

abilities describing how one agent’s GS can be predicted from another agent’s

GS. As an example of how this additional, conditional probability can be repre-

sented by a transition matrix between words of two different agents, the coupled

co-occurrence matrix is here used that was obtained by considering the vocabu-

lary (letters) learned from the position data of agents. As in the previous case,

firstly, each entity’s position GSs have been separately clustered by GNG to

generate respective vocabularies (i.e., letters). Then, the co-occurrence matrix

that encodes the probabilities of passing from words describing agent1 task to

the words describing agent2 and vice versa. Each element of the coupled co-

occurrence matrix represents the probability of activation of one agent’s discrete

vocabulary(letters) conditioned to the other agent’s GS clusters. The coupled

co-occurrence matrix can be represented as below:

Coupled co-occurrence matrix, T =


M11 M12 . . . M1n

...
. . .

Mm1 Mm2 . . . Mmn

 (7)

where m and n represent the maximum number of clusters (obtained from

position data) belongs to agent1 and agent2, respectively. Each entry in the

matrix represents the co-occurrence probability between agent1 and agent2. For

example, M12 (refer Eq. 7)the co-occurrence probability from node 1 (mean value

of first cluster) belong to agent1 to node 2 (mean value of second cluster) belong

to agent2. This information of couple probability helps to model the collective

awareness for the agents jointly performing tasks.
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For each switching variable, a different dynamic model is learned that de-

fines the dynamics of generalized states X̃k in the region of the state covered

by each switching word. As we limited GSs to L=1 each dynamic model can

consider only clusters that collect as samples GSs including state and derivative,

such that X̃k = [Xk Ẋk]ᵀ. For such a case, mean state (and related covari-

ance) individuate sparse regions in the state space, while mean derivative (and

its covariance) defines local linear dynamics around that state region. On this

basis, for each switching variable in the word vocabulary, it is possible to learn

continuous dynamic models of random mean velocity equal to the corresponding

word for tracking generalized states’ dynamics, such that:

X̃k+1 = AX̃k +BUk + wk (8)

where

A =

[
Ij 0j,j

0j,j 0j,j

]
; B =

[
0j,j

Ij∆k

]
The variable j indexes the number of states in the data combination in con-

sideration. Ij is an identity matrix of dimension j. 0j,j is a zero j × j matrix.

wk ∼ N (0, σ), encodes the system noise. Uk = E(Wi,k+1|Wi,k), where E(·) is the

expectation operator. The control vector Uk contains the agents velocity when

it’s state falls within a discrete space formed by the GNG clustering.

Pair-based DBN models

All the previous steps are involved in learning the pair based switching DBN

models from the multisensory position and control data. The number of DBNs

learned by the vehicle m can be written as:

DBNm = {DBN1, · · · , DBNn}. (9)

where m represents the mth vehicle in the network and n is the total number

DBN learned by the mth vehicle. The same DBN architecture is considered

for making inferences with different sensory data combinations belong to each

vehicle considered. The learned DBN can be represented, as shown in Fig.2. The

DBN has mainly two levels, such as continuous and discrete levels.

Coupled DBN models

The coupled co-occurrence matrix learned from two agents’ position data helps

to model the interacting agents’ joint/collective awareness. Each agent esti-

mates the co-occurrence matrix in the training phase by jointly considering the
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Fig. 2: Proposed switching DBN model

agent1 and agent2 vocabulary(letters). In the test phase, the intercommunica-

tion scheme proposed in Section 4 shares the observed position data between the

agents at each time instance. With this information, the coupled DBN inside each

agent estimates the discrete level coupled letters (i.e., word). The coupled pair of

letters at each time instance points to a specific cell in the co-occurrence matrix

(refer Eq. 7) to check the probability of firing the current word. If the probability

value is high, it means the agents’ current experience matches with the one used

to learn the model, and the situation is considered normal. When the value goes

lower, the agents pass through unseen dynamics, and the situation is consid-

ered abnormal. The coupled DBN models are specially used in situations where

the pair-based self-awareness DBN models fail to detect the anomaly happens

around other agents in cooperative scenarios.

3.2 Online test phase

The block diagram representation for the online test phase is shown as a pink

shaded area in Fig.1. In this phase, a probabilistic switching model called Markov



Self-awareness in IV: Feature based abnormality detection 15

Jump Particle Filter (MJPF) [32, 19] has been chosen to make inferences on the

DBN models (refer Fig.2) learned in the training phase.

The filtering algorithms like Markov Jump Particle Filter (MJPF) [33, 34]

and Interacting multiple models (IMM) filters [35] allow an agent to predict and

estimate target motion according to multiple probabilistic models. The filters

differ in the inference methods they use to perform prediction and update steps.

While MJPF uses particle filters at discrete levels together with Kalman filters

at continuous levels, IMM filters can use different approaches. For example, in

IMM filters [36, 37], a model-driven approach is performed to fuse Kalman Fil-

ters. In general, IMM filters can be coupled with parameter estimation learning

methods specific to the inference approach used that can be used on training se-

quences. However, parameters are often chosen by design, and fixed discrete state

transition probabilities are provided offline from the discrete variables switches’

frequency. The number of models is generally a priori fixed, limiting the descrip-

tors of the agents’ dynamics. In this work, we used MJPF, a type of Markov

Jump Linear System (MJLS) that uses a parametrized couple of Particle Filter

and Kalman filters that can be learned from data. This allows as in IMM infer-

ences on a Dynamic Bayesian Network jointly at continuous and discrete levels.

However, the data-driven approach used in this work is based on a free energy

minimization approach that allows a varying number of dynamic models to be

estimated together with temporal transition probabilities that characterize the

models’ discrete temporal evolution.

In IMM, model switching is mainly dependant on a time-independent tran-

sition probability matrix; in MJPF here used, co-occurrence probability and

transition models learned are time-dependent, so allowing a time-variant transi-

tion probability, specific for each dynamic model, to be employed. In used MJPF,

the number of particles employed at the discrete level is defined as proportional

to the number of dynamic models. The method explore in parallel an alternative

set of dynamic models predictions by evaluating the best choices depending on

anomaly detection capabilities added.

Estimation of future states and abnormality detection

The preprocessed data sequences collected from the experiences of agent vehicles

not included in the training set are given as input to the MJPF in the online

phase. In a Markov Jump Particle Filter (MJPF), the posterior probability den-

sity function can be written as:

p(Wk+1, X̃k+1/Zk+1) = p(X̃k+1/Wk+1, Zk+1)p(Wk+1/Zk+1) (10)
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where Wk+1 is the word in the higher hierarchical level and X̃k+1 is the con-

tinuous state in the state space at time instant k. p(Wk+1/Zk+1) is estimated by

using particle filter [38] at the discrete vocabulary level. Dynamic models learned

in the training phase as in Eq. 8 are used as a dynamic model equation of Kalman

Filters at the continuous level associated with the discrete switching variable. A

different gaussian velocity associated with the corresponding switching variable

cluster obtained by GNG is represented with the control vector as a variable Uk

(refer Eq. 11). This means that the predictions p(X̃k+1/X̃k) of particles at the

continuous state level are made by considering a bank of Kalman Filters built

according to the discrete vocabulary where different Gaussian velocity models

are valid for each switching variable.

The goal is to use a filter capable of performing inference jointly at contin-

uous and discrete levels(refer Fig. 2). The MJPF allows the agent to predict

its future states, starting from the learned DBN generative model’s prediction

components. Moreover, the filter is provided with an additional inference feature

that allows it to use bayesian prediction and evidence messages exchanged by

DBN nodes to compute abnormality indicators at different DBN levels. Such

abnormality measurements allow the agent to detect when its own prediction

model components of the generative DBN fit with new data sequences processed

by the modified MJPF. Anomaly is here defined as a time signal that indicates

when the probabilistically predicted states mismatch the current noisy sensory

observations. A detailed description of the modified MJPF version with abnor-

mality detection here used is described in section II of [39]. However, in that

paper, the authors used a different clustering algorithm(SOM) for estimating

the switching variables associated with different dynamic models from general-

ized errors. Moreover, a different approach is used here in learning the discrete

vocabulary and the correlation among them than the one used in [39].

In the prediction step of the MJPF, a Sequential importance Resampling

(SIR) PF [40, 41] is used to predict the new set of particles iteratively. The time-

variant transition probability model is used to perform particle sampling at a

new time instant at the discrete level. Gaussian proposal function p(Wk+1/Wk)

is used. In the update step, the new sample from the testing sequence is provided

to the filter. It allows firstly to update the prediction message at the continuous

level and to obtain the new posterior. The update is then propagated at the

particle level to obtain new weights based on the observations that such poste-

rior gives to the discrete variable itself. As each particle Wk
∗,is associated with

the Kalman filter having the dynamic model of the particle word Wk than the
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corresponding dynamic model is used within the particle to predict continuous

state p(X̃k+1/X̃k,Wk
∗)

The prediction performed at the continuous level can match with updates

to a different extent. Measuring such a matching level by a probabilistic dis-

tance measurement allows the modified MJPF to estimate the anomaly that can

be present. In probability theory, a statistical distance quantifies the distance

between two statistical functions, which can be either two random variables

or two probability distributions. Some important statistical distances used be-

tween two distributions include: Bhattacharya distance [42], Hellinger Distance

[43], Jensen–Shannon divergence [44], Kullback–Leibler (KL) divergence [45] etc.

Hellinger distance (HD) is a symmetric distance used to quantify the distance

vectors having only positive or zero elements [46]. Here such a distance is used to

measure the distance between prediction and evidence at the continuous level.

The works in [47] and [24] also proposed to use Hellinger distance (HD) as an

abnormality measurement.

Accordingly, let p(X̃
c

k|X̃
c

k−1) be the predicted generalized states and p(Zk|X̃
c

k)

be the observation evidence. The Hellinger distance (HD) can be written as:

θck =
√

1− λck, (11)

where λck is defined as the Bhattacharyya coefficient [48], such that:

λck =

∫ √
p(X̃

c

k|X̃
c

k−1)p(Zc
k|X̃

c

k) dX̃
c

k. (12)

When MJPF processes a testing set sequences, an abnormality measurement is

computed at each time instant at the continuous level, as in the equation (11).

The variable θck ∈ [0, 1], where values close to 0 indicate that the ground truth

measurements match with predictions, whereas values close to 1 reveal the pres-

ence of an abnormality in the environment. Once estimated the anomaly by HD

metric, it is possible to check the complementarity among different DBN models

learned by measuring how well the pair based models differ in performance of

detecting environmental abnormalities.

In addition to the HD abnormality measurements, the co-occurrence of events

with a low probability of occurring in coupled DBNs of the two agents provides

a further collective abnormality measurement. This measurement can be used to

measure the reciprocal influence of agent states in case of collective awareness. In

this way, when an anomaly happens around one agent, other agents can under-

stand this as a low probability co-occurrent event can happen. In this paper, we

have explored how this works using only odometry data in this part of discrete
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level joint anomaly detection by coupled DBN model to provide an insight of

possible future developments of the presented method. The coupled DBN model

inside each agent first checks the firing of a pair of letters (word) formed from

both agents’ currently observed position data. Then record the probability value

inside the corresponding cell of the coupled co-occurrence matrix. A high proba-

bility value means that the current experience matched the agent’s experience in

the training phase when the model was learned. A low probability value detects

the presence of a collective anomaly that is occurring to the agents’ team. For

the better representation, we have taken 1-(the value of co-occurrence probabil-

ity) and plotted the resultant signal in Sec 5. This discrete level anomaly based

on coupled co-occurrence matrix can be estimated with the following equation:

δk = 1−Mk
ij (13)

where Mk
ij is the probability value in the ith row and jth column of the co-

occurrence matrix at kth time instance.

This discrete level anomaly metric encodes the information of collective

awareness. However, this part will require further work to improve the collec-

tive awareness functionality by considering the system’s control data and other

relevant features. In this paper, we have shown a preliminary level collective

awareness model and the obtained results.

4 Experimental Setup and employed datasets

In order to validate the proposed method, the datasets collected from two in-

telligent research platform with autonomous capabilities called iCab (Intelligent

Campus AutomoBile)[49] (see Fig.3a) performing co-operative as well as in-

dividual driving tasks were considered. The multisensory data extracted from

co-operative driving tasks used to learn the DBN models and test the models

self/collective awareness functionality, whereas a single-vehicle scenario datasets

exploited to learn and test DBN model’s self-awareness capability.

The considered iCab vehicles are equipped with two powerful computers and

a screen for debugging and Human-Machine Interaction (HMI) purposes of nav-

igating through the environment, as displayed in Fig. 3b. The software pro-

totyping tool used is ROS [50]. The exteroceptive position and proprioceptive

control data sets collected from the iCab vehicles performing tasks are firstly

synchronized to match their time stamps. Additionally, the multisensory data

normalized to bring the numeric columns in the data set to a common scale by

not distorting the differences in the ranges of values or losing information.
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(a) The autonomous vehicles (iCab) (b) The environment

Fig. 3: The agents and the environment used for the experiments.

The intercommunication scheme proposed in [51] was used to share all the po-

sition data and their respective timestamp information over the Virtual Private

Network (VPN) during the co-operative driving experiments of iCab vehicles.

Both vehicles perform a Perimeter Monitoring Task (PMT) jointly , which

consists of the autonomous movement of platooning around a square building

(see Fig.3b). The 2D data of exteroceptive odometry (X − Y ) and the different

pairs of the proprioceptive control variables such as Steering angle-Velocity (S−
V ), Steering angle-Power (S − P ), and Velocity-Power (V − P ) are the main

features considered to learn and test the models. The dimension of the movement

trace (Fig.3b) in the testing environment is 38mX33m.
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Fig. 4: Odometry data for iCab1
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Fig. 5: Odometry data for iCab2

4.1 Scenarios

To generate the required data for the model learning and testing, we have con-

ducted two types of experiments with four different scenarios shown in Fig. 9

and the description below.

– Scenario I: Perimeter monitoring task (PMT)

The two iCab vehicles perform the platooning operation in a counterclock-

wise direction by following a rectangular trajectory in a closed environment

(refer Scenario I in Fig. 9), four laps in total. Fig.4a and Fig.5a show the plots

of odometry data for the perimeter monitoring task for iCab1 and iCab2 re-

spectively. Moreover, Fig.7a and Fig.7b show the steering angle (S) and rotor

velocity(V ) data respectively of iCab1 plotted w.r.t it’s own odometry posi-

tion data. The rotor power data plotted w.r.t iCab1’s position is illustrated

in Fig.8. The paired data combinations from this scenario are used for model

learning in the training phase.

– Scenario II: Emergency stop 1 (ES1)

Both vehicles perform the same experiment of perimeter monitoring task

(PMT), but now a random pedestrian crosses in front of the leader vehi-

cle(i.e., iCab1) (refer to Scenario II in Fig. 9). When the leader vehicle de-

tects the dynamic obstacle (i.e., randomly crossing pedestrian), it automati-

cally executes an emergency stop and waits until the pedestrian fully moves

out from the danger zone. Meanwhile, the follower (i.e., iCab2) detects the
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Fig. 6: Odometry data for pedestrian avoidance (iCab)

(a) Steering angle(s) w.r.t position (b) Velocity(v) w.r.t position

Fig. 7: Control data for iCab1 for perimeter monitoring task
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Fig. 8: Rotor power(p) w.r.t position for iCab1 for perimeter monitoring task

Fig. 9: Scenarios for PMT
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leader’s emergency brake action (by receiving the trajectory position data

from iCab1 ) and mimics the same action of an emergency stop. Once the

leader continues the PMT, the follower also starts moving and continues the

PMT. Fig.4b and Fig.5b show the plots of odometry data for the emergency

stop criteria for iCab1 and iCab2 respectively. The intervals that the iCab

vehicles perform an emergency stop is marked as a red box.

– Scenario III: Emergency stop 2 (ES2)

In this scenario, a random pedestrian crosses in front of the follower(iCab2)

vehicle, as shown in Fig 9 (Scenario III), while they perform the co-operative

driving task of PMT. As soon as the follower vehicle detects the dynamic

pedestrian’s presence, it executes an emergency brake operation. However,

the leader doesn’t stop as in Scenario II; instead, it continues PMT.

– Scenario IV: Pedestrian avoidance

This scenario considers a standstill pedestrian appears along the path in two

different locations that interfere with the perimeter monitoring task per-

forms by an iCab vehicle. In this case, the pedestrian is a static obstacle.

When a pedestrian appears in front of the vehicle, it executes an avoiding

maneuver (the red part of the trajectory in Scenario IV in Fig.9) and contin-

ues its perimeter monitoring task. The odometry data plot of the pedestrian

avoidance scenario is shown in Fig.6.

5 Results

The learned models have been tested with the data set collected from differ-

ent co-operative tasks and a single-vehicle scenario task. The models’ anomaly

detection capability has compared to know the best pair-based feature of the

vehicles. The overall training time (which includes synchronization, GNG clus-

tering, vocabulary generation, and transition probability estimation) for all the

four modalities was about 56 seconds. On average, each modality consumed 14

seconds for model learning, of the training data size of 3200X2. The computation

time of the MJPF algorithm can mainly depend on the number of particles used

and the test data size. The average calculation time of anomaly by the MJPF

belongs to each pair based model for the test data size of 800X2 (one complete

lap) is 20 seconds in the test phase. Therefore, the average computation time for

each abnormality sample is 0.025 seconds, includes the time for state prediction,

anomaly estimation, and updation of states.

The abnormality threshold value is fixed based on the concept of validating

the learned generative model. The prediction is distributed according to mul-
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tivariate Gaussian, and the covariance matrix characterizes the shape of the

function. If more percentage of the evidence(observation) falls under the predic-

tion distribution, it is considered normal. In this work, we have assumed that the

generative model’s prediction could be inside 60 % of the distribution. If at least

50% of the observation falls inside this confidence region, such a situation is con-

sidered normal. On the other hand, if more percentage of the observed evidence

falls outside the 60% of prediction, it is regarded as abnormal. By considering

the above conditions, the anomaly threshold value is automatically identified

and is 0.3.

The model testing phase consists of two parts: Phase I presented the results

and analysis of the self-awareness functionality of the pair based DBN models

and the initial level collective awareness functionality developed by the coupled

DBN model. The coupled DBN model can be useful in situations like the pair

based DBN model fails to detect the anomaly happens around other agents while

performing co-operative tasks.

On the other hand, Phase II gave focus to test the models learned from

single-vehicle experience, and the abnormality estimation results obtained from

different pair based DBN models analyzed to check the best pair based feature.

The cyan shaded area from Fig.10 to Fig.16 shows the intervals where vehicles

encountered static/dynamic obstacles.

5.1 Test phase I

In this phase, we used the data sets collected from two different co-operatives

driving task scenarios. The results of Hellinger Distance(HD) abnormality mea-

surements estimated by the DBN models learned from four different pair-based

features of the vehicles presented. Moreover, the usefulness of coupled DBN

models collective awareness functionality examined by estimating discrete level

global anomaly.

Emergency stop scenario I The anomaly estimation results by MJPF,

whereas paired data sequences from Scenario II (described in Sec 4.1), fed as

input to MJPF presented in this part. The results from each pair-based DBN

models and the coupled DBN model learned from odometry position data are

described below.

(i) Odometry (X − Y ): The switching DBN model in this work is designed

for the control part of the vehicles. However, we have considered odometry

data and tested the performance of the learned DBN. Fig. 10 shows the plots
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Fig. 10: Abnormality measurements for odometry: (a) iCab1, (b) iCab2
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Fig. 11: Abnormality measurements for control (SV): (a) iCab1, (b) iCab2
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Fig. 12: Abnormality measurements for control (SP): (a) iCab1, (b) iCab2
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Fig. 13: Abnormality measurements for control (VP): (a) iCab1, (b) iCab2
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of abnormality measures by examining odometry data for the vehicle leader

(iCab1) and the vehicle follower (iCab2), respectively. During the interval

(cyan shaded area) while a random pedestrian crosses in front of the leader

vehicle (icab1), and it stops, there isn’t any significant difference in HD value

for iCab1 (leader) as well as iCab2 (follower). This behavior is because, dur-

ing that interval, the vehicles are always inside the normal trajectory range.

However, specific intervals when the vehicles deviate from the normal range

with respect to the trajectory data used to learn models; the HD measures

provided a value of about 0.2 during those intervals. It means that the odom-

etry DBN model was able to predict if any trajectory deviation occurred.

(ii) Steering angle-Velocity (S − V ): It is necessary to check different pairs

of 2D sensory data combinations to know the vehicles’ best pair-based fea-

tures. The models learned from the steering-velocity pair doesn’t notice the

abnormal situation happens in the environment. This is an expected result

as the vehicles’ steering values don’t change much when they perform an

emergency stop. The HD abnormality plots for iCab1 and iCab2 vehicles are

depicted in Fig. 11, not detecting pedestrians’ presence. So that, this pair

is not considered a useful feature for the abnormality detection purpose for

similar scenarios.

(iii) Steering angle-Power (S − P ): When a pedestrian crosses in front of

the leader vehicle (iCab1), the HD value is shown high during that interval,

as shown in Fig. 12 (a). The follower(iCab2) receives the shared trajectory

data from the leader, understands the presence of anomaly, and performs an

emergency stop operation to keep a minimum distance with the leader. So

that the DBN model inside the follower also detects the anomaly, and the

HD value becomes high in that interval, as shown in Fig. 12 (b). Thus S−P
is a useful feature of the vehicle in detecting an anomaly for similar tasks.

(iv) Velocity-Power (V − P ): The last pair tested is velocity and power con-

sumption, which are highly related. In Fig. 13 (a), the HD anomaly when a

pedestrian cross in front of the leader is shown in cyan color. The highest

HD values(closer to 1) are shown in this modality w.r.t other modalities.

For the follower vehicle, the abnormality measurement is very significant,

as shown in Fig. 13 (b) due to the brake operation performed by following

the action of the leader vehicle. The consecutive peaks(that are closer to

0.3) in the plots are caused by the high acceleration when the leader vehicle

starts moving, but the current distance between them is still lower than the

desired.
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To summarize, the pair-based DBN learned from S−P and V −P data were able

to predict the unusual situations present; however, odometry and S − V pairs

of control did not show the right combination to detect the agents abnormal

behavior.

Emergency stop scenario II This part analyzes the anomaly signal esti-

mation by the models considering the sensory data of Scenario III (refer Sec

4.1). In this special case scenario, when a pedestrian crosses in front of the

follower(iCab2) vehicle, it performs the emergency stop, and the leader vehi-

cle continues the PMT. The DBN model inside the leader doesn’t show any

anomaly; only the DBN models inside the follower vehicle detect pedestrians’

presence.

In such situations, the coupled DBN model plays an important role. The

model learned from both vehicle’s position data represents the collective situa-

tion and estimates anomaly that considers both vehicle’s behavior. The model

will perform a discrete level anomaly estimation based on the co-occurrence prob-

ability matrix that infers the collective awareness information. For simplicity, we

have only presented the results from S − P modality to show the self-awareness

functionality and odometry modality for collective self-awareness.
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Fig. 14: Abnormality measurements for control SP: (a) iCab1, (b) iCab2

(i) Pair based Steering angle-Power (S − P ) model: The HD anomaly

measurements for iCab1 and iCab2 for Steering-power (S − P ) modality is

shown in Fig.14 (a) and Fig.14 (b) respectively. Contrary to the previous

case (Emergency stop scenario I), the HD anomaly indicator of the DBN

model inside the leader(iCab1) vehicle doesn’t show any high peaks as the

vehicle doesn’t stop anywhere during the PMT, and this is an expected
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result. Simultaneously, the DBN models inside the follower((iCab2) vehicle

detect abnormality when the vehicle executed emergency brake operation

during the dynamic pedestrian crosses in front of it. We haven’t included

the results of models learned from other pairs and assumed that results

would be are similar to the previous shown co-operative scenario.

(ii) Collective self-awareness: Odometry (X − Y ): The situations in which

the pair based self-awareness models fail to detect anomaly around other

agents, the collective awareness model (i.e., coupled DBN) plays a vital role.

For instance, the pair based DBN model of S − P modality inside iCab1

vehicle , tested with the data sets of Scenario III (refer Sec 4.1), didn’t show

any high peaks in estimated Hellinger Distance(HD) values. Therefore the

leader vehicle (iCab1) was not aware of the anomaly happening around the

follower vehicle (iCab2). In this situation, the collective awareness model in-

Fig. 15: Abnormality measurements based on coupled co-occurrence matrix

side iCab1 plays an essential role in showing anomaly present around iCab2.

The coupled DBN model inside iCab 1 was able to estimate the anomaly

(presence of dynamic pedestrian) happens around the follower vehicle. The

discrete probabilistic anomaly signal shows high values, as in Fig.15 dur-

ing the interval when the pedestrian is inside the danger zone. The collective

DBN model inside any of the vehicles can track the anomaly happens around

any of the other vehicles that are part of the co-operative driving task.

5.2 Test phase II :Pedestrian avoidance scenario

In this part, the abnormality measurements obtained when the model tested

with the data from a pedestrian avoidance task (refer to Scenario IV in Fig.9 )

have been presented. A total of four pairs of data combinations were examined

and described below.
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Fig. 16: Abnormality measurements for pedestrian avoidance: (a) OdometryXY ,

(b) Control SV (c) Control SP (d) Control V P
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(i) Odometry (X − Y ): The HD abnormality measurements from the odome-

try test data of scenario IV plotted in Fig. 16(a). The model inside the iCab

vehicle detects abnormality during the vehicle performs avoidance maneu-

ver by detecting the presence of a static pedestrian in front of it. As the

trajectory deviates from the normal one, the abnormality peaks are high as

expected.

(ii) Steering Angle-Velocity (S − V ): When used SV pair test data from

scenario IV, the HD abnormality measurements are shown in Fig. 16(b).

Like the odometry data, the model learned from the S − V pair also shows

abnormality peaks during those intervals. This high value in the HD metric is

because when a pedestrian appears, the vehicle takes the trajectory (shown

as the red dotted line in Fig.9 ) that is different than the one in the training

phase, so that there would be significant deviations in the steering angle of

the vehicle.

(iii) Steering Angle-Power (S − P ): Fig. 16(c) shows the HD measurement

plot of SP pair. When the vehicle encounters a pedestrian in two different

locations, it shows high peaks in the HD plot (cyan shaded area) during those

intervals. Other small spikes indicated the sensor noise and abnormalities in

the environment.

(iv) Velocity-Power (V − P ): The HD abnormality measurements from the

V P pair test data for the considered vehicles plotted in Fig. 16(d). Here,

the HD measures do not show any peaks during those intervals because

the considered vehicle’s velocity and power don’t change much when they

execute the avoidance maneuver.

The pair based models inside the vehicles play an essential role in detecting

anomaly(presence of dynamic and static obstacles) happens around itself, and

also some instances of co-operative scenarios. On the other hand, the collective

awareness model (coupled DBN) detects anomaly occurs around any of the ve-

hicles that are part of co-operative driving tasks by exploiting the data shared

by the communication scheme.

6 Conclusion and future work

This paper proposed a method to develop self-awareness models considering pair

based features of the vehicles. To learn the switching DBN models, low dimen-

sional multisensory data describe the normal behavior of the vehicles used. Such

a learned data-driven DBN model can automatically detect abnormal situations



instead of defining the metric’s upper and lower limits. A set of DBN models

learned inside each entity by considering pair based features helps confirm the

best model that fits to detect abnormalities. The obtained results from each

of the pair based DBN models show that our method works well in detecting

the dynamic anomalies in the surrounding environment of the vehicle. We have

considered data sets from different co-operative driving scenarios as well as a

single-vehicle scenario. A performance comparison was performed of the models

learned from various pair-based features of the vehicles.

Additionally, an initial level collective awareness model(i.e., coupled DBN ) is

proposed to detect collective anomaly when agents perform co-operative tasks.

When the anomaly happens around one vehicle, the coupled DBN models in-

side other vehicles can detect the presence of anomaly. However this work needs

additional work in future to improve the collective awareness functionality. The

future work can include efficient communication schemes between the objects to

share essential data among the vehicles to exploit collective awareness by con-

sidering different modalities. Such models can make the mutual prediction of the

future states of the objects involved in the task. The model performance under

the influence of wireless communication channels and the different communi-

cation protocols standards, environmental conditions, etc. need to be carefully

studied. Additionally, the classification of detected abnormality by considering

different test scenarios and comparing abnormality detection performance using

other abnormality metrics could be considered.
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