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An Alternative Approach for Robot Localization
Inside Pipes using RF Spatial Fadings

Carlos Rizzo*!, Teresa Seco*2, Jesus Espelosing, Francisco Lera® and José Luis Villarroel®

Abstract—Accurate robot localization represents a challenge
inside pipes due to the particular conditions that characterize
this type of environment. Outdoor techniques (GPS in particular)
do not work at all inside metal pipes, while traditional indoor
localization methods based on camera or laser sensors do not
perform well mainly due to a lack of external illumination
and distinctive features along pipes. Moreover, humidity and
slippery surfaces make wheel odometry unreliable. In this paper,
we estimate the localization of a robot along a pipe with an
alternative Radio Frequency (RF) approach. We first analyze
wireless propagation in metallic pipes and propose a series
of setups that allow us to obtain periodic RF spatial fadings
(a sort of standing wave periodic pattern), together with the
influence of the antenna position and orientation over these
fadings. Subsequently, we propose a discrete RF odometry-like
method, by means of counting the fadings while traversing them.
The transversal fading analysis (number of antennas and cross-
section position) makes it possible to increase the resolution of
this method. Lastly, the model of the signal is used in a continuous
approach serving as an RF map. The proposed localization
methods outperform our previous contributions in terms of
resolution, accuracy, reliability and robustness. Experimental
results demonstrate the effectiveness of the RF-based strategy
without the need for a previously known map of the scenario or
any substantial modification of the existing infrastructure.

Keywords-robotics; pipes; tunnels; propagation; RF fadings;
localization; navigation; inspection; maintenance;

I. INTRODUCTION

Pipe environments such as sewers, gas pipelines or dam
drainpipes are exposed to structural damage over time. In-
spection tasks are critical in order to detect and identify
fissures, rusty areas, cracks or leakages that could have serious
consequences for the safety of the infrastructure.

In recent years, robots have emerged as one of the best
options for performing inspection tasks due to the harsh
conditions of this type of environment: darkness, humidity and
even physical limitations [1]. In this context, accurate robot
localization is essential not only for identifying the position
of any damage, but also for autonomous navigation. While
identifying robots’ position in the cross-section of pipes could
be achieved using traditional techniques, localization along the
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Fig. 1. Santa Ana dam drainpipe. Symmetric and smooth inner surface
without distinguishable features.

longitudinal axis represents a challenge due to the fact that
pipes’ internal surfaces tend to be uniform (possibly without
detectable features) and they are typically much longer than
they are wide. Moreover, the aforementioned special nature of
the environment makes the use of some common localization
sensors unfeasible. This is the case of GPS sensor, for instance,
that cannot be used in confined scenarios.

In [2] the authors present a review of localization methods
for small-diameter pipelines using PIG (Pipeline Inspection
Gauge) technology. The localization methods are mainly based
on the fusion of the information provided by Inertial Naviga-
tion System (INS) and odometers. The accumulated error is
corrected in two ways: using Above Ground Markers (AGMs),
which detect the passage of the PIG and provides it with GPS
coordinates, and by means of detecting the pipeline junction
with information from the inertial sensor ( [3]-[5]). However,
although PIG-based solutions are adequate for a wide range
of small-diameter pipes, the drive systems of these devices,
either by pressure difference between ends or by the use of a
tether cable, makes them unfeasible for large-scale pipes. In
addition, they are not self-contained and require installation
of infrastructure (e.g. AGMs). At last, communication from
inside the pipe is not always feasible.

In other studies, visual odometry-based methods are pro-
posed to solve the localization inside pipes. The authors in [6]
use monocular cameras, stereo cameras [7] or a monocular
fisheye camera [8] with visual odometry algorithms for navi-
gation in small cylindrical pipes. In [9], the authors present a
localization system for sewers combining a known topological
map with a manhole detection system, using RGB-D cameras
and machine learning techniques. However, these algorithms
based on cameras work properly if there are enough distin-



guishable surface features or irregularities, and tend to perform
erratically in those cases of pipes that present symmetry and
limited features (see Fig.1 as an example).

Regarding LiDAR-based systems, the unsuitability of using
them to solve the localization in these environments is high-
lighted in [10] and [11], as the uncertainty in the longitudinal
axis grows in the absence of structural features (e.g. a laser
sensor only detects two parallel lines inside a long smooth
pipe).

In real use-cases, the problems of vision and laser-based
approaches are outlined, for example, in [12] and in [13] for
the inspection of penstocks using Unmanned Aerial Vehicles
(UAVs). Penstocks are large cylindrical pipes with two long
non-parallel straight sections joint with an elbow. Having
ruled out the use of vision in these environments, the authors
propose the use of an Inertial Measurement Unit (IMU) and
laser rangefinder sensors for localization. Nevertheless, the
absence of detectable features makes longitudinal localization
impossible if the junction between sections (acting as a wall
at the end of the tunnel) is not in the range of the laser.

Other methods rely on wheel odometers for localization,
but due to the high humidity and even the presence of fluids
and mold, pipes tend to be slippery, making these methods
inaccurate and unreliable for position estimation. In [14], the
position of the robot along the pipe is obtained fusing the
information provided by an IMU and a cable encoder which
measures the length from the starting point to the tethered
robot. Most of the time, these methods are unfeasible because
of the length of the pipe or the type of robotic platform (e.g.
drones).

Due to the aforementioned infeasibility of using sensors
like GPS, cameras or lasers to determine the longitudinal
localization of a robot inside a pipe, other technologies must
be explored.

Recently-developed indoor positioning technologies rely on
the use of Radio Frequency (RF) signal ( [15], [16]). Ultra-
Wideband (UWB), for example, is one of the most promising
technologies for indoor localization, providing more accurate
positioning and better performance than other RF technologies.
Nevertheless, these RF-based indoor localization methods re-
quire prior collection of RF fingerprints of the scene to be
compared afterwards with the online data (RF fingerprinting
method) or at least three reference nodes placed with high
precision in the infrastructure in the case of using trilateration
algorithms to obtain the position [17]. Taking into account
that inspection tasks are usually carried out during limited
maintenance periods (e.g., a water pipe that needs to be
emptied), the need for a commissioning step in order to place
beacons or create an RF map makes these methods impractical.
In [18], a robotic sensor network is proposed for localization in
an underground plastic water pipeline. The simulated system
consists of a mobile sensor node carried by the robot and
multiple relay nodes placed aboveground (in a line parallel to
the water pipeline), covering limited sections of the pipe. The
position is obtained by fusing the RF signal measurements
from the relay nodes and the velocity provided by an onboard
IMU with an Extended Kalman Filter (EKF) algorithm. This
solution is not suitable, however, for metallic pipes where the
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Fig. 2. Simulation of bimodal propagation in a 4-m diameter pipe. The

interaction between two modes causes periodic spatial fadings. The maxima
and minima of the fadings will be used as triggers in a discrete localization
approach, while the signal model will be used as an RF map in a continuous
approach.

Faraday cage effect hinders communication between the inside
and outside.

Another approach, using sound instead, is presented in
[19]. The idea is to build a map of the vibration signals
induced by a hydrophone in a metal pipe and use this map
and a Kalman Filter (KF) or Particle Filter (PF) for location
purposes. Nevertheless, this approach has not been taken
beyond a small lab experiment.

In a previous work [20], we first presented the results of an
extensive analysis of RF propagation in a metallic pipe under
different transmitter-receiver setups, demonstrating that it is
possible to obtain periodic fadings. It is important to highlight
that we refer to large-scale fadings in a spatial domain, which
is a standing wave pattern that can be obtained in pipes
and tunnels under certain configurations (that we explain in
Section II), in contrast to the well-known small-scale fadings,
understood as temporal variations in a channel. As an example,
Fig. 2 shows these RF spatial fadings as a function of distance
after displacing a receiver 70 m from the transmitter inside a
pipe.

In that paper we furthermore explored the use the periodic
fadings to design, first, a discrete RF odometry-like method
to localize a robot inside a pipe. The periodicity of the RF
signal together with an adapted version of the well-known
Monte Carlo Localization (MCL) system is exploited in [21]
to extend the methodology presented in [20] from a discrete
localization to a continuous solution, using the periodic fad-
ings as an RF map. One of the main advantages of these
approaches over other RF-based previously cited methods is
that there is no need to previously adapt the infrastructure, the
only requirements being the placement of a continuous wave
transmitter at the starting point and a receiver on the robotic
platform in order to generate and detect the periodic fading
waveform respectively. Metallic pipes have a low attenuation
rate, providing us with a maximum possible coverage length
of several kilometers if the right RF frequency is chosen, as
we will show later. Moreover, there is no need for a previously
known map of the environment.

The approach proposed in this paper builds on the afore-
mentioned work. The main contributions of the present study
can be summarized as follows:



o First, a thorough analysis of the received RF power
in pipes is carried out in the transverse (cross-section)
dimension, extending the longitudinal studies performed
in [20].

« The phase difference (spatial phase shift) obtained with
multiple receivers resultant from this analysis is used to
improve the resolution of the discrete localization system
presented in [20], as well as the accuracy and reliability
of the continuous localization approach described in [21].

o Localization experiments performed in [20] are extended
from a laboratory-scale pipe to a real drainpipe (4-m
diameter and over 300-m long) in a dam in Castillonroy,
Spain.

o Lastly, an EKF and a particle filter for the continuous
solution are compared and some key considerations are
outlined for the use of the RF approach with different
robot platforms.

The paper is structured as follows. In the next Section, a
summary of RF propagation in pipes together with experimen-
tal results are presented, while Section III details the effect of
the antenna position in the pipe cross-section over the fadings,
in order to improve the localization. Section IV describes
the experimental setup. Section V formulates the discrete
robot localization method together with the results obtained
in the real pipe, followed by the continuous localization
method and its experimental validation using one (Section
VI) and then two signals (Section VII). In Section VIII, the
practical considerations for real implementation are discussed
and summarized. Finally, the conclusions are set out in Section
IX.

II. SUMMARY OF RF PROPAGATION IN CYLINDRICAL
WAVEGUIDES AND THE APPEARANCE OF PERIODIC RF
FADINGS

As this work presents a localization method based on
periodic fadings (by means of traversing them or using them
as a map), given a pipe it is of special interest to determine
the frequency of operation to obtain these fadings, their period,
and their amplitude. This section presents a generic form of the
expressions for practical purposes, while the formal derivation
of the expressions is addressed in Appendix A.

In free space an antenna produces spherical waves that
have a non-isotropic spatial distribution, corresponding to the
radiation pattern of the antenna. The radiated power is spread
over a surface that grows as r2, and thus the power density
decays as 1/72 in the best case.

If the antenna is placed inside an air filled pipe or tunnel-
like cavity, the spherical wavefronts will be multiply scattered
by the surrounding walls. The energy is condensed in this
area, improving the free space decay, and the resultant wave
propagates with a standing wave pattern which, depending on
the frequency, shows spatial fadings such as those seen in Fig.
2.

The interaction between these ‘bouncing waves’ can be
studied using ray tracing theory or modal theory. The ray
tracing theory models these waves as different rays, which
travel in different paths causing constructive and destructive
interference, and hence, fadings.
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Fig. 3. Field structure (lines) for the first three propagating modes inside a
metallic cylindrical waveguide

In this work we have adopted the modal theory approach,
as the geometric interpretation of the modes (analog to rays
in the ray tracing theory) allowed for the explanation of the
transversal structure of the fadings.

Related to the propagation modes, it is important to high-
light that:

o The modes classified in TE (Transversal Electric modes,
with no electric field component in longitudinal direction)
or TM (Transversal Magnetic modes, with no magnetic
field component in longitudinal direction), and are further
indexed with two integer subscripts (p=0,1,2,3... , q=
1,2,3...), that account for the mode structure across the
pipe. The first three propagating modes, relevant for this
work, are T Ey1, T My, and T E5;, which we will also
call mode 1, mode 2 and mode 3 respectively.

o Each mode describes a geometrical arrangement of the
electromagnetic fields in the guide cross-section (see Fig.
3).

« For each mode there is a cutoff frequency (which depends
on the pipe diameter), and the mode propagates if the
operating frequency is above it.

o Each mode has its own wavelength in the waveguide
(different from the free space one).

o The transmitting and receiving antennas position and
orientation are relevant for the modal coupling. For
practical purposes, aligning the antenna with the electric
field lines enhances the power coupling, while placing it
perpendicular diminishes it.

For each mode there is a cutoff frequency (for simplicity,
fen for the ng, mode). For an air filled cylindrical pipe of
radius a:

C

cn — a5 1
f Xpq oma (1)
for TM modes, and:
’ C
cn — a5 2
I Xpag o 2)

for TE modes. c is the free space speed of light, X, is the
qin, zero of the Bessel function J), of the first kind and X;)q
is the ¢;,, zero of J ' , the derivative of the Bessel function J,
of the first kind. The mode with the lowest cutoff frequency
is called the dominant mode and is the T FEq; with X/11 =
1.8412. The next two cutoff frequencies correspond to 7'My,
with x01=2.4049 and T'E5; with Xlgl = 3.0542. These values
are constants.



If f> fen, the mode’s wavelength is given by:

Ao = A _ ‘ I

PG - "

where 3, is the phase constant and will be used in Eq. (5) to
calculate the fadings amplitude.

If only the first two modes - which have different wave-
length - are present (i.e. fo1 < feo < f < fe3), the phase
delay accumulated by each one will be different for a given
travel distance d. The superposition of the electric field of the
modes will take place with different relative phases in different
positions inside the guide, producing constructive interference
where both modes are in phase and destructive interference
where the relative phase differs by an odd multiple of 7. This
gives rise to periodic fading in the RF power available inside
the waveguide. The spatial period of this fading structure D
is the distance that creates a relative phase of 27 between the
two modes considered:

b
A1 — Ao

When more than two propagating modes are present, every
possible pair of modes will create a fading structure with its
own characteristic spatial period, giving rise to an intricate
available power distribution inside the guide. Even in this case,
knowing the shape of the modal fields, careful selection of the
transmitter and receiver antenna position and orientation in the
pipe cross-section can lead to a system that, in fact, operates
as if only two modes were present, minimizing the coupling
to the unwanted modes on the transmission and/or reception
side.

In [20] we show the results of a serie of field tests to
characterize these fadings. The propagation experiments were
performed in a 300-m long and 4-m diameter pipe by placing
a transmitter at the beginning of the pipe and displacing a
receiver along the pipe at constant speed while recording the
RSSI. Here we summarize the relevant cases given the number
of propagating modes. For reference, Table I shows the cutoff
frequencies for the first four modes for this pipe, derived from
Egs. (1) and (2).

e f < fe1. Below cutoff frequency: the expected behavior
of the signal is a rapid attenuation, as the pipe does
not act as a waveguide for these frequencies. See Fig.
4 for experimental results below the first mode’s cutoff
frequency (f = 40 MHz, while f.; = 43.95 MHz).

o fo1 < f < fea. Monomodal propagation: usually used to
transmit signals for communication along a waveguide,
as it avoids interference with higher order modes. No
fadings are obtained in this setup, as seen in Fig. 4.
However, if one of the extremes of the pipe is closed (not
the case in this work), the propagating wave will reflect
off the closed end and travel in the opposite direction
of the incident wave, producing interference and hence
a standing or stationary wave pattern. The period of the
fadings is one half of the wavelength of the signal in the
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Fig. 4. Different propagation scenarios in Castillonroy, from [20]. Below the
cutoff frequency (f = 40 MHz) the signal completely attenuates within about
one wavelength. Therefore, this setup is not useful either for communication
or for localization purposes. On the other hand, the monomodal propagation
(f = 51 MHz) shows a signal with little attenuation along the pipe. Although
useful for communication purposes, this setup does not work for localization
either. Bimodal (f = 71 MHz) and trimodal (f = 75 MHz) propagation
produces RF fadings, being the period of the fadings shorter in the latter, in
the same pipe.

pipe (Eq. 3). See Chapter 5.2.3.2 of [22] for more details.

o feo < f < fes. Bimodal propagation: interference be-
tween the first two modes (1T'E1; and T'Mj;), producing
periodic fadings.

o fes < f < fea. Trimodal propagation: interference
between the first three modes. The reason to explore this
propagation is because the interference between the first
and third modes causes shorter period fadings than that
between the first and second or that between the second
and third modes. As the goal is to localize a robot using
the fadings (e.g. counting the fadings while traversing
them in a discrete approach), the shorter the period, the
higher the resolution. Unfortunately, selecting a frequency
to excite the first and third modes also involves exciting
the second one. The solution for eliminating the influence
of the latter was based on taking advantage of the
geometry of the modes to choose an emitter-receiver
configuration with enhanced sensitivity for the first and
third modes, while diminishing the second mode. From
Fig. 3, it can be seen that the second mode has radial
symmetry. This means that, for instance, centering the
transmitting antenna perpendicular to the vertical axis
and close to the floor will couple the least power to the
second mode (i.e. the antenna and the electric-field lines
are perpendicular), while aligning to the field lines of the
first and third mode.

o fea < f. Multimodal propagation. Complex RF fading
structure not relevant for this work. See [20].

Finally, for two modes, the power wave amplitude is defined
as:

P(z) = Kie™ "% + Kpe 727 Q)



TABLE I
CUTOFF FREQUENCIES FOR THE FIRST PROPAGATING MODES IN
CASTILLONROY

| mode 1 | mode2 | mode3 | mode 4
fe (MHz) ‘ 43.95 ‘ 57.41 ‘ 72.91 ‘ 91.47
MODE 1
1] |
A
1} - \%
+ MODE 2
Fig. 5. Cases of interest to study constructive (blue arrows) and destructive

(red arrows) interference between modes 1 and 2.

where 7, = a,, + jB, is called the propagation constant. Its
real part, o, , is the attenuation constant (Np/m) - usually
negligible for the distances covered in our testbed, as metallic
pipes have very low attenuation. Its imaginary part, (3, is
the phase constant (rad/m) and can be derived from Eq. 3.
K, is the complex-valued power wave rms amplitude of the
ngp, mode. The power wave amplitudes determine the signal
model fading maxima and minima. The values of K, can be
estimated following the procedure outlined in Appendix A,
or alternatively fitted to (or further refined with) experimental
data. This last step will also take care of unavoidable devi-
ations from ideality associated with, for example, obstacles
inside the pipe (e.g. rocks or other robots), and junctions
between different pipe sections.

For practical purposes, we will adopt the Received Signal
Strength Indicator (RSSI) in the receiving antenna as the RF
signal model h(x), calculated as:

h(z) = 20logy, | P(z)| (6)

Summarizing, the pipe diameter determines the different

PIPE FRONT VIEW
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Fig. 6. Pipe front view. Transmitter-receiver positions for different cross-
section fadings analysis.

modes’ cutoff frequencies (as x,, and X;)q are constants).
Selecting an operating frequency above certain mode’s cutoff
frequency allows to propagate that mode, together with the
lower order modes. If there are two modes propagating and
interacting, periodic fadings are obtained. The period of the
fadings is a function of the operating frequency, and the
pipe diameter (as it determines the cutoff frequencies). We
encourage the reader to see [20] for results on more than three
modes propagating, influence on the antenna polarization,
stationarity of the signal and repeatability of the fadings.
At last, we extend this analysis for non-ideal pipes (with
experimental results) in Appendix B, addressing the effects
of the pipe length, presence of obstacles, curved sections and
so on; showing that the localization algorithms detailed in
Sections V - VII would be viable not only in ideal waveguides
but also in a wide range of real world pipes with slight to
moderate defects and cracks, suffering from local deformations
and/or obstacles present.

III. TRANSVERSAL FADINGS

Having studied the fadings along the longitudinal dimen-
sion, in particular, the cases of bimodal and trimodal prop-
agation, we move on to analyze the transversal structure of
the fadings. That is, we have studied the effects of the cross-
section position on the received power and relative phase of
the fadings (i.e. are the fadings the same if I navigate with the
antenna in the left or right side of the pipe?). By analyzing
the electric field distribution of the first three modes (Fig.
3), together with the practical placement of two receivers in
a robot, two cases emerge as relevant for analysis: virtually
dividing the pipe with respect to the center horizontally (upper
vs lower half) and vertically (right vs left half).

Along this section, the approach is to analyze the agreement
or disagreement between the zones of interest (left vs right,
up vs down) regarding to if the electric-field lines of the
two modes interacting add positively (both lines go in the
same direction, represented with blue arrows in Fig. 5), or
the contrary case (represented with red arrows). We will
see that an agreement translates into the same spatial phase
(both signals with matching maxima and minima), while a
disagreement translates into a phase delay of 180 degrees (a
maximum in one signal matching a minimum in the other).

As an example, consider the case of bimodal propagation
(modes 1 and 2, Fig. 5). After virtually dividing the pipe
horizontally and vertically (quadrants I to IV), lets place one
receiver vertically oriented in quadrant I. In this position, the
electric-field lines of modes 1 and 2 add positively (same
electric-field lines directions for both modes in the same
quadrant, represented with blue arrows). If a second receiver is
placed vertically oriented in quadrant II, the case is the same,
and hence, the received signal of both receivers will match
quite well (same phase).

Consider that we move both receivers to the lower half
(quadrants III and IV). The electric-field lines now add nega-
tively. Despite appearing an opposite case to the previous, in
the context of the relative phase between two signals, as both
cases match (both add positively or both add negatively), the
relative phase will be the same in both of them.
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Received signal power in the left and right half ((a) and (c)) vs upper and lower half((b) and (d)), together with the electric field distribution for:

bimodal propagation ((a) and (b)) and trimodal propagation ((c) and (d)). The blue arrows represent constructive interference between the electric fields of

the two modes interacting, while the red arrows the opposite.

TABLE I
TRANSVERSAL FADING ANALYSIS CASES
CASE TRANSMITTER RECEIVERS Ie (I;AI?PDL];:EIG R];:’II:I?ESI]\EI E
I - Bimodal left-right (Fig. 7(a)) tx1 vertical 15‘;?:;“521?2;1 85582?; 0°
2 - Bimodal upper-lower (Fig. 7(b)) tx1 vertical Sg&%ﬁ rr);lz \;eerrttiicce;ll COI;i’lE(R)gI(;ngVE 180°
3 - Trimodal left-right (Fig. 7(c)) tx2 horizontal l;gl}grfihﬁgf;::;l gggggﬁggg 0°
4 - Trimodal upper-lower (Fig. 7(d)) tx2 horizontal ]_[,J(E)&%i rr);lz };loorriizz(:)r;tfall C Ogsp’ﬁ“)glsjg’ll?IVE 180°

Now consider placing one receiver vertically oriented in
quadrant I and another one in quadrant IV. Now, the interacting
modes 1 and 2 add positively in the upper half while negatively
in the lower half, which would translate into a signal phase
delay of 180 degrees.

Table II together with Fig.7 show the setup and results of
the experiments to corroborate this, for the case of bimodal
and trimodal propagation, using two receivers in appropriate
positions (refer to Fig. 6). The selected frequencies and
antenna setups were chosen to produce bimodal and trimodal
propagation. Also, recall that the transmitter position and
orientation allows to enhance/diminish the power coupled
to the modes of interest. In a similar manner, the receiver
antennas were oriented to align with the field lines of the
modes of interest.

By analyzing the results we can see that:

o As expected, the fading period in the case of trimodal
propagation (cases 3 and 4 in Table II, Figs. 7(c) and 7(d))
is shorter compared to the case of bimodal propagation
(cases 1 and 2, Figs. 7(a) and 7(b)).

o The fadings are in phase in the left vs right halves (cases
1 and 3, Figs. 7(a) and 7(c)), while there is a phase delay
of 180 degrees in upper vs lower half (cases 2 and 4, Figs.

7(b) and 7(d)). This matches our analysis considering the
explored receivers’ positions.

o Also, notice that the electric-field lines of the first mode
are 90 degrees rotated comparing cases 3 and 4 (Figs.
7(c) and 7(d)) with cases 1 and 2 (Figs. 7(a) and 7(b)),
as explained in the previous section.

The phase difference will be exploited in the next sections

to improve the robustness and resolution of the fadings-based
localization algorithms.

A. Cylindrical symmetry considerations

Due to the azimuthal symmetry of the pipe, if the transmitter
setup is rotated, the interpretation set out above is rotated as
well. For instance, if the transmitter is placed horizontally at
the floor operating at a frequency that results in trimodal prop-
agation, there is a phase difference of 180 degrees between
the lower and upper half, and the same phase between the
left and right half. However, if due to practical reasons when
installing the receivers on the robot we desire the phase delay
between the left and right half (instead of upper and lower
half), notice that a 90 degree rotation of the pipe setup (i.e.
transmitter placed vertically close to the wall) will achieve so.
Fig. 8 illustrates the situation.
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Fig. 8. Effects of rotating the antenna setup on the cross-sectional structure
of the fadings. The phase difference between phase 1 and phase 2 is 180
degrees.

(a) Straight and tilted parts of the pipe

(b) Instrumented Pioneer P3AT robot inside the pipe carrying two
horizontal antennas.

Fig. 9. Large-scale pipe experimental setup

IV. TEST SCENARIO AND EXPERIMENTAL SETUP

For localization purposes, the test scenario was a 300-m
long carbon steel pipe with a 4-m internal diameter used as
a drainpipe for the Santa Ana dam in Castillonroy, Spain. It
consists of two inclined parts (at the beginning and the end,
tilted 23 and 30 degrees respectively), and a 120-m straight
section (Fig. 9(a)).

To analyze the propagation behavior, a B&K Precision
2005B RF Signal Generator was used as the transmitter (tx).
The transmitter antenna was longitudinally fixed at 10 m from
the beginning of the straight section of the pipe, and its cross-
section position and orientation will be specified for each
experiment.

A Pioneer P3AT differential drive robot was used as the
moving receiver/service robot. The platform was equipped
with two RF Explorer model 3G portable spectrum analyzers

as RF receivers (in order to exploit the spatial diversity), two
odometers, an Xsens MTI 100 IMU, and a SICK LMS200
laser range sensor (Fig. 9(b)). As the pipe has no structural
features, a series of landmarks were added at the laser field-
of-view level for ground truth purposes. All the sensors were
connected to a computer running Robot Operating System
(ROS) on Ubuntu.

V. DISCRETE ROBOT LOCALIZATION USING RF SIGNAL
FADINGS

The previously presented study, supported by experimen-
tal validations, allowed to propose an RF-based localization
method alternative to those existing in the literature. We have
studied the setups (more specifically the operating frequency
and tx-rx positions) to obtain periodic spatial fadings inside
a metallic pipe, where the period is determined by the RF
transmitter’s operating frequency and the radius of the pipe.
As a first approach we have developed a discrete localization
method, where the idea is to count the (known-period) fadings
while traversing them. Furthermore, we have then improved
this method in a continuous approach using the fadings model.
In both cases, we have first used only one signal (from one
receiver), and subsequently we have exploited the spatial di-
versity which allowed to improve the resolution and robustness
in both approaches, by means of using two received signals.
In the following sections we derive the formulations together
with the experimental results obtained in a real scenario.

A. Algorithm formulation

While displacing the RF receiver from the transmitter, the
basic strategy of the algorithm is to discretely determine the
distance traveled (one-dimensional localization in the longi-
tudinal axis), by counting the fadings maxima and minima
encountered (e.g., detecting the changes in the slope), creating
a type of RF-odometry. As two changes in the slope take place
within one fading (minimum and maximum), the localization
resolution is equal to half of the (easily calculated) period of
the fading. In this case, the shorter the period, the better the
localization resolution. Finally, the direction of motion is used
to increase or decrease the distance traveled after detecting
the changes in the slope. Fig. 10 illustrates the algorithm by
means of simulating bimodal propagation in a generic metallic
pipe (although it can be extrapolated to any periodic signal).

Moreover, if two receivers are used, the algorithm can be
improved in terms of robustness and resolution. If the signals
are in phase (e.g., Fig. 7(c)), redundancy can be used to
improve the robustness. If the signals are phase-delayed (Fig.
7(d)), two more triggers can be perceived within a fading,
where the two signals cross each other. These two extra
triggers allow us to improve the localization resolution from
a half to approximately a quarter of the period of the fading
(see Fig. 11).

B. Experimental results

In order to check the validity of the proposed algorithm in
a real situation, the Pioneer P3AT wheeled robot was placed



PIPE CHARACTERIZATION
Diameter—-cutoff frequencies

I
TX-RX SETUP
Operating frequency:
bimodal or trimodal propagation
Antenna position:
enhance / disregard modes detection

| RF ODOMETRY CYCLE |
[

| Detect the direction of movement |<—
|

| Detect maximum or minimum |

' |

| Add or substract D / 2

(a) Diagram

20

Distance from transmitter

0
0
-30
__ —40r
£
@
2 _s0
9]
1) ) L
T 60 changemslope i f AT
triggers -t =
T/2 T
_70 : L . : v ¥ } 1 ' ‘
0 2 4 6 8 10 12 14 16 18 20 22

time (secs)
(b) RF odometry

Fig. 10. Discrete Localization: (a) Algorithm and (b) Example using a generic
periodic signal. 7" denotes the time period of the fadings, and the dashed
squares the changes in the slope used as triggers, adding D/2 to the current
position each time detected (D being the spatial period of a fading).

inside the Santa Ana dam drainpipe, simulating a service
routine. The robot traveled in a straight line for about 70 m
at a mean speed of 0.5 m/s, and hence, the heading variations
are negligible.

To obtain shorter period fadings, trimodal propagation was
chosen. The frequency selected was f=78.2 MHz, producing
fadings with a period of 8.26 m and a discrete localization
resolution of 4.13 m. The transmitter antenna was placed
horizontally at 1 m from the floor (position ¢tx2 in Fig. 6), and
the two receivers at 1.5 m and 2.5 m in height (0.5 m above
and below the center of the pipe). With this configuration,
a relative phase difference of about 180 degrees is expected
between the receivers. The above described experimental setup
was used for both the discrete and the continuous localization.

Fig. 12(a) shows the results for the position estimation using

Distance from transmitter
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points triggers
| |
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Fig. 11.  Effects of exploiting spatial diversity. By means of adding the
‘crossing point’ triggers, the discrete resolution is improved to D /4 (D being
the spatial period of a fading)

four methods. The black line shows results from the localiza-
tion method used in [23], which combines information from
the odometers and the laser sensor lain over the previously
built and corrected map of the pipe, with the added structural
landmarks. We consider this the ground truth. The green line
shows a purely odometric position estimation, evidencing the
cumulative errors and drift. The blue line shows the discrete
position estimation from the fadings localization algorithm
(with a resolution of half of the period of the fadings), using
just one of the RF receivers. The fadings maxima and minima
of the signal shown in Fig. 12(b) were used as triggers. Lastly,
Fig. 12(c) shows the measured received power at each of
the two receivers. It corroborates the expected relative phase
difference of 180 degrees (a maximum in one signal that
matches a minimum in the other), allowing the use of two extra
triggers and improving the localization resolution. Results are
shown in red in Fig. 12(a).

C. Practical Considerations

In an ideal case, where we have identical receivers and
antennas, and under symmetry conditions, the phase delayed
RF signal levels must be identical (but, of course, shifted).
In this situation, the two signals cross each other at the same
distance from the fading maximum or minimum, but the real
implementation effects, including different behaviors in the
antennas and distortions caused by the presence of the robots,
produce differences in the two signals (one showing deeper
fading than the other or being more attenuated). This means
that, unlike in the ideal case, the signals do not cross each other
at exactly the same point, and hence, the discrete resolution
is not exactly one quarter of the signal of the fading. For this
reason, the distance may be underestimated before a maximum
and overestimated after it (or viceversa). This analysis is only
valid, however, for the triggers where the signals cross each
other, not applying at the maxima and minima, where this
overestimation or underestimation error is reset. The situation
is illustrated in Fig. 13. To solve this the model can be
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calibrated online, once one fading is traversed and hence the
maximum and minimum are determined.

Furthermore, although not the case with these experiments,
it is true that miscounting the number of maxima and minima
that have been traversed (cycle slipping) would cause a more
significant error in the position estimate. To address these
issues, a more complex continuous approach which includes
the signal model has been developed, as described in the
following section.

VI. CONTINUOUS ROBOT LOCALIZATION USING ONE RF
SIGNAL FADINGS

The next natural step was to extend the methodology
presented in the previous section from a discrete localization to
a continuous solution, taking advantage of the periodic nature
of the RF signal.

As has been shown in Section II, the fadings waveform
and its period can be calculated without the need for previous
experimental measurements inside the pipe (see Eqgs.(4)-(5)).
Each longitudinal position of the pipe has an associated RSSI
value, meaning that this model serves as a unidimensional map
(herein the RF Map).

The goal is to obtain continuous robot localization along
the pipe. For this purpose, let the state of the robot x; at time
t be calculated using its motion model f:

Ty = f(’U/t, xt_l) + €ty € ™~ N(O, V) (7)

where u; are the control inputs at time ¢ and €; is a random
variable that models the uncertainty introduced by the state
transition based on variance V. Due to the cylindrical shape
of the pipe, the robot travels in a straight line and only slight
heading variations are observed. Therefore and from now on,
the state x; will refer to position = along the pipe.

During the displacement of the robot, the observations
z; at time t are provided by the sensors. The non-linear
measurement model A relates the observations to the state of
the robot x;:

Zt = h(fL’t) + 51‘,, 6t ~ N(O, W) (8)

where J; corresponds to the uncertainty of the measurement
represented by a random noise based on variance W.

In our RF approach, the RF signal model (Eq. (6)) is used
as the measurement model:

h(z:) = 20logq |(K1e™ "% + Koe™ 72%t))| 9)

where we have converted to RSSI in dBm units with K, in
mW ~1/2 units.

Following this general formulation, the strategy proposed
in [21] relies on an adapted version of the Monte Carlo
Localization (MCL) system [24] using the RF signal model
as an RF Map.

As is well known, MCL is a probabilistic method based
on particle filters where the posterior distribution of the
state is represented by a set of weighted particles zj". It
solves the localization problem through the following typical
steps: particle filter initialization, prediction, weighting of the



particles and resampling. Once the filter is initialized with a
set of particles, during the prediction step, the state of each
particle x7* is updated based on its sample motion model:

oyt = fup, x"y) + e (10)

where u; corresponds to the inputs of the system, linear and
angular speed (vy, wy).

The main contribution of [21] takes place during the weight-
ing step. Similarly to the typical matching process between
laser scan measurements and a previously known grid map,
the measurements provided by the RF sensor are compared
with the RF Map.

The Gaussian probabilistic density function was chosen to
calculate the weight that represents the probability of each
particle to be a good hypothesis of the actual position:

( >2 (1D

where o2 (L) is the variance of the likelihood function applied
to the innovation process, z; is the actual observation and 2;" is
the expected observation for the m-th particle calculated using
the RF signal model as the measurement model similarly to
Eq. 9):

2 — 2"

[N

g

wy' =e

" = h(z") (12)

Based on the results presented herein, we can conclude that
the proposed continuous localization method provides good
performance and improves on the position resolution presented
in [20]. Moreover, it overcomes the lack of distinctive features
in pipes.

The starting point for the main contributions of the present
work in terms of continuous localization inside pipes comes
from this analysis.

A. Variable RF sensor measurement model variance

During the validation of the previously described method,
the uncertainties involved in the algorithm were modeled
using constant variance values provided by data sheets. After
studying the experimental results, it is clearly seen how the
uncertainty of the system increases in areas close to the highest
values of the RF signal where the signal is flattened. The
greater the number of possible positions corresponding to
similar RF values, the wider the particle distribution and the
greater uncertainty. On the contrary, the uncertainty decreases
in areas close to the valleys of the signal (fadings), where the
particle distribution becomes significantly narrower. Fig. 14
illustrates the aforementioned characteristics of the RF signal
model and the actual RF measurements. To take into account
this behavior, we propose an improvement involving use of a
variable function for the variance related to the measurement
model of the RF signal (W) instead of a constant value.

The goal is to obtain a transfer function which provides
variance values with the same shape as the RF signal model.
In this way, the applied variance will increase or decrease
replicating the observed behavior. The variance value at each
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Fig. 14. RF signal model vs RF sensor measurements (dotted). The signal
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uncertainties.
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timestamp W)™ for particle m will depend on the RSSI value
of the RF signal model as shown in Eq. (13).

Wi = (RSSIT, — min(RSSIfn)) * focate

+ Worpset
fscale = 0w [ORS51;,, (13)
ow = Wup — Wiow
0rssiy,, = mar(RSSIs,,) —min(RSSItm)

where RSSIY), is the RSSI value corresponding to the posi-
tion of particle m provided by the RF signal model (Eq.(9))
and fseqie is a scale factor to convert the RSSI value to
a variance value (dB?) between an upper and lower limit
(Wup, Wiow) taking into account the fadings model waveform
amplitude (6R551fm). Finally, Wy ¢se: is the offset for the
variance function. Fig. 15 provides an example of the resultant
variance function together with the RF signal model.

As can be noticed from Fig. 14, the RF signal model along
the pipe is similar enough to the RF sensor measurements in
the real scenario to consider the bias error negligible.

B. IMU for prediction purposes

During the experimental validation of the work presented in
[21], a differential robot was equipped with various different
sensors. The linear and angular speed of the robot were
provided by two encoders placed on the robot wheels. These



values correspond to the inputs of the system used during the
prediction step of the algorithm.

There are other robotic platforms with which it is not
possible to use mechanical odometry sensors (e.g., aerial
robots). In order to check the feasibility of the proposed
method in these types of platforms, we propose the use of
the values provided by an IMU. The information given by
this sensor is the linear acceleration and the angular speed
that are applied to the motion model of the vehicle during the
prediction step.

The results of the position estimation of the robot along
the pipe using the IMU sensor during the prediction step are
shown in the experimental results subsection.

C. Continuous localization system based on EKF and RF
signal

The EKF [24] is one of the most popular algorithms for
state estimation in robotics applied to non-linear systems. The
posterior distribution at time ¢ is represented by the system
state X; and the covariance P;. The EKF overcomes the
Kalman Filter assumption of linear state transitions and linear
measurements by means of a linearization process. Its strength
lies in its simplicity and in its computational efficiency. In
order to evaluate its feasibility for the localization of the robot
inside pipes, an EKF algorithm was implemented using the RF
signal.

During the EKF prediction step, the state of the robot X,
is propagated according to the motion model (Eq. (7)):

Xt = flus, Xi-1)

P, =FP_FF +G,VGT
F,=0f/0x

Gy =0f/0u

(14)

where P, is the predicted covariance, f refers to the motion
model of the vehicle, u; are the inputs of the system (v, w;)
and (F}, G) are the Jacobians calculated as the partial deriva-
tives of the function f with respect to the state variable x and
with respect to the inputs of the system w respectively. V is
the variance associated with the vehicle odometry uncertainty.

The update step provides correction of the predictions by
incorporating the measurements z;:

Xt = Xt + Kt(zt — h(Xt))

Kt = PthT(HtprtI + Wt)71
Pt - (I— Kth)Pt

H, = 0h/dx

In this particular case, the observation z; is the RSSI value
provided by the RF receiver sensor and the measurement
model h corresponds to the RF signal model used to predict the
expected observation Z, (similarly to Eq. (12)). W, is related
to the measurement model variance of the RF sensor.

The Jacobian H; needed to calculate the Kalman gain of
the filter is obtained through the derivative of the RF signal
model equation with respect to the state variables.

The results provided by the application of the EKF to solve
the localization problem inside pipes are presented in the

(15)
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Fig. 16.  Theoretical received signal corresponding to the upper half and

lower half of the pipe for trimodal propagation.

following subsection together with a comparison between the
two methods: particle filter versus EKF.

D. Experimental results

In order to check the validity of the continuous localization
methods in a real situation, all the algorithms described in
previous sections were implemented in MATLAB and tested
with real data collected during the experiments described in
Section IV at the Santa Ana dam in Castillonroy, Spain (Fig.
9(a)).

Given the operating frequency of 78.2 MHz, the inner pipe
diameter of 4-m, and assuming an electrical conductivity of
4.5x10°% S/m and a relative permeability of 100 (typical values
for carbon steel), the propagation constants obtained using
Egs. (22) and (32) are 1 = oy + 561 = 0.0001 + j1.356m !
and ~y, = 0.0005 + j0.595m~!. The power wave amplitudes
K; and K5 can be determined offline or even adjusted online
in a practical approach, once the first fading is traversed,
given that the sum of the power amplitude of both modes
is equal to the fading maximum, while the subtraction of
both equals the fading minimum. The online adjustment of
the power wave amplitudes would solve the potential disparity
between the theoretical model and the actual signal in case of
systematic errors (bias) in the RF sensors. The values obtained
were K| = 0.024 and K, = 0.016 mW ~'/2 (which actually
adjust the total radiated power to -26 dBm, matching fairly
good with our setup). Using all this data, it is possible to
calculate the theoretical electromagnetic propagation along the
pipe that will play the role of an RF Map (Fig. 16). Recall
that the period of the fading is never adjusted, it is easily
theoretically calculated (given only the radius of the pipe and
the operating frequency), and that the electrical conductivity
and relative permeability only influence on the attenuation,
which is relatively small in metallic pipes.

The real data collected during the experiments were:

o Linear and angular speed (v, w): These values are pro-
vided by the odometry sensors and correspond to the
linear and angular speed of the robotic platform, used
in the prediction step of the continuous localization
methods.

Linear acceleration and angular speed (a,w): Data pro-
vided by the IMU corresponding to the linear acceleration



and angular speed. The state of the vehicle is predicted
with these values when the IMU is used instead of the
odometry sensors.

RSSI values (z1,22): These sensor measurements are
provided by the RF receivers placed at different heights
and are used in the update step of the different proposed
methods.

Ground truth: The real localization of the robot corre-
sponding to the distance from the transmitter, obtained
as explained in Section V-B. This value is used to
compare the estimated pose of the robot provided by the
localization algorithms with the robot real position. From
now on, pose estimation error refers to the absolute value
of the difference between the estimated position and the
ground truth.

For the results described in this section, only one signal
is used in the implemented algorithms (i.e., z; and its corre-
sponding RF signal model from Eq. (6)).

In order to model the uncertainty of the elements involved
in the system, some variance values must be defined:

o V: variance associated with the uncertainty of the vehicle
odometry.

o L: variance of the likelihood function used during the
particle filter weighting process.

« W: variance to model the uncertainty of the measurement
model.

1) Results of the localization algorithm based on RF fad-
ings and particle filters using the IMU during the prediction
step: The continuous localization method presented in [21]
fuses the information that comes from two different sources,
one based on odometry and the other on the periodic RF signal
inside pipes. A detailed description of the results obtained
during the experimental validation can be found in Section
IV of that work.

In the case of ground platforms, the odometry data is
provided by encoders placed on the wheels. As stated before,
in order to check the validity of the method with other robot
types where the use of encoders is not feasible (e.g., flying
robots), the IMU data collected during the experiments were
used in the prediction step of the algorithm.

Several tests of the implemented localization method using
the values provided by the IMU sensor were run to assess the
stability and robustness of the solution. Fig. 17 shows the pose
estimation error for different variance values:

o test 1: L =0.005 and V = 0.0302,
mean error = 0.572 m

o test 2: L =0.001 and V = 0.1002,
mean error = 0.552 m

The W variance is not selected as a constant value but obtained
using the function of Eq. (13).

The cumulative error in the pose estimation when using
only the odometry is clearly evident, whereas the position
error remains limited around acceptable values when using
the method based on particle filters. The results using the
IMU as the main sensor for the prediction step are similar
enough to the ones shown in [21] to suggest the feasibility
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Fig. 17. Odometry and particle filter position estimation error during

the displacement of the robot along the pipe using the IMU sensor in the
prediction step. Red line: pose error using only odometry. Blue and green
line, pose error using the particle filter solution for different values of variance
(blue: L = 0.005 and V' = 0.030%, error = 0.572 m, green: L = 0.001 and
V = 0.1002, error = 0.552 m).

of the proposed localization method using different robotic
platforms.

As it is well-known, although the use of the IMU sensor
overcomes the errors derived from the slipping of the wheels in
these types of environments, the pose estimated by integrating
the IMU sensor readings easily drifts due to the sensor noise
and time-varying biases. These effects could be even worse
in the case of drones due mainly to vibrations. Usually in
these systems, a combination of visual odometry with inertial
systems is proposed to get a robust odometry [25]. Although
it is beyond of scope of this work, our proposed method is
expected to improve the odometry error of visual-inertial sys-
tems during the update phase by using the RF measurements,
as the preliminary results of the experiments using the IMU
during the prediction phase seem to indicate. Therefore, the
proposed alternative method can be effective and should be
evaluated when using different robotic platforms.

2) EKF results and comparison with particle filter method:
An EKF implementation of the localization algorithm was
developed following the same strategy of using the RF signal
during the estimation process. The validation of the method
was carried out using the data collected during the experimen-
tal tests. A small uncertainty value in the vehicle’s odometry
was needed for the EKF method to provide good results in
the position estimation. For higher variance values related to
odometry, the EKF method was unable to solve the localization
problem during the displacement of the vehicle along the pipe.

In order to compare both particle filter and EKF solutions,
the same variance values were selected for both methods:

e EKF: V = 0.012, Woar, and Py = 0.012, where P, is

the initial system variance.

e PF: V =10.012, Wvar and L = 4

Fig 18(a) shows the position error obtained with the EKF
and particle filter methods compared to the odometry method.
The estimated position calculated using the three different
solutions is represented in Figs. 18(b) and 18(c). As can be
deduced from the results, the EKF method does not perform as
well as the particle filter method in terms of position estimation
along the pipe. Nevertheless, the results are good enough to
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consider that the EKF method based on RF fadings may be
suitable for localization inside pipes. For this reason, deeper
analysis is required to evaluate the applicability of the EKF
solution to solve this particular case.

A covariance analysis has been conducted in order to check
the coherence of the application of the EKF algorithm to solve
the localization problem using the RF signal. The evolution
of the covariance during the displacement of the vehicle using
both methods is shown in Fig. 19. As can be seen, the particle
filter provides better results in terms of uncertainty than the
EKF-based method.

In brief, although both methods provide good results in
terms of vehicle localization inside the pipe, the use of the
particle filter is more adequate due to the high non-linearity
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Fig. 19. Evolution of the covariance during the displacement of the vehicle
using EKF and particle filter-based methods

of the RF sensor. Moreover, the position error is slightly better
and the estimated position is closer to the real position of the
robot when using the particle filter localization method. Apart
from that, in order for the EKF method to provide a good
solution, a small uncertainty of the state estimate is needed
but in some cases, the assumption of a good odometry system
is far from the real system. Therefore, we conclude that the
EKEF solution is less reliable compared to the particle filter.

VII. CONTINUOUS LOCALIZATION USING TWO RF SIGNAL
FADINGS

A. Algorithm formulation

As mentioned before in the transversal fadings analysis
section, with a specific setup of the transmitter and receivers
antennas in the pipe cross-section, a 180 degree relative phase
difference appears between the fadings corresponding to each
receiver. Fig. 16 represents the RF signal model of each
transmitter-receiver configuration.

The phase difference between the two RF signals can be
exploited in order to improve the accuracy and reliability of
the localization algorithm presented in [21] that uses one single
signal. Using the data provided by two RF receivers placed at
different heights, twice as much information is available and
it is possible to work with each signal with its own RF map.

We could formulate the problem as a regular robot local-
ization issue where two sensors (e.g., LIDAR sensors) placed
at different positions on the robot give information about the
perceived environment. The positions provided by both scan-
matching processes working with a known map are fused
using the EKF algorithm. The approach presented consists
of applying two independent particle filters, each of them
working with an RF receiver, in a way that the resulting pose
of each particle filter with its uncertainty is considered a virtual
sensor. The information that comes from these virtual sensors
is fused using the EKF algorithm in order to obtain the position
of the robot along the pipe.

The goal of this method is to take advantage of the results
of each particle filter in the areas where each of them works
best, that is, where the particle distribution is the narrowest and
therefore the uncertainty is the smallest. The less uncertainty
in the pose estimation of the virtual sensor, the more influence
this sensor will have in the EKF update step.
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Fig. 20.  Steps of the EKF localization algorithm with two RF signals. After
the prediction step, the position and covariance (X¢, P;) are updated using the
values resulting from the particle filter (zs1, Vis,) that works with the first
RF signal. In a second correction step, the position and covariance obtained in
the previous step (Xe, ¢, Pe,t) are updated using xg2 and Vs, provided by
the particle filter working with the delayed RF signal. The result of this step is
the position and uncertainty of the vehicle at each time stamp (Xe,t, Peot).

In summary, the proposed method is based on the applica-
tion of an EKF algorithm as the localization method using the
pose estimations obtained through two particle filters working
with both RF signals as measurements during the EKF update
step (Fig. 20).

The main stages of the proposed method are:

1) EKF prediction: During this step, the state X, and
covariance P, are predicted using the inputs of the system
(v¢, wy) and the odometry motion model (Eq. (14)).

2) PFarticle filter for each signal: As mentioned before,
the steps of the particle filter are followed in order to obtain
the estimated position. The RSSI value provided by the first
radio frequency sensor (z1;) along with its corresponding
measurement model (Eq. (9)) are used in the weighting process
to assign weights to each particle.

The result of the resampling step of each particle filter is a
new particle distribution. The estimated position is obtained by
calculating the mean position of the particles for each iteration.
In the same way, the variance of the particle distribution
is computed. Eq. (16) represents the pose estimate and its
covariance for each iteration:

| M
— J— m
rs1 = p = iV Z Ty
m=1
1 M
TPk
m=1
where M is the number of particles and =" is the position
of particle m.
Similarly, a second pose estimate is obtained using the RSSI
value provided by the second receiver (z2;) and its RF signal
model. For symmetry reasons, the measurement model for this

receiver placed at the upper half of the pipe (Fig. 7(d)) is
represented by Eq. (17):

(16)

m

Vs1 = 1 *N|2

h(z5) = 201og,o [(K1e™ 12 — Kye~ 72250 )| (17)

To summarize, two pose estimates with covariances are
available acting as virtual sensors to be used in the EKF update

step: (251, Vs,), (52, Vs,)
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3) EKF update using the results of the particle filters as
estimators: With the different virtual sensor measurements,
which are characterized by an uncertainty level, a double
correction step takes place using Eq. (15).

Firstly, using (zgs1, Vs, )+ as the measurement and variance
of the first virtual sensor respectively, the state and covariance
predictions of the system (X't and PL) are updated. Secondly,
in a subsequent step, the results of the previous step X.,; and
P.,: are again updated using the measurement and variance
values corresponding to the second virtual sensor ((zs2, Vs, )+)
obtaining X.,; and P,;.

Therefore, the results of the EKF algorithm using a double
correction step are:

Xt - Xezt

(18)
PL = P€2t

where X, represents the estimated position of the robot
along the pipe and P, is the system covariance that represents
the uncertainty of the calculated position.

It should be noted that, as the values provided by the virtual
sensors are direct measures of the state, the Jacobian matrix
H; -that relates the state to the measurement needed for the
Kalman gain calculation- is equal to the identity matrix.

B. Experimental results

Similarly to previous cases, the real data collected during
the experiments described in Section IV was used to verify
the improvement in the localization pose achieved by using
two signals.

The number of particles for each particle filter is set to M
= 1000. The particles are initially distributed along the first
period of the fading of each RF signal in order to avoid the
ambiguity problems derived from the periodic nature of the
fadings waveform.

The variance values selected are the same for both particle
filters:

V =0.038%;, L1 = Ly, = 0.007

The uncertainty in the measurement model W is obtained
with Eq. (13) during the execution of the algorithm and the
initial system covariance Py is set to 0.0382.

Several tests were performed using the variance values se-
lected in order to check the stability of the solution regardless
of the probabilistic nature of the algorithm. Fig. 21 shows,
for example, the position error obtained using the proposed
localization method for three different tests with the same
parameter configuration. As can be clearly seen, the mean error
remains below 0.5 m, whereas the odometry error increases
with time. These results demonstrate the adequacy of the
variance values selected.

Moreover, the estimated position error using both signals
improves on that obtained using one single signal as shown
in Fig. 22(a). The uncertainty of the position calculated at
each time-stamp for both virtual sensors is represented in
Fig. 22(b). As expected, the virtual sensor with the least
variance has the most influence on the EKF algorithm and
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Fig. 21. Odometry and position estimation error as a function of the distance
traveled (ground truth). Blue, green and purple curves represent the results
of three iterations of the proposed algorithm using two RF signals. The same
covariance values have been chosen for all the iterations.

the position predicted is corrected with the position estimated
by the “best” virtual sensor. This behavior can be observed in
Figs. 22(c) and 22(d) which show a detail of the area delimited
by the dotted vertical lines. The uncertainty of virtual sensor 2
(green) is lower than the uncertainty of virtual sensor 1 (blue),
and hence, the estimated position is corrected based on the
position estimated by the former. Therefore, the error remains
bounded around the smallest error at each timestamp. Fig.
23(a) shows a comparison of the estimated position over time
using the different methods. The localization method based
on the particle filter using only one RF signal (green and
purple) closely follows the real position (blue). Similarly, the
proposed algorithm based on the EKF using two RF signals
(black) provides a reliable estimated position. But the latter,
as can be seen in the detail shown in Fig. 23(b), corrects
the position of the vehicle with the best solution of the two
position estimators, in this case, the purple one. By contrast,
the estimated position calculated using only the odometry (red)
progressively moves away from the real position.

1) Coherence analysis: One of the assumptions of the
EKF is the Gaussian distribution of the observations. As
mentioned in the proposed method, the observations used in
the update step correspond to the result of the particle filter
with each radio signal. In order to evaluate the coherence of the
application of the EKF algorithm, we analyzed the distribution
of the particles resulting from both particle filters.

In order to accomplish this task, the set of particles obtained
after the resampling step at a particular time point during
the displacement of the robot is saved for both signals. The
median (x) and standard deviation (o) from the particles set
are obtained and a random normal distribution is generated
based on the values of ;o and o. The distribution of the particles
versus the normal distribution is represented in Fig. 24.

Fig. 24(a) shows the percentage of the particles provided by
the particle filter using the signal of one of the RF receivers.
The similarities of the distribution with the normal distribution
(Gaussian) are clearly evident. The same result is obtained in
the case of the distribution of the particles using the second
RF signal with the 180 degree phase delay (Fig. 24(b)).

From the aforementioned analysis, we can conclude that the
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Fig. 23. Estimated position of the vehicle during its displacement along the
pipe: (a) Comparison between the EKF method using both RF signals (black),
particle filter using one signal (green and purple dashed line), odometry
method (red) and ground truth (blue). (b) Detail of changes in the vehicle
position over time corresponding to the enclosed area. The estimated position
provided by the EKF (black) closely follows the real position.

assumption of a Gaussian distribution is tenable and therefore
the feasibility of the EKF is demonstrated.

VIII. PRACTICAL APPROACH AND LESSONS LEARNED

In order to implement the system and obtain an idea about
its practicability, we have summarized the important aspects
as follows:

o The technique is non-intrusive and does not require
environment modifications, only one RF transmitter and
one receiver being needed for the simplest setup.

As a standing wave pattern, the fadings are periodic,
repeatable and predictable, and hence, they are suitable
for localization.

The fadings period is given by the pipe diameter and
the interacting modes (determined by the operating fre-
quency). In order to propagate n modes, the operating
frequency must be higher than the n:, mode cutoff
frequency but below the n;;, + 1 mode cutoff frequency.
To obtain periodic fadings two modes must be present
(bimodal propagation). When more than two propagating
modes are present, every possible pair of modes will
create a fading structure with its own characteristic spatial
period, giving rise to an intricate available power dis-
tribution inside the guide. Even in this case, knowing
the shape of the modal fields, careful selection of the
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Fig. 22. EKEF localization method results using two RF signals during the displacement of the robot along the pipe: (a) Position error comparison using
the proposed method and the particle filter-based method using one single RF signal. (b) Variance representing the uncertainty in the measurement for each
virtual sensor. (c) and (d) Detail of both position errors and variances corresponding to the dotted enclosed area. The final position error is influenced by the
best of both virtual sensors in terms of uncertainty. The data from test 3 of Fig. 21 has been used for the comparison with the method using one RF signal.

transmitter and receiver antenna position and orientation
in the pipe cross-section can lead to a system that, in fact,
operates as if only two modes were present, minimizing
the coupling to the unwanted modes on the transmission
and/or reception side.

From Table III, it can be seen that for pipes ranging
from 0.15 to 6 m in diameter, the corresponding working
frequency varies from around 40 MHz to 2.4 GHz,
in order to obtain fadings with a mean period from
0.23 to 30.4 m. Commercial devices that work at the
aforementioned frequencies are available at relatively low
cost.

The theoretical analysis presented in this work is limited
to pipes that are straight and metallic, these having
electrical continuity and uniform cross-section. Although
this seems a substantial limitation, it was one of the
most common situations found in numerous use-cases.
However, the practical analysis presented in Appendix B
shows that the localization algorithms would be viable
not only in ideal waveguides but also in a wide range
of real world pipes with slight to moderate defects and
cracks, suffering from local deformations. At last, for
different materials such as concrete, the method is still
applicable although the suitable frequencies and mode
shape considerations would differ, this being beyond the
scope of this study (see [26] for an analogy in concrete
horseshoe shaped tunnels).
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Inside the pipe, the Faraday cage effect avoids interfer-
ence from external RF sources, and therefore, the received
signal is low in noise.

The maximum possible length that could be covered is
determined by the pipe diameter, material and equipment
sensitivity. Metallic pipes have low attenuation rates. In
our case study, the Castillonroy pipe was carbon steel
with an attenuation rate of less than 9 dB per km, and
our low cost receiver has a sensitivity of -105 dBm. This
gives us a maximum possible coverage length of several
kilometers.

The discrete and continuous localization algorithms are
feasible not only for ground robots but also for aerial
robots such as drones.

The use of two antennas and its correct positioning in the
cross section of the pipe allows to improve the accuracy
and reliability of both discrete and continuous RF signal
based localization methods, by means of exploiting the
180 degree phase difference.

In the continuous approach, the PF algorithm is more
appropriate over the EKF due to the high non-linearity
of the RF sensor.

Localization results from experiments on large-scale
pipes can be transferred to small-scale pipes where the
RF signal periodicity is also observable (see [20]). In
the latter, the expected position error will be significantly
smaller (as the fadings period ranges from 0.23 m to 0.4



W
S

= particles distribution
251 = = * normal distribution
20t 3 i
g {
8 150 i ]
S
E=d I
<
g
104 ,
s i
0 . . . . .
38 40 42 a4 46 48 50
x (m)
(a) Signal 1
25f particles distribution
= = = normal distribution
20t ,
< g
< 150 ( R
a
° 1
2 f
g 10} ! —
5f ! ]
0 . . . . . .
36 38 40 42 a4 46 48 50
x (m)
(b) Signal 2
Fig. 24.  Particles distribution vs normal distribution after the resampling

step. (a) Result using Signal 1. (b) Result using Signal 2 (180 degree phase
difference). The two distributions are similar enough to conclude that the
assumption of a Gaussian distribution is tenable.

m).

The position error obtained in this experiment (along 70
m) does not depend on the distance traveled, but on the
fidelity of the RF signal with the RF propagation model
acting as a RF Map. The error will be remain bounded
under acceptable values over the entire length of the pipe
in which the effect of periodic fadings appears, i.e, the
coverage area which, as mentioned above, extends to
several kilometers.

IX. CONCLUSIONS

In this paper, we have presented an alternative RF localiza-
tion method to those existing in the literature (e.g., fingerprint
or UWB), which does not require substantial infrastructure
deployment or a previously built RF map. Our method is able
to localize a robot along a pipe by means of generating and
detecting a periodic signal fadings pattern, using just one RF
transmitter and one receiver for the simplest setup.

At first, an analysis of the fadings in the longitudinal dimen-
sion was performed, followed by determining the influence
of the cross-section position of the receiver on the RSSI and
relative phase of the fadings. Based on the distribution of the
electric field of the interacting modes, the pipe was virtually
divided into two halves (vertically or horizontally). Empirical
results in a real pipe environment show that depending on
the chosen setup, the fadings corresponding to each sector are
in phase or present a relative phase difference of about 180
degrees (i.e. a maximum in one signal matching a minimum
in the other).
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Two approaches for localization, discrete and continuous,
have been detailed. The discrete method is based on counting
the fadings (maxima and minima) while traversing them,
resulting in a sort of RF-odometry. Compared to our previous
work, and derived from the transversal fadings analysis in
this study, the resolution has been improved by exploiting the
180 degrees phase difference by means of adding two more
triggers, corresponding to the crossing points of both signals.
In this way, the localization resolution is improved to a quarter
of the period of the fadings, this being determined by the pipe’s
diameter and the operating frequency.

As a step beyond the discrete localization, a continuous
localization algorithm has been implemented to estimate the
robot displacement along the pipe, using the theoretical fadings
model as an RF map. The first of them is based on particle
filters and its validity with experimental results was presented
in a previous study. Building on that work, the feasibility of
using different types of robotic platforms has been confirmed
by using an IMU during the prediction step of the particle
filter-based method. Apart from that, the applicability of the
EKF algorithm using the fadings signal and an RF map has
been studied and compared to the particle filter solution.
Finally, a new strategy for continuous localization taking
advantage of using two RF receivers in order to obtain the 180
phase difference has been developed. This approach consists
on fusing the information that comes from two particle filters
working with their RF signal and RF map, with an EKF
algorithm. The result of a coherence analysis demonstrates
the validity of the proposed solution.

All the aforementioned methods have been tested and vali-
dated with experiments in a real pipe scenario. The reliability
of the discrete localization methods has been proven for
in-pipe longitudinal localization. Moreover, the continuous
localization using two signals yields better results in terms of
error, demonstrating the ability to localize the robot at all times
during its displacement along the pipe. Although both methods
provide good results, the PF algorithm is more appropriate due
to the high non-linearity of the RF sensor.

The RF approach presented in this paper in all its forms
overcomes the lack of features that is one of the main
difficulties in robot localization in this type of environment.
In addition, there is no need for a previously known map
and required modifications of infrastructure are minimal, only
an RF transceiver placed at the beginning of the pipe being
needed to cover several kilometers.
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APPENDIX A
DETAILS ON RF PROPAGATION IN PIPES

A circular cross-section metallic pipe behaves as a cylindrical
waveguide for RF signals. Electromagnetic wave propagation inside
the guide is strongly frequency dependent. This is a classical problem.
Further details and fully worked solutions can be found in Chapter
3 of [27] and Chapter 9 of [28].

We consider the pipe to be an infinitely long air-filled hollow
cylinder, with free space permittivity €p and permeability g0, and
that it has metallic walls of electrical conductivity o and magnetic
permeability u, with internal radius a. The usual approach involves
the solution of the electromagnetic wave equation in the frequency
domain, for a fixed frequency, f or w = 27 f, to obtain complex-
valued electric and magnetic field expressions depending only on the
space variables, for example F/(7). The time- and space-dependent
field can be obtained, if needed, as E(F,t) = Real(E(7)e’**). In
the following, all magnitude amplitudes are rms values.

A. Modal fields in cylindrical waveguides

The electromagnetic fields inside a cylindrical waveguide are best
described in cylindrical coordinates (p,¢,x) to take advantage of
the geometrical symmetry. Notice that we use x instead of z as
the axial coordinate for the longitudinal position of the robots in
the pipe. Applying the electromagnetic boundary conditions at the
metallic wall, considered a good conductor, there are infinite solutions
to the frequency domain wave equation, with their associated field
configurations. These symmetry-adapted solutions are customarily
called modes, and are classified as Transverse Electric (TE, those
with no electric field component in the longitudinal direction) or
Transverse Magnetic (TM, those with no magnetic field component in
the longitudinal direction). These modes are further indexed with two
integer subscripts (m=0,1,2,3... ; n=1,2,3...) that account for the mode
structure across the p and ¢ dimensions. Each TE,,,, or TM,,, mode
describes a geometrical arrangement of the electromagnetic fields in
the guide cross-section. Fig. 25 shows, as an example, the electric



(a) TE11 (b) TMo1 (c) TE2

Fig. 25. Normalized intensity (arbitrary units) for the first three propagating
modes inside a metallic cylindrical waveguide

field distribution of the first three modes. See [27], [28] or [29] for
plotted examples of higher-order modes.

Waveguides are high-pass frequency-selective devices. For each
mode, there is a geometry-dependent cutoff frequency, f.. RF fields
of frequency f can propagate along the guide only in modes with
fe < f. For an air-filled cylindrical pipe of radius a, the cutoff
frequency for TM modes is given by:

C

mn _ i —— 19
c Xmn 5 (19)
and for TE modes by:
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o= — 20
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where ¢ = 1/ \/M is the free space speed of light, Xmn is the
n-th zero of the Bessel function J,, of the first kind and X;,m is
the n-th zero of J;n, the derivative of the Bessel function .J,,, of
the first kind. The mode with the lowest cutoff frequency, called the
dominant mode, is T'E1; with x/11=1.8412. No RF propagation is
possible in the circular guide for frequencies below this value. The
next three cutoff frequencies correspond to 1T'Mp1 with x01=2.4049,
T Ey1 with X;1=3A0542 and the degenerate T'Fo1 and T'M;; modes
with yo1=x11=3.8318.

In free space Ao, the wavelength of an RF wave of frequency f,
and its associated free space wavenumber [y are governed by the
simple expression:

= — 21)
Bo
In waveguides, the situation is more complex and, for a given
frequency f, each propagating mode - with f. < f - has its own
guide wavelength \,,,,, and associated guide wavenumbers along the
X (Bmn) and p (B,"™) dimensions:

27 )\0
Amn = ,an = — 2 (22)
&
f
with
(/an> ( 0)2 - (/Bnm,)z (23)

The shape of the electromagnetic fields is usually described by
the so-called modal fields, which are general forms of the particular
solutions of the wave equation for each mode. The components of
the electric modal fields for TM modes are:

< T e i) s
e = anflf T (B p)(Asinme + Beosme)  (25)
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ex =0 (26)

and the components of the modal fields for TE modes are:
P = (B ) (Asinmo + Beosm)  (27)
oo _ —JBsTm Acos Bsi 28
ey = (an) m (8" p)(Acosme — Bsinme) (28)
ex" = Jm(By " p)(Acosmd — Bsinmg) (29)

The total modal electric field is then:

Emn = ()" p+ ef "+ e ) (30)

Similar equations can be obtained for the magnetic field compo-
nents, hy'", hg'™ and h7'".

There are two arbitrary amplitude constants, A and B, in the above
expressions. These constants control the amplitude of the independent
sinng and cosn¢ terms. This is due to the azimuthal symmetry
of the cylindrical waveguide, and in fact, one can consider the two
extreme cases (A=1, B=0 and viceversa) as two linearly independent
degenerate modes orthogonal to one another (with the same cutoff
frequency, wavelength, etc.). In a real situation, the amplitude of
each mode present in the guide will depend on the direction of the
excitation field. An equivalent viewpoint is to consider A and B to be
parameters for controlling the azimuthal rotation of the corresponding
modal field.

The time-average power flow associated with each modal field can
be calculated as a surface integral over the guide cross-section, So:

P = / Real(Emn X i) & ds @31)

So
where the superscript * represents complex conjugation.
Losses arising from the finite conductivity of the pipe wall are

included through the attenuation term v, in the guide propagation
constant of each mode Ym» = @mn + JBmn. For TE modes,

Amn Rs mn \ 2 m2
mn — < — %5 32
¢ an (f) +x,3m—m2} .
and for TM modes:
QAmn = >\mn RS (33)
amo

where Rs = y/wp/20 is the surface impedance of the metallic con-
ductor and 1o = y/po/€o is the free space characteristic impedance.

B. Antenna coupling to modal fields

An RF source (usually an antenna) at a given frequency f inside
a pipe generates a complex RF field that is a superposition of many
different modes with different amplitudes. At short distances from
the antenna (a single free space wavelength is enough), only the
propagating modes - those with fc < f - will be present.

To calculate the power coupled to each mode from the excitation
source, we follow a standard microwave procedure as described in
Chapter 4 of [27]. The electric field of a forward traveling wave
in the pipe can be expressed as a linear combination of the modes
supported by the guide:

E = E Al Emne YT

mn

(34)

with the summation extending only to the TE and TM propagat-
ing modes allowed for the operating frequency and pipe radius.
There, A, is the complex rms amplitude at z = 0 of the



corresponding mn mode electric field. The propagation term is
e~ Imn® — o=IBmn® o=Amn® \Where BmnT = 27x/Amn represents
the accumulated phase delay and e~ “™"¥ is the attenuation suffered
by the modal electric field after traveling a distance x along the guide.

In this work, we have used electrically short (that is, with length
[ < Xo/10), thin linear antennas for RF excitation and detection,
always contained in the pipe cross-section plane. We set = 0 in
the transmitting antenna (tx) position. The current flowing in these
antennas can be approximated well as a triangular distribution with a
maximum I, at the antenna feeding point and vanishing at the antenna
ends. These antennas radiate linearly polarized fields; see [30] for
further details. Their radiation resistance is R, = 207>(1/\o)? and
the total radiated power is:

Praa = IOZRT (35)

An inversion procedure allows for the determination of the modal
amplitudes excited by the antenna:

1 — / A A
2P, /emn(r Y (r')dr
ant

Here, the variable 7’ represents the position in the transmitting
antenna and the line integral is calculated along its length. To
maximize (minimize) the coupling to a given mode from the trans-
mitting antenna, the antenna position in the pipe cross-section has
to be chosen to be at a place where the modal field intensity is
maximum (minimum, ideally null) and its orientation has to be ideally
parallel (orthogonal) to the modal field direction there. Moreover, the
modal field symmetry can be used to minimize coupling choosing a
place and orientation where the aforementioned integral goes to zero
because the contribution of one half cancels out the contribution of
the other half. .

On the other hand, from reciprocity, when an electric field E
impinges on an electrically short receiving (rx) antenna it produces
an open-circuit voltage:

+
Apn = —

(36)

Ve = _Ii / E()I(")dr (37)
0
ant

Thus, recalling that E is a linear combination of the propagating
modes, as shown in Eq. (34), the same geometrical considerations as
above are valid to minimize (maximize) the coupling of a given €mn
modal field component present on F to the receiving antenna.

The power that the antenna delivers to a matched load is:

VZ
4R,

The actual power delivered is usually lower due to impedance
mismatch and ohmic losses in the antenna and wiring.

The procedure to estimate the power received in an antenna at
position rx from a transmitting antenna at position tx - remembering
that z = O there - is as follows, assuming that both antennas are
electrically short. Knowing the radiated power of the transmitting
antenna, Io is calculated from Eq. (38). Then, the modal amplitudes
can be obtained using Eq. (36) and, from these, the electric field on
the receiving antenna position can be calculated using Eq. (34). Then,
Eqgs. (37) and (38) give the received power.

Pr

(33)

APPENDIX B
FADINGS IN NON-IDEAL PIPES

The previous analysis applies to ideal cylindrical waveguides,
where ideal means that the waveguide is straight, its length is
assumed infinite, its internal diameter is constant, the inner surface
is smooth without cracks and there are not obstacles or obstructions
inside. This is not the case in real world waveguides specifically
designed for communications, nor in metallic pipes built for different
purposes, where defects arising from non-idealities will exist. When
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(a) Received RSSI. The dashed line represents the theoretical fadings
in an ideal pipe, and the blue lines the recorded received power.

(b) Corrugated aluminum pipe (c) Motorized moving receiver

(d) Hokuyo LiDAR for ground-truth (e) Transmitting antenna (f=2650
MH?z)

Fig. 26.  Corrugated pipe experimental setup. The transmitter was placed
in the right extreme of the pipe, and a small robot was displaced along the
straight part. Both obstacles (robot and LiDAR) are obstructing a substantial
part of the pipe cross section.

a propagating mode reaches a defect, a given fraction of the power
that it carries will be scattered and coupled to each other possible
propagating mode, traveling forward and also reflected backwards.
Moreover, it will locally excite non-propagating modes noticeable
only in close proximity to the defect. The consequence of this
scattering is twofold: an increase of the attenuation constant with
respect to the ideal waveguide, and the interference of the forward and
backwards propagating modes, that adds a standing wave contribution
to the RF available power distribution in the guide. In this work we
have proposed to use the periodic spatial fading structure arising
from multimodal forward propagation for in-pipe 1D localization of
a robot traveling along a pipe. Thus we must check if this localization
method is still valid taking into account the unwanted effects coming
from non-idealities present in real world pipes.

The frequency selected for our practical application limits the
propagating modes present inside the pipe to the first three, at most,
namely the TE11, TMo1 and TE2; modes. In fact, we placed the
transmitting antenna in a way that minimized (ideally, nulled) the
TMo, amplitude. Thus, we must check how defects scatter these three
modes.

o Pipe length: first of all, the pipe length is always finite.
The power reflection coefficient in a pipe flanged open ends
can be estimated numerically following [31]. For symmetry
considerations, a given 7X,,, mode can couple only to 7X,,p
modes, and thus no cross-modal coupling is induced by the pipe



ends. For the experimental scenario described in this paper the
power reflection coefficients for the three propagating modes are
calculated as 1.6z107°, 2.52107% and 6.2210~ 2. The standing
wave component added is negligible for the first two and only
creates a weak ripple for the third one that can be easily filtered
out during data collection.

Presence of obstacles: the presence of obstacles without cylin-
drical symmetry in the general case will produce both reflections
and intermodal coupling. In the experimental work presented
in [20], given the small size of the pipe, the LiDAR used for
localization at the pipe end represents an obstacle occupying
around a quarter of the cross section, see Fig.26 . The emitter
setup and the receiver robotic chariot are also of non-negligible
size when compared to the pipe diameter. Nevertheless, the
measured fadings fit quite well the theory, both in spatial period
and shape. In [32] a method to compute the effect of a narrowing
of the pipe is given. In Table 1 therein, the scattering power
coefficients from the dominant 7E;; mode to all the possible
forward and backwards propagating modes are shown for a
waveguide that supports the first three modes with an eccentric
narrowing to 55% of its section for a length of half its radius.
The biggest coefficient is 0.12, all the others are below 0.052
and thus the scattering in the collapsed region will add only a
modest standing wave component to the RF field.

Presence of curved sections: another concern comes from the
presence of curved sections along the pipe. As explained in
[33], the propagation constant of the modes is barely modified
if the curvature radius of the bent sector is much bigger than
the pipe radius, as is our case, and coupling among modes
is relevant only from TMo, to TEo4, not possible within our
working frequency.

Cracks: a crack in the metallic pipe will distort locally the
currents that support wave propagation and thus will also give
rise to scattering. This is indeed the basis for on-site RF use
as non-destructive crack location system in pipes, see for ex-
ample [34]. The experimental results therein show that a power
reflection coefficient below 0.005 appears for an intentionally
semicircumferential cut in a pipe. This small reflection is still
useful for crack location with the adequate high sensitivity
instrumentation, but has negligible effect on the fading pattern
of our interest.

Non-smooth surfaces: we have also performed several experi-
ments in corrugated aluminium flexible pipes, with non-smooth
inner surfaces, and there also the fading period and shape fitted
quite well with the model (see Fig. 26).

Darkness, water vapor, dust and smoke: RF propagation is not
affected by lightning conditions. Dust, water vapor and smoke
are small particle aerosols that will not affect RF propagation
at frequencies below 10-100 GHz, which is an advantage over
LiDARs and cameras [35].

Remaining liquid in the pipe: Scattered water or oil puddles
will not affect the RF propagation inside the pipe. If however
the pipe is not fully empty and a shallow liquid depth is
present along all its length, this geometry change will break the
circumferential symmetry and affect the modal wavelengths and
thus the fading period. We have performed FEM simulations in
a 4 m diameter pipe with a remaining depth of 5 and 15 cm of
stream water. The results show that the fading period of the TE11
and TE»; horizontally polarized modes interference changes
by 0.3 and 1.2 percent respectively, within the experimental
uncertainty. The effect of similar depths of crude oil is even
lower.

All these results support that the proposed localization scheme
would be viable not only in ideal waveguides but also in a wide
range of real world pipes with slight to moderate defects and cracks,
suffering from local deformations and/or obstacles present.

At last, in Table III we have summarized some results of environ-
ments in which we have analyzed these fadings, such as the penstock
pipe of the Allatoona Dam in Atlanta (Georgia, USA), and common
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case studies in the literature.

TABLE III
EXPERIMENTS WITH DIFFERENT PIPES
Castillon Allatoona
Small Dam
. Gasoduct Dam
pipes . penstock
pipe .
pipe
Diameter 0.15 0.40 4 6
[m]
fe2 [MHz] 1500 574 57 38
fes [MHz] 1900 729 73 48
fea [MHz] 2400 914 91 60
Bimodal
fading 0.38-0.76 | 1.01-2.02 | 10.1-20.2 | 15.2-30.4
period [m]
Trimodal
fading 0.23-0.40 | 0.61-1.08 | 6.15-10.8 | 9.23-16.2
period [m]

It can be seen that ranging from 0.15 to 6 m in diameter, the
corresponding working frequency varies from around 40 MHz to 2.4
GHz, in order to obtain fadings with a mean period from 0.23 to 30.4
m (values highlighted in bold). We have selected frequencies of about
1% above/below the cutoff frequency of the second/third modes for
bimodal propagation, and the equivalent with the third/fourth modes
for trimodal propagation, in order to explore the whole range.

Commercial devices to work at the aforementioned frequencies are
available at relatively low cost.
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HIGHLIGHTS

e By choosing an appropriate frequency, strictly periodic RF spatial fadings appear in
pipes.

e RF fadings period scale with the pipe’s diameter and operating frequency.

e Periodic RF spatial fadings can be used for both discrete and continuous localization
estimation in pipes.

e REF localization approach works despite humidity, darkness, low lightning, obstacles,
deformations of noticeable size compared to the pipes diameter.

e Localization error decreases in continuous approach compared to a discrete approach.
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