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Alternative Approach for Robot Localizati
Inside Pipes using RF Spatial Fadings

Carlos Rizzo*1, Teresa Seco*2, Jesús Espelosı́n2, Francisco Lera3 and José Luis Villarroel3

Accurate robot localization represents a challenge
due to the particular conditions that characterize

environment. Outdoor techniques (GPS in particular)
k at all inside metal pipes, while traditional indoor
methods based on camera or laser sensors do not

ell mainly due to a lack of external illumination
tive features along pipes. Moreover, humidity and
faces make wheel odometry unreliable. In this paper,

the localization of a robot along a pipe with an
Radio Frequency (RF) approach. We first analyze
opagation in metallic pipes and propose a series
hat allow us to obtain periodic RF spatial fadings
standing wave periodic pattern), together with the
f the antenna position and orientation over these
bsequently, we propose a discrete RF odometry-like
means of counting the fadings while traversing them.
rsal fading analysis (number of antennas and cross-
tion) makes it possible to increase the resolution of
. Lastly, the model of the signal is used in a continuous
erving as an RF map. The proposed localization
tperform our previous contributions in terms of
accuracy, reliability and robustness. Experimental
onstrate the effectiveness of the RF-based strategy
need for a previously known map of the scenario or
tial modification of the existing infrastructure.

-robotics; pipes; tunnels; propagation; RF fadings;
; navigation; inspection; maintenance;

I. INTRODUCTION

ironments such as sewers, gas pipelines or dam
are exposed to structural damage over time. In-
sks are critical in order to detect and identify
ty areas, cracks or leakages that could have serious
es for the safety of the infrastructure.
t years, robots have emerged as one of the best
r performing inspection tasks due to the harsh
of this type of environment: darkness, humidity and
cal limitations [1]. In this context, accurate robot

is essential not only for identifying the position
age, but also for autonomous navigation. While
robots’ position in the cross-section of pipes could
using traditional techniques, localization along the

hors contributed equally. 1 Eurecat, Centre Tecnològic de
rcelona, Spain. 2 Instituto Tecnológico de Aragón, (ITAIN-
goza, Spain. 3 Robotics, Perception and Real-Time Group
ragón Institute for Engineering Research (I3A), University of
ain. This work has been supported by the Spanish Ministry
nnovation and Universities Project Robot navigation and de-
hallenging environments - Robochallenge (ref.DPI2016-76676-
-UE) and by Aragon Government project DGA T45-17R.

would like to thank Mr. Felix Andreu from Confederación

Fig. 1. Santa Ana dam drainpipe. Symmetric and smooth
without distinguishable features.

longitudinal axis represents a challenge due to th
pipes’ internal surfaces tend to be uniform (possib
detectable features) and they are typically much lo
they are wide. Moreover, the aforementioned specia
the environment makes the use of some common lo
sensors unfeasible. This is the case of GPS sensor, fo
that cannot be used in confined scenarios.

In [2] the authors present a review of localizatio
for small-diameter pipelines using PIG (Pipeline
Gauge) technology. The localization methods are ma
on the fusion of the information provided by Inerti
tion System (INS) and odometers. The accumulate
corrected in two ways: using Above Ground Marker
which detect the passage of the PIG and provides it
coordinates, and by means of detecting the pipelin
with information from the inertial sensor ( [3]–[5])
although PIG-based solutions are adequate for a w
of small-diameter pipes, the drive systems of thes
either by pressure difference between ends or by th
tether cable, makes them unfeasible for large-scale
addition, they are not self-contained and require i
of infrastructure (e.g. AGMs). At last, communica
inside the pipe is not always feasible.

In other studies, visual odometry-based method
posed to solve the localization inside pipes. The aut
use monocular cameras, stereo cameras [7] or a
fisheye camera [8] with visual odometry algorithm
gation in small cylindrical pipes. In [9], the authors
localization system for sewers combining a known t
map with a manhole detection system, using RGB-
and machine learning techniques. However, these
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urface features or irregularities, and tend to perform
in those cases of pipes that present symmetry and
tures (see Fig.1 as an example).
g LiDAR-based systems, the unsuitability of using
lve the localization in these environments is high-
10] and [11], as the uncertainty in the longitudinal
in the absence of structural features (e.g. a laser
detects two parallel lines inside a long smooth

se-cases, the problems of vision and laser-based
are outlined, for example, in [12] and in [13] for

ion of penstocks using Unmanned Aerial Vehicles
nstocks are large cylindrical pipes with two long
l straight sections joint with an elbow. Having
e use of vision in these environments, the authors
use of an Inertial Measurement Unit (IMU) and

finder sensors for localization. Nevertheless, the
detectable features makes longitudinal localization
if the junction between sections (acting as a wall

of the tunnel) is not in the range of the laser.
ethods rely on wheel odometers for localization,
the high humidity and even the presence of fluids
pipes tend to be slippery, making these methods
and unreliable for position estimation. In [14], the

the robot along the pipe is obtained fusing the
provided by an IMU and a cable encoder which

he length from the starting point to the tethered
t of the time, these methods are unfeasible because
th of the pipe or the type of robotic platform (e.g.

the aforementioned infeasibility of using sensors
cameras or lasers to determine the longitudinal
of a robot inside a pipe, other technologies must

.
-developed indoor positioning technologies rely on
Radio Frequency (RF) signal ( [15], [16]). Ultra-
(UWB), for example, is one of the most promising
s for indoor localization, providing more accurate
and better performance than other RF technologies.
s, these RF-based indoor localization methods re-
collection of RF fingerprints of the scene to be
fterwards with the online data (RF fingerprinting
at least three reference nodes placed with high
the infrastructure in the case of using trilateration

to obtain the position [17]. Taking into account
tion tasks are usually carried out during limited
e periods (e.g., a water pipe that needs to be
he need for a commissioning step in order to place
create an RF map makes these methods impractical.
botic sensor network is proposed for localization in

ound plastic water pipeline. The simulated system
a mobile sensor node carried by the robot and

lay nodes placed aboveground (in a line parallel to
ipeline), covering limited sections of the pipe. The
obtained by fusing the RF signal measurements

lay nodes and the velocity provided by an onboard
an Extended Kalman Filter (EKF) algorithm. This
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Fig. 2. Simulation of bimodal propagation in a 4-m diamet
interaction between two modes causes periodic spatial fadings.
and minima of the fadings will be used as triggers in a discrete
approach, while the signal model will be used as an RF map in
approach.

Faraday cage effect hinders communication between
and outside.

Another approach, using sound instead, is pr
[19]. The idea is to build a map of the vibrati
induced by a hydrophone in a metal pipe and use
and a Kalman Filter (KF) or Particle Filter (PF) fo
purposes. Nevertheless, this approach has not b
beyond a small lab experiment.

In a previous work [20], we first presented the re
extensive analysis of RF propagation in a metallic
different transmitter-receiver setups, demonstrating
possible to obtain periodic fadings. It is important to
that we refer to large-scale fadings in a spatial dom
is a standing wave pattern that can be obtained
and tunnels under certain configurations (that we
Section II), in contrast to the well-known small-sca
understood as temporal variations in a channel. As a
Fig. 2 shows these RF spatial fadings as a function o
after displacing a receiver 70 m from the transmitt
pipe.

In that paper we furthermore explored the use th
fadings to design, first, a discrete RF odometry-li
to localize a robot inside a pipe. The periodicity
signal together with an adapted version of the w
Monte Carlo Localization (MCL) system is exploit
to extend the methodology presented in [20] from
localization to a continuous solution, using the pe
ings as an RF map. One of the main advantage
approaches over other RF-based previously cited m
that there is no need to previously adapt the infrastr
only requirements being the placement of a contin
transmitter at the starting point and a receiver on t
platform in order to generate and detect the perio
waveform respectively. Metallic pipes have a low a
rate, providing us with a maximum possible cover
of several kilometers if the right RF frequency is
we will show later. Moreover, there is no need for a
known map of the environment.

The approach proposed in this paper builds on
mentioned work. The main contributions of the pre
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a thorough analysis of the received RF power
es is carried out in the transverse (cross-section)
sion, extending the longitudinal studies performed
].
hase difference (spatial phase shift) obtained with
le receivers resultant from this analysis is used to
ve the resolution of the discrete localization system
ted in [20], as well as the accuracy and reliability
continuous localization approach described in [21].
zation experiments performed in [20] are extended
a laboratory-scale pipe to a real drainpipe (4-m
ter and over 300-m long) in a dam in Castillonroy,

, an EKF and a particle filter for the continuous
n are compared and some key considerations are
d for the use of the RF approach with different

platforms.
er is structured as follows. In the next Section, a
f RF propagation in pipes together with experimen-
re presented, while Section III details the effect of
position in the pipe cross-section over the fadings,
improve the localization. Section IV describes
ental setup. Section V formulates the discrete

ization method together with the results obtained
l pipe, followed by the continuous localization
d its experimental validation using one (Section
en two signals (Section VII). In Section VIII, the
nsiderations for real implementation are discussed
rized. Finally, the conclusions are set out in Section

MARY OF RF PROPAGATION IN CYLINDRICAL
IDES AND THE APPEARANCE OF PERIODIC RF

FADINGS

work presents a localization method based on
dings (by means of traversing them or using them
given a pipe it is of special interest to determine
cy of operation to obtain these fadings, their period,
plitude. This section presents a generic form of the
for practical purposes, while the formal derivation

essions is addressed in Appendix A.
space an antenna produces spherical waves that
-isotropic spatial distribution, corresponding to the
ttern of the antenna. The radiated power is spread

ace that grows as r2, and thus the power density
/r2 in the best case.
tenna is placed inside an air filled pipe or tunnel-
the spherical wavefronts will be multiply scattered

rounding walls. The energy is condensed in this
ving the free space decay, and the resultant wave
with a standing wave pattern which, depending on
cy, shows spatial fadings such as those seen in Fig.

raction between these ‘bouncing waves’ can be
ng ray tracing theory or modal theory. The ray
ory models these waves as different rays, which
fferent paths causing constructive and destructive

(a) TE11 - mode 1 (b) TM01 - mode 2 (c) TE21

Fig. 3. Field structure (lines) for the first three propagating m
metallic cylindrical waveguide

In this work we have adopted the modal theory
as the geometric interpretation of the modes (anal
in the ray tracing theory) allowed for the explanat
transversal structure of the fadings.

Related to the propagation modes, it is importan
light that:

• The modes classified in TE (Transversal Elect
with no electric field component in longitudinal
or TM (Transversal Magnetic modes, with no
field component in longitudinal direction), and
indexed with two integer subscripts (p=0,1,2
1,2,3...), that account for the mode structure
pipe. The first three propagating modes, releva
work, are TE11, TM01 and TE21, which we
call mode 1, mode 2 and mode 3 respectively

• Each mode describes a geometrical arrangem
electromagnetic fields in the guide cross-sectio
3).

• For each mode there is a cutoff frequency (whic
on the pipe diameter), and the mode propag
operating frequency is above it.

• Each mode has its own wavelength in the
(different from the free space one).

• The transmitting and receiving antennas po
orientation are relevant for the modal cou
practical purposes, aligning the antenna with t
field lines enhances the power coupling, while
perpendicular diminishes it.

For each mode there is a cutoff frequency (for
fcn for the nth mode). For an air filled cylindric
radius a:

fc n = χpq
c

2πa

for TM modes, and:

fc n = χ
′
pq

c

2πa

for TE modes. c is the free space speed of light,
qth zero of the Bessel function Jp of the first kin
is the qth zero of J

′
p, the derivative of the Bessel f

of the first kind. The mode with the lowest cutoff
is called the dominant mode and is the TE11 w
1.8412. The next two cutoff frequencies correspond
with χ01=2.4049 and TE21 with χ

′
21 = 3.0542. Th
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cn, the mode’s wavelength is given by:

λ√
1−

(
fcn
f

)2
=

c

f

√
1−

(
fcn
f

)2
=

2π

βn
(3)

s the phase constant and will be used in Eq. (5) to
e fadings amplitude.
he first two modes - which have different wave-
e present (i.e. fc1 < fc2 < f < fc3), the phase
mulated by each one will be different for a given
nce d. The superposition of the electric field of the
take place with different relative phases in different
side the guide, producing constructive interference
modes are in phase and destructive interference

elative phase differs by an odd multiple of π. This
o periodic fading in the RF power available inside
ide. The spatial period of this fading structure D
nce that creates a relative phase of 2π between the
considered:

D =
λ1λ2
|λ1 − λ2|

(4)

ore than two propagating modes are present, every
ir of modes will create a fading structure with its
teristic spatial period, giving rise to an intricate
wer distribution inside the guide. Even in this case,
e shape of the modal fields, careful selection of the
and receiver antenna position and orientation in the
section can lead to a system that, in fact, operates
wo modes were present, minimizing the coupling
anted modes on the transmission and/or reception

we show the results of a serie of field tests to
e these fadings. The propagation experiments were
in a 300-m long and 4-m diameter pipe by placing
er at the beginning of the pipe and displacing a
ng the pipe at constant speed while recording the
we summarize the relevant cases given the number
ing modes. For reference, Table I shows the cutoff
for the first four modes for this pipe, derived from

d (2).

c1. Below cutoff frequency: the expected behavior
signal is a rapid attenuation, as the pipe does

t as a waveguide for these frequencies. See Fig.
experimental results below the first mode’s cutoff
ncy (f = 40 MHz, while fc1 = 43.95 MHz).
f < fc2. Monomodal propagation: usually used to
it signals for communication along a waveguide,
voids interference with higher order modes. No

s are obtained in this setup, as seen in Fig. 4.
er, if one of the extremes of the pipe is closed (not

se in this work), the propagating wave will reflect
e closed end and travel in the opposite direction

incident wave, producing interference and hence
ding or stationary wave pattern. The period of the

20 40 60 80 100 120
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R
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Fig. 4. Different propagation scenarios in Castillonroy, from [2
cutoff frequency (f = 40 MHz) the signal completely attenuates
one wavelength. Therefore, this setup is not useful either for co
or for localization purposes. On the other hand, the monomoda
(f = 51 MHz) shows a signal with little attenuation along the pi
useful for communication purposes, this setup does not work fo
either. Bimodal (f = 71 MHz) and trimodal (f = 75 MHz)
produces RF fadings, being the period of the fadings shorter in
the same pipe.

pipe (Eq. 3). See Chapter 5.2.3.2 of [22] for mo
• fc2 < f < fc3. Bimodal propagation: interf

tween the first two modes (TE11 and TM01),
periodic fadings.

• fc3 < f < fc4. Trimodal propagation: in
between the first three modes. The reason to e
propagation is because the interference betwee
and third modes causes shorter period fadings
between the first and second or that between
and third modes. As the goal is to localize a r
the fadings (e.g. counting the fadings while
them in a discrete approach), the shorter the p
higher the resolution. Unfortunately, selecting a
to excite the first and third modes also involve
the second one. The solution for eliminating th
of the latter was based on taking advanta
geometry of the modes to choose an emitt
configuration with enhanced sensitivity for th
third modes, while diminishing the second m
Fig. 3, it can be seen that the second mode
symmetry. This means that, for instance, cen
transmitting antenna perpendicular to the ve
and close to the floor will couple the least po
second mode (i.e. the antenna and the electric
are perpendicular), while aligning to the field l
first and third mode.

• fc4 < f . Multimodal propagation. Complex
structure not relevant for this work. See [20].

Finally, for two modes, the power wave amplitude
as:
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TABLE I
FREQUENCIES FOR THE FIRST PROPAGATING MODES IN

CASTILLONROY

mode 1 mode 2 mode 3 mode 4
) 43.95 57.41 72.91 91.47

MODE 1

MODE 2

I

III

II

IV

s of interest to study constructive (blue arrows) and destructive
nterference between modes 1 and 2.

αn + jβn is called the propagation constant. Its
n , is the attenuation constant (Np/m) - usually
or the distances covered in our testbed, as metallic
very low attenuation. Its imaginary part, βn, is

constant (rad/m) and can be derived from Eq. 3.
complex-valued power wave rms amplitude of the
The power wave amplitudes determine the signal

ng maxima and minima. The values of Kn can be
ollowing the procedure outlined in Appendix A,
vely fitted to (or further refined with) experimental
last step will also take care of unavoidable devi-

ideality associated with, for example, obstacles
pipe (e.g. rocks or other robots), and junctions
fferent pipe sections.
tical purposes, we will adopt the Received Signal
dicator (RSSI) in the receiving antenna as the RF
el h(x), calculated as:

h(x) = 20 log10 |P (x)| (6)

izing, the pipe diameter determines the different

CENTER WALL

 FLOOR

PIPE FRONT VIEW

rx1

 tx1 tx2
rx2

rx3 rx4rx5 rx6

front view. Transmitter-receiver positions for different cross-

modes’ cutoff frequencies (as χpq and χ
′
pq are

Selecting an operating frequency above certain mo
frequency allows to propagate that mode, togethe
lower order modes. If there are two modes propa
interacting, periodic fadings are obtained. The per
fadings is a function of the operating frequency
pipe diameter (as it determines the cutoff frequen
encourage the reader to see [20] for results on more
modes propagating, influence on the antenna po
stationarity of the signal and repeatability of th
At last, we extend this analysis for non-ideal p
experimental results) in Appendix B, addressing
of the pipe length, presence of obstacles, curved se
so on; showing that the localization algorithms d
Sections V - VII would be viable not only in ideal w
but also in a wide range of real world pipes with
moderate defects and cracks, suffering from local de
and/or obstacles present.

III. TRANSVERSAL FADINGS

Having studied the fadings along the longitudin
sion, in particular, the cases of bimodal and trim
agation, we move on to analyze the transversal s
the fadings. That is, we have studied the effects of
section position on the received power and relativ
the fadings (i.e. are the fadings the same if I naviga
antenna in the left or right side of the pipe?). By
the electric field distribution of the first three m
3), together with the practical placement of two re
a robot, two cases emerge as relevant for analysis
dividing the pipe with respect to the center horizont
vs lower half) and vertically (right vs left half).

Along this section, the approach is to analyze the
or disagreement between the zones of interest (lef
up vs down) regarding to if the electric-field lin
two modes interacting add positively (both lines
same direction, represented with blue arrows in F
the contrary case (represented with red arrows)
see that an agreement translates into the same spa
(both signals with matching maxima and minima
disagreement translates into a phase delay of 180
maximum in one signal matching a minimum in th

As an example, consider the case of bimodal p
(modes 1 and 2, Fig. 5). After virtually dividing
horizontally and vertically (quadrants I to IV), lets
receiver vertically oriented in quadrant I. In this po
electric-field lines of modes 1 and 2 add positiv
electric-field lines directions for both modes in
quadrant, represented with blue arrows). If a second
placed vertically oriented in quadrant II, the case is
and hence, the received signal of both receivers w
quite well (same phase).

Consider that we move both receivers to the
(quadrants III and IV). The electric-field lines now
tively. Despite appearing an opposite case to the p
the context of the relative phase between two signa
cases match (both add positively or both add negat
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s analysis. relative phase will be the same in both of them.
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ived signal power in the left and right half ((a) and (c)) vs upper and lower half((b) and (d)), together with the electric field dis
agation ((a) and (b)) and trimodal propagation ((c) and (d)). The blue arrows represent constructive interference between the elec
s interacting, while the red arrows the opposite.

TABLE II
TRANSVERSAL FADING ANALYSIS CASES

CASE TRANSMITTER RECEIVERS MODES
COUPLING

RE
P

odal left-right (Fig. 7(a)) tx1 vertical LEFT rx3 vertical OPPOSITE
RIGTH rx4 vertical OPPOSITE

odal upper-lower (Fig. 7(b)) tx1 vertical UPPER rx1 vertical CONSTRUCTIVE
LOWER rx2 vertical OPPOSITE

modal left-right (Fig. 7(c)) tx2 horizontal LEFT rx5 horizontal CONSTRUCTIVE
RIGTH rx6 horizontal CONSTRUCTIVE

odal upper-lower (Fig. 7(d)) tx2 horizontal UPPER rx1 horizontal OPPOSITE
LOWER rx2 horizontal CONSTRUCTIVE

sider placing one receiver vertically oriented in
nd another one in quadrant IV. Now, the interacting
d 2 add positively in the upper half while negatively
r half, which would translate into a signal phase
0 degrees.
together with Fig.7 show the setup and results of
ents to corroborate this, for the case of bimodal

al propagation, using two receivers in appropriate
refer to Fig. 6). The selected frequencies and
ups were chosen to produce bimodal and trimodal
. Also, recall that the transmitter position and
allows to enhance/diminish the power coupled
es of interest. In a similar manner, the receiver
ere oriented to align with the field lines of the

nterest.
zing the results we can see that:

pected, the fading period in the case of trimodal
ation (cases 3 and 4 in Table II, Figs. 7(c) and 7(d))

rter compared to the case of bimodal propagation
1 and 2, Figs. 7(a) and 7(b)).
dings are in phase in the left vs right halves (cases
3, Figs. 7(a) and 7(c)), while there is a phase delay

7(b) and 7(d)). This matches our analysis cons
explored receivers’ positions.

• Also, notice that the electric-field lines of the
are 90 degrees rotated comparing cases 3 an
7(c) and 7(d)) with cases 1 and 2 (Figs. 7(a)
as explained in the previous section.

The phase difference will be exploited in the ne
to improve the robustness and resolution of the fad
localization algorithms.

A. Cylindrical symmetry considerations

Due to the azimuthal symmetry of the pipe, if the
setup is rotated, the interpretation set out above is
well. For instance, if the transmitter is placed hori
the floor operating at a frequency that results in trim
agation, there is a phase difference of 180 degree
the lower and upper half, and the same phase be
left and right half. However, if due to practical rea
installing the receivers on the robot we desire the p
between the left and right half (instead of upper
half), notice that a 90 degree rotation of the pipe
transmitter placed vertically close to the wall) will a
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degrees in upper vs lower half (cases 2 and 4, Figs. Fig. 8 illustrates the situation.
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ts of rotating the antenna setup on the cross-sectional structure
s. The phase difference between phase 1 and phase 2 is 180

(a) Straight and tilted parts of the pipe

ented Pioneer P3AT robot inside the pipe carrying two
antennas.

e-scale pipe experimental setup

EST SCENARIO AND EXPERIMENTAL SETUP

lization purposes, the test scenario was a 300-m
n steel pipe with a 4-m internal diameter used as

for the Santa Ana dam in Castillonroy, Spain. It
two inclined parts (at the beginning and the end,
d 30 degrees respectively), and a 120-m straight
. 9(a)).
ze the propagation behavior, a B&K Precision
Signal Generator was used as the transmitter (tx).
itter antenna was longitudinally fixed at 10 m from
ng of the straight section of the pipe, and its cross-
ition and orientation will be specified for each

.
er P3AT differential drive robot was used as the
eiver/service robot. The platform was equipped

as RF receivers (in order to exploit the spatial dive
odometers, an Xsens MTI 100 IMU, and a SICK
laser range sensor (Fig. 9(b)). As the pipe has no
features, a series of landmarks were added at the
of-view level for ground truth purposes. All the sen
connected to a computer running Robot Operatin
(ROS) on Ubuntu.

V. DISCRETE ROBOT LOCALIZATION USING RF
FADINGS

The previously presented study, supported by e
tal validations, allowed to propose an RF-based lo
method alternative to those existing in the literature
studied the setups (more specifically the operating
and tx-rx positions) to obtain periodic spatial fadi
a metallic pipe, where the period is determined b
transmitter’s operating frequency and the radius o
As a first approach we have developed a discrete lo
method, where the idea is to count the (known-perio
while traversing them. Furthermore, we have then
this method in a continuous approach using the fadin
In both cases, we have first used only one signal
receiver), and subsequently we have exploited the
versity which allowed to improve the resolution and
in both approaches, by means of using two receiv
In the following sections we derive the formulation
with the experimental results obtained in a real sce

A. Algorithm formulation

While displacing the RF receiver from the trans
basic strategy of the algorithm is to discretely dete
distance traveled (one-dimensional localization in
tudinal axis), by counting the fadings maxima an
encountered (e.g., detecting the changes in the slope
a type of RF-odometry. As two changes in the slope
within one fading (minimum and maximum), the lo
resolution is equal to half of the (easily calculated)
the fading. In this case, the shorter the period, the
localization resolution. Finally, the direction of mot
to increase or decrease the distance traveled after
the changes in the slope. Fig. 10 illustrates the alg
means of simulating bimodal propagation in a gener
pipe (although it can be extrapolated to any period

Moreover, if two receivers are used, the algorith
improved in terms of robustness and resolution. If
are in phase (e.g., Fig. 7(c)), redundancy can b
improve the robustness. If the signals are phase-del
7(d)), two more triggers can be perceived within
where the two signals cross each other. These
triggers allow us to improve the localization resolu
a half to approximately a quarter of the period of
(see Fig. 11).

B. Experimental results

In order to check the validity of the proposed al
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F Explorer model 3G portable spectrum analyzers a real situation, the Pioneer P3AT wheeled robot was placed
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PIPE CHARACTERIZATION
iameter    cutoff frequencies

TX-RX  SETUP
Operating frequency:

modal or trimodal propagation
Antenna position: 

nce / disregard modes detection

RF ODOMETRY CYCLE

tect the direction of movement

etect maximum or minimum

Add or substract D / 2

(a) Diagram
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time (secs)
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+ D/2

+ D/2
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T/2                    T

change in slope
triggers

(b) RF odometry

rete Localization: (a) Algorithm and (b) Example using a generic
l. T denotes the time period of the fadings, and the dashed
anges in the slope used as triggers, adding D/2 to the current
time detected (D being the spatial period of a fading).

Santa Ana dam drainpipe, simulating a service
e robot traveled in a straight line for about 70 m
peed of 0.5 m/s, and hence, the heading variations
le.
shorter period fadings, trimodal propagation was

e frequency selected was f=78.2 MHz, producing
h a period of 8.26 m and a discrete localization
of 4.13 m. The transmitter antenna was placed

at 1 m from the floor (position tx2 in Fig. 6), and
eivers at 1.5 m and 2.5 m in height (0.5 m above
the center of the pipe). With this configuration,
hase difference of about 180 degrees is expected
receivers. The above described experimental setup

r both the discrete and the continuous localization.
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Fig. 11. Effects of exploiting spatial diversity. By means o
‘crossing point’ triggers, the discrete resolution is improved to D
the spatial period of a fading)

four methods. The black line shows results from th
tion method used in [23], which combines inform
the odometers and the laser sensor lain over the
built and corrected map of the pipe, with the added
landmarks. We consider this the ground truth. The
shows a purely odometric position estimation, evid
cumulative errors and drift. The blue line shows th
position estimation from the fadings localization
(with a resolution of half of the period of the fadin
just one of the RF receivers. The fadings maxima a
of the signal shown in Fig. 12(b) were used as trigg
Fig. 12(c) shows the measured received power a
the two receivers. It corroborates the expected rela
difference of 180 degrees (a maximum in one s
matches a minimum in the other), allowing the use o
triggers and improving the localization resolution. R
shown in red in Fig. 12(a).

C. Practical Considerations

In an ideal case, where we have identical rec
antennas, and under symmetry conditions, the pha
RF signal levels must be identical (but, of course
In this situation, the two signals cross each other a
distance from the fading maximum or minimum, b
implementation effects, including different behavi
antennas and distortions caused by the presence of
produce differences in the two signals (one show
fading than the other or being more attenuated). T
that, unlike in the ideal case, the signals do not cross
at exactly the same point, and hence, the discrete
is not exactly one quarter of the signal of the fadin
reason, the distance may be underestimated before a
and overestimated after it (or viceversa). This analy
valid, however, for the triggers where the signals
other, not applying at the maxima and minima,
overestimation or underestimation error is reset. Th
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) shows the results for the position estimation using is illustrated in Fig. 13. To solve this the model can be
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(a) Position estimation
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time (secs)

ssing points

ts of having a power offset in the signals received. The ‘crossing
s displace, while the ‘change in slope’ triggers remain the same.

calibrated online, once one fading is traversed and
maximum and minimum are determined.

Furthermore, although not the case with these ex
it is true that miscounting the number of maxima a
that have been traversed (cycle slipping) would cau
significant error in the position estimate. To add
issues, a more complex continuous approach whic
the signal model has been developed, as describ
following section.

VI. CONTINUOUS ROBOT LOCALIZATION USING
SIGNAL FADINGS

The next natural step was to extend the me
presented in the previous section from a discrete loca
a continuous solution, taking advantage of the perio
of the RF signal.

As has been shown in Section II, the fadings
and its period can be calculated without the need fo
experimental measurements inside the pipe (see Eq
Each longitudinal position of the pipe has an assoc
value, meaning that this model serves as a unidimen
(herein the RF Map).

The goal is to obtain continuous robot localiza
the pipe. For this purpose, let the state of the robot
t be calculated using its motion model f :

xt = f(ut, xt−1) + εt, εt ∼ N (0, V )

where ut are the control inputs at time t and εt is
variable that models the uncertainty introduced by
transition based on variance V. Due to the cylindr
of the pipe, the robot travels in a straight line and
heading variations are observed. Therefore and from
the state xt will refer to position x along the pipe.

During the displacement of the robot, the ob
zt at time t are provided by the sensors. The
measurement model h relates the observations to t
the robot xt:

zt = h(xt) + δt, δt ∼ N (0,W )

where δt corresponds to the uncertainty of the me
represented by a random noise based on variance W

In our RF approach, the RF signal model (Eq. (
as the measurement model:

h(xt) = 20 log10 |(K1e
−γ1xt +K2e

−γ2xt)

where we have converted to RSSI in dBm units w
mW−1/2 units.

Following this general formulation, the strategy
in [21] relies on an adapted version of the Mo
Localization (MCL) system [24] using the RF sig
as an RF Map.

As is well known, MCL is a probabilistic met
on particle filters where the posterior distributi
state is represented by a set of weighted particl
solves the localization problem through the follow
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steps: particle filter initialization, prediction, weighting of the
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d resampling. Once the filter is initialized with a
cles, during the prediction step, the state of each
is updated based on its sample motion model:

xmt = f(ut, x
m
t−1) + εt (10)

orresponds to the inputs of the system, linear and
ed (vt, wt).
contribution of [21] takes place during the weight-

imilarly to the typical matching process between
measurements and a previously known grid map,
ements provided by the RF sensor are compared

Map.
ssian probabilistic density function was chosen to
e weight that represents the probability of each

be a good hypothesis of the actual position:

wmt = e
− 1

2


zt − ẑ

m
t

σ




2

(11)

) is the variance of the likelihood function applied
ation process, zt is the actual observation and ẑmt is
d observation for the m-th particle calculated using
nal model as the measurement model similarly to

ẑmt = h(xmt ) (12)

the results presented herein, we can conclude that
ed continuous localization method provides good
e and improves on the position resolution presented
reover, it overcomes the lack of distinctive features

ing point for the main contributions of the present
ms of continuous localization inside pipes comes
nalysis.

RF sensor measurement model variance

he validation of the previously described method,
inties involved in the algorithm were modeled
ant variance values provided by data sheets. After
e experimental results, it is clearly seen how the
of the system increases in areas close to the highest
he RF signal where the signal is flattened. The
number of possible positions corresponding to

values, the wider the particle distribution and the
ertainty. On the contrary, the uncertainty decreases
se to the valleys of the signal (fadings), where the
tribution becomes significantly narrower. Fig. 14
he aforementioned characteristics of the RF signal
the actual RF measurements. To take into account
or, we propose an improvement involving use of a
nction for the variance related to the measurement
e RF signal (W) instead of a constant value.

l is to obtain a transfer function which provides
lues with the same shape as the RF signal model.
y, the applied variance will increase or decrease
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Fig. 14. RF signal model vs RF sensor measurements (dotted
is more flattened close to the maxima, resulting in larger
By contrast, the sharp form of the signal in the valleys resul
uncertainties.
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Fig. 15. RF signal model (blue) and sensor measurement mo
(red) for Wup = 52, Wlow = 32 and Woffset = 32.

timestamp Wm
t for particle m will depend on the R

of the RF signal model as shown in Eq. (13).

Wm
t = (RSSImfm −min(RSSIfm)) ∗ fsc

+Woffset

fscale = δW /δRSSIfm

δW =Wup −Wlow

δRSSIfm
= max(RSSIfm)−min(RSSIfm)

where RSSImfm is the RSSI value corresponding to
tion of particle m provided by the RF signal mod
and fscale is a scale factor to convert the RSS
a variance value (dB2) between an upper and l
(Wup,Wlow) taking into account the fadings model
amplitude (δRSSIfm

). Finally, Woffset is the offs
variance function. Fig. 15 provides an example of th
variance function together with the RF signal mode

As can be noticed from Fig. 14, the RF signal m
the pipe is similar enough to the RF sensor measu
the real scenario to consider the bias error negligib

B. IMU for prediction purposes

During the experimental validation of the work pr
[21], a differential robot was equipped with variou
sensors. The linear and angular speed of the r
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the observed behavior. The variance value at each provided by two encoders placed on the robot wheels. These
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espond to the inputs of the system used during the
step of the algorithm.
e other robotic platforms with which it is not

use mechanical odometry sensors (e.g., aerial
order to check the feasibility of the proposed

these types of platforms, we propose the use of
provided by an IMU. The information given by
is the linear acceleration and the angular speed
lied to the motion model of the vehicle during the

step.
lts of the position estimation of the robot along
ing the IMU sensor during the prediction step are
e experimental results subsection.

ous localization system based on EKF and RF

[24] is one of the most popular algorithms for
tion in robotics applied to non-linear systems. The

istribution at time t is represented by the system
nd the covariance Pt. The EKF overcomes the
ter assumption of linear state transitions and linear
nts by means of a linearization process. Its strength
simplicity and in its computational efficiency. In
luate its feasibility for the localization of the robot
, an EKF algorithm was implemented using the RF

he EKF prediction step, the state of the robot X̂t

ed according to the motion model (Eq. (7)):

X̂t = f(ut, Xt−1)

P̂t = FtPt−1F
T
t +GtV G

T
t

Ft = ∂f/∂X

Gt = ∂f/∂u

(14)

s the predicted covariance, f refers to the motion
e vehicle, ut are the inputs of the system (vt, wt)
) are the Jacobians calculated as the partial deriva-
function f with respect to the state variable x and
t to the inputs of the system u respectively. V is

e associated with the vehicle odometry uncertainty.
ate step provides correction of the predictions by
ng the measurements zt:

Xt = X̂t +Kt(zt − h(X̂t))

Kt = P̂tH
T
t (HtP̂tH

T
t +Wt)

−1

Pt = (I −KtHt)P̂t

Ht = ∂h/∂X

(15)

articular case, the observation zt is the RSSI value
y the RF receiver sensor and the measurement
rresponds to the RF signal model used to predict the
bservation ẑt (similarly to Eq. (12)). Wt is related
urement model variance of the RF sensor.
bian Ht needed to calculate the Kalman gain of
obtained through the derivative of the RF signal

tion with respect to the state variables.
lts provided by the application of the EKF to solve
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Fig. 16. Theoretical received signal corresponding to the up
lower half of the pipe for trimodal propagation.

following subsection together with a comparison be
two methods: particle filter versus EKF.

D. Experimental results

In order to check the validity of the continuous lo
methods in a real situation, all the algorithms de
previous sections were implemented in MATLAB
with real data collected during the experiments de
Section IV at the Santa Ana dam in Castillonroy, S
9(a)).

Given the operating frequency of 78.2 MHz, the
diameter of 4-m, and assuming an electrical cond
4.5x106 S/m and a relative permeability of 100 (typ
for carbon steel), the propagation constants obtai
Eqs. (22) and (32) are γ1 = α1+ jβ1 = 0.0001+ j
and γ2 = 0.0005 + j0.595m−1. The power wave a
K1 and K2 can be determined offline or even adjus
in a practical approach, once the first fading is
given that the sum of the power amplitude of b
is equal to the fading maximum, while the subt
both equals the fading minimum. The online adju
the power wave amplitudes would solve the potentia
between the theoretical model and the actual signal
systematic errors (bias) in the RF sensors. The value
were K1 = 0.024 and K2 = 0.016 mW−1/2 (whic
adjust the total radiated power to -26 dBm, matc
good with our setup). Using all this data, it is p
calculate the theoretical electromagnetic propagation
pipe that will play the role of an RF Map (Fig. 1
that the period of the fading is never adjusted, i
theoretically calculated (given only the radius of th
the operating frequency), and that the electrical co
and relative permeability only influence on the a
which is relatively small in metallic pipes.

The real data collected during the experiments w
• Linear and angular speed (v, w): These value

vided by the odometry sensors and correspo
linear and angular speed of the robotic platf
in the prediction step of the continuous lo
methods.

• Linear acceleration and angular speed (a,w):
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ation problem inside pipes are presented in the vided by the IMU corresponding to the linear acceleration
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gular speed. The state of the vehicle is predicted
hese values when the IMU is used instead of the
try sensors.
values (z1, z2): These sensor measurements are
ed by the RF receivers placed at different heights
e used in the update step of the different proposed
ds.
d truth: The real localization of the robot corre-
ing to the distance from the transmitter, obtained
plained in Section V-B. This value is used to
re the estimated pose of the robot provided by the
ation algorithms with the robot real position. From
n, pose estimation error refers to the absolute value
difference between the estimated position and the
truth.

results described in this section, only one signal
the implemented algorithms (i.e., z1 and its corre-
F signal model from Eq. (6)).
to model the uncertainty of the elements involved
m, some variance values must be defined:

iance associated with the uncertainty of the vehicle
try.
iance of the likelihood function used during the
e filter weighting process.
riance to model the uncertainty of the measurement
.

ts of the localization algorithm based on RF fad-
article filters using the IMU during the prediction
continuous localization method presented in [21]
formation that comes from two different sources,
n odometry and the other on the periodic RF signal
s. A detailed description of the results obtained
experimental validation can be found in Section

work.
ase of ground platforms, the odometry data is

encoders placed on the wheels. As stated before,
check the validity of the method with other robot
e the use of encoders is not feasible (e.g., flying

IMU data collected during the experiments were
prediction step of the algorithm.

ests of the implemented localization method using
rovided by the IMU sensor were run to assess the

d robustness of the solution. Fig. 17 shows the pose
error for different variance values:

L = 0.005 and V = 0.0302,
error = 0.572 m
L = 0.001 and V = 0.1002,

error = 0.552 m

ance is not selected as a constant value but obtained
unction of Eq. (13).
ulative error in the pose estimation when using

dometry is clearly evident, whereas the position
ins limited around acceptable values when using

based on particle filters. The results using the
e main sensor for the prediction step are similar

0 10 20 30 40 50
Distance (m)

0

2

4

6

er
ro

r 
(m

)

test 1, e = 0.552
test 2, e = 0.572
odom

Fig. 17. Odometry and particle filter position estimation
the displacement of the robot along the pipe using the IMU
prediction step. Red line: pose error using only odometry. Blu
line, pose error using the particle filter solution for different value
(blue: L = 0.005 and V = 0.0302, error = 0.572 m, green: L
V = 0.1002, error = 0.552 m).

of the proposed localization method using differe
platforms.

As it is well-known, although the use of the IM
overcomes the errors derived from the slipping of the
these types of environments, the pose estimated by
the IMU sensor readings easily drifts due to the se
and time-varying biases. These effects could be e
in the case of drones due mainly to vibrations.
these systems, a combination of visual odometry w
systems is proposed to get a robust odometry [25].
it is beyond of scope of this work, our proposed
expected to improve the odometry error of visual-in
tems during the update phase by using the RF mea
as the preliminary results of the experiments using
during the prediction phase seem to indicate. The
proposed alternative method can be effective and
evaluated when using different robotic platforms.

2) EKF results and comparison with particle filte
An EKF implementation of the localization algo
developed following the same strategy of using the
during the estimation process. The validation of t
was carried out using the data collected during the e
tal tests. A small uncertainty value in the vehicle’s
was needed for the EKF method to provide good
the position estimation. For higher variance values
odometry, the EKF method was unable to solve the lo
problem during the displacement of the vehicle alon

In order to compare both particle filter and EKF
the same variance values were selected for both m

• EKF: V = 0.012, Wvar, and P0 = 0.012, w
the initial system variance.

• PF: V = 0.012, Wvar and L = 4

Fig 18(a) shows the position error obtained with
and particle filter methods compared to the odometr
The estimated position calculated using the three
solutions is represented in Figs. 18(b) and 18(c).
deduced from the results, the EKF method does not
well as the particle filter method in terms of position
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the ones shown in [21] to suggest the feasibility along the pipe. Nevertheless, the results are good enough to
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odom

) Detail of estimated position within the dotted oval
parison between EKF and particle filter during the displacement
along the pipe: (a) Position error and (b)-(c) comparison of
ation with EKF, particle filter and odometry methods with
ground truth.

at the EKF method based on RF fadings may be
localization inside pipes. For this reason, deeper

required to evaluate the applicability of the EKF
solve this particular case.
ance analysis has been conducted in order to check
ce of the application of the EKF algorithm to solve
tion problem using the RF signal. The evolution

riance during the displacement of the vehicle using
ds is shown in Fig. 19. As can be seen, the particle
des better results in terms of uncertainty than the
method.
although both methods provide good results in

ehicle localization inside the pipe, the use of the
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C
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nc
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Fig. 19. Evolution of the covariance during the displacement o
using EKF and particle filter-based methods

of the RF sensor. Moreover, the position error is slig
and the estimated position is closer to the real posi
robot when using the particle filter localization met
from that, in order for the EKF method to provi
solution, a small uncertainty of the state estimate
but in some cases, the assumption of a good odome
is far from the real system. Therefore, we conclud
EKF solution is less reliable compared to the parti

VII. CONTINUOUS LOCALIZATION USING TWO R
FADINGS

A. Algorithm formulation

As mentioned before in the transversal fading
section, with a specific setup of the transmitter and
antennas in the pipe cross-section, a 180 degree rela
difference appears between the fadings correspondi
receiver. Fig. 16 represents the RF signal mode
transmitter-receiver configuration.

The phase difference between the two RF sign
exploited in order to improve the accuracy and re
the localization algorithm presented in [21] that uses
signal. Using the data provided by two RF receiver
different heights, twice as much information is ava
it is possible to work with each signal with its own

We could formulate the problem as a regular ro
ization issue where two sensors (e.g., LiDAR senso
at different positions on the robot give information
perceived environment. The positions provided by
matching processes working with a known map
using the EKF algorithm. The approach presente
of applying two independent particle filters, each
working with an RF receiver, in a way that the resu
of each particle filter with its uncertainty is considere
sensor. The information that comes from these virtu
is fused using the EKF algorithm in order to obtain th
of the robot along the pipe.

The goal of this method is to take advantage of
of each particle filter in the areas where each of th
best, that is, where the particle distribution is the nar
therefore the uncertainty is the smallest. The less u
in the pose estimation of the virtual sensor, the more
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er is more adequate due to the high non-linearity this sensor will have in the EKF update step.
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REDICTION

 Motion Model

EKF UPDATE

Measurement 1

 Signal 1
eight + Resamp

 Signal 2
eight + Resamp

EKF UPDATE

Measurement 2

s of the EKF localization algorithm with two RF signals. After
step, the position and covariance (X̂t, P̂t) are updated using the
g from the particle filter (xS1, VS1

) that works with the first
a second correction step, the position and covariance obtained in
tep (Xe1t, Pe1t) are updated using xS2 and VS2

provided by
ter working with the delayed RF signal. The result of this step is
nd uncertainty of the vehicle at each time stamp (Xe2t, Pe2t).

ary, the proposed method is based on the applica-
KF algorithm as the localization method using the
tions obtained through two particle filters working
F signals as measurements during the EKF update
0).

n stages of the proposed method are:
prediction: During this step, the state X̂t and
P̂t are predicted using the inputs of the system

d the odometry motion model (Eq. (14)).
le filter for each signal: As mentioned before,

f the particle filter are followed in order to obtain
ed position. The RSSI value provided by the first
ency sensor (z1t) along with its corresponding
nt model (Eq. (9)) are used in the weighting process
eights to each particle.
lt of the resampling step of each particle filter is a
e distribution. The estimated position is obtained by
the mean position of the particles for each iteration.
e way, the variance of the particle distribution
d. Eq. (16) represents the pose estimate and its
for each iteration:

xS1 = µ =
1

M

M∑

m=1

xm1

VS1 =
1

M − 1

M∑

m=1

|xm1 − µ|2
(16)

is the number of particles and xm1 is the position
m.
, a second pose estimate is obtained using the RSSI
ded by the second receiver (z2t) and its RF signal
symmetry reasons, the measurement model for this
aced at the upper half of the pipe (Fig. 7(d)) is

by Eq. (17):

) = 20 log10 |(K1e
−γ1xm

2t −K2e
−γ2xm

2t)| (17)

arize, two pose estimates with covariances are
ting as virtual sensors to be used in the EKF update

3) EKF update using the results of the particle
estimators: With the different virtual sensor mea
which are characterized by an uncertainty level,
correction step takes place using Eq. (15).

Firstly, using (xS1, VS1)t as the measurement an
of the first virtual sensor respectively, the state and
predictions of the system (X̂t and P̂t) are updated.
in a subsequent step, the results of the previous step
Pe1t are again updated using the measurement an
values corresponding to the second virtual sensor ((x
obtaining Xe2t and Pe2t.

Therefore, the results of the EKF algorithm usin
correction step are:

Xt = Xe2t

Pt = Pe2t

where Xt represents the estimated position of
along the pipe and Pt is the system covariance that
the uncertainty of the calculated position.

It should be noted that, as the values provided by
sensors are direct measures of the state, the Jacob
Ht -that relates the state to the measurement need
Kalman gain calculation- is equal to the identity m

B. Experimental results

Similarly to previous cases, the real data collec
the experiments described in Section IV was used
the improvement in the localization pose achieved
two signals.

The number of particles for each particle filter i
= 1000. The particles are initially distributed alon
period of the fading of each RF signal in order to
ambiguity problems derived from the periodic nat
fadings waveform.

The variance values selected are the same for bo
filters:

V = 0.0382;L1 = L2 = 0.007

The uncertainty in the measurement model W i
with Eq. (13) during the execution of the algorith
initial system covariance P0 is set to 0.0382.

Several tests were performed using the variance
lected in order to check the stability of the solution
of the probabilistic nature of the algorithm. Fig.
for example, the position error obtained using the
localization method for three different tests with
parameter configuration. As can be clearly seen, the
remains below 0.5 m, whereas the odometry error
with time. These results demonstrate the adequa
variance values selected.

Moreover, the estimated position error using bo
improves on that obtained using one single signal
in Fig. 22(a). The uncertainty of the position ca
each time-stamp for both virtual sensors is repr
Fig. 22(b). As expected, the virtual sensor with
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Distance (m)

test1 error 0.277
test2 error 0.296
test3 error 0.311
odom pose error

metry and position estimation error as a function of the distance
nd truth). Blue, green and purple curves represent the results

ions of the proposed algorithm using two RF signals. The same
lues have been chosen for all the iterations.

predicted is corrected with the position estimated
t” virtual sensor. This behavior can be observed in
and 22(d) which show a detail of the area delimited
d vertical lines. The uncertainty of virtual sensor 2

ower than the uncertainty of virtual sensor 1 (blue),
the estimated position is corrected based on the

imated by the former. Therefore, the error remains
round the smallest error at each timestamp. Fig.
s a comparison of the estimated position over time
ifferent methods. The localization method based

ticle filter using only one RF signal (green and
sely follows the real position (blue). Similarly, the
lgorithm based on the EKF using two RF signals
vides a reliable estimated position. But the latter,
seen in the detail shown in Fig. 23(b), corrects

of the vehicle with the best solution of the two
timators, in this case, the purple one. By contrast,
d position calculated using only the odometry (red)
ly moves away from the real position.
rence analysis: One of the assumptions of the
e Gaussian distribution of the observations. As
in the proposed method, the observations used in
step correspond to the result of the particle filter

adio signal. In order to evaluate the coherence of the
of the EKF algorithm, we analyzed the distribution
cles resulting from both particle filters.
to accomplish this task, the set of particles obtained
esampling step at a particular time point during
ement of the robot is saved for both signals. The

and standard deviation (σ) from the particles set
d and a random normal distribution is generated
e values of µ and σ. The distribution of the particles
normal distribution is represented in Fig. 24.
) shows the percentage of the particles provided by
filter using the signal of one of the RF receivers.

ities of the distribution with the normal distribution
are clearly evident. The same result is obtained in
the distribution of the particles using the second
ith the 180 degree phase delay (Fig. 24(b)).
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Fig. 23. Estimated position of the vehicle during its displacem
pipe: (a) Comparison between the EKF method using both RF si
particle filter using one signal (green and purple dashed lin
method (red) and ground truth (blue). (b) Detail of changes i
position over time corresponding to the enclosed area. The estim
provided by the EKF (black) closely follows the real position.

assumption of a Gaussian distribution is tenable and
the feasibility of the EKF is demonstrated.

VIII. PRACTICAL APPROACH AND LESSONS LE

In order to implement the system and obtain an
its practicability, we have summarized the importa
as follows:

• The technique is non-intrusive and does n
environment modifications, only one RF trans
one receiver being needed for the simplest set

• As a standing wave pattern, the fadings are
repeatable and predictable, and hence, they a
for localization.

• The fadings period is given by the pipe dia
the interacting modes (determined by the ope
quency). In order to propagate n modes, the
frequency must be higher than the nth mo
frequency but below the nth + 1 mode cutoff

• To obtain periodic fadings two modes must
(bimodal propagation). When more than two p
modes are present, every possible pair of m
create a fading structure with its own characteri
period, giving rise to an intricate available p
tribution inside the guide. Even in this case
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F localization method results using two RF signals during the displacement of the robot along the pipe: (a) Position error comp
method and the particle filter-based method using one single RF signal. (b) Variance representing the uncertainty in the measurem
(c) and (d) Detail of both position errors and variances corresponding to the dotted enclosed area. The final position error is influ

irtual sensors in terms of uncertainty. The data from test 3 of Fig. 21 has been used for the comparison with the method using on

itter and receiver antenna position and orientation
pipe cross-section can lead to a system that, in fact,
es as if only two modes were present, minimizing
upling to the unwanted modes on the transmission
reception side.
Table III, it can be seen that for pipes ranging
.15 to 6 m in diameter, the corresponding working
ncy varies from around 40 MHz to 2.4 GHz,
er to obtain fadings with a mean period from
o 30.4 m. Commercial devices that work at the
entioned frequencies are available at relatively low

eoretical analysis presented in this work is limited
es that are straight and metallic, these having
cal continuity and uniform cross-section. Although
ems a substantial limitation, it was one of the

common situations found in numerous use-cases.
er, the practical analysis presented in Appendix B
that the localization algorithms would be viable
ly in ideal waveguides but also in a wide range

l world pipes with slight to moderate defects and
, suffering from local deformations. At last, for
nt materials such as concrete, the method is still
able although the suitable frequencies and mode
considerations would differ, this being beyond the
of this study (see [26] for an analogy in concrete
hoe shaped tunnels).

• Inside the pipe, the Faraday cage effect avoid
ence from external RF sources, and therefore, th
signal is low in noise.

• The maximum possible length that could be
determined by the pipe diameter, material and
sensitivity. Metallic pipes have low attenuatio
our case study, the Castillonroy pipe was ca
with an attenuation rate of less than 9 dB pe
our low cost receiver has a sensitivity of -105
gives us a maximum possible coverage length
kilometers.

• The discrete and continuous localization algo
feasible not only for ground robots but also
robots such as drones.

• The use of two antennas and its correct positio
cross section of the pipe allows to improve th
and reliability of both discrete and continuous
based localization methods, by means of exp
180 degree phase difference.

• In the continuous approach, the PF algorithm
appropriate over the EKF due to the high no
of the RF sensor.

• Localization results from experiments on
pipes can be transferred to small-scale pipes
RF signal periodicity is also observable (see
the latter, the expected position error will be si
smaller (as the fadings period ranges from 0.2
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rticles distribution vs normal distribution after the resampling
lt using Signal 1. (b) Result using Signal 2 (180 degree phase
he two distributions are similar enough to conclude that the
a Gaussian distribution is tenable.

osition error obtained in this experiment (along 70
es not depend on the distance traveled, but on the

of the RF signal with the RF propagation model
as a RF Map. The error will be remain bounded

acceptable values over the entire length of the pipe
ich the effect of periodic fadings appears, i.e, the
ge area which, as mentioned above, extends to
l kilometers.

IX. CONCLUSIONS

aper, we have presented an alternative RF localiza-
to those existing in the literature (e.g., fingerprint

which does not require substantial infrastructure
t or a previously built RF map. Our method is able
a robot along a pipe by means of generating and
periodic signal fadings pattern, using just one RF
and one receiver for the simplest setup.
n analysis of the fadings in the longitudinal dimen-
erformed, followed by determining the influence
s-section position of the receiver on the RSSI and
se of the fadings. Based on the distribution of the
d of the interacting modes, the pipe was virtually

two halves (vertically or horizontally). Empirical
real pipe environment show that depending on

setup, the fadings corresponding to each sector are
r present a relative phase difference of about 180
. a maximum in one signal matching a minimum

Two approaches for localization, discrete and c
have been detailed. The discrete method is based o
the fadings (maxima and minima) while travers
resulting in a sort of RF-odometry. Compared to ou
work, and derived from the transversal fadings a
this study, the resolution has been improved by exp
180 degrees phase difference by means of adding
triggers, corresponding to the crossing points of bo
In this way, the localization resolution is improved t
of the period of the fadings, this being determined by
diameter and the operating frequency.

As a step beyond the discrete localization, a c
localization algorithm has been implemented to es
robot displacement along the pipe, using the theoreti
model as an RF map. The first of them is based o
filters and its validity with experimental results was
in a previous study. Building on that work, the fea
using different types of robotic platforms has been
by using an IMU during the prediction step of th
filter-based method. Apart from that, the applicabi
EKF algorithm using the fadings signal and an RF
been studied and compared to the particle filter
Finally, a new strategy for continuous localizat
advantage of using two RF receivers in order to obta
phase difference has been developed. This approac
on fusing the information that comes from two par
working with their RF signal and RF map, with
algorithm. The result of a coherence analysis de
the validity of the proposed solution.

All the aforementioned methods have been tested
dated with experiments in a real pipe scenario. The
of the discrete localization methods has been p
in-pipe longitudinal localization. Moreover, the c
localization using two signals yields better results i
error, demonstrating the ability to localize the robot
during its displacement along the pipe. Although bot
provide good results, the PF algorithm is more appro
to the high non-linearity of the RF sensor.

The RF approach presented in this paper in all
overcomes the lack of features that is one of
difficulties in robot localization in this type of en
In addition, there is no need for a previously kn
and required modifications of infrastructure are min
an RF transceiver placed at the beginning of the
needed to cover several kilometers.
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APPENDIX A
DETAILS ON RF PROPAGATION IN PIPES

A circular cross-section metallic pipe behaves as a
waveguide for RF signals. Electromagnetic wave propag
the guide is strongly frequency dependent. This is a classic
Further details and fully worked solutions can be found
3 of [27] and Chapter 9 of [28].

We consider the pipe to be an infinitely long air-fi
cylinder, with free space permittivity ε0 and permeabil
that it has metallic walls of electrical conductivity σ an
permeability µ, with internal radius a. The usual approa
the solution of the electromagnetic wave equation in th
domain, for a fixed frequency, f or ω = 2πf , to obtai
valued electric and magnetic field expressions depending
space variables, for example ~E(~r). The time- and space
field can be obtained, if needed, as ~E(~r, t) = Real( ~E(
the following, all magnitude amplitudes are rms values.

A. Modal fields in cylindrical waveguides
The electromagnetic fields inside a cylindrical wavegu

described in cylindrical coordinates (ρ,φ,x) to take ad
the geometrical symmetry. Notice that we use x inste
the axial coordinate for the longitudinal position of th
the pipe. Applying the electromagnetic boundary condi
metallic wall, considered a good conductor, there are infin
to the frequency domain wave equation, with their asso
configurations. These symmetry-adapted solutions are
called modes, and are classified as Transverse Electric
with no electric field component in the longitudinal d
Transverse Magnetic (TM, those with no magnetic field co
the longitudinal direction). These modes are further index
integer subscripts (m=0,1,2,3... ; n=1,2,3...) that account f
structure across the ρ and φ dimensions. Each TEmn or T
describes a geometrical arrangement of the electromagne
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, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
and Autonomous Agents). The MIT Press, 2005. the guide cross-section. Fig. 25 shows, as an example, the electric
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malized intensity (arbitrary units) for the first three propagating
a metallic cylindrical waveguide

tion of the first three modes. See [27], [28] or [29] for
ples of higher-order modes.

es are high-pass frequency-selective devices. For each
is a geometry-dependent cutoff frequency, fc. RF fields
f can propagate along the guide only in modes with

r an air-filled cylindrical pipe of radius a, the cutoff
r TM modes is given by:

fmnc = χmn
c

2πa
(19)

modes by:

fmnc = χ
′
mn

c

2πa
(20)

1/
√
ε0µ0 is the free space speed of light, χmn is the

the Bessel function Jm of the first kind and χ
′
mn is

o of J
′
m, the derivative of the Bessel function Jm of

. The mode with the lowest cutoff frequency, called the
ode, is TE11 with χ

′
11=1.8412. No RF propagation is

he circular guide for frequencies below this value. The
toff frequencies correspond to TM01 with χ01=2.4049,
′
21=3.0542 and the degenerate TE01 and TM11 modes
1=3.8318.
ace λ0, the wavelength of an RF wave of frequency f ,
ciated free space wavenumber β0 are governed by the
ssion:

λ0 =
c

f
=

2π

β0
(21)

uides, the situation is more complex and, for a given
, each propagating mode - with fc < f - has its own
ength λmn and associated guide wavenumbers along the
ρ (βmnρ ) dimensions:

λmn =
2π

βmn
=

λ0√
1−

(
fmnc

f

)2
(22)

(βmnρ )2 = (β0)
2 − (βmn)

2 (23)

e of the electromagnetic fields is usually described by
modal fields, which are general forms of the particular
the wave equation for each mode. The components of
odal fields for TM modes are:

−jωµ0m

(βmnρ )2ρ
Jm(βmnρ ρ)(A cosmφ−B sinmφ) (24)

jωµ0 ′

emnx = 0

and the components of the modal fields for TE modes a

emnρ =
−jβmn
βmnρ

J
′
m(βmnρ ρ)(A sinmφ+B cosm

emnφ =
−jβmnx m

(βmnρ )2ρ
Jm(βmnρ ρ)(A cosmφ−B sinm

emnx = Jm(βmnρ ρ)(A cosmφ−B sinmφ)

The total modal electric field is then:

~emn = (emnρ ρ̂+ emnφ φ̂+ emnx x̂)

Similar equations can be obtained for the magnetic fi
nents, hmnρ , hmnφ and hmnx .

There are two arbitrary amplitude constants, A and B,
expressions. These constants control the amplitude of the i
sinnφ and cosnφ terms. This is due to the azimutha
of the cylindrical waveguide, and in fact, one can consi
extreme cases (A=1, B=0 and viceversa) as two linearly i
degenerate modes orthogonal to one another (with the
frequency, wavelength, etc.). In a real situation, the am
each mode present in the guide will depend on the dire
excitation field. An equivalent viewpoint is to consider A
parameters for controlling the azimuthal rotation of the co
modal field.

The time-average power flow associated with each mod
be calculated as a surface integral over the guide cross-s

Pmn =

∫

S0

Real(~emn × ~h∗nm) x̂ ds

where the superscript * represents complex conjugation.
Losses arising from the finite conductivity of the pi

included through the attenuation term αmn in the guide
constant of each mode γmn = αmn + jβmn. For TE mo

αmn =
λmnRs
a η0

×
[(

fmnc

f

)2

+
m2

χ′2
mn −m2

and for TM modes:

αmn =
λmnRs
a η0

where Rs =
√
ωµ/2σ is the surface impedance of the m

ductor and η0 =
√
µ0/ε0 is the free space characteristic

B. Antenna coupling to modal fields
An RF source (usually an antenna) at a given frequen

a pipe generates a complex RF field that is a superpositi
different modes with different amplitudes. At short dist
the antenna (a single free space wavelength is enough
propagating modes - those with fc < f - will be presen

To calculate the power coupled to each mode from th
source, we follow a standard microwave procedure as d
Chapter 4 of [27]. The electric field of a forward trav
in the pipe can be expressed as a linear combination of
supported by the guide:

~E =
∑

mn

A+
mn~emne

−γmnx

with the summation extending only to the TE and TM
ing modes allowed for the operating frequency and p
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βmnρ

Jm(βmnρ ρ)(A sinmφ+B cosmφ) (25) There, A+
mn is the complex rms amplitude at x = 0 of the
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g mn mode electric field. The propagation term is
−jβmnx e−αmnx where βmnx = 2πx/λmn represents

ated phase delay and e−αmnx is the attenuation suffered
l electric field after traveling a distance x along the guide.
rk, we have used electrically short (that is, with length
, thin linear antennas for RF excitation and detection,

ained in the pipe cross-section plane. We set x = 0 in
ting antenna (tx) position. The current flowing in these

be approximated well as a triangular distribution with a
at the antenna feeding point and vanishing at the antenna
antennas radiate linearly polarized fields; see [30] for

ls. Their radiation resistance is Rr = 20π2(l/λ0)
2 and

iated power is:

Prad = I20Rr (35)

ion procedure allows for the determination of the modal
xcited by the antenna:

A+
mn = − 1

2Pmn

∫

ant

~emn(r
′)I(r′) ~dr′ (36)

variable r′ represents the position in the transmitting
the line integral is calculated along its length. To

inimize) the coupling to a given mode from the trans-
nna, the antenna position in the pipe cross-section has
n to be at a place where the modal field intensity is
inimum, ideally null) and its orientation has to be ideally
ogonal) to the modal field direction there. Moreover, the

symmetry can be used to minimize coupling choosing a
ientation where the aforementioned integral goes to zero
contribution of one half cancels out the contribution of
lf.
ther hand, from reciprocity, when an electric field ~E
an electrically short receiving (rx) antenna it produces

uit voltage:

Voc = − 1

I0

∫

ant

~E(r′)I(r′) ~dr′ (37)

alling that ~E is a linear combination of the propagating
own in Eq. (34), the same geometrical considerations as
lid to minimize (maximize) the coupling of a given ~emn
component present on ~E to the receiving antenna.
r that the antenna delivers to a matched load is:

PL =
V 2
oc

4Rr
(38)

l power delivered is usually lower due to impedance
d ohmic losses in the antenna and wiring.

edure to estimate the power received in an antenna at
rom a transmitting antenna at position tx - remembering
there - is as follows, assuming that both antennas are

short. Knowing the radiated power of the transmitting
is calculated from Eq. (38). Then, the modal amplitudes
ned using Eq. (36) and, from these, the electric field on
antenna position can be calculated using Eq. (34). Then,

d (38) give the received power.

APPENDIX B
FADINGS IN NON-IDEAL PIPES

ious analysis applies to ideal cylindrical waveguides,
means that the waveguide is straight, its length is

nite, its internal diameter is constant, the inner surface
ithout cracks and there are not obstacles or obstructions
is not the case in real world waveguides specifically
communications, nor in metallic pipes built for different
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(a) Received RSSI. The dashed line represents the theoretic
in an ideal pipe, and the blue lines the recorded received pow

(b) Corrugated aluminum pipe (c) Motorized moving r

(d) Hokuyo LiDAR for ground-truth (e) Transmitting antenn
MHz)

Fig. 26. Corrugated pipe experimental setup. The transmitte
in the right extreme of the pipe, and a small robot was displac
straight part. Both obstacles (robot and LiDAR) are obstructing
part of the pipe cross section.

a propagating mode reaches a defect, a given fraction o
that it carries will be scattered and coupled to each oth
propagating mode, traveling forward and also reflected
Moreover, it will locally excite non-propagating modes
only in close proximity to the defect. The conseque
scattering is twofold: an increase of the attenuation co
respect to the ideal waveguide, and the interference of the
backwards propagating modes, that adds a standing wave c
to the RF available power distribution in the guide. In th
have proposed to use the periodic spatial fading struc
from multimodal forward propagation for in-pipe 1D loc
a robot traveling along a pipe. Thus we must check if this
method is still valid taking into account the unwanted eff
from non-idealities present in real world pipes.

The frequency selected for our practical application
propagating modes present inside the pipe to the first thr
namely the TE11, TM01 and TE21 modes. In fact, we
transmitting antenna in a way that minimized (ideally,
TM01 amplitude. Thus, we must check how defects scatter
modes.
• Pipe length: first of all, the pipe length is alw

The power reflection coefficient in a pipe flanged
can be estimated numerically following [31]. Fo
considerations, a given TX mode can couple on
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ere defects arising from non-idealities will exist. When
mn mp

modes, and thus no cross-modal coupling is induced by the pipe
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or the experimental scenario described in this paper the
reflection coefficients for the three propagating modes are
ted as 1.6x10−5, 2.5x10−3 and 6.2x10−2. The standing
omponent added is negligible for the first two and only
a weak ripple for the third one that can be easily filtered
ing data collection.
e of obstacles: the presence of obstacles without cylin-
ymmetry in the general case will produce both reflections
termodal coupling. In the experimental work presented
, given the small size of the pipe, the LiDAR used for
tion at the pipe end represents an obstacle occupying
a quarter of the cross section, see Fig.26 . The emitter

nd the receiver robotic chariot are also of non-negligible
hen compared to the pipe diameter. Nevertheless, the
ed fadings fit quite well the theory, both in spatial period
pe. In [32] a method to compute the effect of a narrowing
pipe is given. In Table 1 therein, the scattering power
ients from the dominant TE11 mode to all the possible

and backwards propagating modes are shown for a
ide that supports the first three modes with an eccentric
ing to 55% of its section for a length of half its radius.
ggest coefficient is 0.12, all the others are below 0.052
s the scattering in the collapsed region will add only a
standing wave component to the RF field.
e of curved sections: another concern comes from the
e of curved sections along the pipe. As explained in
e propagation constant of the modes is barely modified
urvature radius of the bent sector is much bigger than
e radius, as is our case, and coupling among modes
ant only from TM0q to TE0q , not possible within our
g frequency.
: a crack in the metallic pipe will distort locally the
s that support wave propagation and thus will also give
scattering. This is indeed the basis for on-site RF use

-destructive crack location system in pipes, see for ex-
[34]. The experimental results therein show that a power
on coefficient below 0.005 appears for an intentionally
cumferential cut in a pipe. This small reflection is still
for crack location with the adequate high sensitivity
entation, but has negligible effect on the fading pattern
interest.
ooth surfaces: we have also performed several experi-

in corrugated aluminium flexible pipes, with non-smooth
urfaces, and there also the fading period and shape fitted
ell with the model (see Fig. 26).
ss, water vapor, dust and smoke: RF propagation is not
d by lightning conditions. Dust, water vapor and smoke
all particle aerosols that will not affect RF propagation
uencies below 10-100 GHz, which is an advantage over
s and cameras [35].
ing liquid in the pipe: Scattered water or oil puddles
t affect the RF propagation inside the pipe. If however
e is not fully empty and a shallow liquid depth is
along all its length, this geometry change will break the

ferential symmetry and affect the modal wavelengths and
e fading period. We have performed FEM simulations in
diameter pipe with a remaining depth of 5 and 15 cm of
water. The results show that the fading period of the TE11

21 horizontally polarized modes interference changes
and 1.2 percent respectively, within the experimental

inty. The effect of similar depths of crude oil is even

results support that the proposed localization scheme
iable not only in ideal waveguides but also in a wide
l world pipes with slight to moderate defects and cracks,
m local deformations and/or obstacles present.
Table III we have summarized some results of environ-

ich we have analyzed these fadings, such as the penstock

case studies in the literature.

TABLE III
EXPERIMENTS WITH DIFFERENT PIPES

Small
pipes Gasoduct

Castillon
Dam
pipe

Diameter
[m] 0.15 0.40 4

fc2 [MHz] 1500 574 57
fc3 [MHz] 1900 729 73
fc4 [MHz] 2400 914 91
Bimodal
fading

period [m]
0.38-0.76 1.01-2.02 10.1-20.2

Trimodal
fading

period [m]
0.23-0.40 0.61-1.08 6.15-10.8

It can be seen that ranging from 0.15 to 6 m in di
corresponding working frequency varies from around 40
GHz, in order to obtain fadings with a mean period from
m (values highlighted in bold). We have selected frequenc
1% above/below the cutoff frequency of the second/third
bimodal propagation, and the equivalent with the third/fo
for trimodal propagation, in order to explore the whole r

Commercial devices to work at the aforementioned freq
available at relatively low cost.
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 By choosing an appropriate frequency, strictly periodic RF spatial fadings appear in
pipes. 
 

 RF fadings period scale with the pipe’s diameter and operating frequency. 
 

 Periodic RF spatial fadings can be used for both discrete and continuous localization
estimation in pipes. 
 

 RF localization approach works despite humidity, darkness, low lightning, obstacles
deformations of noticeable size compared to the pipes diameter. 
 

 Localization error decreases in continuous approach compared to a discrete approach
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