

Ring Gaussian Mixture Modelling and
Regression for Collaborative Robots

El Zaatari, S., Li, W. & Usman, Z.

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

El Zaatari, S, Li, W & Usman, Z 2021, 'Ring Gaussian Mixture Modelling and
Regression for Collaborative Robots', Robotics and Autonomous Systems, vol. 145,
no. November 2021, 103864.
https://dx.doi.org/10.1016/j.robot.2021.103864

DOI 10.1016/j.robot.2021.103864
ISSN 0921-8890

Publisher: Elsevier

NOTICE: this is the author’s version of a work that was accepted for publication in
Robotics and Autonomous Systems. Changes resulting from the publishing process,
such as peer review, editing, corrections, structural formatting, and other quality
control mechanisms may not be reflected in this document. Changes may have
been made to this work since it was submitted for publication. A definitive version
was subsequently published in Robotics and Autonomous Systems, 145 (2021) DOI:
10.1016/j.robot.2021.103864

© 2021, Elsevier. Licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://dx.doi.org/10.1016/j.robot.2021.103864

Ring Gaussian Mixture Modelling and Regression for Collaborative Robots

Shirine El Zaataria, Weidong Lia,b*, Zahid Usmanc

a Faculty of Engineering, Environment and Computing, Coventry University, UK

b School of Logistics Engineering, Wuhan University of Technology, China

c Rolls-Royce plc, UK

* Corresponding author: weidong.li@coventry.ac.uk

Abstract

Task Parametrised Gaussian Mixture Modelling and Regression (TP-GMM/R) is an eminent

algorithm to enable collaborative robots (cobots) to adapt to new environments intuitively by learning

robotic paths demonstrated by humans. Task parameters in the TP-GMM/R algorithm, i.e., frames

associated with demonstration paths, are considered to have orientations by default. This requirement,

however, limits the range of applications that TP-GMM/R can support. To address the issue, in this

paper, a novel ring Gaussian (rGaussian) is defined to cater for orientation-less frames, and an improved

TP-GMM/R algorithm based on rGaussians is developed to improve the adaptability and robustness of

the algorithm. In the improved algorithm, firstly, kernels are incorporated to enable Gaussians encoding

points from all demonstrations, and criteria are devised to judge a frame to be oriented or orientation-

less. Then, improved Gaussian mixture regression that caters for rGaussians and orientation-less frames

is developed to generate regression paths adaptable to complex environments. Finally, a series of case

studies are used to benchmark the improved TP-GMM/R algorithm with the conventional TP-GMM/R

algorithm under different conditions. Quantitative analyses are conducted in terms of smoothness,

efficiency and reachability. Results show that the improved algorithm outperformed the conventional

algorithm on all the cases.

Keywords: Learning from Demonstration, Gaussian Mixture Model, Gaussian Mixture Regression,

Collaborative robots (Cobots)

Annotations in this paper:

Dimensions:

N (n used as index) Number of demonstrations used to train the TP-GMM/R algorithm

J (j used as index) Number of task parameters, i.e., frames of reference

K (k used as index) Number of Gaussians

T (t used as index) Number of time steps, i.e., number of points along a demonstration path

Elements:

(n) (n) b(j) =[bx,by](j) x-y position coordinates of Frame j in Demonstration n

(n) α(j) Rotation angle of Frame j in Demonstration n

(n) A(j)
(n) 2x2 rotation matrix for Frame j in Demonstration n by an angle α(j)

(n) (n) p(t) =[t,x,y](t) Point at time step t along path of Demonstration n

(n) (n) p(t,j) =[t,x,y](t,j) Point at time step t along path of Demonstration n relative to Frame j

mailto:weidong.li@coventry.ac.uk

Gaussian Distribution:

N(μ(k,j), Σ(k,j), w(k,j)) The kth Gaussian of path points with respect to Frame j

μ(k,j)=[μt, μx, μy](k,j)
Centre of the kth Gaussian of Frame j; it is the mean value of all three

dimensions of path points (t, x, y)

N(μGMR(t,j), ΣGMR(t,j)) The tth Gaussian of path points with respect to Frame j

μGMR(t,j)=[μxGMR,

μyGMR](t,j)

Centre of the tth Gaussian of Frame j; it is the mean value of two

dimensions of path points (x, y)

Ring Gaussian (rGaussian) Distribution:

Nr(μr(k,j), Σr(k,j)) The kth ring Gaussian of path points with respect to Frame j

μr(k,j)=[μt, μr](k,j)
Centre of the kth ring Gaussian of Frame j; it is the mean value of two

dimensions of path points (t, r)

Σr(k,j) 2x2 covariance of the kth Gaussian of Frame j

Nr(μrGMR(t,j),

σrGMR(t,j))
The tth ring Gaussian of path points with respect to Frame j

μrGMR(t,j) Centre of the tth ring Gaussian of Frame j; it is the mean value of r

σrGMR(t,j) Variance of r in the tth ring Gaussian of Frame j

1. Introduction

1.1 Introduction to Learning from Demonstration

In modern factories, interest has been growing in adopting collaborative robots (cobots) as a step

towards boosting ergonomics and enabling mass customisation in manufacturing [1]. Cobots are able

to work alongside humans owing to their built-in safety features such as power and speed limiting and

the absence of trap points [2]. However, to reach their full potential in being intelligent “collaborators”

with human operators, cobots need to be equipped with two functions: flexible behaviour and intuitive

programming. The flexible behaviour would enable a cobot to adjust its motions and task plans based

on the human’s as well as adapting to the unpredictable positions of parts and tools. This allows the

cobot to achieve full collaboration [3], i.e., performing a task together with a human collectively, as

opposed to merely working in close proximities with him/her. A cobot should also be intuitively

programmed so that operators can easily create or adjust the cobot’s program on the fly. Having

operators involved in the programming of a cobot provides the operators with intuition about the cobot’s

behaviour which facilitates collaboration. Moreover, it allows the operators to alter the program

depending on their needs and interact with the cobot dynamically during the task if necessary.

Learning from Demonstration (LfD) is one of the prominent algorithms that combine the above two

functions [4]. It has been applied in several industrial robotic operations including assembly [5],

grasping [6] [7], pick-and-place [8] and polishing [9]. Moreover, LfD has been used to program cobots

for human-robotic collaboration tasks, such as collaborative assembly [10] and collaborative handing

[11]. LfD means that operators intuitively teach a cobot a task by providing demonstrations of the task

being done. These demonstrations are often in the form of paths (or trajectories) that should be traced

by a cobot to perform a task. The cobot does not simply record and repeat the task, but rather learns and

generalises the task to perform it even after changes in the initial environment of the task. Demonstration

paths can be modelled in a variety of formats, the most popular being Gaussian Mixture Model (GMM).

According to the central limit theorem, normal distributions, i.e., GMM, can effectively model complex

systems with the least amount of prior knowledge needed [12]. Hidden Markov Model (HMM), which

is another popular probabilistic learning from the demonstration technique, models spatial and temporal

variability. However, since HMM models the sequence between a finite discrete number of states, it is

intrinsically suited for task-level learning rather than motion-level learning [13]. When HMM is used

to model continuous paths, the paths are first modelled using a GMM and each Gaussian component is

a GMM state. Then HMM models the probability of switching between Gaussian components that

intrinsically accounts for temporal variability. For modelling robotic paths, the accuracies of GMM and

HMM are comparable but the latter is more complex in the model [14]. Also, the path modelled using

GMM is smoother than that using HMM, which ensures the better kinetic features for robots [14]. Thus,

GMM is more adaptive to support the requirements of various industrial applications such as varying

impedance [15], arrayed motions [16] and geometrical joint constraints [17]. Based on the above

observations, GMM is chosen as the modelling representation in this research.

A path is then regenerated from GMM using a complimentary process known as Gaussian Mixture

Regression (GMR). GMR relies on the properties of normal distributions (linear transformations and

conditioning) to rapidly generate a continuous, infinitely differentiable path [13], by deriving a

regression function based on the conditional probability between demonstration paths. For example, a

demonstration could include a series of path points, characterised by a time step t and a position in

space. The regression can be performed such that time steps are user-controlled, and point positions are

regressed accordingly. That allows the production of dynamic results based on environmental

conditions.

1.2 Introduction to TP-GMM/R

Task Parametrised GMM (TP-GMM) is an extension of GMM [13]. In GMM, path point positions

are defined and modelled with respect to a global frame of reference. However, in TP-GMM, they are

modelled as multiple GMMs with respect to multiple task parameters, i.e., frames of reference (to

simplify, frames of reference are called frames in the rest of this paper). A frame represents the position

and orientation of an object/location in the environment. TP-GMM allows a cobot to learn complex

path dependencies to different objects/locations, such as prioritising the effect of one frame on the path

over another frame’s effect on it. Then, in a new environment, given new positions and orientations of

frames, Task Parametrised Gaussian Mixture Regression (TP-GMR), which is similar to GMR in

purpose, automatically reproduces a new path for a new scenario, prioritising the effects of different

frames for different demonstration paths.

Fig. 1: A scenario in which a cobot needs to brush a piece of debris onto a dustpan.

For example, consider a task in which a cobot has to brush a piece of debris onto a dustpan (shown

in Fig. 1). An operator records several demonstrations, in which he/she traces paths that the cobot needs

to perform to successfully move the debris onto the dustpan (Fig. 2). Each path is formed of a series of

T points and each point consists of a time step t and its position. Assume Frame 1 is associated with the

debris and Frame 2 with the dustpan. In each demonstration, the positions and orientations of both

frames change purposefully to provide variability, which is necessary for TP-GMM.

Fig. 2: Four demonstration recordings of the cobot’s paths for brushing the debris onto the dustpan.

The demonstration paths are transformed from the global coordinate system to the local coordinate

system of each frame. For each frame, the path points from the demonstrations are modelled as a GMM

(for more mathematical details, please refer to Section 3). Each GMM is a mixture of Gaussian

distributions (Gaussian for simplicity in the rest of the paper), each characterised with a mean and a

covariance matrix. (e.g., In Fig. 3, Gaussians 1.1, 1.2 and 1.3 are modelled as a GMM for Frame 1;

Gaussians 2.1, 2.2 and 2.3 are modelled as a GMM for Frame 2). This process is known as TP-GMM.

(a) The GMM composed of three Gaussians modelling (b) A GMM composed of three Gaussians modelling path
path points when they are aligned with respect to points when they are aligned with respect to Frame 2

Frame 1 (associated with the debris). (associated with the dustpan)

Fig. 3: Examples for frames, Gaussians and GMM.

TP-GMR is illustrated using the examples in Fig. 4. Based on demonstrations, as the positions and

orientations of the dustpan and the debris change, the cobot should reproduce a new path for this new

scenario accordingly (Fig. 4(a)). Obtained GMMs for each frame are lined up depending on the frames’

new positions and orientations in this scenario (Fig. 4(b)). For each frame, GMR is performed, where a

path point distribution, i.e. Gaussian, for each time step t is sampled from the GMM (Gaussians under

different time steps are shown in Fig. 4(c)). In order to reproduce the new path, the Gaussians of both

frames need to be considered. For a time step t, a product of Gaussians is performed between the

Gaussians of both frames. The product results in a new Gaussian, whose mean is the reproduced path

point at time t (Fig. 4(d)). The weight for each Gaussian in the sum is equivalent to the inverse of its

covariance matrix. Thus, distributions that have higher covariance possess less priority in the sum. The

resultant Gaussian is more likely to tend towards Gaussians with smaller covariance, which means a

frame with respect to which the path varies less is prioritised. The above process is known as TP-GMR.

(b) Gaussians for frames (c) Gaussians along time step t (d) Reproduced path points (a) To generate a new path

Fig. 4: The main steps of the TP-GMM/R algorithm.

1.3 Limitations of TP-GMM/R

To understand the main limitation of TP-GMM/R to be tackled in this paper, firstly, two types of

frames, i.e., “oriented frames” (OFs) and “orientation-less frames” (OLFs), are explained. OFs are

frames whose orientations are relevant to a demonstration. For example, in Fig. 5(a), the frames and the

demonstration path are created by a human operator. In Fig. 5(b), if the orientation of the debris changes,

the demonstration path does not have to change to perform the task goal. That is, because of the

symmetrical shape of the debris and the nature of the task, the cobot can still successfully move the

debris from any of the debris’ sides. Thus, Frame 1 is considered as an OLF, as its orientation is

irrelevant to the demonstration path. In Fig. 5(c), since the debris can only enter the dustpan from one

direction, if the orientation of the dustpan changes, the demonstration path has to change as well.

Therefore, the frame associated with the dustpan, Frame 2, is called an OF. That is, when the orientation

of Frame 2 changes, the demonstration path needs to be adjusted to perform the task goal properly.

(a) (b) (c)

(a) The original demonstration path; (b) If Frame 1 is rotated, the original demonstration path is still functional. Thus,

Frame 1 is considered an OLF, as its orientation does not play a role in the functionality of the path; (c) If Frame 2 is

rotated, the original path becomes dysfunctional, making it necessary to record/generate another updated path. This

makes Frame 2 an OF, as its orientation plays a role in the functionality of the path

Fig. 5: Examples illustrating OLFs and OFs.

As discussed in the previous subsection, the TP-GMM/R algorithm models demonstrations with

respect to each of the frames, taking into account the frame’s positions and orientations. Therefore, the

modelling process inherently encodes a relation between the demonstration paths and the orientation of

a frame. However, in a situation that a demonstration path is independent of the orientation of a frame

(e.g., OLF), the model resulting from TP-GMM/R does not describe the path-frame relation accurately,

but rather becomes falsely biased towards what is presented in the demonstrations. For example, in Fig.

4(b), Gaussian 1.2 and 1.3 imply that the path tends to a particular side of Frame 1 while the orientation-

less nature of the frame and flexibility are lost. That is due to the fact that the demonstrations slightly

tend towards one side of the frame. However, Frame 1 is orientation-less, so that the path points are

uniformly likely to occur around the frame. Therefore, to improve the performance and flexibility of

TP-GMM/R in processing OLFs, a new model is required to reflect the uniform probability of path

points of demonstrations around OLFs, regardless of the frame’s orientation. This is particularly

important in some applications such as pick-and-place tasks, where it is likely for the picked object or

the drop location to be an OLF.

Another limitation of the TP-GMM algorithm is that, when modelling the distribution of

demonstration path points, the algorithm does not account for which demonstration each point belongs

to. Instead, all path points are regarded equally by the algorithm regardless of whether they belong to

the same or different demonstration paths. Therefore, when the GMM is fitted to the points, there is a

risk that a Gaussian in the GMM models points from a particular demonstration (if they happen to be

clustered together) rather than points from all demonstrations. However, the goal of TP-GMM is to

learn tasks based on the variations of demonstrations that an operator provides [13]. Therefore, to model

the distributions of path points based on the variations in the demonstrations provided, the TP-GMM

algorithm should be aware of which demonstration each path point belongs to. Otherwise, there might

be a case of disproportional demonstration modelling or overfitting. The situations are depicted further

in Section 3.

To overcome the above limitations, this paper presents an improved TP-GMM/R algorithm (for the

purpose of differentiation, in the following, the TP-GMM/R algorithm introduced earlier are called

“conventional”). The algorithms include the following characteristics and innovative contributions:

1) In this research, frames are defined as OFs and OLFs to facilitate LfD-based cobots in supporting

complex applications effectively. Based on a set of newly developed Gaussian criteria, an

algorithm is designed to intelligently identify OFs and OLFs;

2) On the basis of OLFs, an innovative Gaussian model called ring Gaussian (rGaussian) is

developed to overlook the orientations of frames and provide superior results over the

conventional TP-GMM algorithms when encoding demonstrations with respect to OLFs. The

conventional TP-GMM/R algorithm, which was designed for processing OFs, is enhanced here

as the improved algorithm by incorporating the rGaussian;

3) A new cost function in the TP-GMM/R algorithm is devised to ensure that the resultant GMMs

are able to model all demonstration paths equally, thereby preventing GMMs from overfitting

some demonstration paths more than others;

4) Case studies were used to validate the improved algorithms presented in this paper quantitatively

to prove their robustness and adaptability.

The rest of the paper is organised as follows. Section 2 summarises related works and identifies

research gaps. Section 3 introduces the fundamentals of the conventional TP-GMM/R algorithm in more

detail. On this basis, Section 4 explains the methodology of the improved TP-GMM/R algorithm

proposed in this paper. Section 5 presents how the algorithms are evaluated on synthetic data and real-

life industrial scenarios. Section 6 concludes the research and outlines the future works.

2. Related Works

TP-GMM/R has become an increasingly popular research topic of LfD in supporting various

applications, from collaborative assembly [15], collaborative object movement [16], daily kitchen tasks

[17], etc. In this section, the related research will be briefly reviewed from the aspects of demonstration

data acquirement, task parameter identification, and performance improvement measurements on TP-

GMM/R.

For LfD, a demonstration usually refers to a path for a cobot to manipulate an object from a start

point to an end point for moving, assembling, etc. There are multiple ways for a human operator to

record a demonstration to be learnt by a cobot. Kinaesthetic teaching [18] [19], observational teaching

[10] and teleoperation [20] are the most common methods of recording demonstrations. Fischer et al.

provided a comparative study on the methods of acquiring demonstrations [21], highlighting the pros

and cons of each method. Some works combined multiple methods to improve the performance of LfD.

For example, Yang et al. created a bracelet worn by an operator and attached to the end effector of a

cobot [22]. This enables the operator to wear the bracelet and intuitively move the cobot to perform a

task as if he/she is performing it himself/herself. Ogenyi et al. created an algorithm through which a

cobot watches and learns from an operator performing a task [23]. Then, the operator corrects and

improves the cobot’s learnt demonstration using kinaesthetic teaching.

Task parameters usually refer to the positions and orientations of frames in demonstrations. Some

research works localised frames using image processing methods, such as colour/shape segmentation

[15] [24] or contour identification [25]. However, these methods require well-controlled environments

and objects. More sophisticated computer vision algorithms such as Conventional Neural Networks

(CNNs) were used to detect task parameters from a given dataset of objects [11] [26]. However, this

might be inconvenient for fast-changing industrial applications, especially in mass customisation, as

retraining the algorithm continuously for new objects is time-consuming. Moreover, some works used

invasive markers to make detection easier and more reliable, such as motion capture bulbs in [10] or

sticker markers in [27] [28]. However, in industrial scenarios, invasive markers are undesirable on

commercial parts or tools. In our previous research, an algorithm was devised to detect generic visual

features and choose the most suitable ones amongst them to identify task parameters [20].

Meanwhile, various research works were conducted to improve the performance of the conventional

TP-GMM/R [13]. Some researchers undertook demonstration-based improvements. For example, Hu

and Kuchenbecker designed TP-GMM/R to program collaborative object movement but iteratively

suggested adding demonstrations to improve performance [16]. Cao et al. used GMM/R iteratively to

program robotic motions [29]. After each GMR, if a collision occurs, a human operator corrects the

path and retrains GMM. Willibald developed an interactive learning system in which a robot

automatically detects new tasks that require new demonstrations [30]. However, these demonstration-

based methods are not a suitable solution for improving the performance of TP-GMM/R in the case of

OLFs. Such methods will still require a human operator to record demonstrations in which paths vary

in all directions around an OLF. Even though a set of demonstrations will fully describe the possible

paths, the resultant GMM that models these demonstrations could still fail. That is, the GMM will either

be biased towards one direction of the frame, or will be centred on the frame, both of which are not

accurate representations of the paths.

Other researchers worked on frame-based solutions to improve the performance of TP-GMM/R.

For example, Sena et al. calculated the importance scores of frames to amplify the weights of relevant

frames during a portion of a demonstration [31]. Based on that, the TP-GMM/R algorithm can provide

meaningful results even when the newly observed positions of frames are far from the previous

demonstrations. Vidaković et al. designed an algorithm that classified task parameters/frames [32].

Some frames are classified as attractors and some as obstacles. A cost function was designed to ensure

that obstacles are avoided and attractors are approached. Moreover, the cost function can also maintain

a specific relative orientation of path points with respect to other frames. Silverio et al. designed new

task parameters that help identify positional and/or orientation constraints as well as configurational

constraints [33]. Instead of considering task parameters to be positions of objects in space, task

parameters are Jacobians describing the absolute pose of the bimanual humanoid’s end effector as well

as their pose relative to the humanoid. These different task parameters are projected onto the

configurational joint space of the humanoid. This allows the robot to learn complicated tasks that

automatically toggle between positional/orientation and absolute/relative constraints of its end effector.

Their work, however, neglects information about the positions of other objects in the same space so it

does not tackle the problem of OLFs from its root cause.

To tackle the TP-GMM/R’s problems related to OLFs, an OLF requires a different Gaussian model

than the conventional one to accurately describe the nature of demonstration paths. None of the previous

works to the best of our knowledge, tackled this problem from the TP-GMM/R-based point of view.

Therefore, in this paper, the following research questions will be answered:

 How can TP-GMM/R effectively model the angular variability of demonstrations with respect

to OLFs?

 How can TP-GMM/R successfully cater for scenarios having a mixture of OLFs and OFs?

 How can OLFs be automatically identified and catered for with minimal user interference?

3. Fundamentals of the TP-GMM/R Algorithm

This paper presents an improved TP-GMM/R algorithm for a cobot to carry out tasks under complex

applications where there are not only oriented frames (OFs) but also orientation-less frames (OLFs).

The major concepts and mathematical backgrounds of the conventional TP-GMM/R algorithm is

introduced first, which will pave a base for the improved algorithm to be presented in Section 4.

3.1 Demonstrations, Gaussians and GMM

To implement TP-GMM/R, firstly, N demonstration paths are recorded. Demonstration n (n ∈ ℕ{1,

…, N}) is made up of a path P(n) and J frames. P(n) consists of T path points, and each point p(t)
(n) in the

path is defined by time step t (t ∈ ℕ {1, …, T}) and a position. Time step t indicates the time order of a

point along a demonstration path. The coordinates x-y indicate the position of a path point, Frame j (j ∈
(n) (n) (n) ℕ {1, …, J}) is defined by a 2D position vector b(j) =[bx,by](j) and a 2x2 rotation matrix A(j) for

angle α(j)
(n) with respect to the global coordinate system (the global coordinate system is defined

arbitrarily as it would not affect the calculations). In Demonstration n, the frames may vary in position

and orientation. Fig. 6 is an example to visualise the above concepts.

Fig. 6: Examples of paths going from Frame 1 to Frame 2. The diagram details the modelling variables, where

N=4, T=200 and J=2.

Once the paths and task parameters are detected, data pre-processing is performed before TP-GMM

is executed. That is, the x-y coordinates of each point p(t)
(n) in a demonstration are transformed from the

global coordinate system to the local coordinate system of Frame j, forming a new point p(t,j)
(n) using

the following equation:

−1(𝑛) (𝑛) (𝑛) (𝑛) (𝑛)
𝑝 = [𝑥 𝑦] = (𝐴) ([𝑥 𝑦] − [𝑏𝑥 𝑏𝑦]) (1) (𝑡,𝑗) (𝑡,𝑗) (𝑗) (𝑡) (𝑗)

(𝑛) (n) (𝑛)
where [𝑥 𝑦] are the coordinates of p(t) ; [𝑏𝑥 𝑏𝑦] is the position coordinates of Frame j in (𝑡) (𝑗)

(𝑛) (n) (𝑛)
Demonstration n; [𝑥 𝑦] are the coordinates of p(t,j) ; 𝐴 is the rotation matrix for Frame j in (𝑡,𝑗) (𝑗)

Demonstration n by Angle α(j)
(n) . This results in a new data set used for training TP-GMM constituting

of 𝑁 × 𝑇 path points. The resultant paths are shown in Fig. 7.

 (a) (b)

(a) Paths are aligned with respect to Frame 1; (b) Paths are aligned with respect to Frame 2. For each frame, a GMM

with K Gaussians (K=3 here) fitted to model the distribution of path points with respect to each frame.

Fig. 7: Examples of demonstrations and the GMM obtained for each frame constituting of K Gaussians each.

A GMM is a mixture of K Gaussians optimised to describe the distribution of path points in

demonstrations for each frame. Gaussians are calculated simultaneously for all frames in the process as

TP-GMM. Fig. 7 shows three Gaussians from each frame respectively modelling certain portions of

demonstration paths.

In the coordinate system of Frame j, Gaussian k (k ∈ ℕ {1, …, K}) is defined as N (μ(k,j), Σ(k,j), w(k)),

where μ(k,j) is the mean and Σ(k,j) is the covariance matrix of Gaussian k, and w(k) is the weight of Gaussian

k contributing to a GMM with respect to other Gaussians.

The covariance matrix Σ(k,j) is a 3x3 matrix describing the covariance between the two coordinates

and time step t of each path point. For example, Ctt is the variance of the dimension t. Ctx is the

covariance of dimension t with respect to dimension x. It is equal to Cxt, which is the covariance of

dimension x with respect to t. Other symbols in the following equation are defined in the similar means.

𝐶𝑡𝑡 𝐶𝑥𝑡 𝐶𝑦𝑡

𝛴(𝑘,𝑗) = [𝐶𝑡𝑥 𝐶𝑥𝑥 𝐶𝑦𝑥] (2)

𝐶𝑡𝑦 𝐶𝑥𝑦 𝐶𝑦𝑦

The direction and size of a Gaussian are described by the Eigen vectors [v1, v2] and Eigen values

[e1, e2] of Σxy (shown in Equation (3)), respectively. The Eigen vectors [v1, v2] and Eigen values [e1, e2]

are calculated in Equations (4) and (5).

𝐶𝑥𝑥 𝐶𝑦𝑥
= [] (3)𝛴𝑥𝑦 𝐶𝑥𝑦 𝐶𝑦𝑦

= 𝑒1𝑣1 (4)𝛴𝑥𝑦 𝑣1

= 𝑒2𝑣2 (5)𝛴𝑥𝑦 𝑣2

In Fig. 8, the Gaussian’s two axes have basis vectors [v1, v2], and v1 is the basis vector in the

direction of the Gaussian’s long axis. These vectors are scaled by the scalar values [e1, e2] to form the

size and shape of the Gaussian.

Fig. 8: The Eigen values and Eigen vectors of a Gaussian.

3.2 Training the TP-GMM

A GMM for Frame j is trained using an initialisation process then the Expectation Maximisation

(EM) algorithm (i.e., E-step and M-step).

Initialisation: Time-based initialisation is performed, and the path points of all demonstrations are

divided into K groups using the k-means algorithm. Gaussian k (k ∈ ℕ {1, …, K}) is calculated to model

the kth group of path points. After initialisation, the E-step and the M-step in the EM algorithm are

repeated iteratively until algorithm convergence.

(1) (n)E-step: Let p(t,j) be the series of points [p(t,j) , …, p(t,j)] for n ∈ ℕ {1, …, N}. The posterior

𝑘probability 𝛾(𝑡) of each path point p(t,j) given Gaussian k can be calculated as the following equation:

𝐽
𝑘 𝑗=1𝜔(𝑘) ∏ 𝑁(𝑝(𝑡,𝑗)|𝜇(𝑘,𝑗),Σ(𝑘,𝑗))

𝛾(𝑡) = (6)
𝐾 𝐽∑ 𝜔(𝑘) ∏ 𝑁(𝑝(𝑡,𝑗)|𝜇(𝑘,𝑗),Σ(𝑘,𝑗))k=1 𝑗=1

where 𝜔𝑘 is the weight of Gaussian k; 𝑁(𝑝(
(
𝑡
𝑛
,𝑗
)
)|𝜇(𝑘,𝑗), Σ(𝑘,𝑗)) is the probability density function of

Gaussian k, such that:
𝑇

1 −
(𝑝(𝑡,𝑗)−𝜇(𝑘,𝑗)) Σ(𝑘,𝑗)

−1(𝑝(𝑡,𝑗)−𝜇(𝑘,𝑗))

𝑁(𝑝(𝑡,𝑗)|𝜇(𝑘,𝑗), Σ(𝑘,𝑗)) = 𝑒 2 (7)
2

√2𝜋|Σ(𝑘,𝑗)|

(𝑘)
The posterior probability 𝛾 describes the contribution of Gaussian k when sampling the path (𝑡,𝑛,𝑗)

point p(t,j)
(n) . This value is used to update the parameters of each Gaussian in the next step.

M-step: In the separate GMM for each frame j, updated parameters {μ(k,j), Σ(k,j), w(k)} are calculated

for Gaussian k below:

𝑇 𝑘∑𝑡=1 𝛾(𝑡)𝑝(𝑡,𝑗)
𝜇(𝑘,𝑗) = 𝑇 𝑘 (8)

∑𝑡=1 𝛾(𝑡)

𝑇 𝑘∑𝑡=1 𝛾(𝑡)(𝑝(𝑡,𝑗)−𝜇(𝑘,𝑗))(𝑝(𝑡,𝑗)−𝜇(𝑘,𝑗))𝑇

Σ(𝑘,𝑗) = 𝑇 𝑘 (9)
∑ 𝛾(𝑡)𝑡=1

1 𝑇 𝑘𝜔(𝑘) = ∑𝑡=1 𝛾(𝑡) (10)
𝑇

The EM algorithm converges on Gaussian parameters when fitting of the Gaussian distributions on

path points is maximised. However, as can be noticed from the equations, the algorithm doesn’t

differentiate between path points that belong to different demonstrations. That is, path points from all

demonstrations are regarded equally, which leads to these issues: (1) There is no guarantee that a

Gaussian describes points from different demonstrations evenly; (2) There is also no guarantee that a

Gaussian does not end up describing a group of points belonging to the same demonstration, i.e.,

overfitting to a demonstration. This will be solved in the improved TP-GMM/R algorithm presented in

Section 4.

3.3 Reproducing Paths Using TP-GMR

TP-GMR is a regression process to reproduce a path given new task parameters. The time step t (t

∈ ℕ{1, …, T}) is the sequence order of a point along the path; therefore, it is taken as the input for the

regression process. GMR exploits the joint probability between the observed t and the unobserved [x,y]

of each point. For each Frame j, given a GMM made of K Gaussians and for each given time step t, a

new Gaussian N(μGMR(t,j), ΣGMR (t,j))) is calculated at every time step t in the GMR process (illustrated in

Fig. 9).

Fig. 9: Given the resultant GMM, K Gaussians from Fig. 7 are regressed to obtain T Gaussians for each time

step t. This is the process of TP-GMR.

In a new environment, the position bnew (j)=[bx, by] and Rotation matrix Anew (j) of Angle αnew(j) are

detected for Frame j. For every time step t, the Gaussians of Frame j is converted from the local

coordinate system of Frame j to the global coordinate system. Then, a product Gaussian is obtained by

combining the Gaussians from different frames using the following equation:

𝐽 𝑇𝑁(𝜇𝐺𝑀𝑅 (𝑡), Σ𝐺𝑀𝑅 (𝑡)) = ∏𝑗=1 𝑁(𝐴𝑛𝑒𝑤 (𝑗)𝜇𝐺𝑀𝑅 (𝑡,𝑗) + 𝑏𝑛𝑒𝑤 (𝑗), 𝐴𝑛𝑒𝑤 (𝑗)Σ𝐺𝑀𝑅 (𝑡,𝑗) 𝐴𝑛𝑒𝑤 (𝑗)) (11)

where bnew (j) is the position vector and Anew (j) is the rotation matrix for Frame j as detected in the

new environmental setup.

The points of a reproduced path are given by the mean values μGMR (t) (illustrated in Fig. 10). The

covariance values of the points, i.e., ΣGMR (t), reflects how flexible and adjustable the path is at time step

t, while it still respects the information learnt from demonstrations. Thus, this value has the potential to

be utilised to alter the stiffness of a cobot at time step t or to vary the position of the path point under

other optimisation considerations, but this is beyond the scope of this paper. For more mathematical

details about TP-GMR, please refer to Calinon’s paper [13].

(a) (b)

(a) The frames are in new positions. The regressed Gaussians for each frame are positioned in the space according to the

new position and orientation of the frames; (b) The series of product Gaussians 𝑁(𝜇𝐺𝑀𝑅 (𝑡), 𝛴𝐺𝑀𝑅 (𝑡)) for 𝑡 (t ∈ ℕ {1, …,
T}). The mean of these Gaussians is equivalent to a reproduced path point. In the example, t=1 and 200 are chosen.

Fig. 10: An example of generating a reproduced path using TP-GMR.

4. Methodology of the Improved TP-GMM/R Algorithm

4.1 Overview

Based on the TP-GMM/R algorithm, an improved TP-GMM/R algorithm is developed. The overall

framework entails the following steps: 1) Collecting key information in demonstrations, i.e., task

parameters (frames) and paths (refer to Section 3.1). A user provides demonstrations by dragging the

end effector of a cobot to create some trajectories from the start position to the end position of a task.

2) Training TP-GMM based on demonstrations (refer to Section 3.2). 3) Identifying orientation-less

frames (OLF) and oriented frames (OF). 4) Calculating rGaussians (ring Gaussians) for the OLFs. 5)

Upon being given new data for task parameters, converting the rGaussians of OLFs to Gaussians. 6)

Performing the TP-GMR algorithm to reproduce a path in a new scenario (refer to Section 3.3). The

improved TP-GMM/R algorithm over the “conventional” ones lies in Steps 3, 4, and 5, which are further

elaborated in the following. Fig. 11 illustrates the complete steps of the algorithms. As aforementioned,

to simplify representations and formulas, in this research, demonstrations are presented in a two-

dimensional Euclidean space for better explanation and illustration. The developed algorithms can be

naturally extended to the three-dimensional Euclidean space.

Fig. 11: The overall framework of the improved TP-GMM/R algorithm in this research.

4.2 Identifying OFs and OLFs

TP-GMM models demonstrations with respect to frames, which are defined by their positions and

orientations. A frame could be an OLF or an OF. To illustrate what an OLF is, it is useful to elaborate

what an OF is using an example presented in Fig. 12, in which a suction cup is used to pick up a ball

and place it into a cylindrical hole along a top-down direction. The frame associated with the end

position of placing the ball is an OF, which is associated with the rigid body of the cylindrical hole. The

geometric constraint of the direction restricts a portion of each demonstration with respect to it. Using

TP-GMM, the restricted portion of a demonstration is captured as a Gaussian to identify the associated

frame is either an OLF or an OF.

Before the identification of frames, the following should be conducted to pre-processing Gaussians.

Pre-processor: The Gaussian should encode points from all demonstrations

TP-GMM is designed to model patterns and trends in all demonstrations. That is, each resultant

Gaussian needs to provide information about the patterns and trends of all demonstrations. However,

one of the limitations of TP-GMM is that it does not have knowledge of which points belong to which

demonstration. That is, all points are regarded equally during TP-GMM training so that the algorithm

might generate Gaussians that are biased towards certain demonstrations over others. In some cases, it

might even make a Gaussian to over-fit a demonstration, as depicted in Fig. 13.

As described in Section 3, TP-GMM is trained using the EM algorithm. In every E-step, the

(n) (n)likelihood l(tk) of each point p(t) , from Demonstration n at time step t belonging to a Gaussian N(μ(k),

Σ(k)) is calculated. The calculation is conducted independently for each point, which means that the EM

algorithm does not account for which demonstration that point belongs to. This potentially allows

Gaussians to over-fit a particular demonstration. Based on this observation, it is essential to introduce

adjustments to the EM training algorithm to ensure each obtained Gaussian models points from all

demonstrations equally, to avoid such anomalies.

Fig. 12: An example of a task involving an OF.

(a) Result of TP-GMM depicting an anomaly

Gaussian over-fitting one demonstration

(b) Result of an adjusted TP-GMM in

which over-fitting is avoided.

Fig. 13: Anomaly Gaussian and the adjusted TP-GMM.

For time step t and Gaussian k, l(tk)
(n) are averaged over N demonstrations giving L(tk) is defined

below:

1 𝑁 (𝑛)
𝐿(𝑡𝑘) = ∑𝑛=1 𝑙(𝑡𝑘) (12)

𝑁

This step associates the likelihoods of the points of the time step t together. However, in reality,

(n) (n+1)point p(t) of Demonstration n might not be associated with point p(t) of Demonstration n+1.

Demonstrations might have slightly varying lengths and velocities, thus some points from different

demonstrations that are closer in the x-y space might have slightly different time steps t.

Therefore, the values of L(tk) are “blended” across t by using weighted average. For each Gaussian

k, a kernel of size 2S+1 is convolved over vector L(tk) across t. The vector L(tk) ∀ 𝑡 ∈ ℕ(1, … , 𝑇) is

padded with S zeros on each side to allow convolving the filter to the extremities. The information is

given below:

𝑘𝑒𝑟𝑛𝑒𝑙 = [𝑓1, … , 𝑓𝑆+1, … , 𝑓2𝑆, 𝑓2𝑆+1] 𝑤ℎ𝑒𝑟𝑒 𝑓𝑆+1−𝑚 = 1 −
𝑚

𝑓𝑜𝑟 𝑚 ∈ ℕ{0, … , 𝑆} (13) = 𝑓𝑆+1+𝑚 𝑆+1

For example, if S=3, kernel = [0.25, 0.5, 0.75, 1, 0.75, 0.5, 0.25]. Not using the kernel is equivalent

to setting S=0.

1 2𝑆+1𝐿(𝑡𝑘) = (∑𝑖𝑛𝑑𝑒𝑥=1 𝑘𝑒𝑟𝑛𝑒𝑙𝑖𝑛𝑑𝑒𝑥 𝐿(𝑡−𝑆−1+𝑖𝑛𝑑𝑒𝑥,𝑘)) (14)
1+𝑆

Furthermore, the value of likelihood l(tk)
(n) is adjusted by bringing it closer to the average L(tk) by a

(𝑛)
scale 𝛾 (Equation (14)). If 𝛾 is set to 1, then values 𝑙 (for n ∈ ℕ{1, …, N}) would be equal to L(tk).(𝑡𝑘)

If 𝛾 is set to 0, the values l(tk)
(n) would be left unchanged. Therefore, an intermediate value of 𝛾, i.e.,

𝛾 = 0.5, prevents over-fitting without enforcing rigid constraints.

(𝑛) (𝑛) (𝑛)
𝑙 = 𝑙 + 𝛾(𝑙 (15) (𝑡𝑘) (𝑡𝑘) (𝑡𝑘) − 𝐿(𝑡𝑘))

Thus, the resultant Gaussians have a tendency to model all demonstrations evenly, instead of over-

fitting towards one particular demonstration.

After the pre-processing, an OF can be identified using the following two criteria.

Criterion 1: The Gaussian should be narrow

In a Gaussian, assuming Eigen value e1 is greater than Eigen value e2, the greater the ratio 𝑟 =

𝑒1⁄𝑒2, the more stretched the Gaussian is (Fig. 8). A Gaussian is considered narrow if r is greater than

a threshold (trials show the 10 is appropriate for the threshold).

A narrow Gaussian indicates that the portions of demonstrations that it encodes are in restricted or

limited variability with respect to its corresponding frame. This criterion, when combined with the

following criteria, helps identify whether the orientation of that frame affects demonstrations, i.e. if the

frame is an OF.

Criterion 2: The Gaussian should stretch along the direction of demonstration paths

This criterion ensures that the Gaussian is not stretched over demonstration paths that are widely

apart such as illustrated in Fig. 14(a). Instead, the direction of change of time step t (signifying the

direction of demonstrations) should be parallel to the long axis of the Gaussian, such as illustrated in

Fig. 14(b).

(a) An example of a narrow Gaussian that does not

belong to an OF. The diagram shows that the

direction of the change of time step t is not parallel

to that of the Gaussian's long axis

(b) An example of a narrow Gaussian that belongs to

an OF. The diagram shows that the direction of the

change of time t is almost parallel to that of the

Gaussian's long axis

Fig. 14: An example illustrating Criterion 2.

The direction of change of time step t is given by the vector Ct = [Cxt, Cyt], where Cxt and Cyt are

components from the covariance matrix of the Gaussian. Cxt describes the effect of the x position of a

point on its time step t. The change in time step t signifies the flow on a demonstration, since the points

increase time step t incrementally along the demonstration. That is, the higher Cxt value is, the more the

change in the x coordinate affects the change in time step t. That means that demonstrations are more

tending to be parallel to the x axis. Similarly, the same applies for Cyt.. Therefore, the vector Ct = [Cxt,

Cyt] is indicative of the direction of the flow of demonstrations in the x-y space.

The direction of the long axis of the Gaussian is given by Eigen vector v1 given that Eigen value e1

is greater than Eigen value e2. Angle α between these two vectors Ct and v1 is calculated using their dot

product. To comply with the criterion, trials show that the angle α must be equal to 0 ±0.1 or π ±0.1.

Therefore, if a Gaussian fulfils the above two criteria, it is said the frame that the Gaussian is

associated with is an OF. Otherwise, the frame is an OLF.

4.3 Calculating rGaussians

No changes are made to the trained TP-GMM if frames are OFs. However, for OLFs, new

probability distributions are generated to model the demonstrations. The points of demonstrations

around OLFs are modelled in a new probabilistic distribution, as opposed to the “normal” Gaussian

used in the “conventional” TP-GMM/R algorithm. Since the frame is orientation-less, a given path point

is equally likely to occur around the frame. Therefore, a suitable Gaussian to describe the distribution

of points around an OLF would be an rGaussian, which is described as a Gaussian that has been spanned

around the OLF forming a ring (illustrated in Fig. 15).

Fig. 15: The rGaussian modelling around an OLF.

An rGaussian is computed below. For every time step t, the probability of a path point with respect

to the frame is described below:

2
(√𝑥2+𝑦2−μ𝑟)

1 −
𝑃𝑟(𝑥, 𝑦) =

2
𝑒 2𝜎𝑟2 (16)

√2𝜋𝜎𝑟

where [x,y] are the 2D coordinates of the path point relative to the frame, μr is the mean distance

between the point and the frame, and σr is the standard deviation of the distance between the point and

the frame.

To obtain μr and σr of every time step t, a TP-GMM that models radius r and time steps t is trained.

For example, take OLF j in Fig. 16(a) and five demonstration paths (N=5) around it. As previously

mentioned, each demonstration constitutes of T path points represented in time step t and the x-y position

coordinates with respect to Frame j. To generate the parameters for the rGaussian for Frame j at time

step t, the following steps are followed:

1) The x-y coordinates of the path points with respect to Frame j are converted into polar

coordinates. That is, the radius of a path point at time step t of Demonstration n is calculated

using the following equation:

2 2(𝑛) (𝑛) (𝑛)
𝑟 = √(𝑥) + (𝑦) (17)(𝑡,𝑗) (𝑡,𝑗) (𝑡,𝑗)

2) A GMM is trained on the 2D data [t, r(t,j)
(n)] for all t ∈ ℕ{1, …, T} and n ∈ ℕ{1, …, N}. This

means that K Gaussians are fitted to describe the change in the distance between OLF j and the

path points around it. Gaussian k is identified as Nr(μr(k,j), Σr(k,j)). For example, in Fig. 16(b),

K=3.

3) Gaussian regression is performed to obtain a radius mean μrGMR(t,j) and standard deviation

σrGMR(t,j) at every time step t.

(a) An OLF j and five demonstration paths. Each point p on a path has [x,y] with respect to Frame j. Moreover, it has a

(a) (b)

time step t depending on its sequence order in its path. The radius r is calculated as the distance between the frame and

the point; (b) Given radius values of all points from the demonstrations, a GMM is fitted to the radius-time data. Then,

regression is performed to obtain a mean μrGMR(t,j) and a standard deviation σrGMR(t,j) for each time t.

Fig. 16: Obtaining parameters of a rGaussian.

Finally, the resultant data, average μrGMR(t,j) and standard deviation σrGMR(t,j) for every time

step t, is used in the adjusted TP-GMR in Section 3.3 to reproduce paths in new settings.

4.5 Converting rGaussians to Gaussians

Given new positions of frames, paths should be reproduced using TP-GMR. As a part of TP-GMR,

a weighted sum is performed of Gaussians from different frames (refer to Section 3.1 for more details).

This step can only be performed on “normal” Gaussians due to their mathematical formulation.

Gaussians have a scalar x-y position as their mean, while the mean of the rGaussian is a function of x-

y coordinates. Therefore, rGaussians of OLFs are converted to Gaussians before performing TP-GMR.

Given an OLF, for time step t, the goal is to identify the closest point pclosest on its rGaussian

Nr(μrGMR(t,j), σrGMR(t,j)) to the Gaussians of the other frames at time step t. Finding pclosest is essential since

when the Gaussians of different frames are closer to each other, the generated path is more likely to

adhere to the demonstrations provided. The new Gaussian of Frame j at time t is going to have its mean

μGMR(t,j))=(μxGMR, μyGMR)(t,j) at pclosest=[x,y] and its covariance ΣGMR(t,j) equal to σrGMR(t,j). The Gaussians of

other frames could be Gaussians or rGaussians (Fig. 17(a)). For example, for a given time step t and

three frames, each frame has a Gaussian to describe the distribution of path points at time t with respect

to the frame. Assume Frame 1 is oriented, i.e., having a Gaussian, while Frames 2 and 3 are orientation-

less, i.e., their Gaussians are ring shaped. To convert Frame 2’s rGaussian, N r(μrGMR(t,2), σrGMR(t,2)), to a

Gaussian, N(μGMR(t,2), ΣGMR(t,2)), the distance d1,2 between Frame 2 and oriented Frame 1’s Gaussian’s

centre μt
1 is calculated. Then, the distance d3,2 between Frame 2 and orientation-less Frame 3 is

calculated. Assuming that d1,2 is less than d3,2, the closest point pclosest on the rGaussian Nr(μrGMR(t,2),

σrGMR(t,2)) to Gaussian N(μGMR(t,1), ΣGMR(t,1)) is identified. Finally, a Gaussian N(μGMR(t,2), ΣGMR(t,2)) is

formed with the coordinates of point pclosest as mean N{μGMR(t,2} and standard deviation N(ΣGMR(t,2))

equal to Nr(σrGMR(t,2)) (Fig. 17(b)). Once this process is repeated for all OLFs, TP-GMR will be

performed using the converted Gaussians. Table 1 provides the pseudo code for the mentioned process.

Table 1: Algorithm for converting ring Gaussians to normal Gaussians

Inputs
new new newNew positions b(j) =[bx,by](j) and orientations A(j) of Frame j ∈ ℕ {1, …, J}

Modelled rGaussians Nr(μrGMR(t,j), σrGMR(t,j)) of Frame j if j is orientation-less

Modelled Gaussians N(μGMR(t,j), ΣGMR(t,j)) of Frame j if j is orientated

Algorithm

For every orientation-less Frame j ∈ ℕ {1, …, J}

For every time step t ∈ ℕ {1, …, T}

For every Frame jother ∈ ℕ {1, …, J}–{j}

If frame jother is orientation-less
new newCalculate distance djother, j between frame positions b(jother) and b(j)

Else if frame jother is oriented

Calculate distance djother, j between frame position b(j)
new and Gaussian mean

μGMR(t,j)

End

End

Let jmin be the frame for which djother, j is the least

If Frame jmin is orientation-less

Let point pclosest=[x,y] be point on Nr(μrGMR(t,j), σrGMR(t,j)) closest to Frame jmin

Else if Frame jmin is oriented

Let point pclosest=[x,y] be point on Nr(μrGMR(t,j), σrGMR(t,j)) closest to Gaussian mean

μGMR(t,jmin)

End

Let N(μGMR(t,j), ΣGMR(t,j)) be the Gaussian for Frame j at time step t

Set Gaussian mean μGMR(t,j))=[μxGMR, μyGMR](t,j) be equal to point pclosest=[x,y]

Set Gaussian covariance ΣGMR(t,j) be equal to Nr(σrGMR(t,j))

End

End

Output

Modelled Gaussians N(μGMR(j), ΣGMR(j)) of Frame j if Frame j is orientation-less

(a) The Gaussian 1 is found to be closer than Gaussian 3 than to rGaussian 2. The point P

that is at the shortest distance on rGaussian 2 to Gaussian 1 is identified.

(b) A new Gaussian is formed with its centre being the point P. Its standard deviation is

similar to that of the rGaussian.

Fig. 17: Transforming an rGaussian of Frame 2 to a normal Gaussian before performing TP-GMR.

5. Results and Discussion

5.1 Assessing the Performance of the OLF Identifier

The performance of the orientation-less frame (OLF) identifier depends on two main factors: 1) the

quality and variability of demonstrations provided, and 2) the ratio between K, the number of Gaussians

in the GMM, and the length of the orientation-consistent path. An orientation-consistent path is the

portion of demonstration paths that is dependent on the frame’s orientation (described further in Section

3.1). To assess the performance of the OLF identifier, its F1-score is calculated as the following

parameters are varied:

 Number of Gaussians (K): (3, 4)

 Number of demonstrations used in training (N): (4, 5, 6)

 Length of the orientation-consistent path (L): (0, 10, 15, 20, 25)% of the average distance

between the frames

For this experiment, 6 demonstrations were recorded for a path going from Frame 1, an oriented

frame (OF), to Frame 2, an OLF. The algorithm should classify each of the frames correctly as OLF or

OFs. The F1-score is calculated as follows:

2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝐹1 = (18)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

where,

𝑛𝑏 𝑜𝑓 𝑂𝐿𝐹𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑂𝐿𝐹𝑠
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (19)

𝑛𝑏 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑂𝐿𝐹𝑠

𝑛𝑏 𝑜𝑓 𝑂𝐿𝐹𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑂𝐿𝐹𝑠
𝑅𝑒𝑐𝑎𝑙𝑙 = (20)

𝑛𝑏 𝑜𝑓 𝑂𝐿𝐹𝑠

Table 1: F1 scores for 30 different runs of the OLF identifier with varied parameters.

N=4, K=3 N=5, K=3 N=6, K=3 N=4, K=4 N=5, K=4 N=6, K=4

L=0% 1 1 1 1 1 1

L=10% 0.67 0.67 1 1 0.67 1

L=15% 1 1 1 1 1 1

L=20% 1 0.67 1 1 1 1

L=25% 1 1 1 1 1 1

In Table 1, an F1 value of 1 indicated than Frame 1 was correctly identified as an OF and Frame 2

was correctly identified as OF=LF (except when L=0%, both frames are OLFs). The results show a

correlation between the three different parameters and the effectiveness of the OLF identifier. Based on

these correlations, the following recommendations are provided for a user to choose parameters that

increase the success chances of the OLF identification:

 Identifying false OLFs can happen when L is low compared to the number of Gaussians K.

During the initialisation process of TP-GMM, Gaussians are distributed equally across time

segments. For example, if K=4, the first Gaussian initially covers 25% of the path. Whereas for

K=3, the first Gaussian covers 33.3% of the path. During TP-GMM training, Gaussians shift

across time segments in order to accurately model the patterns and trends of the path. For

example, when L=15%, ideally after convergence, the first Gaussian should model the first 15%

of the path in order to accurately describe it. Correctly describing it means a Gaussian will

conform to the criteria mentioned in Section 3.1, thus increasing the chances of identifying the

frame as an OLF. Therefore, when L is much less than 100/K, there seems to be a higher chance

of identification error;

 Increasing the number of demonstrations results in a more varied set of demonstrations, which

in turn results in a more accurate and well fitted GMM. This decreases the OLF identification

false positives.

To further understand the effect of the kernel convolution that was designed to avoid overfitting,

the OLF identifier was executed without it. In Table 2, an F1 score of Inf indicates that Frame 2 was

mistakenly identified as an OF. That is because when the kernel convolution is not performed, some

Gaussians might over fit the path of a particular demonstration thus fulfilling two of the OLF identifier’s

criteria: narrow Gaussian and Gaussian that stretches along the path direction. Therefore, the kernel

convolution plays an important role in preventing this error.

Table 2: F1 scores for 30 different runs of the OLF identification algorithm with varied parameters.

N=4, K=3 N=5, K=3 N=6, K=3 N=4, K=4 N=5, K=4 N=6, K=4

L=0% Inf Inf Inf Inf Inf Inf

L=10% Inf 1 1 Inf 1 Inf

L=15% 1 1 1 1 1 1

L=20% 1 1 1 1 1 1

L=25% Inf 1 1 Inf 1 1

5.2 Qualitative Results on Synthetic Data

The improved TP-GMM/R algorithm (ours) was tested for several cases of synthesised data that is

similar to the standard data used to test the conventional TP-GMM algorithm devised by Calinon [13]

(also presented in Section 3). The task is for a point to move from Frame 1 (pink) to Frame 2 (green),

under varying conditions. The performance of the improved TP-GMM/R on the task was evaluated

when:

 Task 1: Both frames are oriented (OFs). Therefore, the path has to pass through Frame 1 and

Frame 2’s tips as seen in Fig. 18(a). The training parameters were: N=4, K=3. This is analogous

to a peg-in-hole task.

 Task 2: Frame 1 is oriented (OF) while Frame 2 is orientation-less (OLF). Therefore, the path

has to pass through Frame 1’s tips but can approach Frame 2 from any direction as seen in Fig.

18(b). The training parameters were: N=6, K=4.

 Task 3: Both frames are orientation-less (OLFs). Therefore, the path can approach Frame 1 and

Frame 2 from any direction as seen in Fig. 18(c). The training parameters were: N=6, K=4. This

is analogous to a pick-and-place task.

(a) Task 1 (b) Task 2 (c) Task 3

Fig. 18: Demonstrations (ground truth) for training the conventional and improved algorithms.

Table 3 shows the results of the path reproduction on the three tasks using the conventional TP-

GMM/R and ours, with and without kernel convolution.

Table 3: Reproduced paths of the three tasks using both algorithms with/without overfitting kernel convolution.

Task 1 Task 2 Task 3

Conventional TP-GMM/R

Improved TP-GMM/R

Conventional TP-GMM/R without kernel

Improved TP-GMM/R without kernel

For Task 1, the OLF identifier was successful in identifying the frames as OFs. Therefore, the

performances of the conventional and improved algorithms are identical, since both algorithms run

identically when the frames are OFs. The purpose of task 1 was only to show that the performances of

both algorithms are identical when all frames are OFs.

For Task 2, it can be noticed that the reproduced paths starting from the oriented Frame 1 respected

the orientation constraint (passing through the frame’s tip) for both algorithms. That means that even

when using ours where an OLF is present in conjunction with an OF, the constraints imposed by the

OF are not compromised. Moreover, using the conventional algorithm, the reproduced path seems to

attempt to approach the orientation-less Frame 2 from a fixed angle. This causes the path to have

awkward and unnecessary bends as well as sometimes fail to reach the target Frame 2. Using the

improved algorithm, this problem does not exist since the algorithm accounts for the orientation-less

nature of Frame 2 and approaches the frame successfully from the any angle.

For Task 3, it can be noticed than the reproduced paths by the improved algorithm are straighter

than those by the conventional algorithm.

Overall, the improved algorithm provides comparably satisfactory results with OFs and better

results with OLFs than the conventional algorithm. Quantitative comparison and assessment are

presented in Section 5.3.

5.3 Quantitative Results on Synthetic Data

Furthermore, the performances of both algorithms on Tasks 1, 2 and 3 was quantitatively compared

according to multiple metrics, i.e. smoothness, efficiency and reachability.

Smoothness. The generated path should ideally be smooth such that there are no sharp turns that

𝑑𝑦𝑡might jolt a cobot upon performing the path. Firstly, the derivative of the path at each point pt =
𝑑𝑥𝑡

[x,y]t of time step t is calculated. This derivative describes the slope of the path. Then, the second

𝑑𝑦𝑡𝑑()
𝑑𝑥𝑡derivative is calculated with respect to time. The second derivative describes the rate of change
𝑑𝑡

in the path’s slope, i.e., a high change would signify a sharp edge. For every point at which the second

derivative is higher than a threshold (e.g., 0.5), a “sharp” edge is noted. The smoothness score is given

based on the average number of sharp edges per path across the 100 reproductions. Therefore, the higher

the smoothness score, the more sharp edges there are, so that the less smooth the path is.

𝑑𝑦𝑡 𝑦𝑡+1−𝑦𝑡−1 = (21)
𝑑𝑥𝑡 𝑥𝑡+1−𝑥𝑡−1

𝑑𝑦𝑡 𝑑𝑦𝑡+1 𝑑𝑦𝑡−1𝑑() (−)
𝑑𝑥𝑡 𝑑𝑥𝑡+1 𝑑𝑥𝑡−1= (22)
𝑑𝑡 2

𝑑𝑦𝑡1 , 𝑑()⁄𝑑𝑡 > 0.5 𝑓𝑜𝑟 𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑎𝑡ℎ 𝑚 ∈ ℕ{1, … , 𝑀}
𝑑𝑥𝑡𝑒𝑑𝑔𝑒𝑠𝑚,𝑡 = { (23) 𝑑𝑦𝑡0 , 𝑑()⁄𝑑𝑡 ≤ 0.5 𝑓𝑜𝑟 𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑎𝑡ℎ 𝑚 ∈ ℕ{1, … , 𝑀}
𝑑𝑥𝑡

1 𝑀 𝑇𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 = ∑ ∑ 𝑒𝑑𝑔𝑒𝑠𝑚,𝑡 (24) 𝑚=1 𝑡=1𝑀

Efficiency. The path should also be efficient in length, i.e. as close to the shortest distance as

possible. The efficiency score is obtained by dividing the shortest distance sdm between the start and

end points by the distance dm covered by the reproduced path m. Therefore, the closer the score is to 1,

the closer the path is to the shortest distance.

𝑠𝑑𝑚 = √(𝑦1 − 𝑦𝑇)2 + (𝑥1 − 𝑥𝑇)2 (25)

𝑇−1𝑑𝑚 = ∑𝑡=1 √(𝑦𝑡 − 𝑦𝑡+1)2 + (𝑥𝑡 − 𝑥𝑡+1)2 (26)

1 𝑠𝑑𝑚𝑀𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = ∑ (27) 𝑚=1𝑀 𝑑𝑚

Reachability. The reachability shows the percentage of the path successfully passing in the start

and end points. The reason to consider this measurement is that even if a reproduced path is smooth and

efficient, if it does not achieve successful reachability, the task fails. Firstly, for each reproduction path

m, the distance d1m between the start frame [X1, Y1] and the start point [x1, y1] on the path is measured.

Similarly, the distance d2m between the end frame [X2, Y2] and the last point [x2, y2] on the path is

measured. For each value of d1m or d2m that is greater than an error tolerance value ε, the reachability

score is increased by 0.05. The error tolerance is manually chosen and can change depending on the

task and the scale/size of the task objects involved. Finally, the reachability score is averaged over the

total number of reproductions M.

𝑑1𝑚 = √(𝑦1 − 𝑌1)2 + (𝑥1 − 𝑋1)2 (28)

𝑑2𝑚 = √(𝑦2 − 𝑌2)2 + (𝑥2 − 𝑋2)2 (29)

Starting from Reach = 0 and iterating over the values of 𝑚 ∈ ℕ(1, … , 𝑀):

𝑅𝑒𝑎𝑐ℎ, 𝑑1𝑚 > 𝜀 𝑎𝑛𝑑 𝑑2𝑚 > 𝜀
𝑅𝑒𝑎𝑐ℎ = {𝑅𝑒𝑎𝑐ℎ + 0.5, 𝑑1𝑚 < 𝜀 𝑜𝑟 𝑑2𝑚 < 𝜀 (30)

𝑅𝑒𝑎𝑐ℎ + 1, 𝑑1𝑚 < 𝜀 𝑎𝑛𝑑 𝑑2𝑚 < 𝜀

𝑅𝑒𝑎𝑐ℎ = 𝑅𝑒𝑎𝑐ℎ × 100 / 𝑀 (31)

Table 4 shows the results of the above metric when the different versions of the algorithm where

run on Tasks 2 and 3.

Table 4: Metric values for test run on Tasks 2 and 3 for the conventional and improved algorithms.

Task/Algorithm Smoothness Efficiency Reachability (%)

Task 1

Conventional/Improved 43.5200 2.2506 99

Conventional/Improved

without kernel

43.8500 2.2368 96

Task 2 Conventional 46.55 1.499 62.5

Improved 29.95 1.456 100

Conventional without kernel 45.8300 1.5143 64

Improved without kernel 36.7800 1.4527 100

Task 3

Conventional 50.76 1.1123 62.5

Improved 29.78 1.0698 100

Conventional without kernel 53.6300 1.1207 70

Improved without kernel 31.8000 1.0628 100

From Table 4, the following can be concluded:

 It shows that the kernel convolution is still necessary for the success of the OLF identifier

algorithm as explain in Section 4.2.

 The improved algorithm reproduces smoother and straighter paths since the smoothness score

(the average number of sharp turns) is less in the improved algorithm than in the conventional

algorithm for both Tasks 2 and 3. Moreover, since the paths by the improved algorithm are

straighter, they are also more efficient.

 The improved algorithm provides a 100% success rate of reaching the target start and end

frames under the stated error tolerance ε=0.05. The success rate of the conventional algorithm

is considerably low when the tasks involve an OLF, i.e., Tasks 2 and 3.

Therefore, it can be concluded that the improved TP-GMM/R algorithm provides better or

comparable results to the conventional algorithm.

5.4 Simulation Experiments

To assess the results of the improved TP-GMM/R algorithm, the experiment on Tasks 1, 2 and 3

described below are conducted (also illustrated in Fig. 19). The effectiveness of the rGaussian at

modelling paths with respect to OLFs is examined. The simulation scenes are built in the CoppeliaSim

EDU. The tasks performed are the following:

Task 1 - Sorting: Given two circuit boards and two containers, the task of a cobot is to pick the

smaller circuit board and place it in a green container (Fig. 19 (a)). The containers are in fixed positions,

outside the camera’s view whereas the circuit boards vary positions and orientations. Task 1 shows that

ring Gaussians can cater for OF even if they are fixed in positions and out of camera view.

Task 2 - Handover: A cobot needs to pick up an object, in this case a circuit board, and hands it to a

human hand (Fig. 19 (b)). Both the hand and the circuit board vary positions and orientations.

Task 3 - Pick-and-place: A cobot is required to pick an object, i.e., a cube, and place it in a container

(Fig. 19 (c)). Both the cube and the container vary positions and orientations. This could also be

analogous to peg-in-hole or assembly tasks.

Larger circuit board

Smaller circuit

Green container

Circuit board
Container

Cube

Hand

(a) Task 1 (b) Task 2 (c) Task 3

Fig. 19: The task simulation scenes of: (a) Task 1, the sorting; (b) Task 2, the handover; and (c) Task 3, the

pick-and-place.

Six demonstrations were recorded for each task where the objects are in variable positions. Five of

these demonstrations were used for training, and one of them was used for validation. The task

parameters, i.e., frames, were detected and identified using our previous work, iTP-LfD [19]. The

following parameters were set as defaults during training and were not changed between tasks:

- Number of demonstrations M = 5

- Number of Gaussian components K = 4

Task 1 Task 2 Task 3

(a
)

(b
)

Fig. 20: The reproduced path for Tasks 1, 2 and 3 on the validation image when: (a) relevant frames are used in

the conventional TP-GMM algorithm and considered OFs (blue) by default, and (b) relevant frames are used in

the improved TP-GMM algorithm and identified to be OLFs (yellow) or OFs (blue).

Fig. 20 shows the results of the algorithms (the conventional or improved TP-GMM/R algorithms)

at different stages on the validation demonstration. Row (a) shows the reproduced path (white)

compared to the demonstration path (green) when the conventional TP-GMM/R algorithm is used and

the relevant frames are identified and considered oriented by default (the reason that the right sides of

Task 1 in Fig. 20 are not shown is because the entire space will become tight for the boards to move.

The benefit is that the iTP-LfD works even if an object of interest is out of view as long as it is fixed in

position). The resultant reproduced path fails to accomplish Task 3. Moreover, the reproduced path is

inefficient in accomplish Task 2. Row (b) shows the reproduced path (white) compared to the

demonstration path (green) when the improved TP-GMM/R algorithm is used and some of the relevant

frames are identified to be orientation-less. The reproduced paths all reach their target locations and are

smooth.

Table 5: The distances between the reproduced paths and the ground truth (validation demonstration) when all

frames are considered OFs or when frames are identified as OFs or OLFs. The results are shown when all lead

frames are used in TP-GMR or when only the relevant frames are used.

Task 𝑑𝑡𝑜𝑡𝑎𝑙 𝑑𝑠𝑡𝑎𝑟𝑡 𝑑𝑒𝑛𝑑

Task 1
All OFs 0.0127 0.0004 0.0412

OFs & OLFs 0.0113 0.0024 0.0346

Task 2
All OFs 0.0726 0.0039 0.0086

OFs & OLFs 0.0097 0.0078 0.0058

Task 3
All OFs 0.0510 0.0048 0.0747

OFs & OLFs 0.0248 0.0177 0.0121

Table 5 shows the distances between the reproduced path and the ground truth (validation

demonstration) in multiple situations:

• is the average distance between all the points on the reproduced path and the 𝑑𝑡𝑜𝑡𝑎𝑙

demonstration.

• 𝑑𝑠𝑡𝑎𝑟𝑡 is the distance between the first point on the reproduced path and the demonstration.

• 𝑑𝑒𝑛𝑑 is the distance between the last point on the reproduced path and the demonstration.

Each metric is calculated twice for each task:

• All OFs; when all the frames are considered to be oriented by default. That is, the normal

Gaussian is used for modelling the paths.

• OFs and OLFs; when the frames are identified to be either OFs or OLFs. That is, the rGaussian

is used to model the paths with respect to the OLFs.

The distance is highlighted to be:

• Green if the distance of the OFs and OLFs is less than that of the OFs alone. This means that

the improved TP-GMM/R algorithm increases the similarity between the demonstration path

and the reproduced path.

• Yellow if the distance of the OFs and OLFs is comparable to that of the OFs alone, i.e. with a

difference of less than 0.01.

• Red if the distance of the OFs and OLFs is higher than that of the OFs alone.

The results show that using rGaussians and the improved TP-GMM/R algorithm generally improve

or maintain the similarity between the demonstration and the reproduced path compared to using the

normal Gaussian alone.

6. Conclusions

The conventional TP-GMM/R algorithm intrinsically accounts for the frames’ orientations when

modelling task paths. However, some frames’ orientation is irrelevant to the task paths. Such frames

are called orientation-less frames. Using conventional TP-GMM/R with orientation-less frames leads

to sub-optimal results since the algorithm doesn’t capture the flexibility of the path with respect to the

frames’ orientations. In fact, the task reproduction will be biased towards what is observed in the

demonstrations. Therefore, in this research, a new Gaussian model, i.e., rGaussian, that capture the

flexibility of the paths with respect to the frame orientation, is presented. This new model is integrated

with the conventional TP-GMM/R algorithm as an improved TP-GMM/R algorithm to overcome

overfitting and better serve the purpose of TP-GMM/R. The designed algorithm is tested on a series of

simulation tasks of varied complexity and purpose, and it proved to perform better than the conventional

TP-GMM/R.

Currently, the improved algorithm is applicable to 2D planar motions. However, it is extendable to

3D by calculating 3D Gaussian mixture models and spherical Gaussians instead of rGaussians. We aim

to explore this extension more comprehensively in the future. Moreover, the performance of the

algorithm is highly dependent on the quality of the demonstrations provided. The user should ensure

that the demonstrations exhibit task variability where applicable to ensure a meaningful and functional

learnt task model. In future works, we aim to explore interactive demonstration building, in which an

algorithm intelligently suggests demonstrations for the user to perform to maximise variability. Finally,

we aim to run a user study to explore how easy and applicable for operators to use the algorithm to

program cobots. That is to go in line with the initial motivation of the research project, which is to

provide operators with an intuitive programming approach effective in teaching cobots flexible

behaviours in manufacturing.

Acknowledgments

This research is funded by Coventry University, Unipart Powertrain Application Ltd. (U.K.),

Institute of Digital Engineering (U.K.), and the National Natural Science Foundation of China (Project

No. 51975444).

References

[1] R. Müller, M. Vette and O. Mailahn, "Process-oriented task assignment for assembly processes

with human-robot interaction," Procedia CIRP, vol. 44, pp. 210--215, 2016.

[2] V. Villani, F. Pini, F. Leali and C. Secchi, "Survey on human-robot collaboration in industrial

settings: Safety, intuitive interfaces and applications," Mechatronics, vol. 55, pp. 248-266, 2018.

[3] F. Vicentini, "Terminology in safety of collaborative robotics," Robotics and Computer-

Integrated Manufacturing, vol. 63, Article ID 101921, 2020.

[4] S. E. Zaatari, M. Marei, W. D. Li and Z. Usman, "Cobot programming for collaborative

industrial tasks: An overview," Robotics and Autonomous Systems, vol. 116, pp. 162-180, 2019.

[5] Z. Zhu and H. Hu, "Robot learning from demonstration in robotic assembly: A survey,"

Robotics, vol. 7, no. 2, 2018.

[6] Z. Zhu, H. Hu and D. Gu, "Robot performing peg-in-hole operations by learning from human

demonstration," in Proceedings of the 2018 10th Computer Science and Electronic Engineering

(CEEC), 2018.

[7] D. Kent, M. Behrooz and S. Chernova, "Construction of a 3D object recognition and

manipulation database from grasp demonstrations," Autonomous Robots, vol. 40, no. 1, pp. 175-

192, 2016.

[8] L. Schwenkel, M. Guo and M. Burger, "Optimizing sequences of probabilistic manipulation

skills learned from demonstration," in Proceedings of the Conference on Robot Learning,

PMLR, 2020.

[9] K.Kronander, M.Khansari and A.Billard, "Incremental motion learning with locally modulated

dynamical systems," Robotics and Autonomous Systems, vol. 70, pp. 52-62, 2015.

[10] D. Vogt, S. Stepputtis, S. Grehl, B. Jung and H. B. Amor, "A system for learning continuous

human-robot interactions from human-human demonstrations," in Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2017.

[11] Z. Jia, M. Lin, Z. Chen and S. Jian, "Vision-based robot manipulation learning via human

demonstrations," 2020, arXiv:2003.00385.

[12] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016, pp. 64.

[13] S. Calinon, "A tutorial on task-parametrized movement learning and retrieval," Intelligent

Service Robotics, vol. 9, no. 1, pp. 1-29, 2016.

[14] S. Calinon, F. D-halluih, E. Sauser, D. Caldwell and A. Billard, "Learning and reproduction of

gestures by imitation," IEEE Robotics and Automation Magazine, vol. 17, no. 2, pp. 44-54,

2010.

[15] D. A. Duque, F. A. Prieto and J. G. Hoyos, "Trajectory generation for robotic assembly

operations using learning by demonstration," Robotics and Computer Integrated Manufacturing,

vol. 57, pp. 292-302, 2019.

[16] S. Hu and K. J. Kuchenbecker, "Hierarchical task-parameterized learning from demonstration

for collaborative object movement," Applied Bionics and Biomechanics, Article ID 9765383,

2019.

[17] S. Calinon, "Robot learning with task-parameterized generative models," in Proceedings of the

International Symposium on Robotics Research (ISRR), 2015.

[18] M. Kyrarini, M. A. Haseeb, D. Ristic-Durrant and A. Gräser, "Robot learning of industrial

assembly task via human demonstrations," Autonomous Robots, vol. 43, p. 239–257, 2019.

[19] Y. Gu, W. Sheng, C. Crick and Y. Ou, "Automated assembly skill acquisition and

implementation through human demonstration," Robotics and Autonomous Systems, vol. 99, pp.

1-16, 2018.

[20] S. E. Zaatari, Y. Wang, W. D. Li and Y. Peng, "iTP-LfD: Improved task parametrised learning

from demonstration for generic cobot programming," Robotics and Computer-Integrated

Manufacturing, vol. 69, Article ID 102109, 2021.

[21] K. Fischer, F. Kirstein, L. C. Jensen, N. Kruger, K. Kuklinski, M. V. a. d. Wieschen and T. R.

Savarimuthu, "A comparison of types of robot control for programming by demonstration," in

Proceedings of the 2016 11th ACM/IEEE International Conference on Human-Robot

Interaction (HRI), 2016.

[22] C. Yang, C. Zeng, P. Liang, Z. Li, R. Li and C.-Y. Su, "Interface design of a physical human–
robot interaction system for human impedance adaptive skill transfer," IEEE Transactions on

Automation Science and Engineering, vol. 15, no. 1, pp. 329-340, 2018.

[23] U. E. Ogenyi, G. Zhang, C. Yang, Z. Ju and H. Liu, “An intuitive robot learning from human

demonstration,” in International Conference on Intelligent Robotics and Applications, 2018.

[24] A. M. Ghalamzan and M. Ragaglia, “ Robot learning from demonstrations: Emulation learning
in environments with moving obstacles,” Robotics and Autonomous Systems, vol. 101, p. 45–56,

2018.

[25] A. Rogowsk and P. Skrobek, “Object identification for task-oriented communication with

industrial robots,” Sensors, vol. 20, no. 6, pp. 1773, 2020.

[26] A. Rivera, K. Spasovski, S. Athavale and R. Nunez, “Manufacturing part identification using
computer vision and machine learning”. Patent 20190244008, 2018.

[27] C. Paxton, A. Hundt, F. Jonathan, K. Guerin and G. D. Hager, “CoSTAR: Instructing
collaborative robots with behavior trees and vision,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2017.

[28] C. Perez-D'Arpino and J. A. Shah, “C-LEARN: Learning geometric constraints from

demonstrations for multi-step manipulation in shared autonomy,” in Proceedings of the 2017

IEEE International Conference on Robotics and Automation (ICRA), 2017.

[29] Z. Cao, H. Hu, Z. Zhao and Y. Lou, “Robot programming by demonstration with local human

correction for assembly,” in Proceedings of the 2019 IEEE International Conference on

Robotics and Biomimetics (ROBIO), 2019.

[30] C. Willibald, “Development of an interactive robot programming method,” Technische

Universität München, Master Dissertation, 2020.

[31] A. Sena, B. Michael and M. Howard, “Improving task-parameterised movement learning

generalisation with frame-weighted trajectory generation,” in Proceedings of the 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019.

[32] J. Vidaković, B. Jerbić, B. Šekoranja, M. Švaco and F. Šuligoj, “Learning from demonstration

based on a classification of task parameters and trajectory optimization,” Journal of Intelligent

and Robotic Systems, vol. 99, no. 2, pp. 261-275, 2019.

[33] J. Silverio, S. Calinon, L. Rozo and a. D. G. Caldwell, “Learning task priorities from
demonstrations,” IEEE Transactions on Robotics, vol. 35, no. 1, pp. 78-94, 2019.

[34] L. Rozo, S. Calinon, D. G. Caldwell, P. Jimenez and C. Torras, “Learning physical collaborative

robot behaviors from human demonstrations,” IEEE Transactions on Robotics, vol. 32, no. 3,

pp. 513-527, 2016.

[35] S. Calinon, F. Guenter and A. Billard, “On learning, representing and generalizing a task in a

humanoid robot,” IEEE Transactions on Systems, Man and Cybernetics, vol. 37, no. 2, pp. 286-

298, 2007.

View publication statsView publication stats

https://www.researchgate.net/publication/353573458

	Ring cs
	RAS2020Shirinerevisionfinalise

