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Abstract

This paper proposes a modular framework to generate robust biped locomotion

using a tight coupling between an analytical walking approach and deep reinforcement

learning. This framework is composed of six main modules which are hierarchically

connected to reduce the overall complexity and increase its flexibility. The core of

this framework is a specific dynamics model which abstracts a humanoid’s dynamics

model into two masses for modeling upper and lower body. This dynamics model

is used to design an adaptive reference trajectories planner and an optimal controller

which are fully parametric. Furthermore, a learning framework is developed based on

Genetic Algorithm (GA) and Proximal Policy Optimization (PPO) to find the optimum

parameters and to learn how to improve the stability of the robot by moving the arms

and changing its center of mass (COM) height. A set of simulations are performed

to validate the performance of the framework using the official RoboCup 3D League

simulation environment. The results validate the performance of the framework, not

only in creating a fast and stable gait but also in learning to improve the upper body

efficiency.
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1. Introduction

Developing a robust locomotion for bipedal robots is a challenging problem which

has been investigated for decades. Although several walking approaches have been

proposed and walking performance has considerably improved, it still falls short of

expectations in certain domains, such as speed and stability. The question is how is it

that humans can constantly change their direction when running, while keeping their

stability, but humanoids cannot?

To find a good answer for this question, we start by reviewing recently proposed

walking frameworks, consequently identifying four points of view related with the de-

velopment of a fast and stable gait. In the first point of view, the fundamental frame-

work’s core is a dynamics model of the robot, based on which the walking planner

and controller are designed. In this type of framework, to reduce the complexity of

developing a whole body dynamics model, some constraints are considered. Based on

these constraints, an abstract model is designed instead of a real whole body dynamics

model [1, 2, 3, 4, 5, 6, 7, 8]. It should be mentioned that several studies exist where

a whole body dynamics model is developed [9, 10, 11]. In the second point of view,

the core of the framework is a set of signal generators which are coupled together to

generate endogenously rhythmic signals [12, 13, 14, 15]. This type of framework is

called Central Pattern Generator (CPG)-based framework and is inspired by the neuro-

physiological studies on invertebrate and vertebrate animals [16, 17, 18]. These studies

showed that rhythmic locomotion like walking, running and swimming are generated

by CPGs at the spinal cord that are connected together in a particular arrangement.

In this type of framework, oscillators are assigned to each limb, typically to gener-

ate the setpoints (position, torque, etc.). Most humanoid robots have more than 20

Degrees of Freedom (DOF), therefore, adjusting the parameters of the oscillators is

not only difficult but also trial-intensive [19]. Moreover, there is not a straight way

to adapt sensory information to the oscillators. In the third point of view, walking

trajectories are generated based on a heuristic algorithm such as reinforcement learn-

ing (RL), genetic algorithm (GA), etc [12, 20, 21]. In this type of framework, the

walking trajectories will be generated after a training period which needs many sam-

2



ples and takes a considerable amount of time. During training, the framework tries

to learn how to generate the walking trajectories, subject to an objective function. In

the fourth point of view, the framework is designed by combining the aforementioned

approaches [22, 23, 24, 25, 19]. This type of framework is generally known as a hybrid

walking framework. It tries to leverage the different capabilities of each approach to

improve the final performance.

After studying all types of humanoid walking frameworks, to find the answer for

the question raised in the beginning of this section, let us look at how a baby starts to

walk. It starts by learning to stand for a few seconds. It then improves the stability

after many experiments, takes a few steps, learns how to maintain equilibrium while

moving; until finally, after a long process of trial and error, a robust walking behav-

ior emerges. This process shows how a human learns from previous experiences to

improve its walking performance. Based on these explanations, we believe that the

ability to learn from past experiences is the most important difference between human

walking and robot walking. Particularly, a robot should be able to learn how to gen-

erate efficient locomotion according to different situations (e.g., learning to recover its

balance from postural perturbations).

In the first two types of framework, the knowledge of robots is static, generally,

and does not evolve from past experiences. Therefore, they need to at least re-tune the

parameters to be able to adapt to new environments. In the third type of framework,

the learning process typically does not consider any dynamics model and is designed

based on learning from scratch, which is trial intensive and not applicable to a real

robot directly. Several research groups have been exploring how to learn from previous

experiences to improve stability and robustness. We believe the fourth type is the best

approach to develop a robust biped locomotion framework.

In this paper, we propose a tight coupling between analytical control approaches

and machine learning (ML) algorithms to develop a robust walking framework. Par-

ticularly, our contribution is a biped locomotion framework composed of two major

components — an analytical planner and controller; and a fully connected neural net-

work. The former is responsible for optimally controlling the overall state of the robot

based on an abstract dynamics model. It is also responsible for generating reference
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trajectories using dynamic planners with genetically optimized parameters and over-

come uncertainties up to a certain degree. The latter component — a fully connected

network — is optimized with reinforcement learning to control the arms residuals and

the COM height of the robot, thus improving the upper body efficiency, which impacts

the overall stability and speed of the robot.

The remainder of this paper is structured as follows: Section 2 provides an overview

of related work. In Section 3, the concept of ZMP will be used to define a specific

dynamics model which is composed of two masses. Afterwards, in Section 4, this

dynamics model will be used to design an optimal controller which is able to track the

walking reference trajectories, even in the presence of uncertainties. Section 5 explains

how the problem of generating walking reference trajectories can be decomposed into

five distinct planners. In Section 6, we will describe our learning approach and explain

its structure. The overall architecture of the proposed framework will be presented

in Section 7. In Section 8, three simulations scenarios will be designed to validate

the performance of the proposed framework. According to the simulation results, its

discussion and comparison with related work will be provided in Section 9. Finally,

conclusions and future research are presented in Section 10.

2. Related Work

Several of the proposed walking frameworks are based on learning approaches to

generate a stable locomotion for biped and multi-legged robots. Using ML algorithms

for biped locomotion has made remarkable progress recently. These studies showed

that using these algorithms on top of analytical approaches can improve robustness

and performance significantly [22, 19]. In the remainder of this section, some recent

proposed walking frameworks will be categorized and reviewed, focusing on those that

use ML algorithms to improve their performance.

2.1. Combination of Model-based Walking and ML algorithms

MacAlpine et al. [22] designed and implemented a learning architecture to enable

a humanoid soccer agent to perform omnidirectional walk. In their architecture, the
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overall dynamics of a humanoid robot is abstracted by a double inverted pendulum

model which is parameterized to be able to learn a set of parameters for different tasks.

The performance of their framework has been validated using a set of simulations that

have been designed using SimSpark 1, a generic physical multiagent system simulator.

The simulations results showed that their framework is able to learn multiple parameter

sets according to the specified tasks.

Kasaei et al. [19] proposed a closed-loop model-based walking framework. Their

dynamics model is composed of two masses that takes into account the lower and upper

body dynamics of the robot. Based on this dynamics model, they generate walking

reference trajectories and also designed an optimal controller to track these references.

They showed the performance of their framework by performing a set of simulations

using a simulated NAO robot in SimSpark. Moreover, they optimized the parameters

using GA and showed that the maximum forward walking speed of the simulated robot

reached 80.5 cm/s.

Carpentier et al. [26] proposed a generic and efficient walking pattern generator

which is able to generate dynamically consistent motions. They argued that their ap-

proach is fast enough to generate the trajectory of COM along with the angular mo-

mentum according to the given configuration of contacts while the previous step is

executing. Their method has been implemented on a real HRP-2 robot to demonstrate

its interest. The experiment results showed that their method is able to generate long-

step walking and climbing a staircase with handrail support.

Koryakovskiy et al. [27] proposed two approaches for combining a Nonlinear Model

Predictive Control (NMPC) with reinforcement learning to compensate model-mismatch.

The first approach deals with learning a policy to compensate control actions to mini-

mize the same performance measure as their NMPC. The second approach was focused

on learning a policy based on the difference of a transition predicted by NMPC and the

actual transition. They performed a set of simulations to show the feasibility of both

approaches and to compare their performances. The simulation results showed that the

second approach was better than the first one. Moreover, They deployed the second ap-

1http://simspark.sourceforge.net/
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proach on a real humanoid robot named Robot Leo to perform squat motion to validate

the performance of their approach.

2.2. Combination of CPG-based Walking and ML algorithms

Song et al. [28] designed CPG-Based Control walking framework which is able to

generate stable walking, even on unknown sloped surfaces. In their framework, the

walking patterns are generated based on CPG theory and a PI controller is designed

according to gyroscope and accelerometer information, allowing the adjustment of the

upper body’s tilt angle to keep the robot’s stability. They performed some experiments

using a real NAO humanoid robot and the results showed that the robot is able to walk

successfully on unknown slopes.

Missura et al. [29] proposed a walking framework which bootstraps a learning algo-

rithm with a CPG-based walk engine. Their framework is composed of a feed-forward

walking pattern generator, a state estimator and a balance controller. In their frame-

work, while the robot is walking, the balance controller adjusts the step size based on

the estimated error and also learns how to improve the walking performance by adjust-

ing the swing leg parameters. The performance of their framework has been validated

using a set of experiments on a real humanoid robot. The results showed that their

framework is able to keep the robot’s stability even after applying a severe push.

2.3. Combination of CPG-ZMP based walking and ML algorithms

Massah et al. [30] developed a hybrid CPG-ZMP controller to generate stable lo-

comotion for humanoid robots. In their approach, a set of non-linear oscillators were

used to generate walking trajectories and two controllers were developed to handle

small and large disturbances. They optimized the walking parameters using the differ-

ential evolution (DE) algorithm. The performance of their approach was demonstrated

in the Webots robot simulator using the NAO humanoid robot.

Liu et al. [31] proposed a CPG-ZMP based walking framework which is inspired

by biomechanical studies on human walking. In their framework, walking reference

trajectories are generated offline according to a point mass model. They used a PD con-

troller to modify the reference walking patterns to keep the robot’s stability. Moreover,
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their framework takes the vertical motion of the upper body into account to generate

almost stretched knees. The performance of their framework has been validated using a

set of experiments on a real NAO humanoid robot. The results proved the improvement

of walking stability and energy efficiency.

Kasaei et al. [25] developed a hybrid CPG-ZMP based walk engine for biped

robots. Their walk engine has a hierarchical structure and it is fully parametric. They

argued that this structure allows using a policy search algorithm to find the optimum

walking parameters. To show this ability, they used an optimization technique based

on Contextual Relative Entropy Policy Search with Covariance Matrix Adaptation

(CREPS-CMA) [32] to tune the walking parameters. The performance of their walk

engine engine has been validated by showing a fast and stable omnidirectional walk

using a simulated Nao robot in Simspark (59cm/s).

2.4. Learning to walk from scratch

Abreu et al. [21] applied a reinforcement learning algorithm to develop a fast and

stable running behavior from scratch. In their approach, the environment has been rep-

resented by 80 states and the action space is composed of 20 actions which were all

the joints of a simulated humanoid robot. They used the Proximal Policy Optimiza-

tion (PPO) based on the implementation provided by OpenAI [33]. The performance

of their approach was shown by learning sprinting and stopping behaviors. The results

demonstrated that both behaviors are stable and the sprinting speed stabilizes around

2.5m/s which was a considerable improvement.

Most of the aforementioned works combine a simplified model-based or a model-

free approach with ML approaches to improve the performance of their walking. In the

rest of this paper, we develop an optimal closed-loop walking pattern generator based

on a more complex dynamics model which takes into account the vertical motion of the

COM and the torso’s dynamics. Besides, we use the PPO algorithm which is one of the

most successful deep reinforcement learning methods, on top of our walking pattern

generator to improve its robustness and efficiency and also to provide more human-like

walking. An abstract overview of the proposed framework is depicted in Figure 1.
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Figure 1: An abstract overview of the proposed framework. The highlighted boxes represent functional

modules and the white boxes correspond to exchange data among them.

3. Dynamics Model and Stability Criteria

When designing a model-based walking, two general perspectives exist: (i) consid-

ering an abstract dynamics model which takes into account a trade-off between accu-

racy and simplicity; (ii) considering a whole-body dynamics model which is more ac-

curate but, not only is it platform dependent but also resource-intensive due to its non-

linear nature. In the rest of this section, the concept of Zero Momentum Point (ZMP)

will be reviewed and then used to define an abstract dynamics model of a humanoid

robot.

3.1. Zero Momentum Point

ZMP has been proposed in [34] and is currently one of the most successful metrics

in the walking literature. Particularly, it is a point on the ground where the ground

reaction force (GRF) acts to cancel the gravity and the inertia. Normal human walk-

ing is a periodic motion which can be decomposed into two main phases: (i) Single

Support (SS) and (ii) Double Support (DS) [35]. During SS phase, only one foot is in

contact with the ground and the other foot swings toward the next planned foot posi-

tion. In this paper, we used the ZMP as our main criterion for analysing the stability of

the robot while performing walking and it can be defined using the following equation:

px =
∑

n
k=1 mkxk(z̈k +g)−∑

n
k=1 mkzkẍk

∑
n
k=1 mk(z̈k +g)

, (1)
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where n represents the number of parts that are considered in the dynamics model,

mk is the mass of each part, (xk, ẋk), are the horizontal position and acceleration, and

(zk, z̈k) are the vertical position and acceleration of each mass, respectively.

3.2. Dynamics Model

Although considering a full body dynamics model is not impossible, it generally

needs powerful computational resources. Therefore, it is not affordable for real-time

implementation. To reduce the complexity of the model and its computation cost, the

overall dynamics is approximated by an abstract model. Kajita and Tani [1] proposed

an abstract model named Linear Inverted Pendulum Model (LIPM) which is a well-

known abstract model in the community. LIPM is popular because it provides a simple,

fast and efficient solution for walking dynamics that is suitable for real-time implemen-

tation. In this model, the overall dynamics of the robot is abstracted to a single mass

that is connected to ground via a massless rod. Additionally, this model assumes that

the vertical motion of the mass is restricted by a horizontally defined plane. According

to these assumptions and using a set of predefined footsteps, the trajectory of Center of

Mass (COM) can be obtained from a straightforward analytical solution which guaran-

tees long-term stability. It should be mentioned that based on these assumptions, the

equations in sagittal and frontal planes are equivalent and independent, therefore we

just derive the equation in the sagittal plane. The schematic of this model is depicted

in Figure 2(a). Using (1) and considering the LIPM’s assumptions, the COM’s motion

equation can be obtained as follows:

ẍc = ω
2(xc− px) , (2)

where ω =
√

g
z is the natural frequency of the pendulum, px and xc represent the

positions of ZMP and COM, respectively.

As aforementioned, LIPM tries to keep the COM’s vertical position at a predefined

position which causes the knee joints to be always bent. Indeed, walking with bent

knees consumes more energy and does not resemble human walking [36]. To release

this constraint and generate more energy efficient and human-like walking, a sinusoidal
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Figure 2: Schematics of the dynamics models: (a) LIPM; (b) LIPM with vertical motion of COM; (c) Pro-

posed model.

motion is assigned to the vertical motion of the COM:

zc = z0 +Az cos(
2π

StepTime
t +φ) , (3)

where z0 denotes the COM’s initial height, Az is the amplitude, and φ represents the

phase shift of the COM’s vertical sinusoidal motion. The initial value of these pa-

rameters are determined by an expert. Additionally, a controller can be designed to

adjust these parameters based on sensory feedback. Although the current version of

the dynamics model is able to provide fast and stable walking, it is not good enough to

generate a very fast walking. In fact, in some situations like when a push is applied,

the COM accelerates forward, and, as a consequence, the ZMP goes behind the Center

of Gravity (COG). In this situation, the robot tries to decelerate the COM by applying

a compensating torque at its ankles, keeping the ZMP inside the support polygon. The

compensating torque will be saturated once the ZMP is at the support polygon’s bound-

ary and, consequently, the robot is going to be unstable. In such situations, a human

moves its torso to keep the ZMP inside the support polygon and prevent falling.

To consider the effect of the torso’s motion in the dynamics model, another mass

should be added to the dynamic model. This modification changes the dynamics model

to be non-linear. Therefore, it does not have an analytical solution and it should be

solved numerically. Biomechanical analysis of human walking showed that the torso

motion can be represented by a sinusoidal function whose motion parameters are de-

pendent on the current robot state, and terrain conditions. The interesting point is that
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Figure 3: Overall architecture of the proposed controller.

if the torso is considered as a mass with a small sinusoidal movement relative to the

hip (sin(θto) = θto), the dynamics model can keep its linearity. The schematic of this

model is depicted in Figure 2(c) and it can be represented by the following equation:

ẍc = µ(xc +
αl

1+α
θto− px)−

αβ l
1+αβ

θ̈to

α =
mto

mc
, β =

zto

zc
, µ =

1+α

1+αβ
ω

2, xto = xc + lθto

(4)

where xto denotes the position of torso, θto, l are the angle of torso and length of torso,

mc,mto represent the masses of lower body and torso, zto, zc are the torso and COM

height, respectively.

4. Controller

In this section, an optimal controller will be designed for tracking the reference

trajectories to minimize the tracking error. To do that, Equation (4) will be represented

as a linear state space system. Then, this system will be discretized to be used in a

discrete-time implementation. Afterwards, we will explain how this system can be

used to design an optimal controller. The process of designing the controller starts by
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defining a linear state space system based on Equation 4:

d
dt


xc

ẋc

θto

θ̇to


︸ ︷︷ ︸

X

=


0 1 0 0

µ 0 µαl
1+α

0

0 0 0 1

0 0 0 0


︸ ︷︷ ︸

A


xc

ẋc

θto

θ̇to


︸ ︷︷ ︸

X

+


0 0

−µ
−αβ l
1+αβ

0 0

0 1


︸ ︷︷ ︸

B

 px

θ̈to


︸ ︷︷ ︸

u

y =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

C


xc

ẋc

θto

θ̇to


︸ ︷︷ ︸

X

.

(5)

The presented system is a continuous system and should be discretized for implemen-

tation in discrete time. To discretize this system, we assume that ẋc, θ̇to are linear.

Therefore px, θ̈to are constant within a control cycle. Thus, the discretized system can

be represented as follows:

X(k+1) = AdX(k)+Bdu(k)

y(k) =CdX(k)
(6)

where k represents the current sampling instance, Ad ,Bd ,Cd are the discretized versions

of the A,B,C matrices in (5), respectively.

According to this discretized dynamics model, an optimal closed-loop controller

can be designed to track the reference trajectories. This controller is a Linear-Quadratic-

Gaussian (LQG) which is composed of two main modules: a state estimator and an

optimal controller gain. The overall architecture of this controller is depicted in Fig-

ure 3. In the remaining of this section, each module will be explained and the overall

performance of the controller will be validated.

4.1. State Estimator

An LQG controller is able to track the reference trajectories even in the presence

of measurement noise. This controller uses a state estimator to cancel the effect of

uncertainties which can be raised because of many aspects like errors in modeling the
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Figure 4: Simulation results of examining the state estimator performance. In this simulation, the measure-

ments are affected by a Gaussian noise N (0, 6.25e-4) to simulate uncertainties. In these plots, light-blue and

light-red lines represent the measurements, solid-blue and solid-red lines are the estimated values, dashed

black lines represent the references.

system, sensor noise, backlash of the gears, etc. In particular, this controller uses a state

estimator to estimate the current state of the system according to the control inputs and

the observations.

In our target framework, we considered that the position of the joints is available

through measurements and the torso orientation can be obtained based on an Inertial

Measurement Unit (IMU) information which is mounted on the torso. Based on the

joint information and using a Forward Kinematic (FK) model of the robot, the current

configuration of the robot can be estimated. In this estimation, the support foot is

considered to be in flat contact with the ground, which is not always true. Therefore, the

whole body orientation with respect to the ground should be added to this estimation.

To do so, the IMU information is used to rotate the current configuration. Based on this

configuration, the COM position can be estimated at each control cycle and its velocity

can be obtained from its position’s derivative, followed by a first-order lag filter.

To validate the performance of this module, a simulation has been designed. In this

simulation, the observations are modeled as a stochastic process by applying additive

Gaussian noise to the measured states. The simulation results are shown in Figure 4.

According to the simulation results, the state estimator is able to estimate the states

perfectly.
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Figure 5: Simulation results of examining the controller performance in presence of noises. In this simula-

tion, the controller should track a references trajectories in presence of the noiseN (0, 6.25e-4).

4.2. Optimal Gain

As shown in Figure 3, the optimal control law is obtained using the following for-

mulation:

u =−K

x̃− xr

xi

 , (7)

where x̃, xr denote the estimated states and the reference states, respectively. xi is the

integration of error which is used to eliminate the steady-state error, K represents the

optimal gain of the controller that should be designed to minimize the following cost

function:

J(u) =
∫

∞

0
{zᵀQz+uᵀRu}dt , (8)

where z = [x̃ xi]
ᵀ, R and Q are positive-semidefinite and positive-definite matrices

which are determined by an expert. In fact, these matrices determine a trade-off be-

tween cost of control effort and tracking performance. Therefore, the performance of

the controller is sensitive to these matrices. It should be noted that there is a straight-

forward solution to determine K based on solving a differential equation named Riccati

Differential Equation (RDE).

To check the performance of the proposed controller, a simulation has been per-

formed. In this simulation, a set of reference trajectories has been generated and the

controller should track this reference in presence of measurement noise. The simula-

tion results are shown in Figure 5. The results showed that the controller is able to track

the references even when the measurements are affected by noise. In the next section,

we explain how the reference trajectories are generated.
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5. Reference Trajectories Planner

Our walking reference trajectories planner is composed of five sub planners which

are connected together hierarchically. The first level of this hierarchy is a footstep

planner which generates a set of foot positions based on given step information, ter-

rain information and some predefined constraints (e.g., maximum and minimum step

length, step width, distance between feet, etc.). To do so, we consider a state variable

to represent the current state of the robot’s feet:

s = (xl ,yl ,θl ,φl ,xr,yr,θr,φr) (9)

where xl ,yl ,θl ,xr,yr,θr are the position and orientation of the left and right foots, re-

spectively. φl ,φr represent the current state of feet which is 1 if the foot is the swing

foot and −1 otherwise. Walking is a period motion which is generated by moving the

right and the left legs alternating. Therefore, we parametrize a step action by a length

and an angle from the swing foot position at the beginning of steps a = (R,σ). Accord-

ing to the input parameters and the current state of the feet, an action should be taken

and the state transits to a new state, s′ = t(s,a). Afterwards, the current footstep will

be saved ( fi i ∈ N) and φl and φr will be toggled.

The second planner is the ZMP planner that uses the planned footstep information

to generate ZMP reference trajectories. In our target framework, the ZMP reference

planner is formulated as follows:

rzmp =



 fi,x

fi,y 0≤ t < Tss fi,x +
Lsx×(t−Tss)

Tds

fi,y +
Lsy×(t−Tss)

Tds
Tss ≤ t < Tss +Tds

, (10)

where fi = [ fi,x fi,y] are the planned footsteps on a 2D surface (i ∈ N), Lsx and Lsy

represent the step length and width, Tss, Tds are the single support and double support

durations, respectively, and t is the time which will be reset at the end of each step

(t ≥ Tss +Tds). The third planner is the swing leg planner which generates the swing

leg trajectory using a cubic spline function. This planner uses three control points that
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are the position of the swing leg at the beginning of the step, the next footstep position

and a point between them with a predefined height (Zswing). The fourth planner is the

global sinusoidal planner which generates three sinusoidal trajectories for the COM

height, the torso angles and the arm positions. The fifth planner is the hip planner

which uses the generated ZMP and torso trajectories to generate hip trajectory. Indeed,

these trajectories are used to determine the positions of the hip at the begging and the

end of step. Using these positions, Equation (4) can be solved as a boundary value

problem as follows:

x(t) = gx +
(gx− x f )sinh

(√
µ(t− t0)

)
+(x0−gx)sinh

(√
µ(t− t f )

)
sinh(

√
µ(t0− t f ))

, (11)

where gx = rzmpx −
αl

1+α
θto +

αβ l
µ(1+αβ ) θ̈to, t0, t f , x0, x f are the times and corresponding

positions of the hip at the beginning and at the end of a step, respectively. In this work,

Tds is considered to be zero, which means ZMP transits to the next step at the end

of each step instantaneously. Moreover, x f is assumed to be in the middle of current

support foot and next support foot ( fi+ fi+1
2 ).

6. Learning Framework

Our learning framework employs the Proximal Policy Optimization (PPO) algo-

rithm, introduced by Schulman et al. [37], which was chosen due to its success in

optimizing low-level skills concerning the NAO robot [21, 38, 39, 40, 41], and high-

level skills [42], where it outperformed other algorithms such as TRPO or DDPG. The

chosen implementation uses the clipped surrogate objective:

L(θ) = Êt [min(rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε)Ât ],

where rt(θ) =
πθ (at |st)

πθold(at |st )
, (12)

where Ât is an estimator of the advantage function at timestep t. The clip function clips

the probability ratio rt(θ) in the interval given by [1− ε,1+ ε]. This implementation

alternates between sampling data from multiple parallel sources, and performing sev-

eral epochs of stochastic gradient ascent on the sampled data, to optimize the objective

function.
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The clipping parameter ε was set to 0.2, as suggested by Schulman et al. [37]. Also,

as in the implementations published by OpenAI for the 3D humanoid environment [33],

the entropy bonus was not used, and the number of optimization epochs and batches

was set to 10 and 64, respectively. Some other hyperparameters were tuned using grid

search: step size (2.5×10−4); batch size (4096); and the Adaptive Moment Estimation

(Adam) [43] optimizer was set to use a constant scheduler. Finally, the Generalized

Advantage Estimation (GAE) [44] algorithm’s parameters — gamma and lambda —

were set to 0.99 and 0.95, respectively, accordingly to the ranges established by the

GAE’s authors as best-performing for 3D biped locomotion.

The policy is represented by a multilayer perceptron with two hidden layers of 64

neurons. The number of inputs, outputs, and the maximum number of time steps for

the optimization are dependent on the scenario and will be described in section 8.3.

The training session was parallelized to improve the optimization duration.

7. Overall Structure

In this section, the previously introduced planner and controller will be coupled

together to generate stable locomotion. To do that, we designed a modular framework

composed of six main modules. The overall architecture of this framework is depicted

in Figure 6. As shown in this figure, the walking process is controlled by a state ma-

chine which abstracts the process into four distinct states: Idle, Initialize, Single Sup-

port and Double Support. In this state machine, the transitions are triggered by a timer

that is associated to each state. Additionally, it can be triggered by an emergency sig-

nal generated according to the controller’s state in key moments, such as when a swift

move is necessary to regain equilibrium after a strong external perturbation. The Idle

state is the initial state in which the robot is standing in place and waiting to receive a

walking signal, which can be generated by an operator or a path planning algorithm.

That signal triggers the Initialize state, in which the walking parameters and configu-

rations are loaded from a data base. Afterwards, the robot is ready to walk by shifting

its COM towards the first support foot. The next state is triggered after a predefined

time. During Single Support State and Double Support State, the dynamics planner
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Figure 6: Overall architecture of the proposed framework. The highlighted boxes represent the main modules

and the exchanged information among them is represented by the white boxes.

generates the walking reference trajectories according to the generated walking signal

and the controller tries to track these references.

At the same time, the neural network receives a set of observations, including data

from inertial sensors, joints’ position and speed, target joint positions generated by the

LGQ controller, and the target turning rate. The network outputs residuals which are

added to the target joint positions before being fed to the simulator, which runs the next

simulation step. The neural network also adjusts the height of the COM, which is then

used by the dynamic planners in the following iteration.

In the next section, a set of simulations will be carried out to verify the framework’s

performance. Moreover, we will show how the planners parameters are optimized us-

ing a genetic learning approach, and what is the impact of the policy gradient algorithm

on the performance of the framework.

8. Simulations

In this section, we introduce a set of simulation scenarios to validate the perfor-

mance of the proposed framework. The simulation scenarios have been designed using
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Figure 7: Omnidirectional walk scenario. In this scenario, the simulated robot should follow the commands

that are generated by an operator: Green-dashed arrows show a set of commands that has been generated

for this simulation, including forward walk, side walk, diagonal walk and turning while performing diagonal

walking.

the official RoboCup 3D simulation environment which is based on SimSpark, a multi-

agent simulator. This simulator relies on the Open Dynamics Engine (ODE) to simulate

rigid body dynamics. The physics engine is updated every 0.02s. The simulator can

also be configured to update the physics engine just after receiving commands from all

agents. This greatly improves simulation speed and provides a better environment for

learning approaches.

8.1. Omnidirectional Walk

This scenario is designed to demonstrate the performance of the framework in pro-

viding an omnidirectional walk. The simulated robot starts from an idle state and fol-

lows a command comprising length (X), width (Y ) and angle (α) of the step, which is

determined by an operator. Note that the step time is constant and set to 0.2s. To avoid

discontinuity in the input command, a first-order lag filter is used, yielding a smooth

transition.

At the beginning of this scenario, the robot is walking in place and all the setpoints

are zero (X = 0.0m, Y = 0.0m, α = 0.0deg/s). At t = 10s, the operator sets the step

length (X = 0.05m) to generate forward walking; at t = 20s, the operator resets the

step length (X = 0.0m) and sets the step width (Y = 0.04m) to generate side walk-

ing; at t = 30s, while the robot is performing side walking, the operator sets the step
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length (X = 0.05m) to generate diagonal walking; at t = 40s, while the robot is per-

forming diagonal walking, the robot is commanded to turn right simultaneously, by

setting the step angle (α = 10deg); and finally, at t = 60s, all the set points are reset

and the robot starts walking in place. A set of snapshots of this simulation is depicted

in Figure 7. The simulation results showed that the framework was able to generate

omnidirectional walking according to the input commands. A video of this simulation

is available online at: https://www.dropbox.com/s/32gml9mtumps1np/

OmniWalkRC.mp4?dl=0.

8.2. Optimizing the Walking Parameters

This scenario is focused on optimizing the walking parameters to generate the

fastest stable forward walk. In this scenario, the robot is placed 10m away from the

halfway line and it should walk straight forward towards that line as fast as possible.

Initially, the best parameters were hand-tuned and, after several attempts, the maximum

walking speed did not exceed 53cm/s. Afterwards, based on the parametric nature of

the proposed planner and controller, a GA is used to optimize the parameters to im-

prove the walking speed. To do that, 8 parameters of the framework have been selected

to be optimized. These parameters are the step length (x), step width (y), step angle (α),

height of the swing leg (zsw), duration of a step (Tss), torso inclination T Ito, amplitude

of the COM (Az) and amplitude of the torso movement (Ato). In our optimization sce-

nario, the simulated robot should walk forward for 10 seconds and its performance will

be evaluated based on the following cost function:

f (φ) =−|δx|+ |δy|+ ε (13)

where φ represents the selected parameters, δX , δY are the distance covered in X-axis

and Y-axis, respectively, ε is used to penalize the robot when it falls during walk-

ing (ε = 100) otherwise it is zero. According to this cost function, the simulated robot

is rewarded for straight forward walk and it is penalized for deviation and falling. A

slow and stable forward walking (0.11m/s) is used as an initial solution to start the

optimization process. It should be noted that, each iteration has been repeated three
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Figure 8: Evolution of the fitness.

Figure 9: The optimization scenario and the results of an exemplary test after optimizing the parameters.

In this test, the simulated robot has been placed at a specific point which is 10m far from the center of the

field and it should walk towards the center as fast as possible. The results showed that the robot touched the

midline at t = 11.52s.

times and the average of the finesses was used to be sure about the walking perfor-

mance. The fitness values have been recorded for each iteration and the average fitness

values can be visualized in Figure 8. The average fitness value starts at around 85 and

after about 2000 iterations, it drops under 10, which is much better than the first so-

lution. The optimization has been executed for 6000 iterations. After optimizing the

parameters, the walking velocity reaches 0.866m/s, which is 61% faster than the best

hand-tuned solution. The best parameters found by the GA are shown in Table 1. The

optimization scenario and a set of snapshots of a test are shown in Figure 9. A video of

this simulated scenario is available online at: https://www.dropbox.com/s/
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Table 1: The best parameters.

Parameter Symbol Value

Step duration Tss 0.1274s

Step length x 0.09059m

Step width y 0.010086m

Step angle α −0.2899deg

Height of swing zsw 0.038m

Torso inclination T Ito 5.601deg

Amplitude of height of COM Az −0.004

Amplitude of torso movement Ato −1.9195

wm5y8dkekd2fnpo/OmniWalkRCOptimized.mp4?dl=0.

To compare the effectiveness of the dynamics model, this scenario has been re-

peated for the dynamics models (a) and (b) presented in Figure 2. To do so, the planner

and the controller have been adjusted according to the dynamics models and then their

parameters have been refined manually. Finally, this simulation scenario has been re-

peated to find the maximum forward speed of each model. The simulation results are

summarized in Table 2. The simulation results validated that the sinusoidal motion

of the height of COM improves the stability and allows the robot to move faster in

comparison with fixed COM.

Table 2: Summary of the results in the maximum speed scenario.

Dynamics model maximum speed

LIPM 0.590 m/s

LIPM + vertical motion of COM 0.630 m/s

LIPM + vertical motion of COM + Torso 0.866 m/s

8.3. Learning to Improve the Upper Body Efficiency

This scenario was designed to improve the efficiency of the walking gait in terms

of speed and stability during the most common walking patterns – forward walking

and turning. To mitigate the effects of the learning process on the maneuverability and
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Figure 10: Stability optimization scenario. The robot exploits the most common walking patterns – forward

walking and turning – to keep itself within a predefined squared area of side length 2m. When inside that

area, the robot walks forward as fast as possible. Otherwise, it turns at a random rate until it is directed

towards the area.

predictability of the walking trajectory, only the arms actuators and COM height were

optimized. The robot is initially placed in an arbitrary position within a squared area

of side length 2m, as depicted in Figure 10. It then starts walking forward with the

best parameters found in Section 8.2. When the robot steps out of the predefined area,

it starts to turn in either direction at a random rate |α| ∈ [30deg/s,60deg/s], until it is

facing the square again. This process is repeated continuously until the episode ends

with the robot falling (detected when its z coordinate drops below 0.3m). The fact that

the robot runs at full speed when changing direction, and that it needs to constantly

adapt to different turning rates makes this a very challenging scenario.

This optimization problem can be formalized as a Markov Decision Process (MDP)

– a 4-tuple 〈S,A, p,R〉 – where S denotes the set of states, A the set of possible actions,

and R the set of possible numerical rewards. The dynamics of the MDP is given by

the state-transition probability function p(s′|s,a) : S×S×A(s)→ [0,1] which gives the

probability of ending in state s′ given the current state s and action a.

The interaction between agent and environment is performed at discrete time steps

(t = 0,0.02,0.04, ...). The robot’s behavior was optimized by the PPO algorithm, using

67 observed variables, as listed in Table 3. The first parameter indicates the current
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Table 3: State space for the stability optimization.

Parameter Data size (× 32b)

α 1

Gyroscope 3

Accelerometer 3

Joints Position 20

Joints Speed 20

Controller Actions 20

turning rate. The inertial sensors (gyroscope and accelerometer) are both composed

of 1 variable per axis in a three-dimensional space. The position and speed of all

joints (excluding the head) is important to obtain a correct state representation, even

though the action space only controls a limited number of these joints. Finally, the joint

positions computed by the analytical controller are fed to the algorithm, and later added

as residuals to the output values. These positions can be used by the network to predict

the next analytical state, so that the produced residuals can be adjusted accordingly. In

preliminary tests, removing this information from the state space results in a loss of

performance between 5% and 20%, depending on possible action space combinations.

The action space encompasses four angle variables per arm (shoulder roll, shoulder

pitch, elbow yaw, elbow roll) and one variable to define the setpoint of the COM height

at each step. The arm joints angles are computed by summing the analytical controller’s

output to the neural network’s corresponding output. This forms a controller which

uses the planner’s arms control signals both as state data and action bias.

The objective of this scenario is to improve forward speed and stability at all times

(i.e., when moving forward or turning). The former requirement is met by reward-

ing the agent for stepping forward and not sideways, which can be numerically trans-

lated into the scalar projection of its velocity vector~v in the direction of its orientation

unit vector ~o. Let ~v = Pt −Pt−1, where Pt and Pt−1 are the current and previous posi-

tions of the robot, respectively. The partial reward to motivate forward speed is then

max(~v ·~o , 0), where · denotes the dot product. The minimum reward value is limited

to zero because walking backward or sideways is not worse than falling. The second
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Figure 11: Learning curves considering only the arms (blue) and considering arms and COM height (red).

requirement — stability — is motivated by a constant k, set empirically to 0.01, that

rewards the agent for staying alive. More precisely, it favors stability at the cost of

lowering the speed. The complete immediate reward can then be formulated as:

r = max(~v ·~o , 0)+ k. (14)

The learning algorithm was first applied to the arms actuators and later extended

to the COM height. Figure 11 shows the average return evolution when learning only

the arms (blue line) and after adding the COM height (red line). The former optimiza-

tion plateaued at around 20M time steps, and the latter at around 26M time steps. It

is important to note that the return obtained during the optimization was based on a

stochastic policy whereas in the following tests, we used the corresponding determin-

istic policy.

The results were divided into two sections: Original scenario – the robot is tested

in the same scenario used for learning (see Figure 10) and the analysis delves into the

same metrics used to define the reward function; Straightforward path – the robot’s

direction is constantly corrected to describe a linear path and the resulting behavior is

analyzed in terms of efficiency.

8.3.1. Original Scenario Results

The robot was evaluated with regard to stability and speed in the same scenario

where the learning algorithm was applied. Stability was measured by the episode

length, since it terminates once the robot falls to the ground. No time limitation was

imposed per episode. Speed was measured at every iteration and averaged at the end of
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Table 4: Original scenario results – average speed and duration

Parameter Ep. Length Mean ± SD (s) Speed Mean ± SD (m/s)

Baseline 5.1 ± 2.9 0.602 ± 0.027

Arms 51.6 ± 31.8 0.710 ± 0.037

Arms & COM height 148.2 ± 153.0 0.956 ± 0.060

the episode. Table 4 lists the average speed and duration results for 500 episodes. The

first line corresponds to the walk optimized in Section 8.2, which is used as a baseline.

The robot walks on average for 5.1 seconds with a standard deviation (SD) of 2.9s

before falling, generally on the first or second sharp change of direction. The mean

speed, from a stand-still position to the end of each episode, was 0.602m/s with a SD

of 0.027m/s.

After learning how to control the arms, the episode duration increased tenfold, on

average, and the mean speed rose to 0.710m/s. Most falls occur at an advanced stage

or during the initial sharp turns, hence the larger standard deviation. Adding the COM

height to the group of controlled variables increased the episode length to almost 15

times the initial value. When compared to the version without the COM height adap-

tation, this metric improved approximately 3 times. The mean speed rose to 0.956m/s,

a gain of almost 60% in relation to the baseline. In every episode the robot eventually

falls. As aforementioned, when the robot steps out of the predefined area, it starts to

turn with a random turning rate between 30 and 60deg/s, in either direction. Most

falls occur when approximating the upper limit or when the rotation direction is in-

verted after the robot enters and exits the predefined area in a short time (e.g. when

stepping over a corner of that area). A video comparing the baseline with the Arms &

COM height optimization is available online at: https://www.dropbox.com/

s/d1o74tpb2u6tr9f/OmniWalkLearningComparison_subtitle.mp4?

dl=0.

8.3.2. Straightforward Path Results

To evaluate the gait efficiency without taking stability into account, the displace-

ment of certain joints as well as the average speed were analyzed, as discussed later
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Figure 12: Mean speed comparison between the baseline (on the left) with the best optimization using the

Arms & COM Height controller (on the right). These values were averaged for 500 successful episodes,

where the robot runs for 12m in a straight line.

in this section. Due to the challenging nature of the learning scenario, and to provide

a fair comparison with the baseline algorithm, a simplified setup was developed. The

objective is to compare the baseline and best optimization algorithms while the robot

tries to describe a straight path of 12m length. The turning parameter is computed at

every iteration to maximize the path’s linearity using a reactive proportional controller.

After 12m, if the robot has not fallen, the episode is considered successful.

Figure 12 compares the baseline’s mean speed for the entire path with its improved

version using the Arms & COM height controller. In both cases, the speed values

were averaged for 500 successful episodes. In comparison with Table 4, the baseline

algorithm improved its mean speed from 0.602m/s to 0.704m/s. The Arms & COM

height optimization went from 0.956m/s to 0.958m/s, indicating that the robot has a

virtually constant speed, whether turning or not. The improvement of the optimized

version in relation to the baseline is about 36%.

The total angular displacement performed by certain groups of joints during a suc-

cessful episode was analyzed, as this metric provides a reasonable indicator of energy

consumption, considering that the actuators load is not disclosed by the server. Fig-

ure 13 compares the displacement sum of the arms joints with the displacement sum of

all robot joints (except for the head). This analysis was performed for different stages

of the linear path described by the robot. In the first meter, as expected, the robot

spends more energy while gaining momentum, and then it stabilizes. Considering only
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Figure 13: Angular displacement performed by all arms joints (sum) during an episode, averaged for 500

successful episodes (on the left). The linear path described by the robot was divided into sections of 1m,

which are represented by each bar. The baseline is represented by the dotted red bars while the optimized

version is represented by the solid blue bars. The same sort of analysis for all joints is depicted on the right.

the arms joints (shoulder roll, shoulder pitch, elbow yaw, elbow roll), the average angu-

lar displacement for the entire episode rose 49%. Despite this result, the same analysis

performed for all joints yields an increment of only 10%. Therefore, without consid-

ering stability gains, the ratio of relative speed improvement to relative displacement

increment in successful episodes is 3.6. In essence, the robot became much more en-

ergy efficient, as a small raise in energy consumption led to a considerably faster gait.

9. Discussion

Simulation results showed that the framework is able to generate a fast and stable

omnidirectional walk and improve its performance by learning how to control the arms

and the height of the COM. Indeed, the results showed that providing a tight coupling

between analytical approaches and ML improves the performance considerably. In the

remaining of this section, we point out the features and limitations of the proposed

framework and provide comparisons with the results of previous works.

9.1. Features

• Architecture: the modular architecture of the proposed framework provides

some important properties such as reducing the complexity and increasing the
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flexibility. In comparison with approaches that are based on heuristic meth-

ods [45, 46, 12, 13, 14, 15] or based on learning from scratch [21, 12, 20], our

framework is able to migrate to different humanoid platforms with small changes

to the control module.

• Computational efficiency: unlike the approaches presented in [6, 27, 47, 48, 49]

which are based on online optimization (e.g., MPC), our controller was designed

on top of an offline optimization algorithm. Therefore, it does not need powerful

computational resources and it can be deployed on any platform easily.

• Considering the upper body dynamics: most of the presented approaches in

the literature used LIPM as their dynamics model, mainly due to its linearity

and simplicity. Unlike LIPM-based approaches, we take into account the robot’s

upper body dynamics and we showed how this consideration helps to enhance

the stability and speed of the robot, while improving the energy efficiency as a

ratio of mean speed to total angular displacement.

• Release the height of COM constraint: LIPM-based approaches assume a

fixed vertical position for the COM. According to this assumption, the knee

joints have to be bent while the robot is walking, which is harmful for the knee

joints and causes additional energy consumption. Additionally, walking with

bent knees is not very human-like. We released this constraint by assuming a

sinusoidal movement for the vertical position of the COM. We showed that this

assumption not only cancels the explained limitations but it also improves the

stability.

• Performance: to have an entirely fair comparison, the performance of our frame-

work should be compared with other frameworks in the same scenario and simu-

lator. To do so, we took into consideration the maximum forward speed, and our

proposed framework provides a faster walk than the agents in [45, 50, 46, 25, 19]

and slower than [51, 21, 38, 41]. However, some of the faster examples are

solely focused on sprinting forward, without the basic ability of changing direc-

tion [21, 38, 41]. The comparison results are summarized in Table 5.
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Table 5: Comparison Results

Maximum speed Ability of changing direction

[51] 1.180 m/s YES

Proposed framework 0.956 m/s YES

[19] 0.805 m/s YES

[46] 0.770 m/s YES

[25] 0.590 m/s YES

[38] 3.910 m/s NO

[21] 2.500 m/s NO

[41] 1.340 m/s NO

[50] 0.550 m/s NO

[45] 0.510 m/s NO

• Learning flexibility: we believe that a humanoid robot should be able to learn

from experience, not only to create a new behavior but also to improve its skills.

Additionally, it should be able to reuse its knowledge in different scenarios.

Learning how to control the arms and the COM height had a positive effect under

different conditions in which the robot was not explicitly trained. The robot pre-

served its stability and speed when subjected to constant orientation adjustments

to move in a straight line. Furthermore, we kept the learning module on top

of the others to allow situations where generalization is not a conceivable solu-

tion. This is an improvement over learning from scratch approaches, as it builds

upon a logical and reliable initial solution. This analytical layer is less prone to

modeling errors than the learning layer, which is critical when transferring the

knowledge to a real robot. After tuning the control module to new conditions,

the neural network can be partially retrained by leveraging existing knowledge

of similar tasks. This architecture allows for a plethora of modular optimizations

aimed at stability, speed, energy efficiency, path optimization, context awareness

problems (including prevention and recovery), etc.

• Controller and Robustness: some approaches [22, 25] used a dynamics model

just to generate a feed-forward walk and did not consider any controller to track
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Table 6: Summary of the results in the maximum speed scenario.

Dynamics model ML algorithm maximum speed

LIPM GA 0.590 m/s

LIPM + vertical motion of COM GA 0.630 m/s

LIPM + vertical motion of COM+ Torso GA 0.866 m/s

LIPM GA+PPO 0.710 m/s

LIPM + vertical motion of COM GA+PPO 0.741 m/s

LIPM + vertical motion of COM+ Torso GA+PPO 0.956 m/s

the references. Other approaches that are based on learning from scratch [12, 20,

21] do not take into account any controller explicitly. Instead, they use a learning

algorithm to develop a controller implicitly. Unlike these approaches, we believe

that a robust controller is an essential module of a walking framework due to the

unstable nature of a humanoid robot. More specifically, when deploying the

framework on a real robot, using a closed-loop walking is the best approach

because it provides a better stability guarantee. Moreover, as we showed, the

ML algorithms can be used on top of this controller to improve its performance.

The summary of the results in the maximum speed scenario are presented in the

Table 6.

9.2. Limitations

• Swing leg dynamics: the legs of a humanoid robot are generally composed of

six joints and have non-negligible masses. In our dynamics models, the swing leg

is considered to be massless, which affects the controller performance. Taking

into account the inertia and mass of the swing leg can minimize tracking errors

and improve the controller’s performance [5, 52].

• Reality Gap: the disparity between reality and simulation is a matter of concern

when employing offline ML techniques. Learning to improve the upper body ef-

ficiency took between 20 and 26 million time steps. Other works have shown the

optimization of robotic tasks, such as squatting [27], using RL combined with

an analytical controller, in under 10M time steps. Haarnoja et al. also demon-
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strated that learning humanoid tasks from scratch can also be performed in about

the same period of time [53]. However, it must be noted that these approaches

employed distinct environments with different robots, directly influencing the

complexity of the task. Learning to run using the NAO robot in SimSpark can

take close to 200M time steps [38, 21]. Nevertheless, 20-26 million time steps

can still be characterized as poor sample efficiency, as it takes a considerable

amount of time and must be performed in a simulated environment. The gap

between both worlds largely affects the transferability of knowledge to the real

robot. Despite the scientific community’s considerable effort to reduce this gap,

it remains an issue when dealing with intricate robot models. Additionally, it

is not possible to learn directly on the real robot due to the high potential of

mechanical damage.

10. Conclusion

In this paper, we have tackled the problem of developing a robust biped locomotion

framework by proposing a tight coupling between an analytical control approach and

a reinforcement learning approach. The overall architecture of the framework was

composed of six distinct modules which were hierarchically structured. We abstracted

the overall dynamics of a humanoid robot into two masses. Then, we used the ZMP

concept and some assumptions to represent this dynamics model as a linear state space

system. The system was composed of four states and we explained how it can be used

to plan and control the walking reference trajectories. Particularly, the planner was

composed of five sub planners and the controller was formulated as an LQG controller,

which is not only robust against uncertainties but also provides a promising solution

using an offline optimization. We analyzed the performance of the controller in the

presence of uncertainties using simulations and the results validated its performance.

Moreover, we illustrated how the parametric nature of the framework allows us to use

the PPO algorithm on top of an analytical control approach to improve the performance

of the framework. Finally, the performance of the proposed framework was validated

in several simulated scenarios. The first two scenarios were focused on examining
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the ability of the framework in generating an omnidirectional walk and finding the

maximum velocity of the forward walk. The third scenario was designed to assess

the capability of the learning module in improving the framework’s performance. The

robot learned how to move its arms and COM height in order to improve the stability,

speed and energy efficiency. This limited action space enabled the robot to learn how

to walk without falling for much longer periods (almost 15 times longer), while also

improving the speed by 60% when walking forward or turning.

As future work, we would like to design a more accurate dynamics model by con-

sidering the mass of the swing leg to improve the framework’s performance. Addition-

ally, we would like to extend our framework by adding another module to handle the

emergency conditions based on learning a set of specific actions.
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