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Abstract In this paper we present an integrated robotic sys-
tem capable of participating in and performing a wide range
of educational and entertainment tasks, in collaboration with
one or more children. The system, called ChildBot, features
multimodal perception modules and multiple robotic agents
that monitor the interaction environment, and can robustly
coordinate complex Child-Robot Interaction use-cases. In
order to validate the effectiveness of the system and its in-
tegrated modules, we have conducted multiple experiments
with a total of 52 children. Our results show improved per-
ception capabilities in comparison to our earlier works that
ChildBot was based on. In addition, we have conducted a
preliminary user experience study, employing some educa-
tional/entertainment tasks, that yields encouraging results
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regarding the technical validity of our system and initial in-
sights on the user experience with it.
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1 Introduction

Recently, robotic systems entailing Human-Robot Interac-
tion (HRI) at their core have been gaining momentum not
only in research, but also in everyday life. Indeed, such
robotic platforms have been entering many different aspects
of human lives [25], e.g. rehabilitation [47,30], nursing or
personal care [24], education [43], and entertainment [57].
In order to achieve a high level of naturalness that resem-
bles human-to-human interaction, robots need to have the
ability to perceive and understand the different modalities
that people use for communication such as speech or body
movements [56,36].

The majority of existing social robotics systems present
two major deficiencies: First, they usually incorporate only
specific modalities, forcing the users to adapt to the way the
system perceives the environment, instead of the opposite.
Secondly, they are developed and designed for specific ap-
plications and tasks.

A natural interaction involves the creation of smart adap-
tive integrated robotic systems capable of multitasking, and
with a wide range of perceptual and actuation abilities. An
HRI system that would be capable of multitasking, encour-
ages users to design multiform interactive applications that
can maintain the interest of the participants undiminished.
This is especially important when the participants are chil-
dren, in the context of education and entertainment (edu-
tainment). In addition, systems leveraging multiple percep-
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Fig. 1 Schematic overview of the ChildBot system during Child-Robot Interaction. The multi-modal information of the child’s action is received
through a network of sensors placed around an interaction area. The perception system processes it and extracts high-level information about the
context of action. Based on this, the behavior generation module decides and controls the robotic agents.

tual modalities allow the users to express themselves in their
preferred communication means.

One of the difficulties we have to tackle in order to
achieve the above, is the fact that commercial social robots
have different capabilities, e.g., the NAO [4] robot is capa-
ble and adept in body movements, but incapable of facial
expressions, while Furhat [3] can present a large variety of
facial expressions, but can not move outside its installed
space. In other cases, robots such as Zeno [5] are capable
of movements and facial expressions, but they are not adept
at both (Zeno’s body movement lacks in comparison to
NAO). Additionally, each social robot has different sensors,
constraining the user to specific communication channels.

Motivated by the above, in this work we present an inte-
grated robotic system that can be used for multiple edutain-
ment applications, called ChildBot. To achieve this versatil-
ity, ChildBot incorporates: (i) multiple sensors and percep-
tion modules that allow the user to communicate with the
robots via multiple channels, and (ii) multiple social robots,
leveraging each other’s strengths while diminishing their in-
dividual weaknesses.

An overview of the proposed system can be seen in
Figure 1. ChildBot is developed using a Sense-Think-Act
paradigm [22] and is indoors based, allowing us to employ
external sensors that are arranged throughout a “smart
space” where the interaction takes place. Robot-external
sensing can both overcome common HRI problems such
as occlusions, and also allows the fusion of different data
streams, improving robustness and performance of the
different perception modules. This way we also achieve per-
ception of the interaction in a robot-independent fashion and
bypass limitations of individual robotic systems sensing. In
addition, this robot-agnostic architecture can easily accom-
modate new robots in the loop. The system coordinates a
complex and continuous procedure that is required from the
moment the child acts until the moment the robot responds

and vice versa. Specifically, multi-modal information flows
from the sensors (Sense) to the perception modules. Then,
high-level information about the context of this action is
extracted, and the appropriate response/action is decided
(Think). Finally, the system transmits the message to a
robotic agent (Act).

To showcase the versatility and capabilities of the inte-
grated system, we have designed five different edutainment
use-cases. These use-cases are indicative and have been de-
signed in order to exploit different components of the sys-
tem, showcasing the large variety of applications that can
be accommodated with ChildBot. The data collected by a
pool of 52 children, while playing the aforementioned use-
cases with the robots, allow us to objectively evaluate the
performance of each module of the ChildBot system regard-
ing its perception capabilities (accuracy-wise). Furthermore,
our initial evaluation on the user experience shows encour-
aging results towards a complete well-designed subjective
evaluation in the future.

ChildBot is an improved integrated extension of a set
of preliminary conference publications by the authors on
specific problems of multi-robot perception and interaction,
and it presents a wide-application Child-Robot Interaction
(CRI) system able to manage multitasking interaction au-
tonomously and envelop a plethora of purposes, such as edu-
tainment [59,58,15,27]. The work presented here has inte-
grated the previous works under a single and modular three-
layer multi-robot architecture [22], includes improved per-
ception modules, and is evaluated extensively on a larger
corpus that contains spontaneous children data, more repre-
sentative of CRI. To summarize, we highlight the most im-
portant contributions of the presented work:

– An integrated system for HRI has been designed and
implemented by leveraging multiple robotic agents.
The modular three-layer system architecture integrates
multiple sensors, numerous perception modules and
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different robotic agents, and culminates into a multi-
application autonomous HRI system.

– Perception modules for multimodal scene understand-
ing have been developed and adjusted in specific CRI
conditions by incorporating novel approaches and ex-
tensive studies. Audio-visual active speaker localization,
6-DoF object tracking, visual activity recognition, and
distant speech recognition are necessary for analyzing
and tracking human behavior over time in the context of
their surroundings. The perception modules of this sys-
tem have been developed according to and sometimes
exceed the state-of-the-art of the constituent technolo-
gies, as shown by our objective evaluations.

– Spontaneous children data during CRI have been col-
lected and used for system evaluation. Indicative use-
cases have been defined and implemented in order to
showcase the large range of applications that ChildBot
can be used for. The data collected have allowed for an
extensive objective evaluation of the ChildBot capabili-
ties during real use-case scenarios, as well as a prelimi-
nary user experience study with promising results.

2 Related work

Many research projects have aimed at developing robots
both in ambient assisted living environments [38], as well
as in well-defined and constrained environments e.g., in
bathrooms for assistive bathing [71]. Some robotic agents
act as companions to improve quality of life, assist with
mobility, or complete household tasks [19,42], while others
are designed to help people live independently and serve
themselves when they face difficulties due to disabilities or
old age [33,60]. Nevertheless, the intervention of robots in
human life remains a controversial issue [54,20,50,66].

Regarding educational CRI applications, many previous
works focus on the theoretical exploration of different social
robot behaviors in the learning experience, without delv-
ing deeply into the technical aspects, but mostly using off-
the-shelf solutions for environment perception. An imme-
diate result of this is the fact that the interaction space is
constrained. In [34], a study took place that involved chil-
dren playing an educative mathematics scenario with a NAO
robot. In [52], Saerbeck et al. studied the effect of social
robot behavior on the learning performance of the subjects,
in the context of a language learning task. Similar studies
can be found in [26], while in [49] a humanoid robot was
employed to interact with autistic children.

Notable works that have also focused on the robot per-
ception aspect of CRI include the ALIZ-E project [8], where
a complete framework was developed for multimodal CRI,

and the NAOTherapist platform [46] for upper-limb reha-
bilitation sessions for children with physical impairments.
A similar platform was built in the INSIDE project [39],
where a multimodal perception system was developed to al-
low autonomous interaction of a NAO robot with ASD chil-
dren. Other similar projects include EMOTE [53], where
the perception system focused mostly on visual communi-
cation, L2TOR [9], where a NAO robot capable of multi-
modal perception assumed the role of a second-language tu-
tor, and the EASEL [62] educational CRI project. Esteban
et al. [16] built a multi-sensor system for autonomous in-
teraction of a NAO robot with autistic children to perceive
different features during an interaction such as gaze estima-
tion, action recognition, and object tracking. The capabil-
ities of the system were sufficient for the presented tasks,
but limited for a more generic interaction, and the system
lacked in real use-case evaluation. In [37], Marinoiu et al.
introduced an action and emotion recognition system by ex-
ploiting 2D and 3D pose estimation methods and evaluated
it in a large-scale dataset of robot assisted therapy sessions
of children with autism. The ANIMATAS [1] project is also
worth mentioning, focusing on training researchers to ad-
vance human-machine interaction.

A general review of the perception methods used for
HRI in social robots until 2014 is presented in [68]. Three
important issues associated with perception systems are
highlighted there: the need for developing perception sys-
tems in real environments with real data, the requirement
of creating good representations in accordance with the
context of the interaction, and the demand of combining an
efficient perception system with reasonable robot responses
in order to create pleasant HRI experiences. Some works
that attempt to develop perception systems for HRI are
Zaraki et al. [70], where low-level and high-level features
are combined to detect a range of human-relevant features
that appear during a real use-case procedure, and Valipour et
al. [61], where a novel paradigm for incrementally improv-
ing visual perception of a robot during an HRI experience is
proposed.

Aiming to increase performance, flexibility, and robust-
ness, ChildBot consists of multiple robots and multimodal
perception modules designed for and adapted to children,
and thus allows interaction in a relatively large space for a
variety of edutainment tasks. Parts of the ChildBot system
have been based on our preliminary previous works, where
an early design and development was presented. More
specifically, a preliminary setup and evaluation of a basic
architecture in a few use-cases has been presented in [59],
while [58] has focused mainly on multi-party interaction
via speech. In [15] the techniques for multi-view fusion of
action recognition have been explored more in depth, and
finally, [27] has focused on the development of tracking
algorithms, essential in interactive tasks between a child
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and a robot. In all these previous works, a limited and
specific functionality of the system has been investigated,
and evaluation has been carried out employing data ac-
quired in a strictly controlled annotation procedure, and not
spontaneous data from real interaction.

The current paper integrates all these different modules
from previous works under the same, unified system, using
a three-layer architecture. The modules can now work both
in isolation and in synergy, and due to the system modular-
ity, the addition or removal of a component is an easy task.
Moreover, apart from the integration, a lot of effort has been
dedicated to improving performance of the perception mod-
ules. For this reason, more sensors have been included, and
ablation studies have been carried out, in order to validate
the plausibility of the employed modules. Most importantly,
contrary to all other previous works, the modules evaluation
has been performed employing real-time spontaneous chil-
dren data (see Sec. 4.2), which are more challenging.

3 System Overview

3.1 Perception System

This section focuses on the ChildBot perception system
which provides a global and effective supervision of a
progressing CRI. A core audio-visual processing technol-
ogy acts as eyes, ears, and brain for the robots in use by
incorporating different recognition and tracking modules.
By analyzing and tracking human behavior in the context of
a structured CRI experience, we target to establish common
ground and share goals with the children.

The main overview of the robot-agnostic perception sys-
tem can be seen in Figure 2, consisting of three main mod-
ules: Audio-Visual Active Speaker Localization and 6-DoF
Object Tracking, Visual Activity Recognition, and Distant
Speech Recognition. Four Kinect V2 sensors capture a de-
tailed raw data representation of the environment and feed
it into the perception system. The Kinect V2 sensors have
been placed at different positions and viewing angles, in or-
der to sufficiently cover the entire environment, tackle occlu-
sion problems (self or from objects), as well as offer multi-
ple viewpoints for visual perception. The raw data that are
recorded from the sensors include both RGB and Depth, as
well as audio from the microphone array (4 microphones) of
each Kinect. The spatial arrangement of the sensors is pre-
sented in Figure 3(a). Subsequently, we present an overview
of each perception module:

Audio-Visual Active Speaker Localization and 6-DoF
Object Tracking: In order to have a natural interaction be-
tween robots and humans, robotic awareness of active
speaker localization, as well as important object detection
and tracking are essential. An effective audio-visual method
for active speaker localization in HRI scenes has been

developed to track the children’s body, by leveraging audio
information in addition to visual information. Moreover, a
module for object recognition that can detect multiple toys
based on their colors and size of color regions has been
incorporated in the system. Finally, a 3D tracking method
has been designed for providing both the 3D location and
the orientation of rigid objects.

Visual Activity Recognition: A visual frontend has
been developed for recognizing hand gestures that accom-
pany everyday communication, as well as more general
body movements that convey specific meanings. The
multiview visual activity recognition module is able to
successfully recognize the child’s activity, while wandering
around the room and interacting with the robots and objects.
The gesture recognition version of the module aims at
identifying hand gestures that deliver a conceptual message
during the interaction, such as waving at the robot hello or
asking the robot to come closer. On the other hand, the ac-
tion recognition version targets child body movements that
form complex meanings, such as pantomimic movements.

Distant Speech Recognition: A multisensory dis-
tant speech recognition (DSR) system in Greek has been
developed to enable CRI via speech. As close-talking mi-
crophones are not convenient for children and restrict their
movements, we take advantage of the multiple microphone
arrays located around the room recording audio, while at the
same time the children can move freely and communicate
hands-free with the robots. In order to make the DSR more
robust and exploit the distributed microphone arrays we
experiment with adaptation and fusion.

The high-level understanding that is obtained by the per-
ception modules is then fed to the Dialog Manager, along
with extra input from a Touch Screen, which is used dur-
ing the interaction as an extra means of communication. Ac-
cording to its input, the Behavioral Generator then decides
on the action that the multi-robot system should do, and for-
wards its decision to the actuators. The actuators in their turn
respond with information back to the system.

In order to create a detailed picture of the ChildBot sys-
tem, we proceed by describing extensively each perception
module. Following this, we present the system architecture,
the intercommunications, and the dialog management mod-
ule in order to describe our complete system for CRI.

3.2 Perception Modules

Audio-Visual Active Speaker Localization

When analyzing and understanding an auditory or audio-
visual scene that consists of multiple speakers, sound and
speaker localization are necessary for tracking. In addition,
the speaker’s location is required for beamforming and for
guiding the robot’s attention/head in a multi-party scenario,
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Fig. 2 Overview of ChildBot perception modules including Audio-Visual Active Speaker Localization and 6-DoF Object Tracking, Visual Activity
Recognition, and Distant Speech Recognition. “A” refers to microphone array and “SRP” to Steered Response Power. The modules are employed
during CRI to monitor the multiple aspects of human behavior and then their outputs are fed to the robotic behavior generator module.

in order to achieve a natural and intuitive interaction. Al-
though visual tracking can be more precise, it does not suf-
fice when the active speaker/speakers have to be localized
among other non-speaking persons in an audio-visual scene.

Various techniques for audio speaker localization [6]
have been proposed in literature. Some of them have been
specifically adapted to HRI setups [17,11] for microphones
mounted on robots. In our multi-robot case, microphones
are external to the robots, and a fast algorithm is needed
due to the real-time nature of our system. Thus, a real-time
3D audio localization SRP-PHAT (Steered Response Power
- Phase Transform) system based on [14,10] has been
developed, which is robust to noise and errors. Regarding
audio-visual speaker localization [23,21,40], several meth-
ods have been developed for RGB cameras, most of them
employing Bayesian filtering techniques or fusion between
audio and video features. In our case, visual tracking is
accomplished via skeleton tracking, developed for Kinect
sensors.

Our audio-visual active speaker localization that exploits
the 3D skeleton and the microphone arrays is performed as
follows: Person tracking is first achieved by retrieving the
3D skeletons from all persons present in the audio-visual
scene. Auditory source localization via SRP-PHAT pro-
vides information concerning the speakers. The final active

speaker localization is performed by choosing the visual
locations that are closest to the auditory ones. The speakers
positions are then used for the robot’s attention guiding
by turning the robot’s head towards the active speaker. An
example of audio-visual active speaker localization can be
seen in Figure 3.

6-DoF Object Tracking

In certain cases, children and robots may be expected to in-
teract with various movable objects. Thus, aside from human
localization which has been described above, the robot must
possess an understanding of the configuration of these ob-
jects. We have developed a method for robustly tracking the
6-DoF poses of multiple objects in real-time. The main idea
is to crudely detect the objects in a computationally cheap
manner, and then use the detected positions to infer each
object’s 3D pose. The used objects are known beforehand,
meaning that their shape and appearance models are pre-
defined. The developed tracker consists of two stages: the
first involves a tracking-by-detection scheme upon the color
stream to locate the objects on the image plane, while the
second performs an operation on the depth data to refine the
first stage output and infer the remaining variables related
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(a) Experimental setup (b) Audio source localization (c) Visual person localization (d) Audio-visual active
speaker localization

Fig. 3 (a) Spatial arrangement of four sensors. (b-d) An example of audio-visual active speaker localization. The SRP output is shown with high
values in red. Positions of the table and the four Kinects are also shown.

to the object rotations. The basic architecture is presented in
Figure 4.

During the first stage, our approach uses a simple color
histogram model to detect object regions, though depending
on the object characteristics a variety of features could po-
tentially be used. The histogram models are defined offline
and remain unchanged during the entire tracking. The hue
and saturation of the HSV color space were used to intro-
duce sufficient robustness to brightness changes. Assuming
the histograms are normalized, they define a probability dis-
tribution over the color space. Therefore, a probability map
can be generated over the latest color image, which after
thresholding and morphological filtering leads to a binary
mask that contains the most likely object regions in the im-
age. We choose to retain the region with the largest area,
under the assumption that the remaining regions will cor-
respond to noisy artifacts or irrelevant background objects.

Fig. 4 Overview of the implemented 6-DoF object tracking module
(the bricks are tracked).

The center of the chosen region is taken as the object loca-
tion, and a confidence score sk is produced for object k .

Once the object locations have been detected on the
image plane, the tracker’s second stage consists of esti-
mating the 6-DoF poses with the help of the newest depth
image. The developed tracker employs particle filters and
is closely based on the algorithm proposed in [67], where
the hidden states are augmented with a set of binary vari-
ables that model the occlusions at each pixel. Using the
camera inverse perspective mapping and the depth image,
we transform the k-th object’s 2D position estimates pk
into 3D estimates Pk. The input vector for each object k
is then uk = (Pk − rk) · sk, where rk is the particle’s po-
sition estimate from the previous time step, and sk is the
confidence score produced by the tracking-by-detection
module. Using a Rao-Blackwellisation technique [41], only
the pose variables need to be sampled, while the occlusion
variables can be marginalized out analytically. In order to
prevent collisions in the object estimated configuration, the
observation model is weighted by a factor that depends on
the existence of mesh intersections in the particle estimates.
If no intersections exist, this factor is set to 1, otherwise it is
set to 0.01.

Visual Activity Recognition

For understanding nonverbal communication, an efficient
multi-sensor visual activity recognition frontend has been
developed by experimenting with Dense Trajectories fea-
tures [63] along with different encoding methods and
fusion schemes for visual information processing. Dense
Trajectories have been chosen over convolutional neural
network pretrained features, as the actions included in the
state-of-the-art databases are not similar to those of children
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Fig. 5 Example of the extracted Dense Trajectories from different sensor perspectives while the child is performing the swimming pantomime
(see Sec. 4.1).

and the fine-tuning of pretrained networks does not perform
adequately, since in our case we have limited data from
real-world CRI [15].

The main goal of this investigation is to establish a ro-
bust framework for tackling different tasks, such as generic
body movements performed by kids, with limited training
data. We have implemented two different versions of the
module in the ChildBot system that work independently, one
for gesture recognition and one for action recognition. Al-
though the pipeline for both versions is the same, they are
trained, tested, and enabled separately for hand gestures and
more general body movements respectively. An example of
the extracted Dense Trajectories during a pantomime perfor-
mance (see Sec. 4.1) is presented in Figure 5.

In a more detailed view of the system, the recorded RGB
information from each of the four RGB cameras is sam-
pled frame by frame for the various children visual actions.
Feature points are sampled for each frame on a grid and
are tracked through time based on dense optical flow [18].
Multiple spatial scales are used for the sampling and the
tracking independently, while the trajectories are pruned to a
fixed length to avoid drifting. The computed features include
the Histograms of Optical Flow (HOF) [35] and the Motion
Boundary Histograms (MBH) [63] on both axes (MBHx,
MBHy).

Afterwards, the features are encoded employing either
the zero-order statistics Bag-of-Visual-Words (BoVW) [44]
or the first-order statistics Vector of Locally Aggregated
Descriptors (VLAD) [32]. Videos are classified based on
their BoVW representation, using non-linear Support Vector
Machines (SVMs) with the χ2 kernel [64]. In addition, the
above different types of descriptors are combined with the
Trajectory descriptor [63] and the Histograms of Oriented
Gradients (HOG) [35], by computing distances between
their corresponding BoVW histograms and adding the
corresponding kernels.

The encoded features that result from VLAD are clas-
sified employing linear SVMs. After the feature extraction,
we follow three different approaches - in multiple levels -
for the fusion of the RGB information acquired by the mul-
tiple sensors: i) feature fusion, ii) encoding fusion, and iii)
score fusion. We modify the general frameworks of BoVW
and VLAD in order to deal with our proposed multi-view
approach for visual activity recognition.

Feature Fusion: In this method, the visual information is
fused at an early stage where only low-level D-dimensional
feature descriptors xi

m ∈ RD have been extracted, i.e., local
descriptors alongside dense trajectory m = 1, ...,Mi, from
each different sensor i = 1, ...,S. The codebook generation
approach, which is based on the k-means algorithm, is mod-
ified in order to deal with the multi-view data. Given a set
of feature descriptors xi

m, our goal is to partition the fea-
ture set into K clusters D = [d1, . . . ,dK ], where dk ∈ RD is
the centroid of the k-th cluster. These dk are shared between
the features of all sensors. Using the notation of [44], if de-
scriptor xi

m is assigned to cluster k, then the indicator value
rm,i,k = 1 and rm,i,` = 0 for ` 6= k. The optimal dk can be
found by minimizing the objective function:

min
dk ,rm,i,k

K

∑
k=1

S

∑
i=1

Mi

∑
m=1

rm,i,k‖xi
m−dk‖

2
2. (1)

Then the encoding procedure is employed for both the
BoVW and the VLAD method, resulting to a representation
si

n j
for each trajectory n j of the j-th video captured by sen-

sor i. The global representation h of the multi-view video
using a sum pooling scheme is given by:

h =
S

∑
i=1

N j

∑
n j=1

si
n j

(2)

Finally, for the BoVW approach, an L2 normalization
scheme [45] is applied, while for the VLAD the intra-
normalization strategy proposed in [7] is followed.

Encoding Fusion: In this approach, a different global
vector hi is created by encoding the dense trajectory fea-
tures using a different codebook Di for each sensor i. For the
BoVW encoding the multi-view fusion is applied by adding
the χ2 kernels:

K (h j,hq) =
S

∑
i=1

Nc

∑
c=1

exp
(
− 1

Ac
L
(

hc,i
j ,hc,i

q

))
, (3)

where hc,i
j , hc,i

q denote the BoVW representations of the c-
th descriptor for the j-th and q-th video respectively cap-
tured by sensor i, and Ac is the mean value of χ2 distances
L(hc,i

j ,hc,i
q ) between all pairs of training samples from a spe-

cific sensor i. On the other hand, for the VLAD encoding a
simple concatenation of the vectors that correspond to the
different sensors is applied as follows: h = [h1, . . . ,hS].
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Score Fusion: For a given sensor i a different SVM is
trained for all employed classes and obtains the probabili-
ties Pi as described in [12]. Then a softmax normalization is
applied to each sensor’s SVM probabilities. For the fusion
of the different sensor output probabilities an average fu-
sion is employed: P = 1

S ∑
S
i=1 Pi. Finally, the class with the

highest fused score is selected, following an one-against-all
approach.

Distant Speech Recognition

In order to ensure a natural communication between hu-
mans and robots in an HRI system, it is essential to incorpo-
rate a speech recognition module. A considerable amount of
distance between the robot and the users imposes the need
to employ a distant speech recognition system (DSR) [65,
51] that will have to efficiently address challenging prob-
lems, such as noise and reverberation [31]. Especially when
children are the end users that play and interact with the
robots, the problem of speech recognition becomes much
more challenging because of the special characteristics of
children voices and the difficulty to acquire quality data.

In out setup, the microphone arrays distributed in space
are employed for the DSR task. Children can use a set of
utterances adopted for the specific context of the employed
use-cases to communicate with the robots, thus our speech
recognition system is grammar-based. A continuous system
would require a large amount of children data to be col-
lected; that was unfeasible in our case. Also, a grammar-
based speech recognition system is adequate to fulfill the re-
quirements of the considered use-cases. The employed lan-
guage is Greek, and the set of utterances contains children
possible answers in some games and some general purpose
speech utterances.

The DSR system is able to detect and recognize the spo-
ken utterances at any time, namely it is always-listening.
Since speech is usually corrupted by reverberation, noise or
other non-speech events, robustness is achieved via beam-
forming of the far-field signals and adaptation of the acous-
tic models.

More into the details, a sliding window of 2.5 sec dura-
tion with a 0.6 sec shift is used in order to process speech in
time frames. A custom module has been developed and inte-
grated in Robot Operating System (ROS), which allows raw
audio processing from the Kinect microphones. Each speech
frame is first denoised with a simple delay-and-sum beam-
forming applied on each available 4-channel Kinect array:
The insertion of delays to the different microphone signals
an(t), allows us to align them appropriately, so as to enhance
speech coming from a specific direction. For uniform linear
arrays with N microphones, which is also our case, if the de-
sired direction is denoted by φ , the time-delay to be applied

to each microphone is

τn =
(n−1)d cosφ

c
, (4)

where c is the speed of sound and d the space between mi-
crophones. The beamformed signal is denoted by:

y(t) =
1
N

N

∑
n=1

an(t− τn) (5)

The denoised signal is then fed to the DSR module
where we enforce recognition of one of the pre-defined
sentences. Regarding acoustic modeling, Gaussian Mixture
Models and Hidden Markov Models built on cross-word
tri-phone models have been trained using standard Mel-
Frequency Cepstrum Coefficients-plus-derivatives features
on the Logotypografia database. The Logotypografia [13]
database contains clean, close-talk speech in Greek. Thus,
we artificially distort the database by convolving the clean
speech with room impulse responses and adding white
Gaussian noise in order to match the far-field condition [51].
Maximum likelihood linear regression (MLLR) adaptation
is employed to transform the means of the Gaussians on
the states of the models, aiming to reduce the mismatch
between the initial model and the adaptation data [69].

3.3 System Architecture

In this subsection we describe the backbone of the percep-
tion system: the hardware architecture, the interconnection
and communication between the different modules, and how
the flow of the interaction is managed.

The perception modules are integrated in the full per-
ception system based on the following hardware architec-
ture. The system runs on four distributed interconnected ma-
chines, three of which run the Linux operating system and
the ROS, and one the Windows Operating System. Each of
the three Linux machines is connected with a Kinect V2 sen-
sor which provides raw data (i.e., color, depth, and audio).
The Windows machine is also connected to a Kinect V2 sen-
sor, and using the Microsoft SDK Kinect V2 API provides
additional skeletal and tracking information. A touch screen
is also connected to the Windows machine and sends feed-
back to the dialog module about the choices of the children.
The main data processing of the perception modules takes
place on each of the three Linux machines, while the multi-
view fusion is handled in one of the Linux machines.

Streaming of data and communication between the
modules of the system flows via events that are transmitted
through the TCP/IP broker which runs in the Windows ma-
chine and is provided by the IrisTK framework [55]. Under
the IrisTK paradigm, we divide events in three classes:
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– Sense: events that include information about what the
sensors of the system perceive

– Action: events that order an actuator (i.e., a robot) to do
something

– Monitor: background events that contain feedback in-
formation about the actions of the system (e.g., when
a robot has ended speaking)

Similarly, the architecture of the system was designed
based on the Sense - Think - Act principle [22], as shown
in Figure 1. The multi-sensor setup of the system represents
the Sense part, while the perception modules are classified
into the Think principle. Finally, the multiple robots belong
to the Act part of the architecture. This three-layer architec-
ture allows for high-level modularity, in the sense that the
different layers can be replaced/modified without affecting
the others.

The broker, along with the dialog management module
which will be described next, acts as a central unit that re-
ceives events from all system modules and distributes them
accordingly to the appropriate modules. In addition to the
high-level modularity offered by the three-layer architec-
ture, this unit offers an extra fine-grained modularity allow-
ing modules to be easily removed or added in the architec-
ture by simply defining the sets of events that the module
should perceive or send back to the broker.

The dialog manager is the central module of the system
and models the flow of the interaction between the user
and the system. The interaction is modeled using Harel
states [29]- states that can be hierarchically structured, can
be executed conditionally, and contain parameters that alter
the flow and the transitions between them. In addition, states
can be called as functions, which means that the flow of the
execution will continue to the caller state, after the callee
has finished his execution.

For the design and development of the statechart that
models the dialog, we have included what we call “action
states”, i.e., states that act as a mediator between the core
dialog flow and the robots. These action states contain the
information that is needed to instruct the robots of the sys-
tem to perform an action, and include the robot as an ad-
ditional state parameter. As a result, the core dialog flow is
decoupled from robot-specific details, and we avoid defin-
ing multiple similar states for different robots. This exten-
sion also gives us the capability to easily include new robots
to the dialog flow by adding the robot-specific details in the
action states and handling the event on the robot side. An
example can be seen in Figure 6 where a state in the core
dialog flow “calls” the “speak action state”, including the
robot that is needed to speak as an additional parameter.

From the three robots that our multi-robot system uses,
the Furhat robot head and the Avatar are already integrated
in the IrisTK framework. For the NAO and Zeno robots we

Speech State

Parameters:

text, robot

Game State

Parameters:

gesture, robot

Text: I recognized (gesture).

Robot: (robot)

Call Speech State

action (speak)

return

(robot)=zeno

(robot)=furhat

(robot)=nao

Fig. 6 The “Speak Action State” employed for announcing a gesture
during the interaction.

developed intermediate APIs that we use for communication
between the robots and the dialog.

4 Use-cases for CRI

4.1 Tasks Description

A set of scenarios has been designed in order to highlight
the capabilities of the system during an amusing and educa-
tive multimodal interaction between children and robots. As
it has been explained extensively, our integrated system per-
ceives various events that occur during the interaction, such
as children speech and activities, along with children loca-
tions in the room, and tracking of objects. Each task focuses
on different technologies and combines them appropriately
to create a smooth interaction. Children are asked to com-
plete the following tasks-games: i) “Show me the Gesture”,
ii) “Express the Feeling”, iii) “Pantomime”, iv) “Assembly
Game”, v) “Form a Farm”.

In the first task, “Show me the Gesture”, a child inter-
acts with the robot via gestures and speech. The robot re-
quests from the child to perform a gesture that usually de-
notes a meaning and tries to recognize it. It then asks the
child for confirmation of the recognition. The different ges-
tures of this game are: i) stating an agreement, ii) calling the
robot to come closer, iii) asking the robot to sit down, iv)
pointing an object in the room, v) asking the robot to stop,
and vi) drawing a circle in the air. Except from the first ges-
ture that is usually performed by nodding, the rest are hand
gestures. The children are allowed to gesture spontaneously,
as they would do when interacting with another human.

The “Express the Feeling” game motivates children to
reveal their feelings using both their face and their body dur-
ing an entertaining interaction with the robot. In this game,
the child selects one of the cards that are depicted on the
touch screen and expresses the chosen feeling. The emotions
included in this game are happiness, sadness, fear, anger,
surprise, and disgust. After the child’s reaction, the robot
also expresses the same feeling using its body and face.

“Pantomime” is a popular game, during which, one per-
son mimes a handwork and the other figures out the depict-
ing handwork. The child can use the whole body to mimic
an activity and interact extensively with the robot. The robot



10 Niki Efthymiou et al.

and the child repeatedly swap the roles of the mime and the
guesser. The twelve activities used in this game are the fol-
lowing: i) cleaning a window, ii) driving a bus, iii) hammer-
ing a nail, iv) swimming, v) working out, vi) dancing, vii)
reading a book, viii) digging a hole, ix) playing the guitar,
x) wiping the floor, xi) dancing, and xii) ironing a shirt.

For the “Assembly Game” one or more children are
asked to complete an assembly under robot supervision. Six
interconnectable 3D printed bricks of different lengths are
used to create rectangles and squares. The bricks are placed
on a table in front of the child, with the robot standing
close by. The child is responsible for the manipulation of
the assembly subcomponents, while the robot provides
instructions and feedback. If the child correctly completes a
connection, the robot congratulates the child and proceeds
to give the next instruction. If the child makes a mistake,
however, the robot will attempt to recognize this mistake
and will react accordingly. Aside from verbal instructions,
the robot also looks and points at the bricks that it refers,
for clarity.

The “Form a Farm” game is a multi-party game sce-
nario involving two roles that can be interchanged and be
equally played by both the robot and the children, aiming
to entertain, educate, but also establish a natural interac-
tion between all parties. The game involves two different
roles. These roles, the picker and the guesser, can be equally
played and interchanged between the children and the robot.
The picker chooses an animal and utters characteristics of
it. The guesser has to guess the picked animal. The interac-
tion proceeds as follows: At first, the robot chooses a ran-
dom animal and the human players take turns guessing the
chosen animal. In case of a wrong guess, the robot reveals
more characteristics of the animal (animal color, number of
legs, animal class, e.g., mammals, reptiles). In case of cor-
rect identification of the animals, the robot asks the chil-
dren to properly place the animal in a farm with some dis-
tinct segmented areas, which appears in a touch screen in
front of them. In the second round, the roles are reversed:
children discuss and pick an animal, and reveal one char-
acteristic. The robot then tries to guess the picked animal.
If the robot guesses correctly, the children are again asked
to place the animal in the farm, otherwise they reveal more
characteristics of the animal, one at at time. The game con-
tinues by interchanging the role of the guesser between chil-
dren and robots in each round. The game features a total of
19 animals, and their characteristics belong to five different
classes: color, size, species, number of legs, and a distinctive
property, i.e. for the dog: “it’s the human’s best friend”.

The aforementioned tasks aim to create a proper frame-
work for multimodal communication between children and
robots, as it happens between humans. This way, the tasks
demonstrate the capabilities of the system, give some exam-
ples of how ChildBot can be used, and can be employed for

Fig. 7 Data collection room and experimental setup.

system evaluation. Taking into consideration also the fact
that the tasks are destined for children, the use-cases were
designed under the supervision of psychologists and pilot
studies with eight children were conducted, leading to the
presented scenarios. Even though each task focuses on one
of the system perception technologies, more than one mod-
ules are used in parallel. In Table 1, the used modules are
summarized along with the eligibility of the robots to par-
ticipate in each task.

4.2 Database

Real data obtained through HRI prove to be especially im-
portant during the process of developing a system, from the
training to the evaluation stage. Such data contribute to an
adaptation of the system to actual circumstances and human
spontaneous behavior. Thus, an extensive data collection has
taken place with the participation of a pool of 52 children,
aged from six to eleven years old, in a specially designed
room and in a school classroom.

Most of the data have been collected in a room that re-
sembles a child’s room and where the robotic agents and
the sensors have been located, as it is presented in Figure 7.
There, the data collection has been carried out in two phases.
In the first one, children data have been recorded while per-
forming certain actions and uttering certain phrases that are
expected to arise throughout the interplay between them and
the robots, in a strictly controlled way, when asked to do so.
These data will be referred to below as development data
since they have been used for the development of the system.
In the second phase, the data have been collected during the
experimental procedure where children interact with robots
without any interruption or other people’s intervention. The
latter data will be referred to as use-case related data. Both
types of data are equally important for CRI, as the first one
is indispensable for training the perception modules on data
that are relevant to use-cases, while the second one is es-
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Distant Speech Detect Speaker Visual Act. Rec. Touch Behavioral Robots
Recognition & Track Loc. Gesture Action screen Generation NAO Furhat Zeno

Show me the Gesture X X X X X X X
Pantomime X X X X X X
Assembly Game X X X X X
Form a Farm X X X X X X X X
Express the Feeling X X X X

Table 1 Used ChildBot technologies in each use-case scenario and the eligibility of each robotic agent for participating.

sential for the testing of the behavioral monitoring software
during CRI. Table 2 presents the most important recorded
events during the two phases and the total number of their
occurrences.

The information we collected during the data col-
lection includes Full HD (1920× 1080) RGB and depth
(512× 424) video streams from all four Kinect cameras,
running at 30fps, as well as raw audio from the microphone
array embedded in each Kinect sensor. By exploiting the
Kinect v2 API we have also captured the following streams
from the frontal Kinect sensor: (a) Skeletal information both
in 2D (image) and 3D (world) coordinates; (b) Bounding
boxes from face detection, facial landmarks and a facial 3D
mesh.

For the development data, 28 children have participated
by performing seven gestures and twelve pantomimes, and
uttering 40 phrases from a vocabulary of 120 phrases. This
phase is crucial for developing the perception models and
adapting them to children, since they focus on speech,
gestures, and actions relevant to the use-cases. Specifically,
children are more spontaneous and expressive than adults
and their speech is usually brief and low-voiced. Thus,
in order to test the performance of ChildBot modules, it
is necessary to have a plethora of children activities and
utterances. Moreover, adults’ data have been collected to
augment the data related to the use-cases as well as to val-
idate and highlight the need of children data for enhancing
performance in the perception models.

As far as the use-case related data are concerned, 31
children with an average of 8.6 years old, 10 girls and 21
boys, had been chosen randomly from a set of volunteers
that met our team in a dissemination event. All children,
from six to eleven years old, spoke Greek and were able to
read and write. Each child accompanied by his/her parents
entered the specifically designed room and was introduced
to the robots by a researcher. The child got familiarized with
the room and the robots while the researcher explained the
structure of the procedure and the tasks as they were pre-
sented above. Afterwards, the parents and the researcher ex-
ited the interaction space and the child played the individ-
ual games with the robots. After completing the individual
interaction, a second child (which had completed the same
interaction previously) entered the space and collaborated
with the other child while playing the “Form a Farm” task.

Collected Data Event Type # of Events

Utterances 977
Development Gestures 196

Data Pantomimes 336

Use-case Utterances 641
Related Gestures 143

Data Pantomimes 109

Table 2 Statistics of the most important child activities during the data
collection.

In cases where there was no second child available, an adult
took its place. However, these data were removed from the
subsequent evaluation. Finally, after completing the proce-
dure, the children were asked to complete a questionnaire
that included subjective statements regarding their experi-
ence. The questionnaire will be described and discussed in
Section 5.2.

The above procedure has been approved by the Ethics
Committee of the Athena Research Center, and also includes
a consent form that had been sent by email to the parents be-
fore the experiments. In addition, all experiments have been
supervised by an experienced child psychologist.

The use-case related data regarding the “Assembly
Game” were collected in a Greek primary school where
21 students, 9-10 years old, participated either individually
or in groups of five. For this task, a single Kinect camera
and one robotic agent (NAO robot) have been chosen as
a lightweight version of the system to accommodate the
educational process. Such a version can be easily installed
in a typical classroom and help the teacher to give a vivid
lesson through a CRI experience (Figure 9).

5 CRI Evaluation

Each perception module of the ChildBot system has been
evaluated by measuring its performance in efficient multi-
modal scene understanding, using the collected data. In ad-
dition, we have performed a preliminary user experience
study in order to assess how the children interact and per-
ceive the system, and collect insights towards carrying out a
more complete subjective evaluation in the future.
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(a) “Show me the Gesture”,
Kinect#1

(b) “Pantomime”, Kinect#2 (c) “Form a Farm”, Kinect#3 (d) “Express the Feeling”,
Kinect#4

Fig. 8 The four different use-cases that took place in our laboratory, each one presented from one the four different camera viewpoints of ChildBot.

5.1 Perception module evaluation

Audio-Visual Active Speaker Localization

The evaluation results of audio-visual speaker localization
are presented in Table 3. For audio-only speaker localiza-
tion, the employed metrics are Pcor (Percentage correct)
which is the percentage of correct estimations (deviation
from ground truth less than 0.5m) over all estimations,
RMSE (Root Mean Square Error) between the estimation
and the ground truth, and RMSEf (RMSE for estima-
tions with error less than 0.5m - i.e., ’fine errors’) . For
audio-visual speaker localization, since person locations are
estimated by the Kinect skeleton, the problem is essentially
transformed into an active speaker localization problem.
Thus, evaluation is performed in terms of correct speaker
estimation, where Pcor is used, denoting the correct speaker
estimations over all estimations. Audio-only localization
does not perform sufficiently well yielding a Pcor of 45%,
but the average RMSE is 60cm, meaning that the average
source localization error is 60cm which is not very large. If
both audio and visual information are used, then the active
speaker localization performance is boosted to a Pcor of
86%.

6-DoF Object Tracking

For object tracking, we have performed both an objective
evaluation and a subjective evaluation, in order to assess the
performance of the 3D visual tracking module.

Fig. 9 Setup of the “Assembly Game” at a Greek primary school.

Audio source Audio-visual active
localization speaker localization

Pcor RMSE RMSEf Pcor
45.51% 0.60m 0.35m 85.58%

Table 3 Evaluation of the audio-visual active speaker module.

During the objective evaluation, because it is difficult
to annotate and obtain ground truth poses for 3D tracking,
we have placed two static objects on a table, along with
obstacles in order to add occlusions, and have moved a
camera around the objects with sudden movement bursts,
in order to establish the robustness of the tracker. We have
compared our method with an SDF (Signed Distance Func-
tion) tracker [48]. Our results have showed that, although
the SDF tracker has produced a steadier output than our
tracker in cases of partial occlusions and slow camera
movements, when we have introduced sudden jolts and full
occlusion, the SDF tracker has been unable to continue
tracking and has failed, without recovering, even when the
normal conditions (no occlusion-jolts) were restored. On
the other hand, our tracker has been able to successfully
track the object with low error, even under full occlusion
and fast movements, and recover in rare cases where the
tracking has been lost, without the need for reinitialization,
proving its robustness. More information on these objective
evaluations can be found in [27].

During the subjective evaluation, we used the NAO robot
as a supervisor for the Assembly Game which is described
in Section 4. From the 21 participants, 6 played the game on
their own, while the remaining children played in groups of
5. The children were required to complete two different rect-
angles and one square, by choosing and connecting items
from 6 different brick objects.

In Table 4 we can see the results from the experiments in
the form of statistics for the different assemblies. We present
the percentage of total and required connections that the sys-
tem recognized within a time interval of 5 sec and 20 sec,
which is referred to as identification time. The term “to-
tal connections” includes both correct connections that the
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child completed and mistaken connections, while the term
“required connections” refers only to the correct connec-
tions needed to complete the assembly.

Total Connections Required Connections
(Recall %) (Recall %)

Identification Time 5s 20s 5s 20s
Rectangle 70.00 80.00 50.0 56.25

Square 39.39 57.58 43.24 59.46

Table 4 Statistics about the performance of the 6-DoF object tracking
employed in “the Assembly Game”.

Visual Activity Recognition

Firstly, we have examined if the age group of the partici-
pants (adults or children) has an impact on the accuracy of
visual activity recognition. For both visual activity recogni-
tion tasks, we trained separate models using as training set:
a) children, b) adults, c) mixed (both adults and children)
and as testing set: a) children, b) adults. In Table 5, it can be
noticed that the use of children training data is imperative
for achieving high accuracy in children activity recognition,
irrespectively of the task. This result justifies our choice for
collecting development data from children movements. On
the other hand, recognition models trained on mixed age
groups perform better for adult gesture recognition since
the diversity with which children perform the gestures ac-
commodates the generalization of the model. For the action
recognition task, children employ a wider range of different
movements that adults do not use as they act stereotypically,
and the mixed age training models perform worse than the
adults models.

Furthermore, Tables 6 and 7 summarize the evaluation of
gesture and action recognition respectively, for several com-
binations of different features, encodings in both the single-
view case and multi-view case along with the multi-level
fusion. Also, the recognition models have been trained on
children development data and tested on both development
and use-case related data separately, using the leave-one-out
cross-validation approach.

Training group
Testing
group Adults Children Mixed

Gesture Adults 92.19 62.08 95.10
Recognition Children 56.25 83.80 80.09

Action Adults 87.36 72.53 86.26
Recognition Children 56.51 74.46 74.26

Table 5 Evaluation of the activity recognition modules after the fusion
of different camera scores using MBH features and BoVW encoding.

Specifically, Table 6 presents average accuracy results
(%) for the 7 gestures and a background model. Results in-
dicate that the best multi-view model outperforms the best
single-view model by about 7%, which underlines the need
of a multi-view system for unrestrained CRI. For the devel-
opment data, it can be seen that the combination of different
types of features performs better than HOF and MBH fea-
tures individually. Among the single-sensor cases, Kinect#1
(right side view) performs best as most of the kids are right-
handed and they stood at approximately the same location
while performing the gestures. The best recognition accu-
racy of 85.19% is noticed for the fusion in the final step
of the procedure with the VLAD encodings and the feature
combination. As far as the use-case related data are con-
cerned, the accuracy for the single streams is moderately
lower than the previous ones, which reveals the difficulty
that children faced while they were trying to perform the
gesture spontaneously. Also, as the children stand at a com-
pletely different location, usually closer to the cameras, the
best single stream result appears for Kinect#3 (floor plan
view). Regarding the fusion of the different streams, recog-
nition performance is slightly better for the encodings fu-
sion than the scores fusion, and it approaches 74%. More
generally, VLAD encodes more effectively the visual infor-
mation than the BoVW, since it contains rich information
about the distribution of the visual words. Finally, we have
to note that, as nodding requires a gentle movement, it is
usually confused with the background movement.

In order to verify the appropriateness of the proposed vi-
sual activity recognition system in more challenging tasks,
we evaluate the visual activity recognition system for the
pantomimes. Table 7 presents the average accuracy results
(%) for the 12 pantomimes as well as the background model.
The fusion of the single-view information enhances remark-
ably the performance of the recognition, as was observed in
the gesture case too. The highest accuracy for testing on de-
velopment data appears with VLAD encodings in scores fu-
sion, since the visual information in these data is more con-
sistent compared to use-case related data, e.g. similar time
duration of a pantomime or similar children locations in the
room. Regarding the single-view case, in both types of data,
the right side view Kinect#1 appears to be the best perspec-
tive for the trained models. It can be noticed that in use-case
related data MBH yields slightly better results than feature
combination. Moreover, feature fusion, i.e. fusion of the in-
formation at an early step of the entire procedure results in
the best performance regardless of the type of the encodings.

In conclusion, the accuracy of the visual activity recog-
nition is lower in use-case related data since children act
more spontaneously while they move around the room and
interact freely with the robots. Furthermore, due to the fact
that the variation of the visual information in the pantomime
task is larger than in the gesture task, the early fusion of the
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Development Data
Single Camera Fusion

Features Kinect #1 Kinect #2 Kinect #3 Kinect #4 Features Encodings Scores
BoVW BoVW VLAD BoVW VLAD BoVW VLAD

HOF 70.83 70.37 69.21 63.43 71.76 74.07 77.78 81.48 75.93 81.94
MBH 76.85 67.82 68.29 65.28 76.39 76.85 81.02 81.48 82.87 83.80
Traj.+HOG+HOF+MBH 77.78 73.84 73.61 75.00 81.48 82.87 82.87 83.80 82.87 85.19

Use-case Related Data
Single Camera Fusion

Features Kinect #1 Kinect #2 Kinect #3 Kinect #4 Features Encodings Scores
BoVW BoVW VLAD BoVW VLAD BoVW VLAD

HOF 56.92 54.49 57.10 51.97 54.56 71.61 58.01 74.73 63.26 74.83
MBH 62.70 56.47 60.15 54.25 65.32 72.70 67.72 72.52 66.73 72.72
Traj.+HOG+HOF+MBH 57.96 54.08 67.03 59.16 61.51 69.85 63.38 73.95 64.82 73.35

Table 6 Average classification accuracy (%) for the employed 8 gestures. Results on both development and use-case related data are shown for
the different features, encoding and fusion methods of the activity recognition module.

Development Data
Single Camera Fusion

Features Kinect #1 Kinect #2 Kinect #3 Kinect #4 Features Encodings Scores
BoVW BoVW VLAD BoVW VLAD BoVW VLAD

HOF 68.31 56.31 48.62 53.85 66.77 67.08 68.00 69.23 68.62 75.50
MBH 70.77 60.92 61.85 55.22 76.00 76.69 76.92 76.92 74.46 76.50
Traj.+HOG+HOF+MBH 73.85 63.38 60.00 61.45 75.08 76.92 77.23 77.85 75.08 79.00

Use-case Related Data
Single Camera Fusion

Features Kinect #1 Kinect #2 Kinect #3 Kinect #4 Features Encodings Scores
BoVW BoVW VLAD BoVW VLAD BoVW VLAD

HOF 46.34 46.19 25.50 47.70 63.08 61.02 49.87 56.17 52.59 57.99
MBH 61.42 46.28 31.59 45.57 70.25 67.97 57.70 59.04 62.18 62.49
Traj.+HOG+HOF+MBH 52.59 46.74 36.62 48.16 63.52 69.37 60.75 61.55 55.00 64.90

Table 7 Average classification accuracy (%) for the employed 13 pantomimes. Results on both development and use-case related data for the
different features, encoding and fusion methods of the activity recognition module are depicted.

features performs better for the pantomime while the scores
fusion is satisfactory for the “Show me the Gesture” since
only one camera is adequate to recognize the gesture.

Distant Speech Recognition

Two sets of data have been employed for the offline eval-
uation of the DSR task: the development set and the use-
case related set, both consisting of children data. As stated
before, the DSR system is grammar-based, namely depend-
ing on the context of the application, and there is a specific
set of commands that the users adopt in order to commu-
nicate with the robot. Thus, we have designed one set for
the “Show me the Gesture”, the “Express the Feeling”, and
the “Pantomime” games and another one for the cooperative
game, i.e. the “Form a Farm” game. The grammar size and
other statistics concerning the two datasets can be found in
Table 8.

The development data have been used for adapting
speech models and testing them. Results are presented in
Table 9 in terms of word and sentence accuracies, denoted
by WCOR and SCOR respectively. Four different adap-
tation schemes have been tested for comparison: In the
“No-adapt” case, the employed models have been trained
on the Logotypografia database which contains adult data.
The available children data included in the development

set have been used for testing. In the “Adults” case, speech
models have been adapted to a small amount of adult
data and tested both with adult and children data. In the
“Children” case, data from 20 out of 28 participants of the
development set have been used to adapt speech models
globally, i.e. data from the Kinect arrays have been used
to adapt a single model. The remaining 8 participants form
the testing set. The adaptation and testing has been 4-fold
cross-validated. Finally, in the “Mixed” case we have used
both adult and children data to adapt the models and then
test them separately on adult and children data.

Speech recognition achieves satisfactory performance
for adults even without adaptation. However, adaptation
indeed improves performance for all cases, even when it
is performed in a different age group than testing. Results
indicate that the best performance is obtained for adapting
and testing on the same group, which was expected. The
best achieved results are 98.87% for adults and 95.50% for
children in terms of SCOR. The results concerning children
underline the need and importance of collecting children
data. Performance is boosted, from 75.3% to 97.8% for
WCOR and from 71.2% to 95.5% for SCOR, when children
data have been used for adaptation and testing, who are
indeed the target group of the system.

All the above results were referring to the development
set where data collection was controlled and guided. The
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Development set Use-case Related set
# speakers # utterances grammar size # speakers # utterances grammar size

Single Game 28 642 75 31 426 157
Cooperative Game 28 335 58 9 pairs 215 113

Table 8 Data statistics for the children DSR task.

DSR-Adaptation scheme
No-adapt Adults Children Mixed

Test WCOR SCOR WCOR SCOR WCOR SCOR WCOR SCOR

Adults 97.54 91.25 99.58 98.87 96.73 93.20 99.50 98.43
Children 79.06 69.95 75.31 71.20 97.81 95.50 90.71 82.06

Table 9 Evaluation of the DSR recognition on the development data.

No-adapt Adapt-all
WCOR SCOR LabelCOR WCOR SCOR LabelCOR

Single Game 56.68 29.52 55.12 59.64 43.77 55.12
Cooperative Game 72.95 61.02 63.16 78.00 67.69 70.51

Table 10 Average word (WCOR), sentence accuracy (SCOR), and Label accuracy (LabelCOR) (%) for the children DSR task.

use-case related set contains data in the wild, namely, while
children were actually playing with the robots, their speech
data were collected. Although the children had received
some instructions concerning the utterances they could use,
it is obvious that they were not followed in most cases.
Thus, after the data annotation, new grammar sets have
been formed in order to incorporate new phrases.

The use-case related data results are depicted in Ta-
ble 10, in terms of WCOR, SCOR and LabelCOR. Label-
COR refers to the percentage of correct recognition of the
semantic content. For example, there can be various ways
to express a negation: “no”, “no, I don’t know”, “no, I did
not find it”, etc. All similar phrases in terms of content are
given a specific label, and after speech recognition data
post-processing calculates the score of the correct recog-
nition of labels. Adaptation has been performed using the
development set. We notice that adaptation boosts the per-
formance, achieving a percentage of 59.64% for the gesture
and pantomime games and 78% for the farm game in terms
of WCOR. The lower percentage of gesture and pantomime
games can be attributed to the larger grammar size, the
distance between the speakers and the microphones, and the
relatively large variations of speaker orientation.

5.2 User Experience Study

We have also performed a user experience study which in-
cluded a pool of 52 children, from six to eleven years old,
participating in the designed interaction described in Section
4.2. The purpose of this study is to collect objective statistics

and insights, as well as get a measure of the system’s ability
to accommodate a complete CRI.

Objective Statistics Regarding the individual tasks
(“Show me the Gesture”, “Express the feeling”, “Pan-
tomime”), where each of the 31 kids participated alone, all
of them were able to complete successfully the games. The
average duration of completion, including the introduction
by the robots, is 9 minutes, with a variance of 2 minutes.

In 32% of the cases, human (verbal) intervention was re-
quired up to two times during the experimental flow, when
the children became confused or had questions about the
procedure. For example, some children asked for a confir-
mation about what to do or needed a prompt in order to act.
Such possible deviations from the designed scenario have
been overcome by enabling the dialog manager to recognize
these cases (e.g., if the child is silent for a moderate period
of time), and getting the robots prompt the children or ask
them to repeat their utterance/activity. In cases where chil-
dren were expected to say something or their speech was
not recognized, robots requested for repetitions up to two
successive times, while in case of a child’s action, the robots
asked for repetition only once.

For the collaborative “Form a Farm” game, played by
two children, it was observed that younger children faced
difficulties with the rules of the game, even though primary
school children are familiar with the animals of a farm. As a
result, kids with ages six and seven played the game follow-
ing the guidelines offered by one adult. The rest of the chil-
dren played the game without any guidance. The average du-
ration of the game was 8 minutes. In total, children assumed
the role of the guesser for 24 rounds and found the correct
answer using 2.4 guesses on average and 4 guesses maxi-
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Fig. 10 User experience of the entire ChildBot system. After each completed interaction, children were asked to fill a questionnaire with the shown
questions on a Likert-type scale from 1 to 5 labeled as shown.

mum. On the other hand, the robot assumed the guesser role
for 22 rounds and found the correct answer in 2.2 guesses
on average, with a maximum of 6. Children did not manage
to identify the picked animal in 4% of the guesses, while the
robot in 32%. Generally, the children managed to guess the
picked animal more easily, since the robot was programmed
to always reveal more general animal characteristics in the
beginning, and proceeding with more specific details.

User experience assessment Regarding subjective eval-
uation of the experience, children were asked to complete a
questionnaire containing the subjective statements that can
be seen in Figure 10. Each statement was accompanied by a
5-point Likert type ordinal scale labeled from “disagree” to
“agree”, using smiley faces [28].

We also included two multiple choice questions asking
children to justify which use-case was the most preferable
and why, and which perception ability of the robots make
them popular to the kids, as a means of getting more insight
on their preferences. In general, the majority of children
(12/31) stated that their favorite use-case was “Pantomime”,
due to the movements of the robot. As we can see in Fig-
ure 10, the majority of the children (27/31) stated that they
like playing with the robots, while 22 of them enjoyed play-
ing because robots understood both their movements and
speech. Many of them (21/31) also found the interaction and

the use-cases easy to follow, without needing external help
(19/31). Furthermore, children tended to agree (20 positive
answers out of 31) that robots behave like humans. By an-
alyzing the questionnaire responses, we noticed that older
children stated that they did not need prior knowledge in or-
der to play with the robots, while younger children stated
that they did.

Similarly, in the assembly task that was evaluated in
the primary school, 21 children were asked to express their
opinion for the interaction. The questions are presented in
Table 11, and the available responses were a 3-point Likert
scale (Disagree - Neutral - Agree). The Table also presents
the questionnaire results after being mapped to a scale of
0-2, with 0 being the most negative. Their answers indicate
that children were pleased with the interaction (1.81 MOS
on whether they would like to play again with the robot and
the comfortableness of the interaction). However, clearly
the robot supervision for the assembly task has room for
improvements, since although the instructions of the robot
were very clear (1.95 MOS), children were neutral on
whether they were actually helpful (1.10 MOS), or wrong
(0.95 MOS).

Discussion In general, the evaluation of user experience
during interaction with our multi-robot, multi-tasking, and
multi-sensor robotic system provided encouraging results,
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proving that the system is technically capable of accommo-
dating a complete CRI experience, with some adult interven-
tion needed in certain cases and mainly for the collaborative
task. Of course, there exists room for improvement, since
many children stated that robots made mistakes frequently
(18/31). In the future, we aim to also conduct a subjective
evaluation focused on the pedagogical aspect of the system,
based on the insights collected during this initial study.

Question Mean Opinion
Score

Were you comfortable working with the robot? 1.81
Would you play with a robot again, sometime? 1.81

Was the robot helpful? 1.10
Did the robot make a lot of mistakes? 0.95

Were the robots instructions clear? 1.95

Table 11 Questions and results of the questionnaire presented to the
children, following their “Assembly Game” with the robot.

6 Conclusion

In this paper we have presented ChildBot, a multimodal per-
ception framework that is the culmination and the extension
of several earlier works by the authors in multimodal percep-
tion and CRI. ChildBot constitutes a CRI framework with
multiple robotic agents that can be successfully used for
edutainment purposes, and its perception system includes
several different modules: audio-visual active speaker local-
ization, and 6-DoF object tracking, visual activity recogni-
tion, and distant speech recognition. The effectiveness and
successful interconnection of the modules has been demon-
strated via five indicative edutainment CRI use-cases, each
using a different subset of the various perception modules.

In order to validate the performance and the capabilities
of our system for CRI, we have carried out an extensive ob-
jective evaluation of the developed perception modules, as
well as a user experience study that provides valuable initial
insights for the interaction with ChildBot. The experiments
took place in a specially designed area that was decorated to
resemble a child’s room, where we collected both develop-
ment data necessary for training the individual system mod-
ules, as well as use-case related data that were essential for
testing the system performance during actual CRI.

Our results have showed that the individual percep-
tion technologies successfully capture the environment
surrounding the interaction with a high degree of accu-
racy, while the user experience study showed that children
enjoyed playing with different robots.

For future work, we would like to also extend Child-
Bot for other applications, and it would be interesting to see
how some of the novel perception methods we presented can

generalize to other fields, such as rehabilitation or assistive
applications for ASD children. Further, we aim to conduct
a more thorough subjective evaluation on the pedagogical
aspect of the system.

In conclusion, our work shows that through the inte-
gration of multiple robots, sensors, and modalities, we can
achieve a high level of unconstrained and autonomous CRI,
opening up new prospects for the educational and entertain-
ment social robotics of the future.
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and A. P. Muñoz et al. Social robots in advanced dementia. Fron-
tiers in Aging Neuroscience, 7:133, 2015.

61. S. Valipour, C. Perez, and M. Jagersand. Incremental learning for
robot perception through HRI. In Proc. IROS, 2017.

62. V. Vouloutsi, M. Blancas, R. Zucca, P. Omedas, D. Reidsma,
D. Davison, V. Charisi, F. Wijnen, J. van der Meij, V. Evers, et al.
Towards a synthetic tutor assistant: the EASEL project and its ar-
chitecture. In Conference on Biomimetic and Biohybrid Systems,
2016.

63. H. Wang, A. Klaser, C. Schmid, and C.L. Liu. Action recognition
by dense trajectories. In Proc. CVPR, 2011.

64. Heng Wang, Muhammad Muneeb Ullah, Alexander Kläser, Ivan
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