
1

A Generalized Framework for Autonomous
Calibration of Wheeled Mobile Robots

Mohan Krishna Nutalapati, Student Member, IEEE, Lavish Arora, Student Member, IEEE, Anway Bose,
Ketan Rajawat, Member, IEEE and Rajesh M Hegde, Senior Member, IEEE

Abstract—Robotic calibration allows for the fusion of data
from multiple sensors such as odometers, cameras etc., by
providing appropriate transformational relationships between the
corresponding reference frames. For wheeled robots equipped
with exteroceptive sensors, calibration entails learning the motion
model of the sensor or the robot in terms of the odometric
data, and must generally be performed prior to performing
tasks such as simultaneous localization and mapping (SLAM).
Within this context, the current trend is to carry out simultaneous
calibration of odometry and sensor without the use of any
additional hardware. Building upon the existing simultaneous
calibration algorithms, we put forth a generalized calibration
framework that can not only handle robots operating in 2D with
arbitrary or unknown motion models but also handle outliers
in an automated manner. We first propose an algorithm based
on the alternating minimization framework applicable to two-
wheel differential drive. Subsequently, for arbitrary but known
drive configurations we put forth an iteratively re-weighted least
squares methodology leveraging an intelligent weighing scheme.
Different from the existing works, these proposed algorithms
require no manual intervention and seamlessly handle outliers
that arise due to both systematic and non-systematic errors.
Finally, we put forward a novel Gaussian Process-based non-
parametric approach for calibrating wheeled robots with arbi-
trary or unknown drive configurations. Detailed experiments are
performed to demonstrate the accuracy, usefulness, and flexibility
of the proposed algorithms.

Index Terms—Calibration and identification, kinematics,
wheeled robots, sensor fusion, extrinsic calibration

I. INTRODUCTION

ROBOTIC calibration is an important first step neces-
sary for carrying out various sophisticated tasks such

as simultaneous localization and mapping (SLAM) [1, 2],
object detection and tracking [3], and autonomous navigation
[4]. For most wheeled robot configurations that comprise
encoders and exteroceptive sensors, the calibration process
entails learning a mathematical model that can be used to fuse
odometry and sensor data. For instance, calibrating a robot
with a two-wheel differential drive robot involves learning
various intrinsic parameters, namely the wheel radii and the
axle length, and the extrinsic parameters, namely the pose
of the sensors [5–8]. More generally, however, when the
motion model of the robot is unavailable, calibration involves
learning the relationships that describe the sensor motion in

The authors are with the Department of Electrical Engineering, In-
dian Institute of Technology Kanpur, Kanpur 208016, India, (e-mail:
{nmohank, lavi, anwayb, ketan, rhegde}@iitk.ac.in).

This paper has supplementary downloadable material (available at http:
//tinyurl.com/simultaneous-calibration) that includes raw-data of all the ex-
periments and implementation codes for the proposed methodologies.

TABLE I
NOMENCLATURE USED IN THE PAPER

Parameters that are to be estimated

p = (`x, `y , `θ︸ ︷︷ ︸
`

, r) parameters to be estimated

` position of extrinsic sensor w.r.t robot frame
r robot instrinsic parameters
rL, rR left and right wheel radii (m)
b distance between two wheels (m)

}
Two-wheel drive

Lx half of axle length along x-axis of the robot (m)
Ly half of axle length along x-axis of the robot (m)
r radius of each wheel

Mecanum drive

Measurements

U raw data log of odometry sensor
V Measurememts from exteroceptive sensor
δ(t) vector of wheel angular velocities at time instant t
Z(t) exteroceptive sensor measurement at time instant t

q(t) = [qx(t) qy(t) qθ(t)]
T Pose of robot at any time t

ŝjk sensor displacement estimate for time interval [tj , tk)

Operators

⊕ Roto-translation operator
� inverse of⊕ operatoraxay

aθ

⊕
bxby
bθ

 ∆
=

ax + bx cos aθ − by sin aθ
ay + bx sin aθ + by cos aθ

aθ + bθ

�

axay
aθ

 ∆
=

−ax cos aθ − ay sin aθax sin aθ − ay cos aθ
−aθ

terms of the odometry measurements. Precise calibration is
imperative since calibration errors are often systematic and
tend to accumulate over time [9]. Conversely, an accurately
specified odometric model complements the exteroceptive sen-
sor, e.g. to correct for measurement distortions if any [10], and
continues to provide motion information even in featureless or
geometrically degenerate environments [11].

As the robot undergoes wear-and-tear during its course of
operation, calibration must also be performed regularly. Such
a requirement motivates the need for calibration approaches
that work without any additional hardware, require no prior
information, and do not need to disrupt the operation of the
robot. A joint calibration approach for a two-wheel differential
drive that is independent of specialized hardware was first
proposed in [12], with the formal analysis presented in [13]
and has since been extended to other settings such as the
tricycle robot [14]. The idea here is to find a maximum likeli-
hood estimate of the various intrinsic and extrinsic parameters

ar
X

iv
:2

00
1.

01
55

5v
1

 [
cs

.R
O

]
 6

 J
an

 2
02

0

2

(a) Configuration T1 (b) Configuration T2

Fig. 1. Deformed Turtlebot3 Mecanum drive robot used for experimental
evaluations. (a) Unaligned wheel axis deformation, (b) Tilted wheel deforma-
tion.

(a) Fire Bird VI robot (b) Configuration F1

Fig. 2. One of the wheels (left) of Fire Bird VI robot is deformed such that
the wheel looses its notion of circularity.

using the ego-motion estimates provided by the exteroceptive
sensor. As long as these ego-motion estimates are sufficiently
accurate, calibration can be carried out without any additional
hardware or a specialized environment. The present work also
utilizes such a joint calibration approach. Fully automatic and
simultaneous extrinsic-odometric calibration algorithms exist,
but require artificial landmarks to properly handle outliers [15].

Henceforth, existing algorithms for joint calibration suffer
from two key issues (a) applicability to specific drive configu-
rations due to the use of customized algorithms; and (b) outlier
rejection mechanisms requiring either manual intervention or
specialized hardware. Besides, extending the approaches in
[13, 14] to other robot configurations may be possible but
not straightforward. More importantly, existing methods do
not apply to robots for which full kinematic models are
not available. Examples include complex multi-wheel robots,
robots with a misaligned axis, other unknown offsets or
deformations (see Fig. 2 and Fig. 1), and robots suffering
from excessive wear-and-tear, such as a punctured wheel [16].
As the calibration is performed in operating environments,
the ego-motion estimates provided by the sensor are often
corrupted with outliers. A fully automated outlier removal
mechanism is necessary to ensure that the calibration routine
runs by itself.

This work puts forth a generalized calibration framework
applicable to robots with arbitrary or unknown models and

is capable of rejecting outliers automatically. We begin with
describing joint odometry and sensor calibration algorithm
for two-wheel differential drive robot that is capable of
handling outliers in an automated manner. Notably, the pro-
posed approach handles various non-systematic errors such as
those arising from sensor malfunctions and wheel slippages.
The method is in contrast with existing approaches such
as [13] where outlier removal requires specific environment-
dependent parameters to be carefully tuned. Subsequently, an
iteratively re-weighted least-squares algorithm is proposed that
is capable of calibrating any robot with a known kinematic
model while also automatically handling outliers. We remark
here that the proposed algorithm can be used with a variety
of robots with complicated drive configurations and is the
first such general-purpose simultaneous calibration algorithm.
Finally, a completely generic Gaussian process (GP) regression
based calibration algorithm is proposed that can calibrate any
robot from scratch and without knowing its kinematic model.
Experiments are carried out to assess the performance of
the proposed algorithms. As compared to the state-of-the-art
algorithms, the first two algorithms yield better performance
while also handling outliers automatically. The third algorithm
is tested on robots with minor deformations to wheels and
axes (see Fig. 1 and Fig. 2), and it is understood that existing
algorithms are not applicable to handle such deformations. In
contrast, the proposed GP-based algorithm continues to yield
accurate odometric motion estimates of the extrinsic sensor.

The rest of the paper is organized as follows. Sec. II briefly
reviews some related literature. Sec. III details the system
setup and the problem formulation. The proposed algorithms
are described in Sec. IV. Detailed experimental evaluations
are carried out to validate the performance of the proposed
methods, and the results are discussed in Sec. V. Finally, Sec.
VI concludes the paper. The notation used in the paper is
summarized in Table I.

II. RELATED WORK

Wheeled robots with exteroceptive sensors require both
intrinsic and extrinsic calibration before the odometry data
can be fused with the sensor data. Initial works on intrinsic
calibration utilized specially crafted trajectories to estimate
the imperfections in the kinematic model of the robot and
hence correct for systematic odometry errors [17]. Similar
approaches were later proposed for generalized trajectories
in [18] as well as other configurations such as car-like [19]
and tricycle [20]. A linear identification problem to estimate
odometry calibration parameters is formulated and solved
within the least-squares framework in [21]. A common issue
among these approaches was the need for external measure-
ment systems such as calibrated video cameras or motion
capture systems. Towards simplifying the calibration prob-
lem, [22] proposed an algorithm that exploited the redundant
information from multiple sensors mounted on the robot.
Likewise, filtering-based calibration techniques were proposed
in [23–28], some of these approaches involve incorporating
the systematic parameters in the state vector and estimating
them within the extended Kalman filter (EKF)-based SLAM

3

framework. However, filtering techniques such as EKF are not
designed to handle outliers, that must be eliminated separately
rendering the entire process suboptimal. Finally, the calibration
problem has also been studied within the aegis of optimization
theory, and relevant works include [29, 30] where systematic
and random errors are analyzed and modelled for vehicle
odometry.

Methods for extrinsic calibration generally assume that
the intrinsic parameters of the robot are already available.
The problem of determining the transformation between a
camera and an IMU was considered in [31] within the EKF
framework. In [32], the maximum likelihood formulation using
observations from a mirror surface is considered to estimate
the six-degrees-of-freedom transformation between a camera
and the body of the robot. Extrinsic calibration of a lidar
sensor attached to a ground vehicle using EKF is considered
in [33]. Both extrinsic and intrinsic calibration approaches
may perform poorly if the underlying parameter estimation
problem is ill-conditioned. Observability analysis, in general,
provides valuable insights towards practical considerations
under which all the intended parameters are observable. Ob-
servability properties for different combinations of sensors are
described in [34]. Later [35, 36] solved the extrinsic calibration
problem along with formal observability analysis. Also, [37]
calibrate a bearing sensor and theoretically validate through an
observability analysis, taking into account the system nonlin-
earities. Misalignment error if any, was explicitly modelled and
corrected in the multi-sensor calibration algorithms in [38, 39].

Simultaneous calibration of the intrinsic and extrinsic pa-
rameters has been considered before, but with the help of
external hardware; see, e.g., [40]. As already discussed, the
problem of simultaneous calibration without any special equip-
ment was first considered in [12], with the formal analysis
presented in [13] for two-wheel differential drive robots and
later for tricycle robots in [14]. More generic calibration
routines for arbitrary robot configurations were presented in
[41] without any convergence guarantees. A joint SLAM
and calibration problem was considered in [42] and involved
solving a non-linear optimization problem using the Gauss-
Newton method. Note however that while such an algorithm
allows us to track the calibration parameters closely, it incurs
a significantly higher overall complexity as opposed to batch
calibration methods. Most of the current approaches are not
robust to outliers in the sensor measurements. However, some
approaches handle outliers either through a manual trimming
procedure in [13] or by installing special hardware such as
reflective markers [14]. Generalizing the existing schemes,
the proposed algorithm allows calibration of arbitrary robot
configurations while automatically handling outliers.

Thus far, model-free calibration of robots has not been
widely studied. A few exceptions include [16] which entailed
learning the inverse kinematics of the robot using instance-
based learning techniques. The present work is inspired by [9]
where GP regression is used to complement the existing model
by accounting for unmodeled errors. The proposed approach is
more general and allows us to directly learn the full kinematic
model.

Fig. 3. Illustrating the calibration methodology and its usage in performing
high level autonomous tasks such as SLAM

III. PROBLEM STATEMENT

We begin with a brief description of the system model
adopted here and depicted in Fig.3. In the calibration phase
the foremost goal is to estimate the robot/sensor motion model
making use of synchronized data from odometry and extrinsic
sensors, where as in the operational phase the estimated model
is used to perform high level autonomous tasks such as SLAM
etc. The relevant notation is summarized in Table I. Consider a
general robot with an arbitrary drive configuration, equipped
with m rotary encoders on its wheels and/or joints and an
exteroceptive sensor such as a lidar or a camera. The extero-
ceptive sensor can sense the environment and generate scans
or images V = {Z(t)}t∈T that can be used to estimate its ego
motion. Here, T := {t1, t2, . . . , tn} denotes the set of discrete
time instants at which the measurements are made. The rotary
encoders output raw odometry data in form of a sequence of
wheels angular velocities U = {δ(t)}t∈T . Given two time
instants tj and tk such that ∆tjk := tk− tj > 0 is sufficiently
small, it is generally assumed that δ(t) = δ(tj) := δjk for all
tj ≤ t < tk. Traditionally, the odometry data is pre-processed
to yield translation motion and orientation information, in the
form of the robot pose {qj := q(tj)}nj=1, and is subsequently
fused with the ego motion estimates from exteroceptive and
other sensors. Following the notation in Table I, the relative
pose of the robot at time tk with respect to that at time
tj is given by qjk := �qj ⊕ qk. The pre-processing step
necessitates the use of the motion model fr of the robot that
acts upon the odometry data δjk to yield the relative pose of
the robot qjk = fr(δjk). Note that if the exteroceptive sensor
is mounted exactly on the robot frame of reference, the sensor
motion model f is the same as the robot motion model fr. In
general however, if the pose of the exteroceptive sensor with
respect to the robot is denoted by `, the sensor motion model
is given by f(δjk) = �`⊕ fr(δjk)⊕ `, where generally ` is
also unknown.

As shown in Fig.3, the goal of the calibration phase is
to estimate the function f , given U and V collected during
the training phase. The estimated motion model, denoted by
f̂ , is subsequently used in the operational phase to augment
or even complement the motion estimates provided by the
exteroceptive sensor. More importantly, accurate odometry can
be used to correct distortions in the sensor measurements [10].

4

We begin with studying the special case when the function
f takes the form f(•) = g(• ; p) where g is a known
function, and p is the set of unknown parameters, such as
the dimensions of the wheel, sensor position w.r.t robot frame
of reference etc. Knowing the form of g allows us to consider
a simpler parametric problem that entails estimation of the
relevant parameters p. Two distinct scenarios are considered:
the simpler case where the robot has a two-wheel differential
drive that allows for joint scan-matching and calibration, and
the more general case where sensor displacement is calculated
a priori and provided as input to the calibration routine. A sig-
nificantly more challenging scenario occurs when the form of
f is not known, e.g. due to excess wear-and-tear, or is difficult
to handle, e.g. due to non-differentiability. For such cases, the
parametric approach is no longer feasible, and the unknown
variable f is generally infinite dimensional. Towards this end,
a low-complexity approach is proposed, wherein a simple
but generic (e.g. linear) model for f is postulated. A more
general and fully non-parametric Gaussian process framework
is also put forth that is capable of handling more complex
scenarios and estimate a broader class of motion models f . It
is remarked that in this case, unless the exteroceptive sensor
is mounted on the robot axis, additional information may also
be required to estimate the robot motion model fr.

An interesting feature of the proposed class of algorithms is
that they do not require the ground truth of the robot motion.
Therefore, the calibration phase may be repeated as often as
required depending on the rate of wear-and-tear of the robot
wheels or sensor pose changes. More generally, the calibration
phase can be integrated within the operational phase itself and
may, therefore, be carried out without interrupting the robot
operation. However, as will be shown later, the calibration
phase does require the robot motion to comprise of both,
rotation and translation at each step.

While the formulation and techniques developed here can
be applied to arbitrary exteroceptive sensors, for ease of
exposition and testing, we will restrict ourselves to 2D Lidar
that is mounted in such a way that it makes zero pitch
and roll with robot axis. Likewise, although most of the
calibration techniques are general, the fomulae and algorithms
presented here will only consider a robot operating in a planar
environment.

The 2D pose of the robot at time t is denoted by q(t) :=
[qx(t) qy(t) qθ(t)]

T , consisting of the location coordinates
and orientation of the robot with respect to a fixed frame
of reference. The robot motion is governed by the following
differential equation for t ∈ R:

q̇(t) :=
dq(t)

dt
=

vx(t)
vy(t)
ω(t)

 =

v(t) cos(qθ(t))
v(t) sin(qθ(t))

ω(t)

 (1)

where v(t) and ω(t) are respectively the translational and
rotational velocities of the robot and vx(t), vy(t) being the
components of v(t) along x-axis and y-axis respectively.
Having introduced the preliminary notation, we discuss the
three relevant examples that will subsequently be considered.
Example 1: Consider a two-wheel differential drive robot
(see Fig. 4(a)) operating in a planar environment. Calibrating

(a) (b)

Fig. 4. Robots used for experimental evaluations of proposed algorithms
along with the state-of-the-art. (a) Kobuki robot equipped with a 2D-lidar,
wheel encoders and an on-board computer. (b) Similarly Fire Bird VI robot.

such a robot entails estimation of two sets of parameters (a)
kinematic model parameters r := (rL, rR, b) ∈ R3, where
rL and rR denote the radii of the left and right wheels
respectively, and b denotes the axle length; and (b) the pose
of the exteroceptive sensor with respect to the robot frame
` := (`x, `y, `θ) ∈ R3. For such a robot, the left and
right wheel odometry sensors output a sequence of ticks, that
can generally be converted into left- and right-wheel angular
velocities, denoted by ωL(t) and ωR(t) respectively. The robot
translation and rotation velocities used in (1) are related to
δ(t) := [ωL(t) ωR(t)]T as follows,(

v(t)
ω(t)

)
= Jrδ(t) (2)

where

Jr :=

(
rL/2 rR/2
−rL/b rR/b

)
(3)

Henceforth, we denote the wheel angular velocities by ωi(t)
where i = {L,R}.

In order to derive the motion model, consider the time
interval [tj , tk) such that ∆tjk is sufficiently small and the
wheel velocities {ωi(t)}i=L,R remain approximately constant
for t ∈ [tj , tk). Such an approximation allows us to use the
notation ωjki := ωi(t) for t ∈ [tj , tk). In practice, the wheel
angular velocities are obtained by counting the number of ticks
recorded in the interval [tj , tk), scaling it with the manufacture
specified radians per tick factor, and dividing the result by
∆tjk. Consequently, from (3) we have that

v(t) :=
1

2
rLω

jk
L +

1

2
rRω

jk
R = vjk (4)

ω(t) := −1

b
rLω

jk
L +

1

b
rRω

jk
R = ωjk (5)

for t ∈ [tj , tk). Finally, the relative pose qjk can be obtained
by integrating (1) over the interval [tj , tk), that yields

qxjk = vjk∆tjk(sin ωjk∆tjk)/(ωjk∆tjk) (6a)

qyjk = vjk∆tjk(1− cos ωjk∆tjk)/(ωjk∆tjk) (6b)

qθjk = ωjk∆tjk. (6c)

The robot motion model fr can be obtained by substituting
(4)-(5) into (6). It can be observed that the for the two-wheel

5

differential drive robot, the sensor motion model f(δjk) =
�`⊕fr(δjk)⊕` is completely specified, but for the parameters
p = (`, r).
Example 2: Consider an arbitrary complex wheel drive robot
operating in a planar environment, for example, a four-wheel
Mecanum drive robot as shown in Fig. 4(b). Calibrating
such a robot entails estimation of kinematic model parameters
r := (r, Lx, Ly) ∈ R3, where r denotes the fixed radius of
all the four wheels, Lx denotes the half of axle length along
x-axis of the robot, and Ly denotes the same along the y-axis.
For such a robot, the left-rear, right-rear, left-front and right-
front wheel odometry sensors output a sequence of ticks, that
can generally be converted into corresponding wheel angular
velocities denoted by ωLr(t) , ωRr(t) , ωLf (t), and ωRf (t),
respectively. The robot translation and rotation velocities used
in (1) are related to δ(t) := [ωLr(t) ωRr(t) ωLf (t) ωRf (t)]T

as follows,vx(t)
vy(t)
ω(t)

 = Jr δ(t) (7)

where

Jr := r

1 1 1 1
−1 1 1 −1

− 1

Lx + Ly

1

Lx + Ly
− 1

Lx + Ly

1

Lx + Ly

.
(8)

Following the short hand notations used in Example 1, the
wheel angular velocities are denoted by ωi(t) where i ∈
{Lr, Rr, Lf , Rf}. Likewise, assume that ∆tjk is small, so that
vx(t) = vxjk and vy(t) = vyjk for t ∈ [tj , tk). Consequently,
the relative poses are given by

qxjk = vxjk∆tjk (9a)

qyjk = vyjk∆tjk (9b)

qθjk = ωjk∆tjk. (9c)

We remark here that for the four-wheel Mecanum drive robot,
the sensor motion model f(δjk) = �` ⊕ fr(δjk) ⊕ ` is
completely specified, but for the parameters p = (`, r).
Example 3: Finally, consider a two-wheel differential drive
and a four-wheel Mecanum drive robots suffering from hard-
ware malfunctions such as deformation of one of the wheels
(see Fig. 2), unaligned wheel axis, or tilted wheel (see Fig.
1). The original kinematic model of the respective robots
with such deformations no longer captures the true motion
behaviour, and therefore cannot be used. In general, such
distortions introduce new parameters that are difficult to
model. Despite the distortions, the robots continue to output
angular velocities δ(t) (of dimension m) that can be used to
determine f : Rm → R3 using the ego-motion estimates of
the exteroceptive sensors. Indeed, for such cases, it only makes
sense to talk about the sensor motion model and not the robot
motion model, which is unidentifiable unless the position of
the sensor (parameterized by `) is known. Defining constant
angular wheel velocities as in Example 1 for a small interval
[tj , tk), the relative pose of the sensor would be given by
qjk = f(δjk) and the goal is to estimate f .

In summary, the goal is to learn the function f , given raw
odometry U and sensor measurements V while being robust
to outliers in an automated manner. For the case when the
parametric form of the function f is known, the problem
entails estimating the associated parameters p involving robot
intrinsic parameters r and exteroceptive sensor position `. On
the other hand, when the kinematic model of the robot is not
known, the aim is to learn the non-parametric form of the
function f .

IV. CALIBRATION METHODOLOGY

This section details the algorithms for various cases dis-
cussed in Sec.III, namely, calibration of robots with two-
wheel differential drive configuration (Sec. IV-A), robots with
generic but known drive configurations (Sec. IV-B), and fi-
nally, robots with unknown or unmodeled drive configurations
(Sec. IV-C). The algorithms for the more general cases can
always be used in the special cases, e.g., a robot with two-
wheel differential drive can be calibrated by any of the
techniques presented in this section. However, using a more
general method incurs a higher computational complexity and
may result in lower calibration accuracy.

A. Autonomous calibration of the two-wheel differential drive
robots

Consider a two-wheel differential drive robot equipped with
a Lidar. Recall from Example 1 that for this case, the param-
eters of interest are p = (`, r) and the kinematic model of the
robot is given by (4)-(6). The simple form of the kinematic
model for the two-wheel drive motivates the formulation of a
joint scan-matching and parameter estimation problem that can
be solved via the alternating minimization algorithm. Different
from the existing unsupervised calibration algorithms, e.g.
[13], the proposed algorithm builds upon the ICP framework
[43, 44] and allows automated outlier rejection. However,
the overall approach here is general and can be used with
other scan matching algorithms such as the point-to-line ICP
(PLICP) [45]; see B.

Let {z(i)(t)}|Z(t)|
i=1 denote the Cartesian coordinates of the

scan points expressed with respect to the Lidar frame and
collected at time t ∈ T . Here, Z(t) denotes the set of all scan
points collected at time t. Following the notation introduced
in Sec. III, the scan points can be transformed into the robot
frame and written as {`⊕z(i)(t)}|Z(t)|

i=1 . We drop the subscript
i, also t and denote the scan points collected at times {tj} by
{z(i)
j }. For any point z

(i)
j , the distance to the closest point in

Z(tk) is given by

d
(i)
jk := min

z∈Z(tk)

∥∥∥qjk ⊕ `⊕ z− `⊕ z
(i)
j

∥∥∥2

2
(10)

Within the ICP framework, the correspondence error is given
by

h(r, `) =
∑

(j,k)∈E

∑
i∈Zjk

d
(i)
jk (11)

where E represents set of all chosen scan pairs and Zjk ⊂
Z(tk) consists of points for which the distances d

(i)
jk are

6

the smallest. In order to allow partial overlap between the
scan pairs Z(tj) and Z(tk), we utilize a trimming procedure
inspired from [44]. If the distances {d(i)

jk } are sorted and the
ι-th smallest distance is denoted by d

[ι]
jk, then the trimmed

correspondence error may be written as

h(r, `) =
∑

(j,k)∈E

Ijk∑
ι=1

d
[ι]
jk. (12)

Here, the number of points under consideration Ijk is generally
decided on the basis of the overall trimmed correspondence
error value. Trimming, by choosing Ijk < |Z(tk)|, not only
allows partial overlaps between scan pairs but also handles
erroneous measurements and shape defects. The overlap pa-
rameter ζ = Ijk/|Z(tk)| is determined automatically by
solving a simple optimization problem as detailed in [44,
Sec. 3]. Recall that in (10), qjk is a function of r and is
given by (6) for the two-wheel drive. As in the classical
ICP algorithm, for each pair of scans in E , the scan points
are first transformed into a common frame of reference and
then compared. The parameters are recovered by solving the
following optimization problem

(r?, `?) = arg min
r,`

h(r, `). (13)

Note that while in theory, one could impose constraints of the
form r ≥ 0, such constraints would not be useful in practice.
Indeed, a solution on the boundary (e.g. with rL = 0) is
also not acceptable, and would generally necessitate collecting
more measurements for calibration.

The problem in (13) can be viewed as a generalization of
the trimmed ICP framework, where the parameter ` does not
appear. The inclusion of `, however, complicates the opti-
mization problem, which is already non-convex and difficult
to solve. To this end, we propose the following algorithm:
starting from an initial estimate (r0, `0), perform the two
steps iteratively (a) establish correspondences Zαjk based on
(rα, `α); and (b) update (rα+1, `α+1) = arg minr,` h

α(r, `)
where hα is obtained from h while using the given corre-
spondences Zαjk. Of these, the first step is straightforward
and implements the trimming procedure, as outlined in [44].
The step (b) is however still complicated, and we solve it via
an alternating minimization approach. Also referred to as the
block-coordinate descent (BCD) method [46], the approach
entails alternating minimization of hα with respect to ` and
r. While the algorithm is not guaranteed to converge except
under specific conditions [47], it is known to work well in
practice and has been used to solve a wide variety of problems
in communications and signal processing.

In the present context, the algorithm admits a natural inter-
pretation, namely alternate intrinsic and extrinsic calibration,
summarized in the following Lemma.

Lemma 1. Given correspondences, the following problems:

Extrinsic calibration given r′: min
`∈L

hα(r′, `) (14)

Intrinsic calibration given `′: min
r≥0

hα(r, `′) (15)

can both be solved efficiently. Specifically,(14) can be solved
in closed-form while (15) can be solved via two-dimensional
grid search.

Note that the subproblems in (14)-(15) are both non-convex.
Interestingly, however, Lemma 1 establishes that the global
minima of these subproblems can be readily found. The full
calibration via alternating minimization (CAM) algorithm is
summarized in Algorithm 1. The parameters are initialized
either from manufacture supplied values or from the values
obtained via manual measurements. The development of the
closed form solutions to (15)-(14) is carried out in A. Having
developed the joint scan matching and calibration algorithm,
discussion on various implementation related issues is due.

Algorithm 1 CAM algorithm for autonomous calibration of
two wheel differential drive robots

1: Collect scans and wheel odometry measurements
2: Initialize parameters i.e pα = (rα, `α), with α = 0
3: Select scan pairs based on the criteria detailed in IV-A2
4: repeat
5: Establish correspondences with current best estimate

of parameters
6: Perform Alternating Minimization :
7: β = 0, pβ = (rβ , `β) = (rα, `α) = pα
8: repeat
9: Extrinsic calibration of Lidar :

10: `β+1 ← arg min` h
α(rβ , `)

11: Intrinsic calibration of wheel odometry :
12: rβ+1 ← arg minr h

α(r, `β+1)
13: β ← β + 1
14: until Convergence

∥∥pβ+1 − pβ
∥∥ ≤ ε

15: α← α+ 1, update pα
16: until Convergence

1) Observability and uniqueness: As in classical parameter
estimation settings, it is necessary to explicate the limitations
of the proposed algorithm. Observability analysis seeks to
identify the conditions and constraints under which the es-
timates obtained from Algorithm 1 are reasonably close to
the actual robot parameters. The idea is to generate a set of
guidelines for the generation of measurements that make the
system parameters observable.

As a simple example, consider a robot that always moves
along the x-axis in a straight line. Then, for any two time
points tj and tk, it holds that qxjk = vjk∆tjk while qyjk =

qθjk = 0. Recall from (4) that vjk depends only on rL and rR
but not on the axle length b. Substituting these into (11), it can
be seen that in this case, h would also not depend on b, i.e.,
∇bh(r, `) = 0 regardless of the value of b. Indeed, if the robot
only moves along the x-axis, the parameter b would remain
unobservable irrespective of the calibration method used.

More generally, the following proposition specifies the
guidelines for robot motion during the calibration process.

Proposition 1. The sensor parameters are unobservable if
the robot motion comprises of either pure translations or pure
rotations alone.

The proof of Proposition 1 is provided in C. The observ-
ability analysis reveals the conditions under which certain

7

parameters would remain unobserved. For example, it can be
seen from (11) that for pure rotation (i.e. when qxjk = qyjk = 0),
the function h does not depend on intrinsic parameters rL and
rR. In other words, rL and rR are not observable if all the
scan pairs in E correspond only to pure rotations. In other
words, if the training phase is comprised of pure rotations
alone, inferring the radii rL and rR would be impossible.
The requirement for the robot to be sufficiently mobile during
the training phase is generally always required for passive
calibration schemes [13].

Before concluding, we remark here that the solution to (13)
is not necessarily unique, even when all the parameters are
observable. In particular, it can be observed from (13) that both
(rL, rR, b, `x, `y, `θ) and (−rL,−rR,−b,−`x,−`y, `θ + π)
yield the same value of h(r, `) and ∇h(r, `). Such parameter
ambiguity is often unavoidable in calibration algorithms; see,
e.g. [13]. In the present case, however, the ambiguity can be
resolved by selecting the solution that has positive values of
(rL, rR, b). In general, if the initial values are not too far
from the actual values, the proposed Algorithm was found
to converge to the vicinity of the correct solution.

2) On the choice of scan pairs and trajectory: While the
proposed calibration algorithm allows for the calibration to
be carried out while the robot is operating, the observability
analysis does impose certain restrictions on the robot trajec-
tory. Specifically, for the parameters to be observable with
sufficiently high accuracy, the overall motion of the robot
during the calibration phase should involve both translation
and rotation. For instance, the estimated parameters would
be highly inaccurate if the robot continues to move along
an almost straight line or continues to turn around without
moving.

A typical calibration routine consists of a large number of
scans and including every possible scan pair in E is inefficient
and computationally demanding. Given that the robot trajec-
tory adheres to such a restriction, the efficiency and accuracy
of the calibration phase can both be improved by intelligently
selecting the scan pairs. Specifically, based on robot odometry
with nominal parameters, we choose scan pairs that have non-
zero translation and rotation between them. Here, it is essential
to ensure that scan pairs still correspond to sufficiently close
robot locations, lest our assumption regarding small ∆tjk is
violated. The simulations utilize a heuristic upper bound on
the translation distance to ensure this.

3) Automatic outlier rejection: Outliers enter into the sys-
tem either through scan points that belong to non-overlapping
regions or due to wheel slippages. The proposed CAM al-
gorithm automatically removes both kinds of outliers; specif-
ically, the trimmed correspondence error in (12) allows for
partial overlaps and the Huber loss function incorporated
within the subproblem (15) eliminates outliers due to wheel
slippages (see A). The automatic outlier rejection approach
contrasts existing calibration algorithms that require manual
trimming [13] or additional hardware [14].

4) Tuning parameters for CAM: Recall that the CAM over-
lap parameter ζ is found by solving an optimization problem
as detailed in [44]. The corresponding preset parameter for
the trimming procedure is set to be unity since the scan

selection criteria yielded scans with considerable overlap. For
this choice of preset parameter, the performance of the CAM
algorithm was relatively robust to the choice of the Huber
parameter c, which was also selected to be unity.

B. Autonomous calibration of robots with arbitrary but known
drive configurations

This section develops a general-purpose calibration algo-
rithm that can be applied to a robot with any given drive
configuration. As in Sec. IV-A, the parameters of interest
are denoted by p = (r, `), where r collects the intrinsic
robot parameters while ` denotes the pose of the exteroceptive
sensor in the robot frame. Unlike Sec. IV-A however, the
exteroceptive sensor need not be a 2D Lidar, but any sensor
capable of estimating its ego-motion, e.g., a camera.

As in Sec. IV-A, let T denote the set of times at which
the sensor observations are made. Consider a pair of times
[tj , tk) ∈ T ,3 tk > tj and ∆tjk = tk − tj is not too
large. Recall that the relative pose of the robot qjk(r) is a
function of the intrinsic robot parameters. Given `, the sensor
displacement between tj and tk can be calculated as

sjk(r, `) = � (qj ⊕ `)⊕ (qk ⊕ `) = � `⊕ qjk(r)⊕ ` (16)

where qjk(r) encodes the robot motion model, as detailed in
Sec. III. For certain pair of times [tj , tk), the exteroceptive sen-
sor may generate an estimate of its ego motion, henceforth de-
noted by ŝjk. For most sensors, such estimates are also accom-
panied by error variances Σjk := diag((σxjk)2, (σyjk)2, (σθjk)2)
that quantify the estimation error variances in x, y, and θ
estimates in ŝjk. Defining the set of all scan pairs E := {(j, k) |
ŝjk is available and ∆tjk small}, the calibration problem can
be posed within the non-linear least squares framework as

(r̂, ˆ̀) = arg min
r,`

h(r, `) :=
∑

(j,k)∈E

‖ŝjk − sjk(r, `)‖2Σ−1
jk

(17)

Define the residual vector υjk(r, `) := ŝjk − sjk(r, `) and
denote its i-th element by υijk(r, `) for i ∈ {x, y, θ}. Observe
that the objective function in (17) is also the negative log-
likelihood − log p({ŝjk}; r, `) if the uncertainty in ŝjk is
modeled as independent Gaussian distributed with zero mean
and co-variance matrix Σjk. Such an interpretation allows (17)
to be interpreted as the maximum likelihood (ML) estimator
[13, 14].

The exteroceptive sensor output is well known to be prone
to outliers, e.g., due to the scan-matching failures. On the
other hand, the ordinary least squares estimator tends to fail
catastrophically even in the presence of a single outlier [48].
In order to handle such outliers, we resort to the class of robust
M-estimators. Rewriting the objective function in (17) in terms
of υijk, we obtain

h(r, `) =
∑

(j,k)∈E

∑
i∈{x,y,θ}

ρ

(
υijk(r, `)

σijk

)
(18)

8

(a) (b)

Fig. 5. (a) Illustration of robot poses qj ,qk w.r.t to world frame; ` represents
pose of Lidar sensor w.r.t robot frame; qjk is the relative pose of qk w.r.t
qj . (b) Weight function plotted against residuals for Huber loss.

where ρ(u) = u2

2 . The robust counterpart of (18) is obtained
by replacing the squared loss function ρ with the Huber
function ρc defined as [49]

ρc(u) =

{
u2

2 |u| ≤ c
c(|u| − c

2) |u| > c.
(19)

It can be seen that the Huber function is the same as the
squared law function for |u| ≤ c but becomes linear in
|u| for |u| > c. The Huber estimator obtained by plugging
in hc(r, `) :=

∑
(j,k)∈E

∑
i∈{x,y,θ} ρc

(
υijk(r,`)

σijk

)
in (17) is

robust to outliers in ŝjk. Alternatively, the Huber estimator can
be viewed as a special case of a sparsity controlling outlier
rejection framework [50]. Note that the Huber estimator is
inefficient when the noise is actually Gaussian distributed. For
instance, the choice c = 1.345 results in about 95% efficiency
[49].

In the following subsections, we discuss the methodology
to solve (17) with the Huber loss function, followed by
observability analysis.

1) Iteratively Re-weighted Least Squares (IRLS) Algorithm:
In general, both h and hc are non-convex functions of (r, `)
and are difficult to work with. Moreover, the function ρc is
not twice differentiable so classical second order methods (e.g.
Newton method) cannot be directly applied. Instead, we put
forth an IRLS variant that solves a non-linear least squares
problem at each step. Recalling that p = (r, `), the equation
∇hc(p) = 0 can be equivalently written as

∑
(j,k)∈E

∑
i∈{x,y,θ}

wijk(υijk(p))∇p

(
1

2

[
υijk(p)

]2)
= 0 (20)

where the weight function is defined as

wijk(u) :=

1

(σijk)
2 |u| ≤ c
c

|u|(σijk)
2 |u| ≥ c

(21)

and shown in Fig.5(b). Observe that given the weights {wijk},
solving (20) is equivalent to solving a non-linear weighted
least squares (NLS) problem. Assuming that such a problem
can be solved readily, the IRLS algorithm starts with an initial

guess p̂(0) and entails carrying out the following iterations for
α ≥ 0:

p̂(α+1) = arg min
p

∑
(j,k)∈E

‖υjk(p)‖2
W

(α)
jk

(22)

where W
(α)
jk is a diagonal matrix whose (i, i)-th entry is given

by [Wα
jk]ii = wijk(υijk(p(α))). Note that the non-linear least

squares problem in (22) is similar to that in (17) except for
the changing weights. Classical approaches for solving the
NLS include (a) Newton method that can be applied when
the motion model qjk(r) is twice differentiable in r; and the
(b) Levenberg Marquardt (LM) algorithm otherwise. In gen-
eral, LM algorithm is preferred when a lower computational
complexity is desired while the Newton method is more suited
when the Hessian can be calculated easily.

Based on empirical observations, we propose two enhance-
ments to the IRLS algorithm. First, when the number of
outliers is large, there may be a large number of residual terms
with very small weights. While the contribution of each of
these residual terms may be small, their combined contribution
may still be significant and may bias the estimate. Ideally,
the residuals for which the corresponding weights are very
small should be completely eliminated from the optimization
process. Towards this end, we propose to trim the weights at
every iteration as follows:

w̃ijk(u) =

{
0 wijk(u) ≤ γ
wijk(u) wijk(u) > γ

(23)

where γ = 1 − 1
n

n∑
k=1

wijk(u). To understand the trimming

process, observe that when there are few outliers in the data,
several of the weights wijk(u) are close to 1, and consequently,
γ ≈ 0. As a result, no trimming occurs in such a scenario, and
all the residual terms contribute to the optimization. On the
other hand, when the number of outliers is very large, γ is
larger, and a number of residuals having small weights may
get trimmed. As a result, even when the level of corruption is
high, the contribution of the outlier residual terms still stays
small. The justification on the effectiveness of the trimming
procedure will be substantiated in the experimental section.
Second, the residuals are adjusted using leverage, as suggested
in [51]. The adjusted residuals are denoted by υ̃ijk(p) and full
IRLS algorithm is summarized in Algorithm 2.

Note that in the context of two-wheel differential drive and
the tricycle drive, the weighted least squares problem in (22)
can be solved in closed-form if the following condition holds
[13, 14]

wxjk = wyjk. (24)

While such a condition would not generally hold since the
weights in (21) depend on the residuals, the availability of
closed-form solution simplifies the overall algorithm signif-
icantly. Specifically, the proposed CIRLS algorithm reduces
to alternatively solving (22) in closed-form and updating the
weights as in (21) or (23). It is possible to explicitly force
(24) to hold by setting

wijk = max{wxjk, w
y
jk} for i ∈ {x, y} (25)

9

Algorithm 2 CIRLS algorithm for autonomous calibration of
arbitrary drive robots

1: Collect measurements from wheel odometry and extereo-
ceptic sensors over any sufficiently exciting trajectories

2: Now run the corresponding sensor displacement algorithm
for each selected interval, to get the estimates {ŝjk}

3: Initialize parameters pα = (`α, rα), with α = 0
4: Also initialize the weight matrix to W = I
5: repeat
6: Using current weight matrix (W) and available best

estimate of parameters (pα), solve the following:
7: p̂ = arg minp

∑
(j,k)∈E ‖υjk(p)‖2

W
(α)
jk

8: This can be done by employing either Gauss Newton
or Levenberg Marquardt algorithm

9: Update pα, also update subsequent weights using
equation (23), thus W

10: until Convergence

for all (j, k) ∈ E . In this case, equal weight is applied to all the
residuals in the first iteration. We refer to this case as CIRLS
CF (CIRLS with closed forms).

2) Observability and Covariance analysis of estimated pa-
rameters: The observability analysis for ` is similar to that in
Sec. IV-A. That is, pure translations alone, make `θ unobserv-
able while pure rotations alone make `x and `y unobservable.
Therefore the robot trajectory in the calibration phase should
not consist entirely of pure translations or pure rotations solely.
The observability of the intrinsic parameters depends on the
motion model of the robot and must be explicitly analyzed for
a given drive configuration. It can be seen for instance that if
one or more entries of ∇qjk(r) are zero, the NLS problem
may become ill-conditioned.

The uncertainty in the estimated parameters can be found
as follows:

Σ = mse× (JT J)−1 (26)

where mse is the mean of squared weighted residual terms
evaluated at the converged solution and the e-th row of J is
∇pse(r, `) for all e ∈ E .

C. Autonomous calibration of robots with un-modeled wheel
deformations

When no information about the kinematic model of the
robot is available, it becomes necessary to estimate f directly.
As in Sec. IV-B, let {tj} be the set of time instants at
which measurements are made. For certain pairs of times
[tj , tk) ∈ E for which ∆tjk is not too large, the exteroceptive
sensor generates motion estimates ŝjk. Given data of the form
D := (δjk, ŝjk)(j,k)∈E and n := |E|, the goal is to learn the
function f : Rm → R3 that adheres to the model

ŝjk = f(δjk) + εjk (27)

for all (j, k) ∈ D, where εjk ∈ R3 models the noise in
the measurements, and δjk now represents the wheel ticks
recorded in the time interval ∆tjk. As in Sec. IV-B, it is
assumed that the noise variance Σjk is known. Given an

estimated f̂ of the sensor motion model, new odometry
measurements δ? can be used to directly yield sensor pose
changes s? = f̂(δ?). As remarked earlier, it may be possible
to obtain the robot pose change q? from s? if the sensor
pose ` is known a priori. Since the functional variable f
is infinite dimensional in general, it is necessary to postulate
a finite dimensional model that is computationally tractable.
Towards solving the functional estimation problem, we detail
two methods, that are very different in terms of computational
complexity and usage flexibility.

1) Calibration via Gaussian process regression: The GP
regression approach assumes that the measurement noise is
Gaussian distributed and assumes that the ŝjk also follows
normal distribution with mean f(δjk). Specifically, we have
the likelihood as

p(ŝjk|f(δjk)) = N (ŝjk|f(δjk),Σjk) (28)

or equivalently, εjk ∼ N (0,Σjk). Given inputs {δjk}, let f
denote the {3n×1} vector that collects {f(δjk)} for {(j, k) ∈
E}. Defining Σ ∈ R3n×3n as the block diagonal matrix with
entries Σjk and ŝ ∈ R3n as the vector that collects all the
measurements {ŝjk}(j,k)∈E . Having this we can equivalently
write the joint likelihood as

p(ŝ|f) = N (ŝ|f ,Σ) (29)

Unlike the parametric model in Sec. IV-B, we impose a
Gaussian process prior on f directly. Equivalently, we have
that

p(f) = N (f |µ̄,K) (30)

where µ̄ ∈ R3n is the mean vector with stacked entries of
µ(δjk) ∈ R3 and the covariance matrix K ∈ R3n×3n has
entries [Kjk,j′k′] = κ(δjk, δj′k′) for (j, k) and (j′, k′) ∈ E .
The choice of the mean function µ : Rm → R3 and kernel
function κ : Rm × Rm → R3×3 is generally important
and application specific. Popular choices include the lin-
ear, squared exponential, polynomial, Laplace, and Gaussian,
among others. Next, the predictive posterior for a new test
input δ? is defined as follows,

p(ŝ? |̂s) =

∫
p(ŝ?|f̂(δ?)) · p(f̂(δ?)|̂s) · df̂(δ?) (31)

where p(f̂(δ?)|̂s) =
∫
p(f̂(δ?)|f) · p(f |̂s) · df and also note

p(f̂(δ?)|f) must be Gaussian. With a Gaussian prior and noise
model, the posterior distribution of f given D is also Gaussian.
For a new odometry measurement δ? with noise variance Σ?,
let k? ∈ R3n×3 be the vector that collects {κ(δ?, δjk)}(j,k)∈E .
Then the distribution of f̂(δ?) for given ŝ is

p(f̂(δ?)|̂s) = N (f̂(δ?) | µ̂?, Σ̂?) (32)

where µ̂? = kTe (K+Σ)−1(ŝ− µ̄)+µ(δ?) and the covariance
Σ̂? = κ(δ?, δ?) − kT? (K + Σ)−1k?. It is remarked that
while the computational complexity of calculating the required
inverse matrix (K + Σ)−1 is O(n3), it is required to be
computed only once at the end of the training phase. The
full CGP algorithm is summarized in Algorithm 3.

10

(a) X (b) Y (c) Theta

(d) X (e) Y (f) Theta

Fig. 6. (a),(b),(c) illustrates the movement of the sensor frame in x, y, θ, respectively w.r.t change in left and right wheel ticks of a two wheel differential
drive robot (i.e., f(•) = g(• ; p̂)), overlaid with the corresponding sensor displacement measurements generated using raw data published at [52] for a
particular configuration. Note p̂ denotes parameter estimates found using CMLE [13]. Also in [52], since data from each configuration is divided into three
subsets, we consider any two of them as training data and rest as test data. Points that are displayed in red and yellow color denote training and testing
samples generated at selected scan instants respectively. Note: red points that are away from the 3D surface are outliers. (d)-(f) represent the truncated and
enlarged versions of the same plots to expose the linearity.

Algorithm 3 CGP algorithm for simultaneous calibration of
robot and sensor parameters

1: Collect measurements from sensors.
2: Training Phase :
3: Run sensor displacement algorithm for each selected in-

terval, to get the estimates {ŝk} and store them along with
the corresponding angular velocities.

4: Now pre-compute the following quantities :
5: (K + Σ)−1(ŝ− µ̄) and (K + Σ)−1

6: Testing Phase :
7: For every test input δ?, evaluate the following,
8: µ̂? = k?(K + Σ)−1(ŝ− µ̄) + µ(δ?)
9: Σ̂? = κ(δ?, δ?)− kT? (K + Σ)−1k?

10: Report ŝ∗, where p(ŝ?) = N (ŝ?|µ̂?, Σ̂?)

Note that in general, the choice of the mean and kernel
functions is important and specific to the type of robot in use.
In the present case, we use the linear mean function

µ(x) = Cx (33)

where x ∈ Rm is the vector of wheel ticks recorded in
a time interval and C ∈ R3×m is the associated hyper-
parameter of the mean function. Recall that m represents total
number of wheels equipped with wheel encoders. Intuitively,

the implication of this choice of linear mean function is that
the relative position of the robot varies linearly with the wheel
ticks recorded in the corresponding time interval. Such a
relationship generally holds for arbitrary drive configurations
if the time interval is sufficiently small. A widely used kernel
function is the radial basis function as follows

[κrbf (x, x′)]i,i′ = σ2
i,i′ exp

(
−1

2
(x− x′)TB−1

i,i′(x− x′)
)
(34)

where x, x′ ∈ Rm are the data inputs with hyper-parameters
Ξ = [σi,i′ ,Bi,i′], here i, i′ = 1, 2, 3. It will be shown in section
V-C2 that for the two-wheel differential drive robot in use
here, the squared exponential kernel (34) with the linear mean
function yielded better results than others. On the other hand
for four-wheel Mecanum drive in use here, the inner product
kernel, which amounts to a linear transformation of the feature
space,

[κlin(x, x′)]i,i′ = 〈 x, x′〉 (35)

performed better. We remark here that for our experiments
we have assumed κ(x, x′) = diag([κ(x, x′)]i,i). In general,
the choice of the mean and kernel functions and that of
the associated hyper-parameters is made a priori. For our
experiments we infer the hyper-parameters by optimizing the
corresponding log marginal likelihood. However, they may

11

also be determined during the calibration phase via cross-
validation.

2) Calibration via approximate linear motion model: As
an alternative to the general and flexible CGP approach that is
applicable to any robot, we also put forth a computationally
simple approach that relies on a linear approximation of f .
Specifically, if ∆tjk is sufficiently small, so are elements
of δjk. Therefore, it follows from the first order Taylor’s
series expansion, that f is approximately linear. This assertion
if further verified empirically for the two-wheel differential
drive. As evident from Fig. 6, for ∆tjk sufficiently small,
the elements of δjk are concentrated around zero and the
surface fitting them is indeed approximately linear. Motivated
by the observation in Fig. 6, we let f(δjk) = Wδjk, where
W ∈ R3×m is the unknown weight matrix. The following
robust linear regression problem can subsequently be solved
to yield the weights:

Ŵ = arg min
W

∑
(j,k)∈E

∑
i∈{x,y,θ}

ρc

(
ŝijk − [Wδjk]i

σijk

)
(36)

where ρc is the Huber loss function [49]. Here, (36) is a
convex optimization problem and can be solved efficiently
with complexity O(n3). Note that the entries of W do not
have any physical significance and cannot generally be related
to the intrinsic or extrinsic robot parameters, especially after
wheel deformation. Also, the computational cost incurred in
making prediction is O(m) for the linear model but O(n2)
for the CGP algorithm.

V. EXPERIMENTS ON AUTONOMOUS CALIBRATION OF
MOBILE ROBOTS

This section details the experiments carried out to test
the various calibration algorithms proposed in the paper. For
all experiments, we made use of two different two-wheel
differential drive and a four-wheel Mecanum drive robots, each
equipped with wheel encoders and laser range finder. We begin
with detailing the performance metrics used for evaluation
followed by details regarding the experimental setup and
results.

A. Performance Metrics

The various calibration algorithms detailed in the paper
output a robot/sensor motion model f̂ , and the goal of this
section is to evaluate the efficacy of the learned model. In the
absence of wheel slippages, it is remarked that the accuracy
of motion model is quantified by the closeness of the robot
trajectory estimate obtained from odometry to the ground truth
trajectory. Since even small errors in the model accumulate
over time, the overall trajectory may deviate significantly over
a longer interval. Therefore in practical settings, odometry data
must generally be augmented or fused with data from other
sensors.

Since ground truth data was not available for the experi-
ments, we instead used a SLAM algorithm to localize the sen-
sor and build a map of the environment. While SLAM output
would itself be inaccurate as compared to the ground truth,

Fig. 7. An example scenario describing loose relation between the error
metrics ATE & RPE. {x0,x1, . . . ,x6} are the poses recorded at time instants
t ∈ T = {t0, t1, . . . t6} respectively. Note that dotted lines with arrows
represents correspondences of test trajectory poses with that of ground truth
poses.

some of them [53] do not require odometry measurements
and consequently serves as a benchmark for all calibration
algorithms. Specifically, the google cartographer algorithm,
which leverages a robust scan to sub-map joining routine, is
used for generating the trajectory and the map [53] of the
environments. Note that in the absence of extrinsic calibration
parameters, SLAM outputs only the sensor trajectory (and
not the robot trajectory), which is subsequently used for
comparisons. Further, estimating the sensor trajectory from
odometry measurements requires the sensor motion model f .

Various sensor trajectory estimates are compared on the
basis of Relative Pose Error (RPE) and the Absolute Trajectory
Error (ATE) motivated from [54]. The RPE measures the local
accuracy of the trajectory, and is indicative of the drift in the
estimated trajectory as compared to the ground truth. At any
time tk ∈ T , let the odometry and SLAM pose estimates be
denoted by x̂k and xk, respectively. Then, relative pose change
between times tk and tk+1 estimated via odometry and SLAM
are given by � x̂k ⊕ x̂k+1 and � xk ⊕ xk+1, respectively.
Defining erk := � (� x̂k ⊕ x̂k+1) ⊕ (� xk ⊕ xk+1), the
RPE is defined as the root mean square of the translational
components of {erk}

n−1
k=1 , i.e.,

RPE :=

(
1

n− 1

n−1∑
k=1

‖trans(erk)‖2
)1/2

(37)

where trans(ek) refers to the translational components of ek.
In contrast, the ATE measures the global (in)consistency of the
estimated trajectory and is indicative of the absolute distance
between the poses estimated by odometry and SLAM at any
time tk. Defining the absolute pose error at time tk as eak :=
� x̂k ⊕ xk, the ATE is evaluated as the root mean square of
the pose errors for all times tk ∈ T , i.e.,

ATE :=

(
1

n

n∑
k=1

‖trans(eak)‖2
)1/2

. (38)

We remark here that both relative rotational and translational
errors in the robot trajectory contribute to the RPE. In contrast,
the ATE only considers the absolute translational errors. A
robot is said to be calibrated if the trajectory obtained from
odometry is close to that obtained from SLAM under both the
measures. Note that both the error metrics are loosely related

12

to each other; in most cases, RPE and ATE can either be both
low or high. However, situations exist when the same is not
true. For instance, consider the case described in Fig.7, where
two test trajectories are compared against ground truth. The
RPE of Test trajectory 1 is caused due to relative rotation error
occurring only in time segment t12 := t2− t1. In contrast, test
trajectory 2 incurs more RPE than that of test trajectory 1 due
to low translational errors present between most of the time
segments. Since the test trajectory 1 drifts more globally, it has
a higher ATE than the test trajectory 2. This test case would
be helpful in analyzing some of the results obtained in the
later sub-sections.

B. Experimental conditions for autonomous calibration of
wheeled robots

Next, we detail the experimental setup used to test the
different calibration algorithms.

1) Robots and sensors setup: To perform experimental
evaluations we used two two-wheel differential drive robots
iClebo Kobuki and FireBird VI (see Fig.4) and a four-wheel
Mecanum drive Turtlebot3 robot (see Fig. 1). Note that both
iClebo Kobuki and FireBird VI robots have different sets of
intrinsic parameters [55, 56]. Kobuki is a low-cost research
robot with a diameter of 351.5 mm, weight of 2.35 kilograms,
and a maximum translational velocity of 0.7 m/s. The wheel
encoders provide data at the rate of 50 Hz and with a resolution
of 2578.33 ticks per revolution. It is also equipped with
RPLidar A1 2D laser scanner having 360◦ field of view, with
a detection range of 6 meters and a distance resolution less
than 0.5 m and the operating frequency of 5.5 Hz. The Fire
Bird VI is primarily a research robot with diameter 280 mm,
weight of 12 kilograms, and maximum translational velocity
of 1.28 m/s. All Fire Bird encoders publish data at the rate
of 10 Hz with a resolution of 3840 ticks per revolution.
Turtlebot3 Mecanum is from the Robotis group with all wheels
diameter of 60 mm. It weighs 1.8 kilograms, and maximum
translational velocity is 0.26m/s. The dynamixels used, publish
data at 10 Hz with an approximate resolution of 4096 ticks
per revolution. Both Firebird VI and Turtlebot3 Mecanum
robots were mounted with the RPLidar A2 laser scanner,
which comes with adjustable frequency in the range of 5 to
15 Hz. In the experiments with RPLidar A2, the frequency
of 10 Hz was used resulting in an angular resolution of 0.9◦,
while the detection range and distance resolution were being
same as those of RPlidar A1 laser scanner. Note that, for
all our experiments, we made use of an onboard computer
(with an i5 processor of 8GB RAM, running ROS kinetic)
for processing the data from laser range finder and wheel
encoders, performing SLAM for validation, and running the
calibration algorithms.

To demonstrate the non-availability of the robot model, one
of the wheels of the Firebird VI robot is deformed with a thick
tape (see Fig.2). Care was taken to ensure that the deformation
was not too large, to avoid wobbling of the robot and the scan
plane of the Lidar. In the case of Turtlebot3 robot two different
configurations are constructed (see Fig. 1), by changing the
position of the wheels from the regular configuration. We will

TABLE II
LIST OF EXPERIMENTAL CONFIGURATIONS WITH LABELS AND

CORRESPONDING LOCATIONS AT WHICH TRAINING AND TEST DATA ARE
COLLECTED

Setting Robot Configuration Training
Data

Test Data

A

Kobuki
K1 WSN Lab MiPS Lab

B
C

K2
WSN Lab +

ACES Corridor
KD building

3rd FloorD

E Turtlebot3 M1 Helicopter
Building

Helicopter
Building

F FireBird VI F1 WSN Lab
Tomography

Lab
G

Turtlebot3
T1 ACES

Library
ACES
LibraryH T2

see further that the amount of deformation in tilted wheel
configuration (as in Fig. 1(b)) is more as opposed to unaligned
wheels configuration (as in Fig. 1(a)).

2) Robot Configurations: Experiments, comprising of train-
ing and test phases, were carried out for various configurations
of the setup used. It is remarked that test data for all configura-
tions are collected for both, short and longer trajectories with
simple and varied robot motions. Each experiment is labelled
for reference, with details provided as shown in Table II. For
example, setting A refers to the experiment done using Kobuki
robot with configuration K1, where training and test data are
collected in WSN and MiPS labs respectively.

3) Scan Matching: Since the CAM algorithm is a one-
step method as opposed to other techniques discussed in the
paper, it does not require a scan matching algorithm to be
run beforehand. To demonstrate other proposed approaches
we used point-to-line ICP (PLICP) variant [45] to estimate
the sensor displacements ŝjk. Moreover, ICP-like methods also
output the corresponding covariance value in closed-form [57]
that can be used by the IRLS algorithm.

4) Data Processing: For the experiments, we ensure that
scans are collected at times spaced T seconds apart. The
choice of T is not trivial. For instance, choosing a small T
often makes the algorithm too sensitive to un-modelled effects
arising due to synchronization of sensors, robot’s dynamics. It
is lucrative to choose far scan pairs as more information is cap-
tured about the parameters; however, both the scan matching
output as well as the motion model become inaccurate when
T is large. For the experiments, we chose the largest value
of T that yielded a reliable scan matching output in the form
of sensor motion, resulting in T = 0.7 seconds for Kobuki,
T = 0.3 and 0.6 seconds for the Firebird VI and Turtlebot3
Mecanum robots respectively. These values are chosen based
on maximum wheel speeds such that slippages are minimized
during experimentation. Note that since the odometry readings
are acquired at a rate, higher than the scans, temporally closest
odometry reading is associated with a given scan. With the
chosen T the robots would move a maximum displacement of
15cm in x and y and 8◦ in yaw, under such conditions PLICP
achieves 99.51 % accuracy [45].

C. Experimental Results
Here we present calibration results for both model-based

and model-free scenarios. In model-based scenario calibration

13

entails learning various parameters associated with the motion
model of the sensor in terms of odometric data. On the other
hand, model-free based algorithms involves learning the non-
parametric motion model of the sensor. Note that the proposed
CAM and CIRLS algorithms are model-based and CGP is
model-free.

1) Results for model-based Calibration: We first compare
the performance of the proposed CAM and CIRLS algorithms
with CMLE [13] against ground truth over various configu-
rations (see Table II) in the context of two-wheel differential
drive. Recall that the proposed CAM algorithm is specifically
designed for calibrating a two-wheel differential robot with
CMLE [13] as its counterpart existing in the literature. On the
other hand, the proposed CIRLS algorithm is applicable for
calibrating robots with arbitrary but known drive configura-
tions, henceforth subsumes the differential drive case. To this
end, we ran CMLE [13] algorithm for number of iterations N
= 4 and N = 16 discarding one percent of samples with higher
order residual terms in each iteration, over configurations K1
and K2 respectively. Table III displays the corresponding esti-
mated calibration parameters. Specifically for CMLE, CIRLS
and CIRLS CF, 3-sigma confidence intervals for the estimated
parameters are also displayed. Recall that CIRLS CF is a
special case of CIRLS applicable to two-wheel differential
drive where the optimization problem in step 7 of CIRLS (see
Algorithm 2) is solved in closed forms. Note that the closed
forms are derived following the similar approach as described
in [13]. For CAM, an analytical expression for the covariance
of the estimated parameters was not available and hence
not shown here. Observe that the extrinsic laser parameters
are different for configurations K1 and K2 since the laser
sensor is mounted distinctly concerning the robot frame of
reference. However, the robot intrinsic parameter estimates are
still consistent, as expected. We can notice that the parameter
estimates for CAM are slightly different than that of those
estimated from CMLE, CIRLS, and CIRLS CF. Nevertheless,
since the actual values of parameters are not known, their
correctness should only be evaluated via performance metrics
(RPE and ATE).

To further compare the efficacy of the proposed algorithms,
we generate the trajectory of the exteroceptive sensor on the
corresponding test data using its inferred parametric motion
model f̂ . If the parameters are calibrated correctly, the gen-
erated trajectories should be close to the SLAM trajectory
given the system is free from non-systematic errors like
wheel slippages. Fig.8 displays the trajectories found using
the parameters estimated from CAM, CIRLS, CIRLS CF, and
CMLE [13] along with the map and trajectory generated using
SLAM [53] for configurations K1 and K2. Further, taking the
SLAM trajectory as a reference, the RPE and ATE values for
various algorithms are shown in Table IV. From the table, it
can be seen that almost all algorithms have similar RPE values,
except for CAM for which they are slightly higher. In contrast,
however, the CAM algorithm exhibits the lowest ATE values
suggesting that CAM parameters accurately predict relative
heading of the robot over relative translation. It is to be noted
that slight inaccuracy in relative heading estimates makes the
global trajectory estimate drift heavily from ground truth over

(a) MiPS Lab, setting A (b) MiPS Lab, setting B

(c) 4i Lab, setting C (d) KD building, setting D

Fig. 8. Trajectory comparisons against SLAM in various test environments.
Here (a), (b) are the test environments for the configuration K1 where as
(c), (d) are for the configuration K2. (e) represents the test environment for
configuration M1.

time. Interestingly, for settings C and D which contain outliers,
the ATE of the CMLE approach [13] is relatively high. We
remark here from Fig. 10 that the CMLE algorithm incurs
higher ATE values than CAM even for the optimal choice of
N . Since all algorithms have similar and low RPE values, it
can be concluded that the shape of the estimated trajectories
is close to that of the ground truth. Recall that for testing
purposes, the SLAM trajectory constitutes the ground truth.

a) Robustness to outliers: To further understand the
improvements obtained from the proposed algorithms, we take
a detailed look at the process of outlier removal in various
methods. Unlike factory settings where a separate calibration
phase and environment may be utilized, this paper advocates
carrying out the calibration during the operational phase itself.
As a result, however, outliers in the training phase are in-
evitable. To further test the effect of such outliers, we consider
a corridor environment which is relatively featureless, resulting
in a large number of scan matching failures that manifest
themselves as outliers. Our experiments with configuration K2
include such a scenario. Recall that the proposed algorithms
are designed to handle outliers, thanks to the use of the Huber
function as well as the trimming procedure (CAM) or the
weight pruning algorithm (CIRLS). With the settings detailed
in Sec. IV, no further parameter tuning is required, and the
algorithm works well regardless of the number of outliers
in the data. On the other hand, an iterative manual outlier
rejection method is detailed in [13] amounting to extensive
parameter tuning. The idea in [13] is to run the algorithm N

14

TABLE III
LIST OF ESTIMATED PARAMETERS VIA CMLE[13], CIRLS, CIRLS CF, AND CAM FOR CONFIGURATIONS K1, K2

Robot
Config. Method N Estimated Parameters

r̂L (mm) r̂R (mm) b̂ (mm) l̂x (mm) l̂y (mm) l̂θ (rad)

K1

CMLE[13] 4 35.04 ± 0.22 35.16 ± 0.22 238.42 ± 1.84 19.92 ± 1.54 47.01 ± 2.89 3.13 ±0.01
CAM - 35.94 35.99 241.00 12.34 53.52 3.13

CIRLS - 35.16 ± 0.19 35.18 ± 0.19 238.38 ± 1.38 19.81 ± 2.38 45.85 ± 2.39 3.13 ± 0.01
CIRLS CF - 35.09 ± 0.21 35.12 ± 0.21 237.76 ± 1.59 19.80 ± 2.60 46.15 ± 2.61 3.13 ± 0.01

K2

CMLE [13] 16 34.92 ± 0.36 34.94 ± 0.36 231.26 ± 4.83 2.36 ± 7.81 -119.73 ± 8.74 1.00 ± 0.02
CAM - 35.98 35.98 242.08 -0.64 -128.79 1.00

CIRLS - 34.88 ± 0.25 34.90 ± 0.24 231.92 ± 1.71 1.73 ± 2.49 -117.05 ± 2.33 1.00 ± 0.01
CIRLS CF - 34.96 ± 0.23 34.98 ± 0.23 232.96 ± 1.63 1.50 ± 2.08 -117.42 ± 1.94 1.00 ± 0.01

TABLE IV
ABSOLUTE TRAJECTORY ERROR (ATE) AND RELATIVE POSE ERROR (RPE) FOR CONFIGURATIONS K1, K2

Setting ATE (cm) RPE (mm)
CMLE [13] CIRLS CIRLS CF CAM CMLE [13] CIRLS CIRLS CF CAM

A 11.49 11.72 11.65 2.72 6.40 6.40 6.40 6.46
B 16.79 17.23 18.71 10.13 7.63 7.64 7.63 7.72
C 63.30 43.74 39.59 40.81 15.03 15.02 15.03 15.19
D 217.84 202.30 196.21 162.69 27.63 27.62 27.63 27.75

iterations, while eliminating a fixed percentage α of outliers at
every iteration. It is also required that the residual distribution
should ’look’ Gaussian, and the algorithm continues to run
till that is the case. While it may be possible to utilize various
statistical tests to discern the normality of a given distribution,
the whole process is still manual and does not translate well
to an automated calibration setting considered here. Indeed, it
is evident from Table V that the choice of N is also critical,
as the parameter estimates differ significantly over the range
of N values.

The difficulty of selecting the correct value of N using
such a process is depicted through the scatter plots provided
in Fig.9, which shows the residual distributions for different
values of N. It can be seen that the residuals for N=16 and
N=18, both look Gaussian. On the other hand the ATE values
for the two values of N are quite different, as can be seen
from Fig.10. It can also be seen that one cannot simply take a
sufficiently large value of N, as excessive removal of outliers
leads to performance degradation. In contrast, the proposed
methods do not suffer from such an issue as the weights are
automatically tuned according to the number of outliers. Fig.9
also includes the residual distribution plots of the proposed
CIRLS CF algorithm at convergence.

To further demonstrate the generality of the proposed
CIRLS algorithm, we consider the joint calibration problem for
the four-wheeled Mecanum drive robot (see Fig. 1) mounted
with a lidar sensor under setting E (see Table II). To this end,
we perform calibration routine using CIRLS algorithm over
configuration M1, and the corresponding estimated calibration
parameters are displayed in Table VI. Next, we generate
the trajectory of the exteroceptive sensor mounted on the
Mecanum robot using its inferred (using estimated parameters)
motion model f̂ as displayed in Fig. 11(a). Observe that
the predicted trajectory is close to ground truth and the
corresponding ATE, and RPE values are also displayed in
Table VI. We remark here that, to the best of our knowledge,

(a)

(b)

(c)

(d)

Fig. 9. Residual distribution plots (for configuration K2) for number of
iterations N=1, 16, 18 in case of CMLE [13] are respectively shown in
(a), (b), (c), where points in red indicates the higher order residual terms
trimmed as per [13, Sec. V-C] while the inliers are colored blue. Plots in (d)
display the residual distribution in the case of CIRLS CF at the convergence,
where green points indicate those terms whose weights are exactly equal
to one, where as points in blue have weights in the range (γ, 1). It can be
observed that the CIRLS CF automatically eliminates the outliers and yields a
residual distribution that is close to Gaussian without any manual intervention
or parameter tuning.

15

TABLE V
VARIATION IN THE PARAMETER ESTIMATES FOUND VIA CMLE ALGORITHM [13] FOR VARIOUS VALUES OF N, FOR CONFIGURATION K2

Robot
Config. N Estimated Parameters

r̂L (mm) r̂R (mm) b̂ (mm) l̂x (mm) l̂y (mm) l̂θ (rad)

K2

1 28.56 ± 0.27 28.58 ± 0.27 194.14 ± 3.76 2.48 ± 6.10 -119.72 ± 6.74 1.01 ± 0.02
7 31.68 ± 0.30 31.68 ± 0.30 212.19 ± 4.13 2.59 ± 6.67 -120 ± 7.40 1.00 ± 0.02
12 34.13 ± 0.34 34.13 ± 0.34 226.59 ± 4.59 2.51 ± 7.37 -119.53 ± 8.23 1.00 ± 0.02
16 34.92 ± 0.36 34.94 ± 0.36 231.26 ± 4.83 2.36 ± 7.81 -119.73 ± 8.74 1.00 ± 0.02
18 35.06 ± 0.37 35.08 ± 0.37 232.04 ± 4.95 2.25 ± 8.05 -119.58 ± 9.01 1.00 ± 0.02
20 35.13 ± 0.38 35.14 ± 0.38 232.40 ± 5.07 2.17 ± 8.24 -119.83 ± 9.21 1.00 ± 0.02
25 35.27 ± 0.40 35.29 ± 0.40 233.35 ± 5.35 2.09 ± 8.70 -119.91 ± 9.77 1.00 ± 0.02

TABLE VI
LIST OF ESTIMATED PARAMETERS VIA CIRLS AND CORRESPONDING ATE AND RPE FOR CONFIGURATION M1

Robot
Config. Method Estimated Parameters ATE

(cm)
RPE
(mm)ˆ̀

x(mm) ˆ̀
y(mm) ˆ̀

θ(rad) r(mm) Lx(mm) Ly(mm)

M1 CIRLS -32.60 ± 3.50 -25.30 ± 3.60 2.14 ±0.01 30.40 ±0.20 82.50 ±1.10 162.50 ± 1.10 81.90 8.38

TABLE VII
LIST OF ESTIMATED PARAMETERS FOR CONFIGURATION F1

Robot
Config.

Method N
Estimated Parameters

r̂L (mm) r̂R (mm) b̂ (mm) ˆ̀
x (mm) ˆ̀

y (mm) ˆ̀
θ(rad)

F1 CMLE [13] 4 52.22 ± 0.54 50.42 ± 0.48 282.67 ±3.61 90.30 ±2.75 -38.31 ±3.28 -0.46 ± 0.01

(a) ATE vs N (b) RPE vs N

Fig. 10. Trajectory error plots for CMLE algorithm [13] with configuration
K2 under setting D, against number of iterations N, while discarding a fraction
of higher order residual terms in each iteration.

(a) Helicopter Building, setting E

Fig. 11. Trajectory comparisons against SLAM in the test environment. Here
(a) represents the test environment for configuration M1.

TABLE VIII
ATE AND RPE FOR CONFIGURATIONS F1

GP Configuration F1
Mean fn Kernel fn ATE (m) RPE (mm)

Zero RBF 6.273 9.634
Linear RBF 0.592 9.367
Zero Linear 0.687 9.367
Zero RBF + Linear 0.716 9.34

Linear RBF + Linear 0.732 9.343
Linear Model 0.687 9.367
CMLE [13] 1.546 9.361

TABLE IX
ATE AND RPE FOR CONFIGURATIONS T1 AND T2

GP Configuration T2 Configuration T1
Mean fn Kernel fn ATE (m) RPE (mm) ATE (m) RPE (mm)

Zero RBF 2.49 5.21 6.523 5.466
Linear RBF 0.161 8.324 5.006 5.573
Zero Linear 0.068 5.108 0.87 5.457
Zero RBF + Linear 3.798 5.121 0.87 5.455

Linear RBF + Linear 1.193 5.49 1.849 5.519
Linear Model 0.068 5.108 0.869 5.458

CIRLS 4.24 5.112 3.647 5.517

the proposed algorithm is the first of its kind capable of
simultaneously calibrating complicated drives such as the four-
wheel Mecanum drive in a robust manner.

2) Results for model-free Calibration: For the case when
the robot kinematic model is not known, ensured by deform-
ing the left wheel of FireBird VI (see Fig.2), we perform
calibration of such a robot using model-based CMLE [13]
algorithm along with the proposed model-free CGP algorithm,
for configuration F1 under setting F. With regards to the
CMLE algorithm, Table VII displays the corresponding esti-
mated parameters. Observe that the CMLE algorithm predicts

16

(a) Tomography Lab, Configuratoin F1 (b) ACES Library, Configuration T1 (c) ACES Library, Configuration T2

Fig. 12. Trajectory comparison against SLAM for different robot configurations. (a) is the test environment for the configuration F1 where as (b) and (c) are
for configurations T1 and T2 respectively.

the radius of the left wheel to be slightly more than that of the
right wheel, but recall that the left wheel is deformed in such a
way that it loses its notion of circularity. Unlike CMLE [13],
the proposed CGP algorithm conducts a pre-selection phase
involving testing over the various kernel and mean functions,
using collected data.

Once the model is learned in both parametric and non-
parametric forms, predictions are made on the test data. The
predicted trajectories are then compared with SLAM trajectory
as the reference. Error metrics for the resulting trajectories
are generated and displayed in Table VIII. It is observed that
CGP with squared exponential kernel function and linear mean
function outperforms other trained models, including CMLE.
We remark here that although CMLE predicts the radius of
the left wheel to be slightly more than that of the right wheel,
the predictions are worse since the original kinematic model
is no longer applicable. Observe that CGP with linear kernel
function is comparable to the best case. Next, trajectories are
generated for CMLE [13], CGP with linear kernel and SLAM
[53] and displayed in Fig. 12(a). It is also evident that the
proposed CGP with linear kernel predicts the test trajectory
that is close to SLAM.

Similar tests are conducted over four-wheeled Turtlebot3
robot with configurations T1 and T2. Note that since the
analysis of CMLE [13] is restricted to two-wheel differen-
tial drive robots, we use parametric motion model of four-
wheel Mecanum drive robot [58] with manufacturer specified
parameters for robot intrinsics, and nominal hand measured
parameters for lidar extrinsics. Table IX displays error metrics
evaluated for parametric and various learned non-parametric
models. It is also observed here that the proposed CGP al-
gorithm with linear kernel function outperforms other learned
models. The corresponding test trajectories for configurations
T1 and T2 are displayed in Fig. 12(b) and Fig. 12(c) respec-
tively.

Interestingly it can be observed from Table.VIII and Table
IX that the linear model approximation is sufficient to explain
the motion model with the set deformities in all configurations.
Here we notice that learning a linear approximation of f is
sufficient to predict robot odometry accurately; this is in lines

with our discussion in Sec. IV-C2.

VI. CONCLUSION

We develop generalized odometry and sensor calibration
framework applicable to wheeled robots equipped with one
or more exteroceptive sensor(s). The idea is to utilize the ego-
motion estimates from the exteroceptive sensors to estimate the
motion model of the sensor/robot. Three different algorithms,
all capable of handling outliers in an automated manner,
are proposed. The first algorithm pertains to a two-wheel
differential drive equipped with a Lidar. A calibration via
alternating minimization (CAM) approach is proposed that can
be used to estimate the intrinsic and extrinsic parameters of the
robot robustly. The proposed approach not only has superior
performance as compared to the state-of-the-art approaches
but also does not require any manual trimming of outliers. A
more general scheme applicable to robots with arbitrary drive
models is subsequently proposed that utilizes the iteratively
reweighted least squares (IRLS) framework for estimation of
the motion parameters. The resulting IRLS approach can be
used to calibrate arbitrary robots with known motion models
and is again shown to provide good calibration performance
while handling outliers. Finally, for robots whose motion
model is not known or too complicated, we advocate a non-
parametric Gaussian process regression-based approach that
directly learns the relationship between the wheel odometry
and the sensor motion. The model-free calibration approach
is tested on a robot with a deformed wheel and is shown
to outperform all other techniques that make assumptions
regarding the motion model of the robot. Multiple experiments
are carried, and the efficacy of the proposed techniques is
evaluated using the performance metrics.

APPENDIX A
SOLUTIONS TO (14)-(15)

This section will detail the techniques required to solve (14)
and (15). Specifically, the extrinsic calibration problem in (14)
will be solved in closed-form while a low-complexity grid
search algorithm will be provided to solve (15).

17

1) Extrinsic calibration: For brevity, let us denote t` :=
(`x, `y)T and tjk := (qxjk, q

y
jk)T . Given r = r′, the objective

function h(r′, `) can be written as (see (11)):

h(r′, `) =
∑

(j,k)∈E

(∑
i

∥∥∥R(`θ)

(
z

(i)
j −R(qθjk) z

(i)
k

)

+

(
I2×2 −R(qθjk)

)
t` − tjk

∥∥∥2

2

)
(39)

where qθjk and tjk are functions of r′. Here, we have used
the fact that the 2D rotational matrices commute. Let z

(i)
jk =

z
(i)
j − R(qθjk) z

(i)
k and Rjk = I2×2 − R(qθjk) so that the

extrinsic calibration problem may be written as

`∗ = arg min
(`θ,t`)

h(r′, `θ, t`) (40)

where

h(r′, `θ, t`) =
∑

(j,k)∈E

(∑
i

∥∥∥R(`θ) z
(i)
jk + Rjk t` − tjk)

∥∥∥2

2

)
(41)

In order to solve (40) in closed-form, we expand (41) and
collecting all constant terms into c, we obtain :

h(r′, `θ, t`) =
∑

(j,k)∈E

(
2 zTjkR(`θ)

TRjkt` − 2 zTjkR(`θ)
T tjk

− 2η tTjkRjkt` + η tT` RT
jkRjkt`

)
+ c

(42)

where zjk =
∑
i z

(i)
jk , η = (

∑ζ.|Z(tj)|
i 1) denoting total

number of scan points in the overlapping region. Now let

zTjkR(`θ)
T =

(
zxjk zyjk

)(cos `θ sin `θ
−sin `θ cos `θ

)
=
(
cos `θ sin `θ

)︸ ︷︷ ︸
xT

(
zxjk zyjk
−zyjk zxjk

)
︸ ︷︷ ︸

Zjk

(43)

Hence using (43) we get the modified new function in terms
of x, t and ignoring the terms independent to the optimization
problem, with added constraint as follows :

h̃(x, t`) =
∑

(j,k)∈E

(
2 xTZjkRjkt` − 2 xTZjktjk

− 2η tTjkRjkt` + η tT` RT
jkRjkt`

) (44)

By writing (44) in matrix form the problem becomes

min
x,t`

tT` Qt` + xTMt` + xTg + tT` d

s.t xTx = 1
(45)

where

Q = η
∑

(j,k)∈E

RT
jkRjk, M = 2

∑
(j,k)∈E

ZjkRjk

g = −2
∑

(j,k)∈E

Zjktjk, d = −2η
∑

(j,k)∈E

RT
jktjk

(46)

Since there is no constraint on t`, we can solve (45) for t` as
shown below,

∇t` h̃(x, t`) = 0⇒ 2Qt` + MTx + d = 0

⇒ t̂` = −1

2
Q†(MTx + d)

(47)

where Q† is the pseudo inverse of Q. Substituting for t` in
(45) and ignoring constant terms yields the following in terms
of x :

min
x

xTM̃x + xT g̃

s.t xTx = 1
(48)

where M̃ = − 1
4 M Q† MT and g̃ = g − 1

2 M Q† d.
We solve the above problem using method of Lagrange

multipliers. Specifically, the Lagrangian is given by

L(x) = xTM̃x + xT g̃ + λ(xTx− 1) (49)

The necessary condition for optimality is ∇xL(x) = 0 i.e.,

2M̃x + g̃ + 2λx = 0

⇒ x̂ = −1

2
(M̃ + λI2×2)−1g̃

(50)

To solve for λ substitute x̂ in the constraint xTx = 1, which
results in a fourth order polynomial in λ, whose roots can be
readily found. Having determined λ, solutions to (45), can be
found subsequently in closed forms and therefore `∗ can be
recovered as follows,

`∗θ = arctan
(
x̂(2), x̂(1)

)
, (`∗x, `

∗
y)T = t̂` (51)

Next, we detail the proof of existence of pseudo inverse of Q.
As Q = η

∑
(j,k)∈E RT

jkRjk, let us consider one term
(j, k)th of the summation.

RT
jkRjk = (I−R(qθjk))T (I−R(qθjk))

= 2I−R(qθjk)T −R(qθjk)

= 2

[
1− cos(qθjk) 0

0 1− cos(qθjk)

]
< 0

(52)

Since, η > 0 as it is the total number of scan points in
the overlapping region. Therefore, Q can be written as a sum
of positive semidefinite matrices multiplied by a non-negative
intiger, hence positive semidefinite. Pseudo inverse will exist
if any one of the matrix in the sum is positive definite. This
will happen if for any of the terms qθjk 6= 0, which holds for
exciting trajectories not having all pure translations. Therefore
pseudo inverse of Q i.e. Q† always exist for sufficiently
exciting trajectories.

2) Intrinsic calibration: Here the goal is to solve for in-
trinsic parameters in closed forms, given extrinsic parameters.
To this end, expanding (11) given ` = `′, we obtain

h(r, `′) =
∑

(j,k)∈E

(∑
i

∥∥∥z̃(i)
j −

(
R(qθjk)z̃

(i)
k + tjk

) ∥∥∥2

2

)
(53)

18

where z̃
(i)
j = `′ ⊕ z

(i)
j and z̃

(i)
k = `′ ⊕ z

(i)
k . The intrinsic

calibration problem is therefore posed as

r∗ = arg min
r
h(r, `′) (54)

To solve the above problem we first find an equivalent problem
in terms of new set of variables r̃ = (r̃L, r̃R, b), where
r̃L = −J21

r , r̃R = J22
r and remember the definition of Jr

from equation (3). Rewriting (6) with this new set of variables,
we found that tjk = b t̃jk where t̃jk is a vector function
parameterized by r̃L and r̃R. Therefore equation (53) becomes

h(r̃, `′) =
∑

(j,k)∈E

(∑
i

∥∥∥z̃(i)
j −

(
R(qθjk)z̃

(i)
k + b t̃jk

) ∥∥∥2

2

)
(55)

Note here that qθjk is a scalar function parameterized by r̃L
and r̃R. Hence one can solve (55) for b in closed form and is
given by

b̂ =

∑
(j,k)∈E

∑
i t̃
T
jkR(qθjk)z̃

(i)
k − t̃Tjkz̃

(i)
j

η
∑

(j,k)∈E ‖t̃jk‖22
(56)

where η =
∑
i 1. Now substituting for b in (53) using

closed form (56) yields an objective function h̃(r̃L, r̃R).
Since approximate values of r̃L and r̃R are known from the
original robot specifications or through hand-held measure-
ments, a simple grid search around these values yields the
optimum values that minimize h̃(r̃L, r̃R). Alternatively, any
two-dimensional search algorithm may be utilized [59]. The
complexity of such a search is low since a good initialization
is always available.

To handle outliers due to non-systematic errors such as
wheel slippages, the intrinsic calibration problem defined in
(54) can be solved by incorporating Huber loss instead of
squared loss. However, though closed forms for the parameter
b does not exists, the problem can be solved by employing
numerical techniques detailed in [60].

APPENDIX B
AUTONOMOUS CALIBRATION USING PLICP FRAMEWORK

PLICP uses point-to-line metric [45] instead of point-to-
point used by ICP. Proceeding in a manner similar to that in the
PLICP algorithm [45], we formulate the objective function for
simultaneous calibration using PLICP framework as follows :

h(`, r) =
∑

(j,k)∈E

∑
i

(
η

(i)T
jk

[
`⊕ z

(i)
j −

(
qjk ⊕ `⊕ z

(i)
k

)])2

(57)
where η(i)

jk is the normal vector. In a very compact form (57)
can be written as :

h(`, r) =
∑

(j,k)∈E

(∑
i

∥∥∥`⊕ z
(i)
j −

(
qjk ⊕ `⊕ z

(i)
k

)∥∥∥2

C
(i)
jk

)
(58)

where C
(i)
jk = η

(i)
jk η

(i)T
jk .

1) Extrinsic calibration: Following the similar analysis
done from (39) - (41), here in this context we have the
following subproblem

min
(`θ,t`)

∑
(j,k)∈E

(∑
i

∥∥∥R(`θ) z
(i)
jk + Rjk t` − tjk)

∥∥∥2

C
(i)
jk

)
(59)

By reducing (59) to quadratic form in four dimensional space
x = [x1, x2, x3, x4]

∆
= [`x, `y, cos `θ, sin `θ] and imposing

additional constraint x2
3 +x2

4 = 1, a closed form can be found
as detailed in [45], i.e., by writing (59) as follows,

min
x

xTMx + gTx

s.t xTWx = 1
(60)

where

M =
∑

(j,k)∈E

∑
i

M
(i)T
jk C

(i)
jkM

(i)
jk

g =
∑

(j,k)∈E

∑
i

−2M
(i)T
jk C

(i)
jk tjk

W =

(
02×2 02×2

02×2 I2×2

) (61)

and M
(i)
jk = [Rjk Z

(i)
jk]2×4, Z

(i)
jk =

(
z

(i)x
jk −z

(i)y
jk

z
(i)y
jk z

(i)x
jk

)
.

2) Inrinsic Calibration : To find wheel odometry param-
eters in this framework, we have to solve the following
subproblem,

min
r

∑
(j,k)∈E

(∑
i

∥∥∥z̃(i)
j −

(
R(qθjk)z̃

(i)
k + tjk

) ∥∥∥2

C
(i)
jk

)
(62)

A similar procedure can be carried out as detailed in Appendix
A-(2), to solve the aforementioned subproblem.

APPENDIX C
PROOF OF PROPOSITION 1

It can be seen from (11) that for pure rotation (i.e. when
qxjk = qyjk = 0), the function h does not depend on intrinsic
parameters rL and rR. In other words, rL and rR are not
observable if all the scan pairs in E correspond only to pure
rotations. Likewise, for pure translations (i.e. when qθjk = 0),
the function h becomes independent of the extrinsic param-
eters `x and `y , making them unobservable. In summary, at
least one scan pair in E must correspond to translation and
one to rotation.

REFERENCES
[1] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-

ping: part I,” Proc. IEEE Robotics Automation Magazine, vol. 13, no. 2,
pp. 99–110, June 2006.

[2] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and map-
ping (SLAM): part II,” Proc. IEEE Robotics Automation Magazine,
vol. 13, no. 3, pp. 108–117, Sept 2006.

[3] P. Kulkarni, D. Ganesan, P. Shenoy, and Q. Lu, “Senseye: a multi-tier
camera sensor network,” Proc. of the 13th annual ACM International
Conference on Multimedia, pp. 229–238, 2005.

[4] M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-
free navigation of mobile robots in complex cluttered environments: a
survey,” Robotica, vol. 33, no. 3, pp. 463–497, 2015.

19

[5] X. Ruan, Y. Li, and X. Zhu, “Kinematic parameter calibration of two-
wheeled robot,” Proc. IEEE International Conference on Mechatronics
and Automation, pp. 81–86, Aug 2012.

[6] C. Jung and W. Chung, “Accurate calibration of two wheel differential
mobile robots by using experimental heading errors,” Proc. IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 4533–
4538, 2012.

[7] Q. V. Le and A. Y. Ng, “Joint calibration of multiple sensors,” Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS),, pp. 3651–3658, 2009.

[8] L. Heng, B. Li, and M. Pollefeys, “Camodocal: Automatic intrinsic
and extrinsic calibration of a rig with multiple generic cameras and
odometry,” Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1793–1800, 2013.

[9] J. Hidalgo-Carrió, D. Hennes, J. Schwendner, and F. Kirchner, “Gaussian
process estimation of odometry errors for localization and mapping,”
Proc. IEEE International Conference on Robotics and Automation
(ICRA), pp. 5696–5701, 2017.

[10] J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in real-
time.” Robotics: Science and Systems, vol. 2, 2014.

[11] Z. Fang, S. Yang, S. Jain, G. Dubey, S. Roth, S. Maeta, S. Nuske,
Y. Zhang, and S. Scherer, “Robust autonomous flight in constrained
and visually degraded shipboard environments,” Proc. Journal of Field
Robotics, vol. 34, no. 1, pp. 25–52, 2017.

[12] A. Censi, L. Marchionni, and G. Oriolo, “Simultaneous maximum-
likelihood calibration of odometry and sensor parameters,” Proc. IEEE
International Conference on Robotics and Automation (ICRA), pp.
2098–2103, 2008.

[13] A. Censi, A. Franchi, L. Marchionni, and G. Oriolo, “Simultaneous
calibration of odometry and sensor parameters for mobile robots,” Proc.
IEEE Transactions on Robotics, vol. 29, no. 2, pp. 475–492, April 2013.

[14] F. Kallasi, D. L. Rizzini, F. Oleari, M. Magnani, and S. Caselli, “A novel
calibration method for industrial AGVs,” Robotics and Autonomous
Systems, vol. 94, pp. 75–88, 2017.

[15] H. Tang and Y. Liu, “Automatic simultaneous extrinsic-odometric cal-
ibration for camera-odometry system,” Proc. IEEE Sensors Journal,
vol. 18, no. 1, pp. 348–355, 2018.

[16] H. Schulz, L. Ott, J. Sturm, and W. Burgard, “Learning kinematics from
direct self-observation using nearest-neighbor methods,” Advances in
Robotics Research, pp. 11–20, 2009.

[17] J. Borenstein and L. Feng, “Measurement and correction of systematic
odometry errors in mobile robots,” Proc. IEEE Transactions on Robotics
and Automation, vol. 12, no. 6, pp. 869–880, Dec 1996.

[18] A. Kelly, “Fast and easy systematic and stochastic odometry calibration,”
Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
vol. 4, pp. 3188–3194 vol.4, Sept 2004.

[19] K. Lee and W. Chung, “Calibration of kinematic parameters of a car-like
mobile robot to improve odometry accuracy,” Proc. IEEE International
Conference on Robotics and Automation, pp. 2546–2551, 2008.

[20] M. De Cecco, “Self-calibration of AGV inertial-odometric navigation
using absolute-reference measurements,” Proc. of the 19th IEEE Instru-
mentation and Measurement Technology Conference (IMTC), vol. 2, pp.
1513–1518, 2002.

[21] G. Antonelli, S. Chiaverini, and G. Fusco, “A calibration method for
odometry of mobile robots based on the least-squares technique: theory
and experimental validation,” Proc. IEEE Trans. on Robotics, vol. 21,
no. 5, pp. 994–1004, Oct 2005.

[22] H. J. V. der Hardt, R. Husson, and D. Wolf, “An automatic calibration
method for a multisensor system: application to a mobile robot local-
ization system,” Proc. IEEE Intl. Conf. on Robotics and Automation,
vol. 4, pp. 3141–3146 vol.4, May 1998.

[23] T. D. Larsen, M. Bak, N. A. Andersen, and O. Ravn, “Location
estimation for an autonomously guided vehicle using an augmented
kalman filter to autocalibrate the odometry,” FUSION Spie Conference,
1998.

[24] D. Caltabiano, G. Muscato, and F. Russo, “Localization and self-
calibration of a robot for volcano exploration,” Proc. IEEE International
Conference on Robotics and Automation (ICRA), vol. 1, pp. 586–591,
2004.

[25] A. Martinelli, N. Tomatis, and R. Siegwart, “Simultaneous localization
and odometry self calibration for mobile robot,” Autonomous Robots,
vol. 22, no. 1, pp. 75–85, 2007.

[26] E. M. Foxlin, “Generalized architecture for simultaneous localization,
auto-calibration, and map-building,” Proc. IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), vol. 1, pp. 527–533,
2002.

[27] P. Goel, S. I. Roumeliotis, and G. S. Sukhatme, “Robust localization

using relative and absolute position estimates,” Proc. IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), vol. 2,
pp. 1134–1140, 1999.

[28] J.-G. Kang, W.-S. Choi, S.-Y. An, and S.-Y. Oh, “Augmented ekf based
SLAM method for improving the accuracy of the feature map,” Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3725–3731, 2010.

[29] N. Roy and S. Thrun, “Online self-calibration for mobile robots,” Proc.
IEEE International Conference on Robotics and Automation, vol. 3, pp.
2292–2297, 1999.

[30] A. Kelly, “Linearized error propagation in odometry,” The International
Journal of Robotics Research, vol. 23, no. 2, pp. 179–218, 2004.

[31] F. M. Mirzaei and S. I. Roumeliotis, “A kalman filter-based algorithm
for imu-camera calibration: Observability analysis and performance
evaluation,” Proc. IEEE Transactions on Robotics, vol. 24, no. 5, pp.
1143–1156, 2008.

[32] J. A. Hesch, A. I. Mourikis, and S. I. Roumeliotis, “Determining the
camera to robot-body transformation from planar mirror reflections,”
Proc. IEEE International Conference on Intelligent Robots and Systems
(IROS), pp. 3865–3871, 2008.

[33] T. Sasaki and H. Hashimoto, “Calibration of laser range finders based on
moving object tracking in intelligent space,” Proc. IEEE International
Conference on Networking, Sensing and Control (ICNSC), pp. 620–625,
2009.

[34] A. Martinelli and R. Siegwart, “Observability properties and optimal
trajectories for on-line odometry self-calibration,” Proc. 45th IEEE
Conference on Decision and Control (CDC), pp. 3065–3070, 2006.

[35] F. M. Mirzaei and S. I. Roumeliotis, “A kalman filter-based algorithm
for imu-camera calibration: Observability analysis and performance
evaluation,” Proc. IEEE Trans. on Robotics, vol. 24, no. 5, pp. 1143–
1156, 2008.

[36] J. Kelly and G. S. Sukhatme, “Visual-inertial sensor fusion: Localiza-
tion, mapping and sensor-to-sensor self-calibration,” The International
Journal of Robotics Research, vol. 30, no. 1, pp. 56–79, 2011.

[37] A. Martinelli, D. Scaramuzza, and R. Siegwart, “Automatic self-
calibration of a vision system during robot motion,” Proc. IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 43–48,
May 2006.

[38] J. P. Underwood, A. Hill, T. Peynot, and S. J. Scheding, “Error
modeling and calibration of exteroceptive sensors for accurate mapping
applications,” Journal of Field Robotics, vol. 27, no. 1, pp. 2–20, 2010.

[39] J. Brookshire and S. Teller, “Automatic calibration of multiple coplanar
sensors,” Robotics: Science and Systems VII, vol. 33, 2012.

[40] J. Borenstein, “Internal correction of dead-reckoning errors with the
smart encoder trailer,” Proc. of the IEEE/RSJ/GI International Confer-
ence on ’Intelligent Robots and Systems’ ’Advanced Robotic Systems
and the Real World’, (IROS), vol. 1, pp. 127–134, 1994.

[41] D. A. Cucci and M. Matteucci, “A flexible framework for mobile robot
pose estimation and multi-sensor self-calibration.” ICINCO (2), pp. 361–
368, 2013.

[42] R. Kümmerle, G. Grisetti, and W. Burgard, “Simultaneous calibration,
localization, and mapping,” Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 3716–3721, 2011.

[43] P. J. Besl and N. D. McKay, “Method for registration of 3-D shapes,”
Robotics-DL tentative, pp. 586–606, 1992.

[44] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, “The trimmed
iterative closest point algorithm,” Proc. 16th IEEE Intl. Conf. on Pattern
Recognition, vol. 3, pp. 545–548, 2002.

[45] A. Censi, “An ICP variant using a point-to-line metric,” Proc. IEEE Intl.
Conf. on Robotics and Automation (ICRA), pp. 19–25, May 2008.

[46] D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont,
1999.

[47] P. Tseng, “Convergence of a block coordinate descent method for
nondifferentiable minimization,” Journal of optimization theory and
applications, vol. 109, no. 3, pp. 475–494, 2001.

[48] P. W. Holland and R. E. Welsch, “Robust regression using iteratively
re-weighted least-squares,” Communications in Statistics-theory and
Methods, vol. 6, no. 9, pp. 813–827, 1977.

[49] P. J. Huber, Robust statistical procedures. SIAM, 1996.
[50] G. B. Giannakis, G. Mateos, S. Farahmand, V. Kekatos, and H. Zhu,

“USPACOR: Universal sparsity-controlling outlier rejection,” Proc.
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 1952–1955, May 2011.

[51] W. Dumouchel and F. O’Brien, “Integrating a robust option into a
multiple regression computing environment,” Institute for Mathematics
and Its Applications, vol. 36, p. 41, 1991.

[52] A. Censi, “Supplemental material for simultaneous calibration of

20

odometry and sensor parameters for mobile robots.” [Online].
Available: https://github.com/AndreaCensi/calibration

[53] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in
2d LIDAR SLAM,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2016, pp. 1271–1278.

[54] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A benchmark for the evaluation of RGB-D SLAM systems,” Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 573–580, 2012.

[55] “Find about kobuki robotic research platform.” [Online]. Available:
http://kobuki.yujinrobot.com/about2/

[56] “Find about fire bird vi robotic research plat-
form.” [Online]. Available: http://www.nex-robotics.com/products/
fire-bird-vi-robot/fire-bird-vi-robotic-research-platform.html

[57] A. Censi, “An accurate closed-form estimate of ICP’s covariance,” Proc.
IEEE International Conference on Robotics and Automation (ICRA), pp.
3167–3172, 2007.

[58] H. Taheri, B. Qiao, and N. Ghaeminezhad, “Kinematic model of a four
mecanum wheeled mobile robot,” International journal of computer
applications, vol. 113, no. 3, pp. 6–9, 2015.

[59] A. Chamoli and S. S. Masood, “Two-dimensional quantum search
algorithm,” arXiv preprint arXiv:1012.5629, 2010.

[60] T. F. Coleman and Y. Li, “An interior trust region approach for nonlinear
minimization subject to bounds,” SIAM Journal on optimization, vol. 6,
no. 2, pp. 418–445, 1996.

