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Abstract

Unmanned aerial vehicles (UAVs) equipped with multiple complementary sensors
have tremendous potential for fast autonomous or remote-controlled semantic
scene analysis, e.g., for disaster examination.

Here, we propose a UAV system for real-time semantic inference and fusion
of multiple sensor modalities. Semantic segmentation of LiDAR scans and
RGB images, as well as object detection on RGB and thermal images, run
online onboard the UAV computer using lightweight CNN architectures and
embedded inference accelerators. We follow a late fusion approach where semantic
information from multiple sensor modalities augments 3D point clouds and image
segmentation masks while also generating an allocentric semantic map. Label
propagation on the semantic map allows for sensor-specific adaptation with
cross-modality and cross-domain supervision.

Our system provides augmented semantic images and point clouds with
~9Hz. We evaluate the integrated system in real-world experiments in an urban
environment and at a disaster test site.

Keywords: robot perception, sensor fusion, unmanned aerial vehicles, semantic
segmentation, label propagation, object detection, deep learning

1. Introduction

Semantic scene understanding is an important prerequisite for solving many
tasks with unmanned aerial vehicles (UAVs) or other mobile robots, e.g., for
disaster examination in search and rescue scenarios [I]. Modern robotic systems
employ a multitude of different sensors to perceive their environment, e.g., 3D
LiDAR, RGB(-D) cameras, and thermal cameras, that capture complemen-
tary information about the environment. A LiDAR provides accurate range
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Figure 1: Semantic perception with UAV (a): (b) Person detections in thermal camera,
(c) fused image segmentation, and point cloud segmentation (d) before and (e) after label
propagation. Persons inside (outside) camera FoV are highlighted with blue rectangles (circles)
in (d), (e). Right side: employed semantic classes.

measurements independent of the lighting conditions, while cameras provide
dense texture and color in the visible spectrum. Thermal cameras are especially
useful in search and rescue missions as they detect persons or other heat sources
regardless of lighting or visibility conditions. The combination of all these sensor
modalities enables a complete and detailed interpretation of the environment.
A semantic map aids inspection tasks [2], perception-aware path planning [3],
and increases robustness and accuracy of simultaneous localization and mapping
(SLAM) through the exclusion of dynamic objects during scan matching [4].

In this article, we build upon our recent work [5], where we propose a
framework for online multi-modal semantic fusion onboard a UAV combining
3D LiDAR range data with 2D color and thermal images. We expand this
approach using label propagation for cross-modality supervision to significantly
improve LiDAR, point cloud segmentation and through additional experiments
on a disaster test site. Examples of the semantic perception onboard the UAV
are illustrated in Fig.

An embedded inference accelerator and the integrated GPU (iGPU) run
inference online, onboard the UAV for mobile, optimized CNN architectures
to obtain pixel- resp. pointwise semantic segmentation for RGB images and
LiDAR scans, as well as object bounding box detections on RGB and thermal
images. We aggregate extracted semantics for two different output views: A
fused segmentation mask for the RGB image which can, e.g., be streamed to the
operator for direct support of their situation awareness, and a semantically labeled
point cloud, providing a 3D semantic scene view which is further integrated
into an allocentric map. This late fusion approach is beneficial for multi-rate
systems, increasing adaptability to changing sensor configurations and enabling



pipelining for efficient hardware usage. The semantic map further allows to adapt
specific CNNs to new sensors with unique characteristics using cross-modality
supervision from, e.g., thermal and color segmentation, through propagating
labels via 3D projection.

In summary, our main contributions are:

« the adaptation of efficient CNN architectures for image and point cloud
semantic segmentation and object detection for processing onboard a UAV
using embedded inference accelerator and iGPU,

o the fusion of point cloud, RGB, and thermal modalities into a joint image
segmentation mask and a semantically labeled 3D point cloud,

o temporal multi-view aggregation of the semantic point cloud and integration
into an allocentric map, and

« evaluation of the proposed integrated system with real-world UAV experi-
ments.

In addition to our conference paper [5] presented at the 2021 European Conference
on Mobile Robotics, we make the following additional contributions:

o formulating multi-modality fusion in a fully Bayesian manner and improving
the clustering of foreground objects,

« using label propagation to overcome domain adaptation issues of the LIDAR
segmentation network, thereby significantly improving the accuracy of point
cloud segmentation, and

o extended evaluation in large-area UAV flights in an urban environment
and on a disaster test site.

2. Related Work

Mobile Lightweight Vision CNNs. Lightweight CNN architectures for computer
vision tasks that are efficient and perform well on systems with restricted
computational resources, e.g., on mobile or embedded platforms, have become
of increasing research interest in recent years. The MobileNet architectures [6]
7] replace classical backbone networks such as ResNets [§] in many vision
models while decreasing the number of parameters and the computational cost
significantly, e.g., by replacing standard convolutions with depthwise-separable
convolutions—at the expense of a slight reduction in accuracy.

In object detection, single-stage architectures such as SSD [9] or YOLO [10]
have proven to be efficient in mobile applications through the use of predefined
anchors instead of additional region proposal networks. Zhang et al. [I1] further
optimize YOLOv3 for usage onboard a UAV. However, the authors evaluate
their network, called Slim-YOLOv3, only on a powerful discrete GPU which is
not feasible for integration onboard a typical UAV.



Recently, Xiong et al. introduced MobileDets [12] based on the SSD archi-
tecture with MobileNet v3 backbone and optimized for embedded inference
accelerators such as the Google EdgeTPU, which we employ onboard our UAV.

For semantic image segmentation, efficient architectures for inference onboard
UAVs have mostly been proposed for specific applications, such as UAV tracking
and visual inspection [2] or weed detection for autonomous farming [13]. The
DeepLab v3+ architecture [14] shows state-of-the-art performance on large,
general datasets and includes elements of MobileNet architectures such as depth-
wise-separable convolutions for efficient computation. In our work, we employ a
DeepLab v3+ model with MobileNet v3 backbone for image segmentation.

For point cloud semantic segmentation, projection-based methods [15] [16], [17]
utilize the image-like 2D structure of rotating LiDARs. This allows performing
efficient 2D-convolutions and using well-known techniques from image segmenta-
tion. The downside of this approach is the restriction to single LiDAR scans in
contrast to larger aggregated point clouds [I8]. In this work, we adopt the Sal-
saNext architecture [I5], trained on the large-scale SemanticKITTI dataset [19]
for autonomous driving, as it shows a good speed-accuracy trade-off.

Multi-Modal Semantic Fusion. Mobile robotic systems, such as UAVs or self-
driving cars, are often equipped with both camera and LiDAR sensors, as they
provide complementary information. A LiDAR accurately measures ranges
sparsely and independent of lighting conditions while cameras provide dense
textures and colors. Hence, research focused on the fusion of camera and LiDAR
for 3D detection and segmentation in the context of autonomous driving.

Xu et al. propose PointFusion [20], a two-stage pipeline for 3D bounding-box
detection. It first processes a LIDAR scan with PointNet [2I] and an image with
ResNet [§] independently, before fusing them on feature level with an MLP.

Meyer et al. [22] take a similar sequential feature-level fusion approach,
addressing both 3D object detection and dense segmentation. The feature-level
fusion requires representing the LiDAR scan as a range image. Range and color
image are cropped to the overlapping field-of-view (FoV), reducing the 360°
horizontal FoV of the LiDAR to only 90°.

Vora et al. [23] propose to in-paint point clouds with image segmentation by
projecting LiDAR points into the image and assigning segmentation scores of
the pixels. A 3D object detection network then processes the augmented point
cloud.

LIF-Seg by Zhao et al. [24] improves upon the LIiDAR segmentation network
Cylinder3D [25] through early- and middle-fusion with color images. Image
patches around the projected points provide per-point color context for early-
fusion, while mid-fusion concatenates semantic features from LiDAR and image,
processed with Cylinder3D and DeepLab v3+, respectively, before processing
with an additional refinement sub-network based on Cylinder3D for final semantic
labels.

Semantic Mapping. Many high-level robotic tasks benefit from or require se-
mantic information about the environment. For this, semantic mapping systems



build an allocentric semantic environment model, anchored in a fixed, global
coordinate frame.

SemanticFusion [26] models surfaces as surfels where a Gaussian approximates
the point distribution. For SLAM, this approach builds on ElasticFusion [27]
and requires an RGB-D camera. A CNN generates pixel-wise class probabilities
from the color image. Their fusion takes a Bayesian approach assuming that
individual segmentations are independent and stores all class probabilities per
surfel. Kimera [28] is a modular metric-semantic stereo-inertial-SLAM framework.
Its semantic mapping module adopts Voxblox [29] to build a truncated signed
distance field (TSDF) map of the surface geometry of room-scale indoor envi-
ronments, integrating semantic segmentation information via a similar Bayesian
fusion approach. Grinvald et al. [30] represent individual object instances of
known and previously unseen classes in the semantic map, providing object-level
information for higher-level reasoning. With Recurrent-OctoMap, Sun et al. [31]
aim at long-term mapping within changing environments. Here, each cell within
the OctoMap [32] contains an LSTM fusing point-wise semantic features and all
LSTMs share weights.

Landgraf et al. [33] compare two fusion strategies, first labeling individual
views followed by Bayesian fusion versus creating a joint map and labeling it at
once. Both strategies show similar results with view-based being more strongly
influenced by depth noise while map-based depends on correct poses.

Other works propose alternatives to the probabilistic Bayesian update for
fusing semantic labels from multi-view 2D images into a 3D map. Mascaro et
al. [34] build a sparse diffusion graph connecting 2D pixels to 3D points and
3D points to their K nearest neighbors to propagate labels from a 2D image
segmentation to the 3D model. After graph construction, iterative multiplication
of the label matrix with a probabilistic transition matrix yields the diffused
semantic labels. Berrio et al. [35] use an adapted softmax weighting scheme based
on class prevalence within SLIC super pixels to weight individual per-pixel class
scores. Motion correction and masking of occluded points are further employed
to improve semantic projection accuracy.

For more specific application scenarios, Maturana et al. [36] propose to extend
existing digital elevation maps (DEM) with the detection of cars from UAVs.
Dengler et al. [37] aim for real-time service robotics applications with an object-
centric 2D /3D map representation including a 2D polygon of object shape and an
object-oriented bounding box in the x-y-plane together with the center of mass
and object point cloud. Faster R-CNN [38] detects objects from color images
of an RGB-D camera. FEuclidean clustering on depth measurements segments
small objects geometrically before projection onto the x-y-plane. A refinement
step recomputes the biggest clusters after a certain number of fusions to counter
errors due to incorrect odometry. The LiDAR surfel mapping SuMa++ by
Chen et al. [4] uses a surfel’s semantic class to further improve the registration
accuracy by penalizing inter-class associations during scan matching and surfel
update. Here, the projection-based RangeNet++ [I6] provides per-point class
probabilities.

Rosu et al. [39] extract a mesh from an aggregated point cloud. The Projection



of mesh faces into images enables the transfer from image segmentation to a
semantic texture. While projection and fusion happen in real time, the required
mesh generation and UV-unwrapping are done in pre-processing. Since only the
argmax class is of interest and to meet GPU memory limitations, the sparse
texture retains a small number of classes with high probability and discards
all others. The semantic textured mesh enables label propagation to generate
pseudo ground-truth. Retraining the image segmentation network including
these pseudo-labels produces more consistent segmentations. While Rosu et
al. only improve consistency within one modality, we use propagated labels for
sensor-specific adaptation across modalities.

Domain Adaptation and Label Propagation. In real-world robotics scenarios, a
lack of annotated training data is a major issue. In recent years, substantial
research efforts developed techniques for domain adaptation, that help neural
networks to transfer perception skills learned from widely-available standard
datasets to application-specific target environments. This often includes adapta-
tion to other sensors with differing characteristics, such as wavelength, resolution,
or FoV, compared to the sensor used for capturing the source dataset. In this
context, label propagation automatically provides annotations for the target
domain in a semi-supervised manner, e.g., by projecting labels from one sensor
modality to another.

A first line of work investigates domain adaptation between different LiDAR
sensors and datasets. Langer et al. [40] tackle domain transfer between LiIDAR
sensors with different sampling patterns (i.e. 64-beam vs. 32-beam) by fusing
scans from the source data domain and raycasting into the target sensor to obtain
transferred training examples. During retraining, weights are shared for source
and target and geodesic correlation alignment prevents unwanted domainshift.
Yi et al. [4I] perform a similar adaptation between LiDAR sensor types but
use a two-stage CNN instead, where at first scene completion obtains a denser
canonical point cloud before labeling it in the second stage. Alonso et al. [42]
examine different data alignment strategies to make different LiDAR datasets
more similar and include an alignment loss between source and target dataset
based on the KL-divergence. While these works efficiently handle different LiDAR
resolutions, the evaluated sensors have similar FoVs, and datasets all stem from
urban driving scenarios. Our work, in contrast, handles more drastic viewpoint
changes to aerial UAV perspectives and a LiDAR with different resolution and a
significantly larger vertical FoV compared to the source data domain.

Several recent works cope with the limited availability of annotated training
data through label propagation. Z. Liu et al. [43] use weak supervision to generate
pseudo-labels for 3D data using partitioned super-voxels. A graph relates the
super-voxels and propagates pseudo-labels to iteratively train two complementary
networks for point segmentation and super-voxel relations. B. Liu et al. [44]
propagate labels for 2D image data from a small target data domain towards a
large unlabeled set with a similarity function pretrained on a source domain.

Most closely related to our approach are methods that apply cross-modal
label propagation from 2D images to 3D point clouds. Piewak et al. [45] transfer



semantic annotations automatically inferred by an image segmentation CNN from
the closest image to point clouds by projection, taking linear ego-motion from
wheel odometry into account. We use a similar approach to automatically obtain
labels for point clouds from the image modality, but use a spatio-temporally
aggregated 3D semantic map as pseudo-label source, instead of one or multiple
individual cameras.

Jaritz et al. [46] present a two-branch network for 3D semantic segmentation.
Individual networks compute feature maps for LIDAR and camera before retain-
ing only those features at valid projected points in the camera FoV. In parallel
to the concatenation of both feature maps before a fused segmentation head,
each branch performs single-modality segmentation. During training, the single
heads should mimic the fused output by minimizing the cross-modal loss based
on KL-divergence. This requires labels for both modalities within the source
domain. After initial adaptation to the target data domain, e.g., a different
dataset without labels, the generation of pseudo-labels in the target data domain
and retraining from scratch provides further improvements. Similarly, Wang et
al. [47] use a two-branch network for 3D bounding box detection from LiDAR
and images. A gated adaptive fusion subnetwork introduces point-wise projected
image features into the LiDAR, branch on every layer within the feature encoder.
A KL-divergence loss regularizes class predictions between the image and LiDAR
branch. Due to the close coupling between image and LiDAR modalities, the
above two methods only use 3D points inside the camera FoV. Our method, on
the other hand, segments all LIDAR points in the complete 360° horizontal FoV.

In our work, different networks process LiDAR scan, RGB, and thermal images
individually. We adopt a projection-based approach similar to [23] for multi-
modal fusion in a multi-rate system. When multiple modalities are available,
we merge class probabilities from different sensors using Bayesian fusion. Our
mapping integrates augmented point clouds in a sparse voxel hash-map with per
voxel full class probabilities. We adapt the Bayesian fusion of SemanticFusion [26]
to logarithmic form for higher precision and greater numerical stability.

While being less popular in recent work, such a late fusion approach has
important practical advantages for deployment on an integrated robotic system.
Different FoVs and data rates are easy to handle and intermediate results,
such as image segmentation or detections, are useful as stand-alone outputs.
Pipelining also allows for reducing the latency of sequentially executed individual
networks during online operation. Furthermore, the smaller, simpler standard
architectures of individual networks are easier to adapt and optimize for the
embedded inference accelerators employed in this work.

As our target data domain of UAV aerial perspectives with large vertical
FoV differs significantly from available large-scale training datasets from au-
tonomous driving scenarios with different viewpoints and LiDAR sensors more
focused towards the ground, we use label propagation to retrain the point cloud
segmentation CNN with supervision for the target environment. Pseudo-labels
are automatically obtained via 3D projection from RGB and thermal camera
modalities, spatio-temporally aggregated in a semantic map to compensate for
their narrower FoV w.r.t. the LiDAR scanner. Through retraining with this
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Figure 2: UAV system setup and hardware design.

cross-domain supervision, point cloud segmentation is significantly improved,
achieving higher mIoU scores on our dataset than the image segmentation used
as pseudo-label source, and generalizing to the full LIiDAR FoV.

3. Our Method

3.1. System Setup

An overview of our UAV system, based on the commercially available DJI
Matrice 210 v2 platform, is shown in Fig. We use an Intel Bean Canyon
NUCS8iI7TBEH with a Core i7-8559U processor and 32 GB of RAM as the onboard
computer. A Google EdgeTPU connects to the NUC over USB 3.0 and accelerates
CNN inference together with the Intel Iris Plus Graphics 655 iGPU of the main
processor. An Ouster OS0-128 3D—LiDARE| with 128 beams, 360° horizontal,
and 90° vertical opening angles provides range measurements for 3D perception
and odometry. For visual perception, our UAV additionally carries two Intel
RealSense D455 RGB-D cameras, mounted on top of each other to increase
the vertical field-of-view, and a FLIR ADK thermal camera for, e.g., person
detection in search and rescue scenarios.

3.2. Semantic Perception

An overview of the proposed architecture for multi-modal semantic perception
is given in Fig. [3] We detail individual components in the following.

Image Segmentation

We employ the DeepLabv 3+ [14] architecture with MobileNet v3 [7] backbone
optimized for Google EdgeTPU Accelerator for semantic segmentation. We train
the model on the Mapillary Vistas Dataset [48], reducing the labels to the 15

Thttps://ouster.com/products/scanning-1lidar/os0-sensor/
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most relevant classes for the envisaged UAV tasks (cf. Fig. . We use an input
image size of 849 x 481 px during inference, fitting the 16:9 aspect ratio of our
camera.

Object Detection

The recent MobileDet architecture [I2] is the basis for our object detection.
We train the RGB detector on the COCO dataset [49] for person, vehicle,
and bicycle classes with an input resolution of 848 x 480 px. The thermal
object detector uses the same architecture taking one-channel 8-bit gray-scale
thermal images at the full camera resolution of 640 x 512 px as input. We enable
automatic gain correction (AGC) for the thermal camera which adapts and scales
the 16-bit raw images to 8-bit, exploiting the full 8-bit value range to provide
contrast-rich images. The network is trained on the FLIR ADAS dataset [50],
recorded with the previous generation of our employed sensor in autonomous
driving scenarios, with annotations for persons, vehicles, and bicycles.

Point Cloud Segmentation

We adopt the projection-based SalsaNext architecture [I5] taking advantage
of the image-like structure of LIDAR measurements. The network is pretrained
on the large-scale SemanticKITTI [19] dataset. The OS0 LiDAR sensor provides
measurements at a resolution of 1024 x 128. We compare using the full sensor
resolution to subsampling the scans by a factor of two in both vertical and hori-
zontal directions, leading to a network input resolution of 512 x 64. Subsampling
enables real-time inference on our hardware. The input channels are range, z-,
y-, z-coordinate, and intensity, normalized with the mean and standard deviation
of the training dataset. Our LiDAR has a significantly larger vertical FoV of 90°
compared to the 26.9° opening angle of the Velodyne HDL-64E sensor employed
in the SemanticKITTI dataset. The HDL-64E mostly measures downward from
the horizontal plane, thus seldomly measuring treetops or other higher obstacles.
A different laser wavelength also changes the characteristics of intensity and



reflections. Hence, we adjust the normalization parameters for z-coordinate and
intensity to facilitate the cross-domain adaptation between training and observed
data according to the statistics of the test data captured with our sensor setup,
taking up the idea of input data distribution alignment from [42]. The z- and
y-coordinate normalization parameters remain the same, as the horizontal field-
of-view is identical (360°) for both sensors. Fig. [11| highlights improvements of
the segmentation results through the adaptation of the normalization parameters.
The point cloud segmentation nonetheless remains noisier and less detailed than
the image segmentation. To further overcome the domain adaptation issues,
we retrain the point cloud segmentation network using label propagation (cf.

Sec. .

Inference Accelerators

We run the CNN model inference on two different accelerators onboard the
UAV PC: The Google EdgeTPUEL attached as an external USB device, and the
integrated GPU (iGPU) included in most modern processors which is otherwise
unused in our system. The EdgeTPU supports network inference via TensorFlow-
lite [51] and requires quantization of the network weights and activations to
8-bit [52]. The iGPU supports inference via the Intel OpenVINO framework?| in
16- or 32-bit floating-point precision.

3.3. Multi-Modality Fusion

We adopt a projection-based approach to fuse semantic class scores from image
and point cloud CNNs into the semantically labeled output cloud. Projection
onto the image plane requires the transformation of LiDAR points into the
respective camera coordinate frame. As LiDAR and cameras operate with
different frame rates, the motion between the respective capture times has to
be taken into account. The full transformation chain T' from LiDAR to camera
frame is:

cam base base
T= Thase te Tbasetl Tiipar, (1)

using the continuous-time trajectory of the UAV base frame estimated by the
LiDAR odometry. Thus, the transformation chain models perspective changes
between LiDAR and camera that occur due to dynamic UAV motions.

Bilinear interpolation at the projected point location gives the semantic class
SCOTES Cimg € RC from image segmentation. We apply the soft-max operation to
approximate a normalized probability distribution over all C' = 15 classes used
in this work (cf. Fig. [I)):

exp ¢;

c
D j—1 €XPCj

: (2)

Di :U(Ci) =

%https://coral.ai/docs/accelerator/datasheet
Shttps://docs.openvinotoolkit.org/
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Figure 4: Person segmentation included into point cloud fusing (a) image segmentation only,
(b) additionally detection bounding boxes, (c) clustering foreground points within the detection
bounding boxes via depth threshold, and (d) Euclidean clustering. The initial segmentation
(a), is incomplete and slightly misaligned. Naive bounding box fusion (b) creates many false
positives in the background and on the floor. With depth threshold clustering (c), the person
is completely segmented without adding many misclassified points in the background. With
Euclidean clustering (d), the person is completely segmented and misclassified points in the
background and on the floor are reset to their original label from LiDAR segmentation.

obtaining pimg € R, with p; € [0,1] and 3, p; = 1. Similarly, the application
of soft-max to the output of the point cloud CNN for a LiDAR point gives the
LiDAR segmentation probability pripar. The Bayesian update rule [26] allows
to compute the fused class probability under the assumption of independence
between sensor modalities:

Pimg © PLiDAR
Ptused = C 3 (3)
Zizl Pi,img Pi,LiDAR
with o being the coefficient-wise product. For better numerical stability, we
implement the Bayesian fusion in logarithmic space, as detailed in Sec. [3:4]
Furthermore, if a projected point falls inside a detection box in either thermal
or color images, the detected class is included in the result. We base the detection
probability pget on the detector score multiplied with a Gaussian factor with
mean at the bounding box center and standard deviation of half the bounding
box width resp. height, to reduce unwanted border effects for non-rectangular or
non-axis-aligned objects. As the detector only outputs a score for the detected
class, we reconstruct the full probability distribution pget following the maximum
entropy principle: The remaining probability mass 1 — pget is equally distributed
over the remaining C — 1 classes. Again, both estimates are fused using Bayesian
update:

_ Ptused © Pdet 4
Ptused__det = C . ( )
Ei:1 Di,fused Pi,det

Side-effects of the rectangular detection bounding boxes have to be handled
before detection fusion, however, as illustrated in Fig. [f] with the example of
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fusing person detections from the RGB or thermal image into the point cloud.
Simple projection of all points into the bounding box will falsely label points in
the background as the detected class (cf. Fig.|4|(b)). To alleviate this issue, points
are clustered w.r.t. their distance in the camera frame before detection fusion.
In our previous work [5], we included only points within a fixed threshold of the
25 % quantile of distances per cluster to focus on foreground objects (cf. Fig.
(c)). We extend this approach to Euclidean point clustering with an adaptive
cluster tolerance threshold 7cjyster- This yields a more accurate segmentation and
better generalizes to different object sizes and distances. Starting from the seed
point at 25 % quantile distance dgeeq, bounding box points within the distance
Teluster are recursively added to the cluster. The cluster tolerance is proportional
to dseeq and the angle increment between two adjacent scan lines, adapting to
the LiDAR spatial resolution which covers a vertical FoV of 90° with 128 lines:

FOVvert Y
Tcluster = S * dseed . =S5 dseed '

ReSyert 2-128° (5)

where s = 1.5 is a tolerance factor set to yield complete foreground clusters
without adding points on the floor or background (cf. Fig. 4| (d)). We assume
that there is only one valid cluster per bounding box. Only the clustered points
are included into detection fusion. Furthermore, points not added to the cluster
that are erroneously labeled as the cluster class, are reset to their original class
probability from LiDAR segmentation to correct for border effects in the previous
fusion stage (cf. background in Fig. 4] (a) vs. (d)). The final segmented point
cloud includes the full class probability vector and the argmax class color per
point.

We proceed similarly for fusing the initial image segmentation and detections
from RGB and thermal cameras into the output semantic image and additionally
apply temporal smoothing. The RGB-D depth enables projection from RGB
to thermal image and temporal smoothing provides a more coherent fused
segmentation. For temporal fusion, we project the previous image at time
t — 1 with its depth into the current frame at time ¢ and perform exponential
smoothing:

Psmoothed__img, = normalize (a © Pimg, + (1 - a) o pfusediimgt_l) ) (6)

psmoothediimgt O Pdet, (7)

Ptused_img, = C
Zi:l pi,smoothediimgt Di,det,

The smoothing weights a differ between the individual semantic classes.
For (potentially) dynamic foreground objects, such as persons and vehicles, less
smoothing is applied than for static structures such as buildings and roads. We
chose aqyn = 0.80 for dynamic object classes and astar = 0.25 for static back-
ground classes in our experiments. The higher a-coefficients for dynamic objects
make the fused segmentation mask correctly follow dynamic foreground objects
moving over image areas that were previously segmented as a background class,
as the current frame’s segmentation more directly influences the fused output
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for these semantic classes. The smoothing for background classes significantly
reduces temporal jitter in the segmentation w.r.t. the initial CNN output. The
temporal smoothing @ can only be applied to pixels with valid depth measure-
ments that have a corresponding projected point from the previous image. We
directly use the segmentation class probabilities from the current frame ping,
for fusion with the detections in otherwise.

8.4. Semantic Mapping

MARS LiDAR Odometry [53] provides poses to integrate all augmented
point clouds within a common map. A uniform grid subdivides the space
into cubic volume elements (voxels). Since a dense voxel grid may require a
prohibitively large amount of memory although only sparse access occurs, we use
sparse voxel hashing. Each voxel fuses all points in its vicinity probabilistically.
Additionally, we compute the mean position. Our fusion scheme follows the
reasoning of SemanticFusion [26] to use Bayes’ Rule assuming independence
between semantic segmentations P (I;]X}) for the augmented point cloud X}
with label I; for class i:

P (| X15-1) P (L] Xi)
> Pl Xg—1) P (L] Xx)

A naive implementation, as in SemanticFusion, suffers from numerical instability
due to the finite precision of the multiplication result. In practice, this leads to all
class probabilities being close to zero, e.g., when P (;|Xy) = 1, P (I;|Xy11) = 1
and P (;|Xx+1) = 0, P(l;|X;) =~ 0 both class-wise products will be almost
zero. This results in a loss of information even after the application of the
normalization term and needs continuous reinitialization.

Hence, we switch to log probabilities:

P(l;| X1.x) =

(8)

Li1 = log (P (l;| X1)), 9)
Lij—1 = log (P (13| X1:k-1)) (10)
Liy = log (P (l:| X)) , (11)

Sy = log (ZP (li] X1.4-1) P (li|Xk)> : (12)

and voxels now store L; 1. instead of P (I;|X7.;). We obtain for in log form:

L1k = Sitke — Sk, (13)
Sitk = Litk—1+ Lik, (14)

while we make use of the following logarithm identity for Sy.; to factorize out
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the largest summand with index m = arg max;(x;) for numerical stability:

X
1 . =

og (Z x2> log (zy,) +1og [ 1+ Z I (15)

% i#Em
=log (z,,) +log [ 1+ Z explog(@d)—log(@m) | (16)

i#m

Thus, we compute Si.; as follows:
Sl:k = Sm,l:k + 1Og 1+ Z eXpSiJ:kism’l:k . (17)
i#Em

Ideally, we would directly fuse network outputs before soft-max to save
additional exp and log evaluations, but since the individual outputs may be
arbitrarily scaled, this step is necessary.

An infinite time horizon of the semantic map, fusing all scans, may not
be necessary or wanted—depending on the use-case, e.g. for global vs. local
planning. Hence, we employ a fixed-size double-ended queue (deque) per voxel
for a shorter time horizon of n scans that merges all points per scan. Fusion of
per-scan log probabilities yields the voxels’ class probabilities. Older scans are
either removed completely or fused into the infinite time horizon estimate.

3.5. Label Propagation

The employed LiDAR segmentation CNN, pretrained on the SemanticKITTI
dataset [I9], shows limited performance in our test scenarios (cf. Sec. [4.2). This
is due to cross-domain adaptation issues between training and observed data as
the UAV employs a LiDAR sensor different from SemanticKITTI, with different
vertical FoV, laser wavelength, and optical system. To the best of our knowledge,
no large-scale semantically annotated training datasets are available using the
employed Ouster OS0-128 sensor.

To overcome these issues, we retrain the CNN using our sensor’s FoV pa-
rameters by (1) complementing the SemanticKITTI training data with the
recently published Paris-CARLA-3D dataset [54] and (2) automatically generat-
ing pseudo-labels for cross-modal supervision from the fused semantics of RGB
and thermal camera from outdoor flights with our UAV system.

The Paris-CARLA-3D dataset contains aggregated point clouds from three
streets in Paris over about 550 m linear distance and a Velodyne HDL32 LiDAR
sensor similar to the one used for SemanticKITTI. However, the sensor was
tilted, allowing high structures such as buildings to be fully mapped. We only
utilize the real-world part of the dataset. To obtain labeled single scans to
complement the training data, we project points from the aggregated cloud
into simulated viewpoints with the characteristics of the Ouster OS0 LiDAR at
positions following the original vehicle trajectory from the dataset, but at larger
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Figure 5: Paris-CARLA-3D dataset: Projection of dynamic persons (yellow) into the virtual
OS0 LiDAR view using dataset scans from (a) only the current, (b) £2, and (c) +5 adjacent
positions. The foreground person is incomplete when using just a single scan (a) but significant
movement artifacts appear for a larger scan window (c). We use a window of £2 (b) for our
experiments as compromise between complete scans and remaining artifacts.

Figure 6: Point cloud labels projected into the FoV of the employed Ouster OSO LiDAR
for sample scenes from (a) SemanticKITTI [I9] and (b) Paris-CARLA-3D [54] datasets.
SemanticKITTTI covers a significantly smaller vertical FoV than our sensor, while the aggregated
cloud from Paris-CARLA-3D covers the entire FoV.

height, further adapting to our UAV use case. The projection of a LiDAR point
(z,y,2)7 in the sensor frame to image coordinates (u,v)T is given as in [I5] by:

AN 0.5 (1 —atan2 (y,z) 7! w (18)
v) — \(1— (arcsin (2r7') + faown) fH) R/’
with h, w denoting the height, resp. width of the projected image, r =
V&2 4+ y? + 22 the range of each point and f = |faown| + |fup| the vertical
field-of-view (faown = fup = 45° for OS0). When multiple points are projected
to the same image coordinates, only the closest one is retained. The maximum
range is set to 50 m.

To avoid artifacts from dynamic objects (e.g. cars and persons), points
of these semantic classes are only projected from a limited number of scans
captured close to the current simulated position. Here, a compromise must be
made between complete, dense scans and remaining artifacts as illustrated in
Fig. [}l We choose a window of +2 scans for our experiments.

The differences between the two datasets are illustrated in Fig. [f] where labels
from SemanticKITTI and Paris-CARLA-3D are shown projected in the Ouster
0S0 sensor FoV. The SemanticKITTI data covers only a small part of the vertical
FoV with the top of buildings rarely visible, while the scans obtained from Paris-
CARLA-3D cover the full FoV and show complete building structures, similar to
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Figure 7: Overview of label propagation approach: Image segmentation is projected on point
cloud and aggregated into camera-only semantic map, used as source for pseudo labels. LiDAR
segmentation is retrained combining own data with pseudo-labels, Pariss-CARLA-3D, and
SemanticKITTI. Resulting semantic point clouds, fusing image and retrained point cloud
segmentation, are completely and accurately annotated.

the data observed by the UAV system. Yet, the variability of Paris-CARLA-3D
(550 m distance, single city area) is limited compared to SemanticKITTT (39.2 km
distance, different urban, rural, and highway areas [55]), and some artifacts from
moving objects remain. Furthermore, as a different LiDAR sensor is used, the
intensity channel, computed from the magnitude of laser reflection, is still only
partially comparable to the Ouster OS0O which uses a different wavelength and
optical system.

To obtain training data from the actual sensor, we use label propagation
for cross-modal domain adaptation to automatically generate pseudo-labels for
data captured during flights with our UAV system. An overview of the proposed
approach is given in Fig. [7}

As the semantic information from the RGB and thermal camera modalities is
significantly more reliable than the initial point cloud segmentation (cf. Sec. ,
we only use the camera semantics as pseudo-label source. For this, we fuse the
RGB and thermal camera semantic information into the point cloud, without
including the outputs of the LiDAR segmentation CNN. The obtained pseudo-
labels are illustrated in Fig.[8] As the FoV of the cameras is significantly smaller
than that of the LiDAR, only a small part of each individual scan can be labeled
with this cross-modal supervision. However, after aggregation over the complete
flight, the semantic map can provide pseudo-labels for almost the complete
scan. Ounly the operator of the UAV (person to the bottom right of Fig. [§]) is
not annotated as they always stayed behind the UAV and never were in the
camera FoV. For reference, we also compare to using pseudo-labels from the map
aggregated from fused semantic clouds. We find, however, that this supervision
is too imprecise to achieve significant improvements (cf. Tab. |5 since the noisier
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Figure 8: Label propagation using cross-modal supervision: (a) range channel of projected
scan, (b) pseudo-labels from single camera overlay, (c) from aggregated camera-only map, and
(d) from aggregated fused map (cf. Fig. [13| (b, c)). Unlabeled areas are depicted in grayscale.
UAV legs lead to areas without valid measurements (black) at close range. Single camera
overlay provides supervision only for a small part of the scan. Supervision from aggregated
maps is more complete and the camera-only map (c) is more accurate than the fused map (d).

raw point cloud segmentation is included (e.g., wrongly labeled vegetation to
the left and person to the bottom right of Fig. [8] (d)). It is crucial that the
pseudo-labels used for re-training are as accurate as possible and it is better to
leave uncertain parts unlabeled than to fill them with imprecise labels.

The semantic map that serves as source for pseudo-labels was generated fully
automatically from captured data, using the proposed system for multi-modality
fusion and semantic mapping, without any manual supervision. Additionally,
a single, automated post-processing step improves the label quality: Points on
the ground plane that are not labeled as a ground class (i.e. road, sidewalk, or
vegetation) are reset to the unknown semantic class, to correct for unwanted
artifacts at object borders. Similar to Rosu et al. [39], we use only high-confidence
pseudo-labels (minimum confidence of 80 %) leading to unlabeled gray regions
between areas of different semantic classes in Fig. [§] (b). After aggregation of
multiple viewpoints in the semantic map, most labels have confidence close to 1
and the borders between semantic classes are sharp.

For retraining the point cloud segmentation network, we complement the
SemanticKITTI training data with scans obtained from Paris-CARLA-3D and
self-recorded UAV flights with pseudo-labels. The amount of additional data
is chosen to be comparable to the original ~ 20k scans of SemanticKITTI, as
proposed by Rosu et al. [39]. We increase the batch size to 64 to compensate for
the lower signal-to-noise ratio due to the noisier pseudo-labels. Furthermore, we
increase the magnitude of the data augmentation transformations w.r.t. original
SalsaNext training parameters [15], to account for the lower variability of the
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Figure 9: CPU load of the CNN inference of different models depending on the used accelerator
and the output frame rate. The iGPU (dashed lines) results in higher CPU load than the
EdgeTPU (solid lines) for all models.

additional scenes. After retraining, we compare networks using the five original
input channels (range, -, y-, z-coordinate, and intensity) against ones not using
intensity information, as this channel is the most difficult to adapt for between
changing sensor types. If not stated otherwise, the network is retrained with an
input resolution of 512 x 64, using SemanticKITTI, Paris-CARLA-3D, and scans
from our own data collection with pseudo-labels from the camera-only semantic
map. Different parameters are compared in the ablation studies in Sec. [4]

4. Evaluation

We first evaluate inference speed and computational efficiency of the employed
CNN models and then show results from outdoor UAV flights in an urban
environment and on a disaster test site.

4.1. CNN Model Efficiency

In real-time systems with limited computational resources, such as UAVs,
efficiency is of key importance and resources need to be distributed with care
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Table 1: Average inference time on the resp. accelerator.

Model ‘ Input Resolution | EdgeTPU ‘ iGPU

RGB segmentation 849 x 481 40.5ms 50.0 ms
RGB detector 848 x 480 17.5ms 24.0 ms
Thermal detector 640 x 512 12.0ms 18.0ms
LiDAR segmentation 512 x 64 - 32.0ms
LiDAR segmentation 1024 x 128 - 140.0 ms

Table 2: Average CPU load and output frame rate of different model combinations. Image
segmentation and detection models run on EdgeTPU and point cloud segmentation on iGPU.

> N )
%\’@O &% : @‘2’% \00b
& & S > &V 5%
& W oF 2T Y & &
QO-& xx‘b’% F & ® QS}Q’ & SF &
- - - - - v 52.5% 21.0Hz -
- - - - v v 54.2% 13.2Hz -
- - - v v v 57.3% 12.6 Hz -
- v - v o v v | 1206% | 9.9Hz -
- - v v v v 116.6% | 12.6Hz | 10.0Hz
- v v v v v 180.0% 9.5Hz 10.0Hz
v v v v v v |2043% | 89Hz 9.5Hz

between the different system components. Semantic perception, while important
for many high-level tasks, has less severe real-time constraints than, e.g., flight
control or odometry. It is thus important that the CNN inference uses as few
CPU resources as possible to not interfere with the hard real-time constraints of
low-level control, localization, and state estimation. For this, we analyze the CPU
load of the employed CNNs for object detection and segmentation, depending
on the used accelerator. Although the main computational load of inference
is distributed to a dedicated accelerator (EdgeTPU or iGPU), the preparation
of input data, data transfer, and post-processing require CPU resources. This
is handled with differing degrees of efficiency w.r.t. CPU load and depends
on the in- and output frame rate, as shown in Fig. 0] Models running on
the EdgeTPU produce lower CPU load in all cases while achieving higher or
equivalent maximum frame rates. Tab. [l| shows the average inference latency
per model. The LiDAR segmentation is only executed on the iGPU, as the
pizel-shuffle layer from SalsaNext [15] is not supported by the EdgeTPU and
the model thus cannot be converted to the required 8-bit quantized format.
For the following experiments, we choose to run the image CNNs on the
EdgeTPU, while the LiDAR segmentation runs on the iGPU at 512 x 64 input
resolution. Tab. [2| shows the average computational load and output rate for
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Figure 10: Semantic interpretation of RGB and thermal images: (a) RGB input image, (b)
RGB and (c) thermal detections. (d) RGB segmentation. (e) fused segmentation mask. Persons
and bicycle, not or only partially segmented in the initial segmentation mask, are fully visible
in the fused output.

different combinations of CNNs. As to be expected, the maximum achievable
output frame rate drops and CPU load increases with a growing number of
vision models used. The computation of RGB segmentation and detections,
as well as thermal detections, achieves an average frame rate of 12.6 Hz at a
CPU load of about 60%. The inclusion of the image fusion module almost
doubles the CPU utilization while the frame rate drops to 9.9 Hz. This is due to
the transformations and projections necessary to calculate at image resolution
for temporal smoothing and to include thermal detection into the fused image
segmentation. The total CPU usage for the fusion of both image and point cloud
semantics sums up to about 2 CPU cores with an output rate of around 9 Hz.

Reducing the input frequency to the semantic segmentation and detection
can free additional resources for other system components if necessary while still
providing semantic image and point cloud, e.g., at 1-5Hz — sufficient for many
high-level tasks like planning or keyframe-based mapping.

4.2. Outdoor Ezrperiments

In Fig. [I0] we show results of semantic image fusion for an exemplary scene
from our test flights. Fig.[10| (b) - (d) show the outputs of the individual CNN.
While the large structures are well segmented (d), the persons are only partially
recognized. A bicycle and the person at the right image border are missed
altogether. The RGB detector (b) recognizes all persons and the bicycle. The
thermal detector (c¢) confirms both person detections inside the thermal camera’s
FoV. The fused output segmentation mask (e) includes all detections together
with the initial segmentation. All persons and the bicycle are clearly visible.

Fig. [L1] shows the point cloud segmentation results for the same scene. When
using the original LiDAR segmentation, without adaptation of the normalization
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Figure 11: Point cloud segmentation: (a) Initial LIDAR segmentation without adaptation of z
and intensity normalization parameters and (b) after adaptation to our dataset mean and std.
(c) fused point cloud segmentation. Persons inside (outside) camera FoV are highlighted with
blue rectangles (circles). After normalization adaptation, the CNN segments large structures
well within the LiDAR scan but misses small objects. Persons, vegetation, and small structures
are well segmented in the fused output scan inside the camera FoV.

parameters, parts of buildings are misclassified as vegetation or vehicle. This is
likely due to differing vertical field-of-views of our and the trained LiDAR. In the
KITTI dataset [55], the FoV is only 2° upwards and = 25° downwards (compared
to +45° of our sensor). Therefore, in SemanticKITTI the top of building
structures is rarely visible while treetops are measured from below. Furthermore,
the intensity input channel, measured as the magnitude of laser reflection, differs
between the sensors, as they use a different wavelength and optical system. After
normalization adaptation, SalsaNext segments the building and road structures
well within the LiDAR scan, and the person closest to the sensor is recognized
(Fig. [11] (b)). Independent of the normalization, the point cloud network does
not detect persons at larger distances, often misclassifying them as barrier or
building. Fig.|11](c) shows the fused point cloud segmentation, combining image
segmentation and detections with the initial point cloud segmentation. Persons,
also at larger distances, vegetation, and the car are well segmented in the output
scan and exhibit less noise when inside the camera FoV.

The point cloud segmentation after retraining with label propagation is shown
in Fig. [I2] The scene is segmented very accurately, including persons and small
structures, even when using the LiDAR segmentation alone, without fusing the
image semantics. The difference between including intensity as input channel
or not becomes apparent for the UAV operator (person to the bottom of the
scene), who was not annotated in the pseudo-labels used as supervision for label
propagation (cf. Sec. . Without intensity input, the generalization works
better and this person is also correctly segmented. Additional fusion with the
camera semantics makes only little difference after retraining. The LiDAR CNN
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Figure 12: Point cloud segmentation after retraining with label propagation: (a) LiDAR
segmentation with intensity input channel and (b) without intensity. (c) fused point cloud
segmentation (based on (b)). Persons inside (outside) camera FoV are highlighted with blue
rectangles (circles). The scene is accurately segmented in all cases, including persons and small
structure. Without intensity input (b) the CNN generalizes better and the bottom person is
correctly segmented. Fusing with image semantics gives little gain after retraining.

has learned the relevant segmentation skills from cross-modal supervision.
Figure [I3] depicts the aggregated semantic map of the outdoor test flight
with manually annotated semantic labels (a) and with scans either labeled from
image segmentation (b) or fused semantic point clouds (¢, d). The camera-only
map (b) misses annotations due to the camera’s limited FoV but depicts most
classes, such as persons, cars, or vegetation, more accurately since the noisier
raw point cloud segmentation is not included. The tracks of moving persons are
visible in yellow on the maps. Only the track of the operator, who always stayed
behind the UAV and thus was not visible in the camera, is not segmented (b)
or mislabeled (¢). The direct segmentation of persons or small structures in
the LiDAR scans initially is noisy due to domain adaptation issues with the
CNN. Label propagation for cross-domain supervision is employed to overcome
these issues. We use the accurate, but incomplete camera-only map as source for
pseudo-labels for retraining the LiDAR segmentation. The resulting semantic
map, Fig.[13|(d), aggregated from fused semantic point clouds using the retrained
LiDAR CNN, depicts the semantics of the entire scene very accurately with
the person tracks completely segmented, including the parts unlabeled in the
camera-only map. This underlines the efficiency of label propagation and shows
the generalization capabilities of the resulting CNN. Note, that the manually
annotated map is not included during retraining and is only used for evaluation.
For visual assessment of the map quality, Fig. [14] depicts detailed closeups of the
static parts of the final semantic map after removing the dynamic person tracks.
The aggregated maps from fused semantic clouds of two further experiments
are shown in Fig.[I5and Fig.[I6] For the first flight, the scene semantics are shown
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Figure 13: Semantic map of the urban campus outdoor flight. (a) manually annotated ground-
truth. (b) map created from scans labeled by projected image semantics only. (c¢) map
created from fused semantic clouds before and (d) after retraining with label propagation. The
camera-only map (b) misses annotations due to the camera’s limited FoV but depicts most
classes more accurately than (c¢). The semantic map after retraining (d) depicts all person
tracks accurately and is very close to the ground-truth.

(a) before and (b) after retraining with label propagation. Before retraining,
person detection works sufficiently well within the camera frustum (right part
of the scene), while they are misclassified as vehicle or vegetation elsewhere.
After retraining, person tracks are segmented in all parts of the scene and the
lawn is correctly labeled as vegetation. The semantic map from the second,
significantly longer UAV flight around the university campus, using the retrained
LiDAR CNN, is shown in Fig. A coherent 3D semantic representation of the
environment can be created also at large scale by our proposed system. Please
note, that data from these two flights was not used for label propagation.
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Figure 15: Aggregated maps from fused semantic clouds of another experiment (a) before
and (b) after retraining with label propagation. Within the camera frustum (right part of the
scene), person detection works sufficiently well, while they are misclassified elsewhere by the
original LIDAR CNN. After retraining (b), persons tracks are segmented in the entire scene
and the lawn is correctly labeled as vegetation.

IoU FEvaluation
To quantitatively evaluate the coherence of different point cloud segmenta-
tions, we calculate the intersection-over-union (IoU):

B TP,
T TP, fFP.fFN,’

IoU, (19)
where TP, FP, and FN are the true positives, false positives, and false negatives,
respectively. We compare for each segmented point its arg max class against the
corresponding aggregated voxel label and average per class over the whole dataset.
Tab. [3| shows the results for all classes that occur for a significant number of
points in our recorded data. We use the manually annotated aggregated semantic
map with a voxel size of 25 cm as ground-truth (cf. Fig. [13] (a)).

Applying the proposed adaptation of the normalization parameters improves
the overall segmentation accuracy. The improvement is most significant for the
building class, as the top half of the buildings are correctly labeled (cf. Fig. .
The fused semantic cloud improves the segmentation coherence for all classes,
especially for persons and vegetation. Persons and small objects, such as bicycles,
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Figure 16: Aggregated semantic map for large area flight: (a) side-view, (b) top-view.

Table 3: Average IoU per class (in %) and mean IoU for different point cloud segmentations,
LiDAR CNN input resolutions, and FoV measured against manually annotated semantic map.

Method | Res | FoV  [Build. Road Veg. Pers. Bike Car Obj. Mean
single w/o adapt*| 512 |LiDAR| 32.7 729 22 2.7 37 0.6 34 169
single w/ adapt* | 512 |LiDAR| 834 75.5 22 177 72 28 55 27.8
single w/ adapt [1024 |LiDAR| 82.7 71.8 4.0 433 63 4.1 74 314
fused 512 |LiDAR | 84.3 77.0 17.8 23.3 84 39 8.0 31.8
fused 1024 |LiDAR | 84.0 73.8 18.7 47.2 7.0 5.3 9.5 35.1
fused 512 |camera| 94.0 62.2 48.6 36.6 17.1 34.0 32.1 46.4
fused 1024 | camera| 94.3 63.8 50.3 36.9 17.6 35.2 37.1 47.9
img proj. n/a |camera| 92.6 76.5 77.1 837.1 17.2 46.4 39.1 55.1

*differences w.r.t. original results from [5] are due to a bug-fix in exporting the pizel-shuffle
layer of the LIDAR CNN to the employed OpenVINO inference framework.

are more reliably detected in the RGB and thermal camera modalities thus
improving the fused output inside the camera frustum. Using a higher input
resolution for LIDAR segmentation gives significant improvements for the person
class (43.3% vs. 17.7%) and a small improvement of mean IoU. The track of
the operator, who always stayed behind the UAV and was not visible in the
camera, is often misclassified, significantly impacting the mIoU of the person
class as it constitutes a large number of the points annotated as person in the
ground-truth map. The LiDAR segmentation with full input resolution segments
larger parts of the operator track correctly. Results for the semantic cloud from
the projected image segmentation and the fused semantic cloud evaluated for
the reduced FoV of the camera show significantly improved mloU values also for
vegetation, cars, and other foreground objects.

The semantic fusion initially proposed in [5] successfully creates a coherently
labeled 3D semantic interpretation of global structure in the full 360° LIDAR
FoV and for both global structure and small dynamic objects in the camera FoV.

To improve the accuracy for the difficult semantic classes in the entire
FoV, label propagation is used for retraining the LiIDAR segmentation with
pseudo-labels obtained from the camera-only map (cf. Sec. . The results
are shown in Tab. @] The segmentation accuracy for the whole 360° horizontal
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Table 4: Label Propagation: Average IoU per class (in %) and mean IoU for point cloud
segmentation with label propagation measured against the manually annotated semantic map.

Method‘ Res ‘Intensity‘Build. Road Veg. Pers. Bike Car Obj. Mean

single | 512 v 95.8 88.7 776 494 144 56.2 22.8 57.8
single | 512 - 95.5 883 753 65.0 19.5 66.9 31.6 63.2
single 1024 - 954 88.5 741 67.7 21.3 55.2 22.9 60.7
fused 512 v 95.9 88.7 77.8 49.5 14.5 55.2 22.7 578
fused 512 - 95.6 884 75.8 654 19.1 60.8 31.2 62.3
fused 1024 - 95.5 885 744 67.8 21.2 53.7 22.7 60.5

Table 5: Ablation on data used for label propagation (LP): Mean IoU (in %) of point cloud
segmentation using different datasets measured against the manually annotated map.

Datasets ‘ LP Intensity | Mean IoU
Sem.KITTT (pretrained [I5]) - v 27.8
Sem.KITTI + Paris - v 32.7
Sem.KITTT + Paris - - 41.2
Sem.KITTI + Paris fused map v 37.5
Sem.KITTI + Paris fused map - 38.5
Sem.KITTI + Paris single scan v 49.4
Sem.KITTT + Paris single scan - 57.0
Sem.KITTI camonly map v 57.6
Sem.KITTI camonly map - 60.4
Sem.KITTT + Paris camonly map v 57.8
Sem.KITTI + Paris camonly map - 63.2

FoV almost doubles from 31.8 % to 62.3 % and also is significantly higher than
the 55.1 % previously achieved in the camera FoV only. The retrained LiDAR
segmentation CNN generalizes better without using the intensity input channel
for the person and small object classes. Fusing the LIDAR segmentation with
the image semantics gives a small gain for the person class but overall performs
slightly worse. This underlines that the LIDAR CNN has learned the relevant
segmentation skill from the RGB and thermal image modalities through cross-
modal supervision during retraining. Small gains from an increased input
resolution can still be observed for person and bicycle classes, but the mean
IoU does not improve. Furthermore, the inference speed drops below the 10 Hz
measurement frequency of the LiDAR at the 1024 x 128 input resolution (cf.
Tab. . Therefore, we use the CNN at 512 x 64 input resolution in our online
experiments.

We further perform an ablation study on the employed training data and
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Table 6: Mean IoU (in %) of aggregated semantic maps measured against the manually
annotated ground-truth.

-onl
Method | fused cloud | camera-only camerarony fused cloud w/ LP
(camera FoV)
moU | 205 | 418 | 60.3 | 68.0

pseudo-label sources in Tab. 5| The addition of data from Paris-CARLA-3D [54],
which covers the entire sensor FoV, improves the mean IoU by 513 %, depending
on whether the intensity channel is used. As observed in the previous analysis,
networks not using the intensity input channel generalize better to our dataset.
The most significant gain is achieved by adding data recorded from our sensor,
using label propagation from the camera modality as cross-domain supervision.
Furthermore, this reduces the noticeable differences for the intensity channel.
Pseudo-labels obtained from the fused semantic map, including the noisier raw
point cloud segmentation, are too imprecise to achieve significant improvements
after retraining. Using pseudo-labels from the camera overlay of single scans
improves the segmentation quality despite only a small portion of each scan being
labeled (cf. Fig.[8] (b)). The best results are achieved using pseudo-labels from
the temporally and spatially aggregated camera-only semantic map, with an
improvement of 35.4 % over the initial point cloud segmentation in our scenario.
Using only own data for retraining, without Paris-CARLA-3D, performs slightly
worse, as the training data is less diverse.

While in the previous evaluations, IoU was calculated for individual semantic
point clouds and averaged over the whole dataset, we show the IoU results of
the aggregated semantic maps in Tab. [f] As for the single scans, the semantic
segmentation of the camera modalities is significantly more accurate than the
fused cloud including the raw point cloud segmentation. For the camera FoV
evaluation, we use only points inside the camera frustum and do not count
unlabeled points as false negatives. With label propagation, the improvement
upon the camera-only map, used as source for pseudo-labels during retraining,
amounts to &~ 8% for the limited camera FoV and ~ 26 % for the full FoV.
The accurate automatically generated supervision from the image domain with
narrow FoV could be generalized to the full LIDAR FoV via label propagation.

Disaster Test Site

For qualitative evaluation, further flights were conducted on a disaster test
site of the German Rescue Robotics Center [I]. These experiments show the
generalization capabilities of the proposed system to environments significantly
different from the urban campus area, where the data used for label propaga-
tion was recorded. The retrained LiDAR CNN is directly employed for these
experiments, without any further adaptation.

Figure [17] shows the semantic perception of the disaster test site. Multiple
persons, a fire truck, and also further away cars are reliably detected in the
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Figure 17: Semantic perception on disaster test site: (a) RGB detections, (b) fused RGB
segmentation, (c) fused semantic cloud, (d) aggregated semantic cloud. Persons and fire truck
inside the camera FoV are highlighted with blue rectangles in (c).

image and included into the fused image segmentation and point cloud. The
point cloud segmentation also labels persons not visible in the camera correctly.
Figure[17] (d) depicts the aggregated semantic map of the scenario. Some noise
is visible in one of the person tracks and the higher trees are erroneously labeled
as building structure, but the overall perception remains coherent also in this
challenging scenario.

Figure highlights the benefits of the thermal camera also at daylight:
Persons are detected at high distances, while in the RGB image only the larger
vehicles are detected. For the thermal camera, transfer from the training
dataset with autonomous driving scenarios to the aerial perspectives of the UAV
flights was possible without explicit domain transfer techniques, as the sensor
characteristics in the dataset and of the employed thermal camera are similar.

To further improve the results for the disaster test site, another iteration
of label propagation could be performed, using pseudo-labels automatically
obtained from the aggregated semantic map of the environments.

5. Conclusion

In this work, we presented a UAV system for semantic image and point cloud
analysis as well as multi-modal semantic fusion. The inference of the lightweight
CNN models runs onboard the UAV computer, employing an inference accelerator
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Figure 18: Comparison of (a) RGB and (b) thermal detections on disaster test site. Persons
are detected in the thermal image also at very high distance, while only the larger vehicles are
detected in the RGB image.

and the integrated GPU of the main processor for computation. The EdgeTPU
performs inference in 8-bit quantized mode and showed more efficient CPU usage.
The iGPU is more flexible, e.g., to directly run pre-trained models, as it uses 16-
or 32-bit floating-point precision and does not require model quantization.

The proposed framework for semantic scene analysis provides a 2D image
segmentation overlay and a 3D semantically labeled point cloud which is further
aggregated into an allocentric semantic map. The initial point cloud segmenta-
tion suffered from domain adaptation issues since available large-scale training
datasets stem from autonomous driving scenarios with different viewpoints and
sensors more focused towards the ground compared to the LiDAR sensor of the
UAV. We addressed this issue by retraining the LiDAR segmentation CNN with
data captured on our UAV using pseudo-labels automatically obtained from the
aggregated semantic map. The pseudo-labels thereby stem from the RGB and
thermal camera modalities, providing cross-domain supervision for the 3D point
cloud. With label propagation, the 3D segmentation accuracy of the proposed
system significantly improves for the full LIDAR FoV. We evaluated the system
in real-world experiments in an urban environment and at a disaster test site,
showing coherent semantic perception of diverse and challenging scenes.

Future work includes applying label propagation to retrain also the image
CNNss to achieve better tasks-specific performance and adding RGB color channels
to the input of the point cloud segmentation e.g., using a 360° fisheye camera
together with the LiDAR sensor.
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