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Abstract

Many complex vehicular systems, such as large marine vessels, contain con-
fined spaces like water tanks, which are critical for the safe functioning of
the vehicles. It is particularly hazardous for humans to inspect such spaces
due to limited accessibility, poor visibility, and unstructured configuration.
While robots provide a viable alternative, they encounter the same 1q8set of
challenges in realizing robust autonomy. In this work, we specifically address
the problem of detecting foreign object debris (FODs) left inside the con-
fined spaces using a visual mapping-based system that relies on Mahalanobis
distance-driven comparisons between the nominal and online maps for lo-
cal outlier identification. The identified outliers, corresponding to candidate
FODs, are used to generate waypoints that are fed to a mobile ground robot
to take camera photos. The photos are subsequently labeled by humans for fi-
nal identification of the presence and types of FODs, leading to high detection
accuracy while mitigating the effect of recall-precision tradeoff. Preliminary
simulation studies, followed by extensive physical trials on a prototype tank,
demonstrate the capability and potential of our FOD detection system.
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1. Introduction

Most large marine vessels are complex systems that operate in extreme
open-ocean environments. As a result, they require significant cost and effort
to maintain (inspect and repair), especially as the vessels age. For example,
the total maintenance cost of the US Navy vessels was approximately 20
billion US dollars in 2020 [1], and this cost is projected to increase as the
size of the fleet increases. Some of the most challenging maintenance tasks
occur inside large tanks and other confined spaces inside the vessels. In
particular, the vessels contain numerous “grey-water” tanks that can be fully
or partially filled with seawater when the vessels are underway. The tanks
provide critical access to much of the machinery on the vessels, but are
difficult and dangerous spaces for humans to access. Often, these tanks are
filled with pipes, cables, beams and other structural elements that are critical
to the operation of the vessel, but are usually not arranged in an optimal way
to allow a human to easily move and navigate through the confined space.
Given these hazards, there is a lot of potential to use robots to perform many
of these tasks.

However, there are two major challenges in achieving a viable robotic
solution for this problem. First, the interiors of these confined spaces are
often discolored, poorly illuminated and unstructured, which cause issues for
traditional vision-based localization, mapping and navigation approaches.
Second, the spaces are often irregularly shaped and cluttered with structural
elements, as mentioned before. Therefore, it is difficult even for a robot
to move inside the tank and access all the components, rendering robust
locomotion and precise manipulation completely non-trivial.

A number of potential solutions have been explored to address the loco-
motion challenge, albeit for other types of confined spaces. For example, a
quadruped climbing robot with a compliant magnetic foot has been devel-
oped to squeeze through entry portholes [2]. Different robot designs have
been investigated for in-pipe inspection, including a composition of active
and passive compliant joints [3], snake locomotion patterns [4] and adhesion-
based crawling motions [5]. Various solutions have also been proposed to deal
with the manipulation challenge. Representative examples include human-
robot mixed-initiative control trading [6] and task dynamics imitation learn-
ing [7] for manufacturing inside confined spaces and a full stack autonomy
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framework for multi-task manipulation of irregular objects [8].
We, instead, focus on the first challenge of robot localization, mapping

and navigation inside confined spaces, and aim to decouple these capabilities
from that of locomotion and manipulation. In other words, our methods
are designed to be used on any robot with on-board processing and payload
carrying capacity, including those with novel locomotion and manipulation
capabilities. In this connection, there are several related works, including
semi-automated inspection of an industrial combustion chamber [9]; sub-
merged building mapping by an autonomous vehicle [10]; UAV-based local-
ization in ballast tanks [11]; intelligent exploration in mines using a small
drone [12]; autonomous navigation through manhole-sized confined spaces
using a collision-tolerant aerial robot [13]; and, semi-autonomous inspection
of underground tunnels and caves [14].

We, however, address the specific task of detecting foreign object de-
bris (FOD) left inside large water tanks. While the FOD detection prob-
lem has been studied widely in the literature, almost all the studies are for
open spaces, especially airports, where the presence of such debris is par-
ticularly detrimental. Recent examples of airport FOD detection methods
include multi-robot coordination [15], deep learning [16, 17], and learning-
based pixel visual features [18] for standard optical cameras. Frequency mod-
ulated continuous mm-wave radars are often employed instead of cameras,
where recent works include the use of fractional Fourier transform [19], power
spectrum features-based classification [20], cross section characteristics [21],
line of sight visibility analysis [22], adaptive leakage cancellation [23], and
variational mode decomposition [24]. Alternate sensing approaches include
the use of object minimal boundary extraction for infra-red cameras [25];
and, scan or point cloud processing for light detection and ranging (LiDAR)
sensors [26, 27].

Other open space FOD detection applications include inspection of air-
craft damages [28] and power transmission lines [29, 30]; quality control of
graphics card assembly lines [31]; and real-time logistics monitoring [32] with
visible light cameras. For confined space FOD detection, to the best of our
knowledge, there has been only one reported work so far, where Latimer
investigated processing of depth camera images for aircraft wing inspection
[33]. On a somewhat related note, real-time detection of the differences of in-
dustrial parts from their corresponding computer-aided design (CAD) models
has been done by processing the point clouds generated by hand-held laser
scanners [34].

3



Here, we present a new confined space FOD detection system using a
local probabilistic outlier detection method on the visual maps generated by
an autonomous ground robot equipped with just a standard depth camera.
Note that we do not use any object detection or recognition method as the
(expected) types or classes of objects are unknown in our case. Instead, we
rely on remote human assistance, in the form of labeling of camera photos
corresponding to candidate (likely) FOD regions, to achieve high detection
accuracy. We also avoid using any expensive sensor such as 3D LiDAR, and
show that our method works well with only visual odometry. These char-
acteristics should make our system broadly applicable for various confined
space inspection tasks in large vehicles, such as aircraft, military tanks and
spaceships, with hazardous operating conditions using robots employing dif-
ferent locomotion strategies.

Specifically, the contributions of our work are three-fold:

• We develop a purely vision-based mapping system for human-assisted
FOD detection in poorly-lit confined spaces.

• We devise a novel local Mahalanobis distance-based outlier detection
method for point cloud representations of mapped spaces.

• We demonstrate promising FOD detection performance using both sim-
ulation and physical experiments on a ground robot exploring a repre-
sentative confined space in the form of a water tank.

2. Preliminaries

A CAD model of a generic water tank was developed by the Naval Un-
dersea Warfare Center (NUWC) Division Keyport to generate a realistic en-
vironment of a typical confined space found inside large vessels. The generic
water tank model, as shown in Figure 1, included many beams, piping, ca-
bling, and other structures commonly used in ship construction. Although
this CAD model was intended to be an accurate representation of the chal-
lenging environment encountered during maintenance activities in confined
spaces, it was not a precise replication of any existing vessel space. There-
fore, this CAD model was publicly released and is widely available for use by
other researchers1.

1https://github.com/blue-ring-octopus/FOD_Detection/blob/main/resource/

GENERIC_WATER_TANK_DISTRO-A_NUWC_Keyport_Release_20-008.STL
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Figure 1: CAD model of a generic water tank with the ceiling not shown to allow viewing
of the interior components

Technically, a FOD is any object that is alien to the environment, in this
case the water tank. FOD has the potential to cause damages to the system
during operation and must be removed via inspection. In a marine vessel,
most common FODs include various standard hand tools, such as screwdriver
and wrench, which are left behind after maintenance and repairs. In this
paper, a FOD is simplified to include anything deviating from the given
CAD model, which would primarily be a traditional FOD but could also
include installation mismatch, tank defect or tank damage.

3. Technical Approach

To accomplish effective and efficient inspection, we incorporate human-in-
the-loop decision making to assist the semi-autonomous inspection system.
The system is primarily running online under the Robot Operating System
(ROS) framework, with various offline pre-processing modules to enhance
the online performance. Pre-processing includes defining an inspection route
for every inspection session; and generating a reference point cloud from ei-
ther the CAD model or the collected nominal maps. The online inspection
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is divided into four major phases, as illustrated in Figure 2. In the first
phase, the robot collects the query point cloud by performing SLAM either
via teleoperation or autonomous navigation using the predefined inspection
route. The second phase begins when the SLAM is completed. The point
cloud from the visual SLAM is exported and compared with the reference
point cloud. Points with high discrepancy are segmented and clustered into
FOD candidates. In the third phase, the centroid of each candidate is pro-
jected to the navigation cost map to determine the waypoints from where
the robot expects to see the candidate cluster. The robot then covers all
the waypoints, selecting the one closest to its current location as the next
destination, and takes (camera) pictures of the FOD candidates. In the final
phase, the pictures taken by the robot are presented to a human to determine
whether FODs are present.

FODless 
maps
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M-distance 
table
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SLAM in 
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Figure 2: Overall pipeline of the FOD detection system

3.1. SLAM and Navigation

The SLAM functionality is provided by RTAB-Map via ROS [35]. The
main configuration follows the default launch file from rtabmap ros2, with

2https://github.com/introlab/rtabmap_ros/blob/master/launch/rtabmap.

launch

6

https://github.com/introlab/rtabmap_ros/blob/master/launch/rtabmap.launch
https://github.com/introlab/rtabmap_ros/blob/master/launch/rtabmap.launch


the modified parameters and nodelets shown in Appendix A. The main
objectives for the SLAM are self-localization in the confined space, and con-
struction of a point cloud for each inspection session using a depth camera.
RTAB-Map is chosen based on its open source ROS implementation, a wide
variety of sensor compatibility, and good reported performance on many dif-
ferent tasks. In addition, RTAB-Map has a modular approach toward odom-
etry, which allows a simple switch between wheel odometry, in-built visual
odometry, or any other third party odometry algorithm without affecting the
SLAM functionality.

The navigation functionality is provided by the ROS navigation stack in
the TurtleBot3 package. The navigation stack takes the 2D occupancy grid
map generated by the SLAM package as an input and creates a 2D occupancy
grid cost-map in real-time. Once a waypoint is published to the waypoint
topic, the optimal trajectory from the current location to the specified way-
point is calculated and executed through velocity control.

3.2. FOD Candidate Identification

We develop our own FOD candidate identification algorithm to detect
potential foreign objects from the SLAM point cloud while preventing mis-
classification due to noise. The core idea is to compare the discrepancy of
each point in the point cloud to a nominal reference map of the environment.
The overall pipeline for the identification process with the various options is
shown in Figure 3.

3.2.1. Reference Point Cloud Generation

The reference point cloud is a point cloud representation of the water
tank that is known to be FOD-free. It is treated as the ground truth and
any points that deviate from it by more than the cutoff value are considered
FOD candidate points. Here, we consider two options for reference point
cloud generation. It is created either using a mesh of the tank CAD model
or by collecting sample point clouds in the FOD-free tank. Figure 4 shows
the procedure of generating the reference point cloud using both the options.

The CAD mesh method assumes that a accurate model of the environ-
ment is available, wherein, the CAD model is first exported as a PLY format
triangle mesh and the mesh is uniformly sampled to create a dense point
cloud. The sample point clouds method, on the other hand, is developed
for use in a confined space with a large number of unmodeled structures
and/or construction variations from its CAD model. In this case, all the
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Figure 4: Reference point cloud generation procedure

sample point clouds from the inspection training sessions are first de-noised
and then registered, either with the CAD model or one of the sample clouds.
Next, all the sample point clouds are merged into a single point cloud. The
merged point cloud is then voxel down-sampled to calculate the mean points
occupying a single voxel. This down-sampling process merges all the points
in a voxel into a single point regardless of the number of points. However,
such a merger sometimes results in noisy points creating false voxel occu-
pancy conditions. To eliminate this effect, all the points generated from a
voxel with occupancy counts less than a threshold quantile are removed.

3.2.2. Covariance Fitting

The discrepancy metric is a scalar value assigned to each point in a point
cloud. The metric scales according to the estimated amount of deviation
of these points to their corresponding points in the reference point cloud.
Euclidean distance for nearest neighbors is used as the de facto metric while
comparing the two point clouds. In our case, we consider the nearest neigh-
bors of the points in the query point cloud to the nominal point cloud. How-
ever, this consideration often leads to noisy mapping of the walls and beams
with high deviation values and either a) cause a large number of FOD candi-
dates for a low distance threshold; or, b) are insensitive to small sized FODs
for a high distance threshold.

We address this issue by using a probabilistic approach based on local
Mahalanobis distance (M-distance). Alternatively, a spatial Chi-squared test
can be used for local outlier detection [36]; however, it works well only for
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homogeneous density point clouds.

DM =
√

(x− µ)TΣ−1(x− µ). (1)

The M-distance DM , shown in (1), introduces an expected noise in the form
of the covariance matrix Σ. It also adds directionality to the expected noise,
which is especially useful in distinguishing the walls with horizontal devia-
tions and beams with vertical deviations. While µ is defined as the closest
point from the training or query cloud point x to the reference point cloud, Σ
is estimated from the training samples collected for the mean point cloud. If
the CAD model is used for reference point cloud generation, a set of training
point clouds has to be still collected for Σ estimation.

Instead of estimating one single global covariance matrix for the whole
tank, we compute local covariances. It is done by first calculating the signed
spatial error

∆xi,j =

xjyj
zj

−
xiyi
zi

 (2)

from each point xj on the sample point clouds to their nearest neighbor point
xi on the reference point cloud. Next, for each point on the reference point
cloud that contains at least one sample point, we calculate the scatter matrix
Si as:

Si =
∑
j

(∆xi,j) · (∆xi,j)T . (3)

If this quantity is divided by the number of samples, we get the maximum
likelihood estimation (MLE) of the covariance for that point on the reference
map Σi. It is, however, deliberately left undivided to smooth out the covari-
ance matrices within a local region. Otherwise, depending on the number of
training maps, the point density of each training map and the voxel size of
the nominal map, we risk having a large number of points on the nominal
map with zero sample size and many points with a low sample size.

We consider two options for smoothing: mean smoothing and Gaussian
smoothing. For mean smoothing, the covariances, Σi,m, are calculated re-
gardless of the distance of the neighboring points to the center point using
the formula:

Σi,m =
1∑k

j=1 nj

k∑
j=1

Sj. (4)
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Here, k is the number of neighbors around the i-th point on the nominal
map, nj is the numbers of samples of the neighbors, and Sj is the scatter
matrix of the j-th neighbor. For Gaussian smoothing, the covariances, Σi,G,
are computed similarly but with the distances of the neighbors modeled as
reliability weights [37]. This weighting method provides a non-frequency
based unbiased estimator of the sample covariance. The weights are based
on a Gaussian kernel and a tunable roll-off rate parameter σ as:

wj = exp

[
−‖∆xi,j‖

2

σ2

]
(5)

V1 =
k∑

j=1

njwj V2 =
k∑

j=1

njw
2
j (6)

Σi,G =
1

V1 − V2/V1

k∑
j=1

wjSj. (7)

To define the smoothing neighborhood, we consider two alternatives: k-
nearest neighbor and spherical region of interest.

Prior to smoothing, an optional voxel down-sampling step can be per-
formed on the reference point cloud to reduce the computational burden. In
that case, a nearest neighbor search is performed to find the closest point
from the full point set to the down-sampled point set. The covariances for
the points in the full point set are then simply set to the covariances of
their nearest neighbors. Figure 5 shows an example heat map of the log-
determinant of the local covariances in the tank using sample point cloud
and mean smoothing. As expected, the highest covariance values occur at
the ceiling and behind the column, both of which are not adequately observed
by the robot. The access hole area also has high covariance as the tank cover
is manually placed, leading to some variations in its location among the dif-
ferent trials.

3.2.3. Discrepancy Query

Once the reference point cloud is generated and the covariances are es-
timated, a discrepancy metric is applied to query point clouds to identify
the (candidate) FODs. Instead of directly computing the metric on the raw
point cloud, several steps are applied to reduce noise and improve compu-
tation speed. First, a basic statistical outlier removal method is applied to
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Figure 5: Heat map of the log-determinant of the local covariance matrix in the mean point
cloud of the FOD-free water tank, with the minimum value clamped to 10th percentile
and the maximum value clamped to 90th percentile
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to remove the noisy points that are far away from its neighbors in the query
point cloud. A voxel down-sampling is then applied to the point cloud to
keep the point count at a manageable level. The number of points corre-
sponding to each voxel, ni, is also saved as a weight for future use to avoid
losing density information from the down-sampling process.

The query process is similar to the training process. The associated point
xj on the reference point cloud is drawn for each voxel point xi in the query
cloud based on the shortest Euclidean distance as the discrepancy metric for
the baseline L2-distance method. For the M-distance method, the discrep-
ancy is found with a local version of (1) as

dM =
√

(xi − xj)TΣ−1
j (xi − xj), (8)

where Σj is the covariance matrix of the point xj. Effectively, the noisier
(higher covariance) a region is, the smaller is its discrepancy for the query
point. For example, in Figure 5, the discrepancy of a point with a large
distance value near the ceiling is scaled down by the high covariance of the
ceiling; a point with the same distance but near the ground has a greater
discrepancy due to the smaller covariance of the ground. To reduce high
discrepancy values from sparse noisy points, a scalar version of the smoothing
used during covariance fitting is applied on the discrepancy metric for each
point. Mathematically, it amounts to substituting nid for Si in (3), where d
is the discrepancy metric.

Every point with a discrepancy higher than the threshold is segmented
out from the query point cloud and clustered into FOD candidates using
hierarchical clustering. The points are agglomerated based on the Euclidean
distance to the centroid of the existing clusters. Two clusters are merged if
the distance between them is lower than a cutoff value, and any cluster with
a fewer number of points than a minimum acceptable point count is rejected
from the FOD candidate set. The selection of the threshold, clustering cut-
off, and minimum acceptable point count are discussed in the Experiments
section. The centroid of each cluster is then sent to the waypoint generation
algorithm to proceed to the photo taking phase. Figure 6 shows an exam-
ple of segmented and clustered FOD candidates point cloud, with the points
lower than the threshold colored dark grey and each FOD candidate cluster
colored using a different hue.
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Figure 6: An example query point cloud with the high M-distance points segmented and
clustered into different candidate FOD clusters with each cluster shown using a distinct
hue

3.3. Waypoint Generation

Once the FOD candidate locations are computed, they are passed to the
waypoint generation module. First, a two dimensional occupancy grid map
is created for the query point cloud. To prevent waypoints generation in
unreachable locations, a flood fill is performed using the robot location as
the seed value. The flood filled image is then subtracted by the original
image to remove the walls, and inverted to obtain zero occupancy in the
obstacle-free interior of the water tank. The occupancy grid is then inflated
into a cost-map according to the ROS navigation stack [38].

Candidate waypoints are created surrounding the FOD location within a
minimum and maximum range so as to provide an acceptable image of the
FOD. The candidate waypoints are then filtered to avoid colliding with the
surroundings and ensure that the FOD is visible. To avoid collisions, the
waypoints that overlap with high-cost regions of the cost-map are removed.
To ensure that the FOD is visible, each remaining waypoint casts a ray
between itself and the FOD. The ray is terminated if it collides with the
surroundings in the FOD-less cost-map, and the corresponding waypoint is
removed. Each ray records its cumulative cost, which is the sum of the cost
in the grid cell under the ray at each time step. The candidate waypoint with
the least cost is chosen as the final waypoint. Figure 7 shows an example of
the waypoint generation process.
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Figure 7: Waypoint generation procedure given FOD candidate location: (a) 2D occupancy
grid with yellow pixels representing obstacles and purple pixels denoting free space (b)
Flood fill to remove unreachable locations outside the tank (c) Cost map generated from
the occupancy map (d) Sampling of waypoint candidates along a ring centered at the
candidate FOD cluster (e) Filtering of waypoint candidates based on the cost map (f)
Final waypoint selected using ray tracing

4. Experiments

The experiments were conducted in two stages. Preliminary testing was
done in simulation, followed by extensive physical (hardware) trials on a
scaled-down tank prototype. Human subjects studies are included in both
the experiment stages.

4.1. Simulation

The simulation was done using Gazebo in Ubuntu with ROS Melodic as
the framework and Python as the primary programming language. The CAD
model of the tank was painted with a rusty white texture and exported as a
DAE file using Blender. The DAE file was spawned in Gazebo with all the
natural light sources disabled to recreate the dark confined space environ-
ment. TurtleBot3 Waffle Pi was chosen as the robot model. The original Pi
camera was replaced by two identical cameras using Intel RealSense D435’s
stereo camera specifications without the active infrared projector. A spot
light source was added to the front of the robot to act as a flashlight.

The experiments comprised a total of 30 trials, with 15 trials using the
RTAB-Map’s built-in visual odometry and another 15 trials using the robot’s
wheel odometry to study the viability of pure visual odometry. For each
trial, the robot was spawned near the access hole with the same pose. Two
to five FODs were randomly spawned with random poses from a pool of
six FOD types, consisting of drill, screw driver, hammer, wrench, level, and
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sander. Point cloud registration was performed using the Open3D itera-
tive closest point (ICP) method. All the parameters were manually chosen.
Random down-sampling with a ratio of 0.1 was used in place of voxel down-
sample. A CAD model was used as reference point cloud and no denoising
was performed. M-distance was used as the metric with Gaussian smoothing
(σ = 0.05), a spherical region of interest (radius of 4σ), a threshold distance
of 1.75, and clustering cutoff of 0.275.

The resultant FOD photos were assembled into online questionnaire sur-
veys, with each survey containing all the photos from a single trial. The
administration of the anonymous survey was approved by the University of
Washington (UW) Institutional Review Board with the study # STUDY00013902.
The surveys were sent out to UW students and Naval Undersea Warfare
Center (NUWC) Division Keyport personnel. A total of 23 responses were
received, of which 61.9% were engineers, 33.3% graduate students, and 4.8%
managers. 57.1% were in the 18-30 age group, 28.6% in the 31-45 group, and
14.3% in the 46-60 group. 81.0% of the participants were males and 19.0%
were females.

We first analyzed the performance of the FOD detection approach before
looking at the effectiveness of remote humans in making the final decisions.
The relevance of the FOD photos is shown in Table 1, where the “photo
contains FOD” category includes the same FOD appearing in multiple photos
and photos containing partial FOD images. The precision is defined as the
number of photos containing FODs divided by the total number of photos. It
is less than 50% for both the odometry methods, with wheel odometry being
slightly lower than visual odometry. These low values are a direct result of
high sensitivity by choosing a low M-distance threshold. Figure 8 shows an
example of a photo containing FOD, with a gray screwdriver at the center of
the image, and an example of a photo with no FOD, which is a false positive
detection due to the noise associated with the I-beam structure.

Table 1: Relevance of Candidate FOD Photos in a Simulation Study

Contains FOD No FOD Photo Precision
Wheel Odometry 64 104 0.381
Visual Odometry 77 109 0.414

The effect of high sensitivity, or recall, is shown in Table 2. The first
column shows the total number of FODs detected by the photo set, which
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image is taken even though no 

FOD is present

Figure 8: Examples of candidate FOD photos, taken by the inspection robot, that are
shown to remote humans for final decision-making.

is the number of FODs present in a session and captured in at least one
photo. This differs from the photo containing FOD in that only distinct
FODs are counted here. The second column shows the number of missing
FODs, which are FODs present in a session but not seen in any of the photos.
The detection rates are high as previously discussed, with both the odometry
methods having recall greater than 90%. This suggests that if the human
are able to spot all the FODs in the photos, over 90% of the FODs can be
detected and removed afterward.

Table 2: FOD Detection Rate in a Simulation Study

Detected FOD Missed FOD FOD Recall
Wheel Odometry 51 3 0.944
Visual Odometry 48 4 0.923

The accuracy of identifying the exact FOD type comes out to be 0.860.
The confusion matrix for exact FOD labeling is reported in Table 3. Un-
like standard confusion matrices, the labels contain a “not sure” option for
participants that find a FOD but cannot identify it. We also have a “mixed
FOD” column to include photos with multiple detected FODs and multiple
mislabeled FODs, since it is not possible to deduce which FOD is causing
the confusion. As before, the matrix shows a high labeling accuracy with the
maximum values in the diagonal entries.

As reported in Table 3, the spirit level is the most confused FOD, which is
likely due to a low-quality rendering of the level. Figure 9 shows an example
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Table 3: Confusion Matrix for Human Labeled FOD Photos over 30 Simulation Trials

Actual Type
Hammer Level Screwdriver Wrench Sander Drill No FOD Mixed FOD

L
ab

el
ed

T
y
p

e

Hammer 6 0 0 0 0 0 0 1
Level 0 17 0 0 0 0 0 0

Screwdriver 0 0 33 0 0 0 0 0
Wrench 0 0 0 20 0 0 0 0
Sander 0 0 0 0 2 0 0 0
Drill 0 0 0 0 0 11 0 0

No FOD 0 0 1 4 6 0 163 0
Not Sure 2 13 0 8 1 2 3 0

of such a confusing photo, with the level colored uniformly red. While the
color red is easy to spot in the photos, the detailed shape is hard to see with
uniform coloring, which makes the level appear as a red bar from a distance.
On the other hand, the item most commonly mislabeled as “No fod” is the
sander. Similar to the spirit level, the sander has a less distinct outline as
compared to the other FODs. However, unlike the bright red color of the
level, the sander is colored dark gray, as shown in Figure 9, which makes it
similar to the hue of the rusty tank texture. Hence, it is quite easy for the
participants to completely miss the sander.

These rendering problems are, however, unique to simulation and should
not be a concern for real-world deployment, as evident from the physical trials
results reported next. More importantly, we observe promising results on
detecting FODs using just visual odometry, where both precision and recall
are almost identical to that using accurate wheel odometry. Consequently,
we choose visual odometry during the physical trials to demonstrate the
potential of our detection approach even for non-wheeled robots.

4.2. Physical Trials

4.2.1. Setup

A modified TurtleBot 3 Waffle Pi was used as the robot platform. In-
stead of using the baseline Raspberry Pi 3B+, an Nvidia Jetson AGX Xavier
was added to the robot to provide on-board GPU capability. The default Pi
camera was also replaced by a RealSense D435i depth camera. Two portable
photography lights were mounted on top of the robot to reduce strong spec-
ular reflection from the ground. A scaled down prototype of the water tank
was built from ply wood and painted with a white base with rusty brown
spots to mimic the actual tank texture. Figure 10 shows an image of the
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“Not sure” case where the humans 
are not confident about which FOD 
is present in the photo (a level tool 

is rendered in red)

Most mislabeled case where the 
humans indicate “No FOD” even 
though a dark brown sander is 

present behind the beam 

Figure 9: Candidate FOD photos causing maximum confusion to the human subjects
during online questionnaire survey

FOD-free tank taken from the access hole with the robot at the starting
location.

Figure 10: Nominal Physical Tank Configuration

All the computation was done in Python 3.7, with several methods par-
allelized using the CUDA library from Numba 0.53.1. The mean point cloud
option was chosen for reference point cloud generation as the physical tank
had significant variations from the CAD model. The voxel size of the mean
point cloud and the occupancy threshold were chosen to be 0.05 m and 25th
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percentile, respectively. For down-sampling, we used “voxel down-sample
and trace” to handle stochasticity with a voxel size of 0.02 m. For smooth-
ing, we employed the k-nearest neighbors (mean) method to avoid numerical
instabilities from the estimated Gaussian weights for large distances and poor
performance from searching spherical neighborhoods for highly variable den-
sity point clouds. k was selected as 250 for covariance smoothing and 50 for
discrepancy smoothing. These parameters were manually tuned using the
validation set discussed below. A grid search was used to obtain the thresh-
old and cutoff parameters, which depended on the choice of the discrepancy
metric, as discussed in the next section.

15 nominal training maps were collected to generate the mean point cloud
and fit the local covariances. In addition, 15 validation maps with FODs
were collected for parameters tuning. The FODs were randomly sampled
from the following set: hammer, power drill, tape measure, screw driver,
sander, and crimper. The FOD samples and their locations were generated
as follows. First, the total number of FODs was randomly chosen between
2 to 5. The corresponding number of FODs were then uniformly sampled
without replacement from the full FOD set. For each chosen FOD, the x, y
location was uniformly sampled from the bounding box of the mean point
cloud and z was fixed to the ground plane; if the location was sampled outside
the tank, the FOD was placed at the closest interior location. Another 15
FOD-containing test maps were generated in a similar manner. The FOD
centroids were adjusted according to their actual locations in the registered
point clouds for use as ground truth values.

4.2.2. Parameter Search

The optimal values for the discrepancy threshold, clustering cutoff, and
minimum point count were obtained using a grid search method over a set of
15 validation (mapping) trials. 30 cluster cutoff values were generated with
a linear spacing from 0.05 to 1. 20 discrepancy values were generated, with
the lower bound of the linear space as the minimum 25th percentile of the
discrepancies over all the 15 trials. The upper bound was manually chosen
to be 3 and 0.05, respectively, for the M-distance and Euclidean distance
methods. All the integers from 0 to 9 were used for the minimum point
count. To quantify the performance, a cost function c for a single trial was
devised as:

c =
1

n

n∑
i=1

di + λm. (9)
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Here, n is the actual number of FODs, di is the Euclidean distance from
the i-th FOD centroid to its closest candidate centroid, m is the number of
candidates that are not associated to any actual FOD, and λ is a positive
weighting factor (chosen to be 0.05).

Note that multiple FODs can be associated to the same candidate if the
distance between them is sufficiently low, as multiple FODs can be captured
in the same picture taken from a particular candidate location. A represen-
tative example of multiple and missing actual-candidate FOD associations
is shown in Figure 11. Here, the drill and the screw driver are sufficiently
close to share a single candidate without incurring a high distance cost. The
candidate at the center of the tank is, however, not associated with any FOD,
which results in m = 1 for this trial. The closest candidate for the hammer
is biased toward the high noise region near the column, which constitutes a
large distance cost.

We compute the mean cost over all the trials for all possible combinations
of the parameters, and select the set of parameter values resulting in the
minimum cost for the M-distance and Euclidean distance methods separately.
The M-distance method achieves a slightly lower cost of (0.493) than the
Euclidean metric (0.508). For the M-distance method, the selected threshold,
clustering cutoff, and minimum point count values are 2.75, 0.345 m, and 0,
respectively. For the Euclidean method, the corresponding values are 0.030
m, 0.279 m, and 4, respectively.

4.2.3. Evaluation of FOD Candidate Generation Methods

The results for FOD candidate generation in a set of 15 test trials are
shown in Table 4. We observe that the total number of unassociated candi-
date points, prior to clustering, is much smaller for the M-distance method as
compared to its Euclidean distance counterpart. In fact, a Wilcoxon signed-
rank test on the two test results samples yields a single tailed p-value of
0.014. This indicates that the M-distance method has significantly better
noise reduction capability at the conventional α = 0.05 significance level.

Correspondingly, on an average, the M-distance method also performs
better than the Euclidean distance method in terms of the number of unas-
sociated candidates (after clustering) per trial. This indicates that the for-
mer method is expected to be more precise, i.e., avoid false positive during
FOD detection. However, both the methods have quite large standard de-
viations. A direct pairwise comparison shows that the M-distance method
yields a smaller number of unassociated candidates in 10 of the 15 trials. It,
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Figure 11: A representative example from the physical trials illustrating the associations
between the actual and candidate FOD locations. The true FOD locations are shown in
the denoised point cloud (left) and the candidates generated using the M-distance method
are shown as red dots (right).

however, performs particularly badly in 2 of the trials, as discussed below
with examples, thereby causing a large standard deviation. The Wilcoxon
signed-rank test, with a resultant single tailed p-value of 0.176, shows that
the overall performance difference is substantial, even though it is not statis-
tically significant. It is useful to mention here that the test is under-powered
due to the small sample size and large variance.

The two methods are equivalent with respect to the average distance
of the actual FODs from their associated candidate FODs. This is also
borne out by the Wilcoxon test that yields a single tailed p value of 0.56.
Overall, these results suggest that the M-distance method is likely to reduce
the number of false positive FOD detections as compared to the baseline
Euclidean method, without causing any appreciable decrease in the quality
of the FOD photos.

Table 4: Performance Comparison over 15 Physical Test Trials with a Total of 54 FODs

Total Candidates Unassociated Points Unassociated Candidates Distance Error
per Trial per Trial per FOD (in m)

M-Distance 72 127.2± 152.9 2.2± 1.56 0.372± 0.348
L2 Distance 78 269.4± 312.5 2.6 ± 1.02 0.373 ± 0.328

Figure 12 shows selected samples from the test set. Each row comes
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from a trial and column 1 shows the point cloud with the true FOD location
labeled. Columns 2 and 3 show the candidate clusters generated by the
M-distance and Euclidean method, respectively. For all the three trials,
the M-distance method shows a lower noise level based on the number of
unassociated candidate points. Especially for row 1, it successfully eliminates
two noise clusters, one on the left and the other behind the column, such that
the candidate centroid is closer to the true FOD location. For the trial in
row 2, while the column noise is vastly reduced by the M-distance method,
the remaining noise is still large enough to form a false cluster. However,
it is able to eliminate one noise cluster at the lower left wall that is present
in the Euclidean method, while both the methods miss one FOD on the
top left corner. Row 3 shows a trial with substantial localization errors due
to a misplaced top wall and large noise on the ground. As expected, both
the methods perform quite poorly in this case. Although the M-distance
method reduces the noise volume, such reduction causes the noisy points
to be more disjoint, which inadvertently leads to more candidate clusters
than the Euclidean method. This observation explains why the M-distance
method has more unassociated candidates than the Euclidean method in a
few trials.

4.2.4. FOD Detection Performance

The test set was further processed along the FOD identification pipeline,
where the cost maps and corresponding waypoints were generated for each
trial based on the clusters obtained from the M-distance method. Subse-
quently, the robot took a photo inside the tank at each location specified by
the waypoints to capture the associated FOD candidates.

The detection rate of the photo set is shown in Table 5. Similar to the
simulation study, a FOD is considered detected if any portion of the FOD
appears in the photo set of a trial. Both the drill and the sander have a
perfect recall rate, most likely due to their large heights that cause substantial
deviations from the ground plane. On the other hand, the screw driver has
the lowest recall, followed by the crimper. The screw driver has the least
volume among all the FOD types, which makes it especially challenging to
detect. While the crimper has a relatively large volume, it is mostly planar
with a height similar to the screw driver when laid on the ground, thereby
yielding small deviation values.

The overall recall rate is found to be 0.77. The relevancy of the photo
set is also analyzed similar to the simulation study. Out of the 72 photos
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Figure 12: Selected examples from physical test trials illustrating the difference in per-
formance between the Euclidean and M-distance methods. Each row represents a single
trial. Column 1 shows the denoised point cloud with circled FOD locations; column 2
shows the candidate FOD clusters generated by the Euclidean method, with each cluster
highlighted using a different hue; column 3 shows the corresponding clusters generated by
the M-distance method. The M-distance method yields substantially less number of can-
didate points that are not associated with any FOD, and reduces the number of candidate
clusters in the first two rows.
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Table 5: FOD Detection Rates on Physical Test Trials

Type Detected Missed Recall
Drill 9 0 1

Sander 5 0 1
Screw Driver 8 6 0.57

Hammer 7 2 0.78
Crimper 5 2 0.71

Tape Measure 8 2 0.8
Total 42 12 0.77

taken by the robot from the 15 trials, 40 contain one or more FODs and 32
contain no FOD. This constitutes a precision of 0.56. Thus, we note that the
precision is higher than that for simulation, while the recall is lower. This
happens potentially due to our choice of λ = 0.05 in the grid search cost
function, which results in a threshold biased toward reducing the number of
irrelevant candidates rather than yielding candidates in close proximity to
the true FOD locations.

The resultant FOD photos were assembled into an online anonymous
questionnaire survey. Unlike the simulation study, all the trials are included
in a single questionnaire and each participant, therefore, labeled the photos
from all the trials. A total of 12 responses were received from undergraduate
and graduate students, with an age range from 18-30. 83.3% of the responders
were males and 16.7% were females. The results are compiled into a confusion
matrix and reported in Table 6.

As expected, the human labeling performance for actual photos taken
during physical trials is highly accurate (0.981), and better than that for
simulation due to the absence of rendering issues. The most mislabeled item
is the tape measure, which has only 2 instances each (out of 102) of being
wrongly identified as a drill and screw driver, respectively. A possible cause
for this mislabeling is that all these tools have the same black and red colored
body. Just 1 photo containing FODs is mislabeled as having no FOD, where
the FODs are far away from the robot. Only 2 photos with no FODs (out of
384) are labeled as “Not Sure”, where both are photos of the loose end of a
hose behind the column. These results show that if any FOD is captured in a
photo taken by the robot, it is highly likely that a (remotely located) human
would be able to detect the FOD just by looking at the corresponding photo.
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Table 6: Confusion Matrix for Human Labeled FOD Photos Taken over 15 Physical Test
Trials (n = 12)

Actual Type
Drill Sander Screw Driver Hammer Crimper Tape Measure No FOD Missed FOD

L
ab

el
ed

T
y
p

e

Drill 141 0 1 0 0 2 0 0
Sander 0 82 0 0 0 0 0 0

Screw Driver 1 0 123 0 0 2 0 0
Hammer 1 0 0 108 0 0 0 0
Crimper 0 2 0 0 68 0 0 0

Tape Measure 0 0 1 0 0 98 0 0
No FOD 0 0 0 0 0 0 382 1
Not Sure 0 0 0 0 0 0 2 0

5. Discussion

There are a few limitations of our approach, as seen in the experimental
results. The primary assumption of using M-distance is that the deviation
from the reference model is Gaussian. However, there are multiple sources
of non-Gaussian noise during the SLAM process. One source is localization
uncertainty, which causes feature duplication at the erroneous robot location.
This poses problem when using the M-distance as it treats the entire duplicate
feature as deviation and causes false positives. Another problematic noise
type is associated with the depth camera, which occurs around the edge of
an object where the depth gradient is very high. Normally, the edge noises
are removed during the SLAM process when the robot travels behind the
obstacles. However, this does not happen for confined space structures such
as the I-beam on the wall. These noise sources can be potentially dealt with
by transitioning to non-Gaussian learning methods such as mixture models.

The clustering method also introduces an error in conjunction with this
duplicated feature problem. When there is a large patch of false positive
points, the hierarchical clustering algorithm sometimes clusters the true FOD
points with the false positive points into one group. As a result, the center
of the cluster mass meanders more toward the false positive, and sometimes
causes the true positive to disappear from the camera’s field of view. A
work-around for this issue could be including the cluster size information
during waypoint generation. Another method would be to include color
information in the feature vector and perform a point cloud version of color
image segmentation.

The training sample collection process can be tedious. If the mean point
cloud is chosen as the reference, then the training sample is readily available
and covariance fitting does not result in any extra work. However, if an
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accurate CAD model is used, collecting the training set only for covariance
fitting may not be cost-efficient. This issue can be addressed by moving
the learning process online, where a CAD model with Euclidean distance is
used as the initial method. After each inspection session, a operator labels
and removes all the FOD points, and the remaining points are used as the
training samples, where the points in the CAD model are updated by the
training points in a Gaussian mixture fashion.

Last but not the least, the trade-off between high FOD recall and photo
precision is tricky, since the parameter search cost function does not directly
consider the waypoint generation process and camera specifications. While
the cost function provides a unified way of comparing different discrepancy
metrics, hand tuning might be more advantageous for achieving a specific
precision-recall rate.

6. Conclusions

In this paper, we propose a remote human-assisted, visual mapping-based
probabilistic FOD detection system for confined spaces within large marine
vessels. A generic water tank, with a publicly released CAD model, is used
as the representative confined space for system development and testing. A
local Mahalanobis distance-driven outlier identification method forms the
core of our system, which enables identification of candidate FODs by quan-
tifying the discrepancies between the offline FOD-less maps (or, the tank
CAD model) and the online maps acquired by a mobile ground robot. Cam-
era photos taken by the robot from the candidate FOD locations are then
provided to humans for final labeling, which results in a high detection ac-
curacy. An initial simulation study, followed by extensive physical trials on
a scaled-down tank prototype, demonstrate the effectiveness of our detection
system.

In the future, we would like to modify our system for other kinds of
inspection tasks, such as identification and monitoring of tank defects and
damages. We would also like to explore the potential benefits of multi-robot
coordination in inspecting large confined spaces efficiently. To this end, we
plan to integrate our detection system with novel locomotion capabilities to
facilitate precise manipulation in tight spaces; on tall, vertical structures;
and, for a variety of repair tasks. We are also interested in adapting the
inspection system for underwater environments (when the spaces are filled
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with water), and investigating alternate sensing, odometry, and mapping
techniques for such environments.

Acknowledgment

We gratefully acknowledge John Stewart for his help in building the wa-
ter tank prototype and Prof. Santosh Devasia for many useful discussions.
This work was supported by the Naval Engineering Education Consortium
(NEEC) award number N00174-20-1-0003. Any opinions, findings, and con-
clusions or recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the US Navy.

References

[1] CBO, US Navy maintenance cost (2020).
URL https://www.cbo.gov/system/files/2019-10/55685-CBO-

Navys-FY20-shipbuilding-plan.pdf

[2] T. Bandyopadhyay, R. Steindl, F. Talbot, N. Kottege, R. Dungavell,
B. Wood, J. Barker, K. Hoehn, A. Elfes, Magneto: A versatile multi-
limbed inspection robot, in: IEEE/RSJ Int. Conf. Intell. Robot. Syst.,
2018, pp. 2253–2260.

[3] A. Kakogawa, S. Ma, A multi-link in-pipe inspection robot composed
of active and passive compliant joints, in: IEEE/RSJ Int. Conf. Intell.
Robot. Syst., 2020, pp. 6472–6478.
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Appendix A. Modified Rtap-Map Configuration

Appendix A.1. Global Parameters

• frame id=base footprint

• odom frame id=odom

• approx rgbd sync=false

• odom tf angular variance=1

• odom tf linear variance=1

Appendix A.2. Nodes Parameters

• Node Name: map assembler

– cloud output voxelized=false

– Grid/RangeMax=0.5

– Grid/cloud subtrack filtering min neighbors=10

– Grid/DepthDecimation=1

• Node Name: map optimizer

– publish tf=false

– odom frame id=$(arg odom frame id)

• Node Name: rtabmap

– grid map=/map

– Grid/FromDepth=true

– Grid/CellSize=0.01

– Grid/DepthDecimation=1

– Grid/MaxGroundHeight=0.05

– Grid/MaxObstacleHeight=1
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