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Probabilistic motion planning for non-Euclidean and
multi-vehicle problems

Anton Lukyanenko , Damoon Soudbakhsh

Abstract—Trajectory planning tasks for non-holonomic or
collaborative systems are naturally modeled by state spaces with
non-Euclidean metrics. However, existing proofs of convergence
for sample-based motion planners only consider the setting of
Euclidean state spaces. We resolve this issue by formulating a
flexible framework and set of assumptions for which the widely-
used PRM*, RRT, and RRT* algorithms remain asymptotically
optimal in the non-Euclidean setting. The framework is com-
patible with collaborative trajectory planning: given a fleet of
robotic systems that individually satisfy our assumptions, we
show that the corresponding collaborative system again satisfies
the assumptions and therefore has guaranteed convergence for
the trajectory-finding methods. Our joint state space construction
builds in a coupling parameter 1 ≤ p ≤ ∞, which interpolates
between a preference for minimizing total energy at one extreme
and a preference for minimizing the travel time at the opposite
extreme. We illustrate our theory with trajectory planning for
simple coupled systems, fleets of Reeds-Shepp vehicles, and a
highly non-Euclidean fractal space.

Index Terms—Nonholonomic Motion Planning, Motion, and
trajectory Planning, Trajectory Planning for Multiple Mobile
Robots, Cooperative Robots, and Multi-Robot Systems.

I. INTRODUCTION

This paper presents a flexible axiomatic framework for
probabilistic motion planning in a metric space setting that
encompasses a variety of standard and novel scenarios. The
metric approach allows for generalizing the assumptions on
the search problem. While previous convergence guarantees
focused on single-vehicle holonomic robots, our approach
allows us to provide convergence guarantees for PRM* and
RRT* search tasks for individual or multiple holonomic or
non-holonomic robots.

A. Motion Planning

A key question in robotic motion planning is determining
the most efficient way a single robot or collaborative team of
robots can reach their destinations in a complex environment.
Even in the absence of obstacles, optimal trajectories are
difficult to find. In the holonomic setting, it requires solving
the geodesic equations with starting and ending constraints.
In the non-holonomic setting, similar equations are available,
but even the existence of well-behaved optimal trajectories
remains an area of active research see e.g. [1], [2], [3], [4].
Nonetheless, in many cases of interest, one is able to compute
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optimal obstacle-free trajectories (e.g. Euclidean straight lines
or Reeds-Shepp geodesics) in the state space.

In the presence of obstacles, exact trajectory planning
is not computationally feasible, and instead, sampling-based
motion planning is employed. In this approach, one builds
a discretization of the unobstructed space using a sequence
of random or deterministic samples and then uses graph-
theoretic methods to identify optimal trajectories within the
discretization. Optimizing this approach for single-vehicle
trajectory planning has been the subject of many recent studies,
including [5], [6], [7], [8].

The two primary types of probabilistic planning methods
are based, respectively, on the Probabilistic Roadmaps (PRM)
introduced by Kavraki et al. [9] and the Rapidly-exploring
Random Trees (RRT) of Lavalle [10]. Both types of algorithms
sample a configuration space and build a graph-theoretic
approximation of reachable destinations. PRM is optimized
for multi-query applications, in which the starting and ending
configurations may change between calls, and is performed in
two stages: the roadmap phase that builds an approximating
graph and a trajectory creation phase that identifies trajectories
through the graph. On the other hand, RRT is optimized
for single-query applications and builds a tree of possible
trajectories rooted at the starting location and searching for
points near the target location or region. The core PRM and
RRT algorithms have been shown to be effective at finding
feasible trajectories in a wide variety of single-robot planning
tasks [9], [10], [11], [12], [13], [14], [15], [16].

In [17], Karaman and Frazzoli introduced two influential
variants of the algorithms, called PRM* and RRT*, which
provide asymptotically optimal trajectories and reduce the
computational cost by limiting the distance at which sam-
ples are connected. Since then, probabilistic motion planning
methods have been expanded to span many aspects of trajec-
tory planning including the development of hybrid discrete-
continuous algorithms [18], addressing moving obstacles [19],
[20], improving nearest-neighbor searches for non-holonomic
robotics [21], [5], improving search regions [22], [23], [24],
[25], [26], and incorporating machine learning methods [27],
[28], [7]. The proof of convergence of PRM* and RRT* [17]
was extended in a sub-Riemannian setting to non-Euclidean
systems in [29].

In 2019, an error was discovered in the analysis of RRT*,
and an alternate proof of asymptotic optimality was provided
for holonomic systems [30], [31]. The same error appears in
the analysis of RRT* in the sub-Riemannian setting [29] but is
not addressed in the revised proof, requiring further analysis.

Our first contribution in this paper is presenting a flexible

ar
X

iv
:2

10
8.

03
19

1v
2 

 [
cs

.R
O

] 
 2

8 
Ju

n 
20

23



2

axiomatic framework for PRM* and RRT* in a metric space
setting that encompasses both Euclidean and non-Euclidean
systems, as well as more general search problems. In this
setting, we provide convergence and asymptotic optimality
guarantees for PRM*, RRT, and RRT*. The proof comes down
to a direct analysis of RRT and an adaptation of the previous
arguments for PRM* [29] and RRT* [31].

B. Multi-vehicle motion planning

Motion planning for collaborative groups of robots, each
of which is attempting to reach its destination while avoiding
collisions, is a particularly challenging task, as the number
of possible motions grows exponentially with the number of
robots [13], [32]. The computational time of RRT methods can
be improved using biased or deterministic sampling [33], [34],
[35], [6]. The sub-dimensional expansion approach [36], [37],
[38] avoids this exponential growth by planning each robot’s
movements independently and then resolving any potential
collision through local planning in a bubble space. Local
trajectory planning is conducted after reducing the system’s
dimension at a local level to resolve conflicts. In such sce-
narios, the robots enter a box defined by the higher-order
planner and leave it according to the poses defined by the
planner. In previous studies, local planning was based on robot
task reassignment [39], or priority-based motion with holding
patterns [40], [41], [42], and localized RRT planning [43].

Our second contribution is to show that our framework
is compatible with the sub-dimensional expansion approach.
That is, it can be used for multi-robot trajectory planning
by combining the individual robots into a single state space
while complying with the assumptions on the search space
and maintaining convergence guarantees for PRM*, RRT, and
RRT*. We also show that there are multiple choices of metric
on the joint state space, which are controlled by a coupling
parameter that influences the joint behavior of the fleet. When
the fastest arrival to the destination is desired, the Manhattan
metric is appropriate. Alternately, minimization of total energy
expenditure can be encoded using the supremum metric. There
are several ways to interpolate between these desires, as we
demonstrate using the ℓp metrics (including the Euclidean
metric when p = 2).

C. Outline of the paper

In Section II, we write down the data of a search problem,
our geometric assumptions, and the PRM*, RRT, and RRT*
algorithms. We then prove the probabilistic completeness of
these algorithms and the asymptotic optimality of PRM* and
RRT*. We finish by discussing multi-robot search problems,
which are most naturally described using non-Euclidean met-
rics. We provide optimal geodesics in the obstacle-free state
space for any choice of p, prove that the corresponding
joint search problem satisfies our assumptions, and provide
convergence guarantees for PRM*, RRT, and RRT*.

In Section III, we demonstrate several search problems and
show that they fit within our framework. We start with a simple
case of holonomic robots, which allows us to demonstrate
the effect of the coupling parameter on the search problem.

We then confirm that the Reeds-Shepp vehicle model fits our
assumption and demonstrate trajectory planning with corre-
sponding multi-vehicle systems. We finish by demonstrating
the flexibility of our framework and convergence guarantee
by performing RRT* trajectory planning in the non-manifold
fractal setting of the Sierpinski gasket, where all basic notions
in the framework and proof of RRT* convergence have to be
re-interpreted.

II. ALGORITHMS AND CONVERGENCE GUARANTEES

A. Mathematical Preliminaries

A metric space is a set X equipped with a metric function
d ∶X ×X → [0,∞) that satisfies, for all x,x′, x′′ ∈X:
● (non-degeneracy) d(x,x′) = 0 if and only if x = x′,
● (symmetry) d(x,x′) = d(x′, x),
● (triangle inequality) d(x,x′′) ≤ d(x,x′) + d(x′, x′′).
In a metric space, one has (open) balls B(x, r) =
{x′ ∶ d(x,x′) < r} and neighborhoods Nr(A) = {x ∶
maxa∈A d(a, x) < r}. A sequence xi in X converges to a
point x0 if for any ϵ > 0 and sufficiently large i one has that
d(xi, x0) < ϵ. A mapping f ∶ X → Y between two metric
spaces is continuous if it preserves convergence: if a xi ∈ X
converges to x0 then the sequence f(xi) converges to f(x0).

A trajectory (in mathematics literature, a path or curve) is
a continuous function γ ∶ [a, b] → X , for some a, b ∈ R. The
length of γ is given by

ℓ(γ) = sup
n−1

∑
i=0

d(γ(ti), γ(ti+1))

where the supremum is taken over all sequences a = t0 <
. . . < ti < . . . < tn = b. The trajectory is a geodesic if
d(γ(a), γ(b)) = ℓ(γ). Equivalently, if γ is parametrized by
unit speed, then γ is a geodesic if and only if for any
a ≤ s ≤ t ≤ b we have d(γ(s) − γ(t)) = s − t. The space
X is geodesic if any pair of points x,x′ ∈X is connected by
a geodesic.

A set A ⊂ X is open if for every point a ∈ A there is a
radius r > 0 such that the open ball B(a, r) is contained in A.
A set B is closed if its complement is open. Both open and
closed sets are examples of Borel sets, which are defined as
elements of the smallest σ-algebra containing open sets, called
the Borel σ-algebra, see, e.g., [44] for details. A Borel measure
µ on X is a function that assigns to every Borel set a size
µ(A) ≥ 0 (often interpreted as a volume or a probability), with
the further restriction that µ(∅) = 0 and that µ is countably
additive on disjoint sets.

Equipping a metric space with a Borel measure gives a
metric measure space (X,d,µ). In practice, metric measure
spaces often satisfy additional conditions that relate the metric
and the measure. A space is called Q-Ahlfors-regular on small
scales if there exist r0 > 0 and C > 0 such that for r < r0 the
measure of all balls B(x, r) satisfies

1

C
rQ ≤ µ(B(x, r)) ≤ CrQ.

For example, the space Rn equipped with the Euclidean
metric and the Lebesgue measure Ln (which formalizes the
standard notion of volume) is n-Ahlfors-regular at all scales.
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Given a random variable Random defined on a subset
Xrand ⊂X satisfying 0 < µ(Xrand) < ∞, will say that Random
is uniformly distributed with respect to µ if for any Borel set
A ⊂Xrand we have

P(Random ∈ A ∣ Random ∈Xrand) =
µ(A)

µ(Xrand)
.

Using product measures [44], one defines a corresponding
probability for an event to occur given a (finite or infinite)
sequence of identically distributed independent samples given
by Random. An event is said to occur almost surely if it occurs
with probability 1.

B. Assumptions, Algorithms, and Guarantees

We phrase the probabilistic trajectory-finding problem as
follows, using the terminology described in Section II-A and
making additional assumptions about the search problem in
Assumptions 1.

Problem 1. A search problem consists of:
1) A metric-measure space (X,d,µ) called the configura-

tion space,
2) A search space Xrand ⊂X ,
3) An obstacle-free space Xfree ⊂Xrand,
4) A function Extend that connects pairs of points in X

by trajectories,
5) A random variable Random taking values in Xrand,
6) Points xstart, xend ∈Xfree,
7) An error tolerance ϵ, iteration constraint n, and connec-

tion radius sequence {ri}∞i=1.
One then seeks a trajectory γ ∶ [a, b] →Xfree that is ϵ-feasible
or both ϵ-feasible and ϵ-optimal, meaning:

1) (ϵ-feasibility) d(γ(a), xstart) < ϵ and d(γ(b), xend) < ϵ,
2) (ϵ-optimality) if γ′ is any trajectory joining xstart and

xend, then ℓ(γ) < ℓ(γ′) + ϵ.
A problem is feasible if a solution to the desired condition
above in fact exists, and robustly feasible if there exists a
solution γ that has, for some δ > 0, strong δ-clearance,
i.e., Nδ(γ) ⊂ Xfree. (Note that in general, length-minimizing
solutions do not exist, so we adjust the definition to be slightly
different from the usual one, e.g. in [17].)

A sampling-based algorithm is probabilistically complete
if for every ϵ, the probability of generating an ϵ-feasible
trajectory limits to 1 as n approaches ∞. It is furthermore
asymptotically optimal if for every ϵ the probability of gen-
erating an ϵ-optimal trajectory limits to 1 as n approaches
∞.

We will extend PRM* and RRT* to non-Euclidean settings
satisfying the following assumptions (see Section II-A for the
definitions):

Assumptions 1.
1) The search space (X,d,µ) is Q-Ahlfors-regular on small

scales, for some Q > 0,
2) For any x,x′ ∈ X , the function Extend(x,x′) provides

a geodesic trajectory from x to x′ parametrized at unit
speed,

3) The search space satisfies 0 < µ(Xrand) < ∞,
4) Random is uniformly distributed on Xrand ⊂ X with

respect to µ.

We will use the following formulations of the RRT, PRM*,
and RRT* algorithms.

The PRM* algorithm builds a graph (V,E) representing the
search space. Optimal solutions within the graph can then be
found using a graph-based algorithm such as A*.

Algorithm 1 (PRM*). Let V consist of n samples in Xfree,
selected using Random. For each pair of vertices v1, v2 ∈
V , create an edge (v1, v2) if ℓ(Extend(v1, v2)) ≤ rn and
Extend(v1, v2) ⊂Xfree.

The RRT algorithm instead builds a tree (V,E) of solutions.
Once a vertex v near the destination is found, it can be traced
back to the root to produce a corresponding trajectory. We will
refer to the length of such a trajectory to the root as Cost(v).

Algorithm 2 (RRT). Let V = {p}, E = ∅, and iterate until V
contains n points, returning the resulting tree at the end. At
each iteration:

1) Sample a point xnew ∈Xfree using Random.
2) Connect to a parent:

a) Let vnearest = argminv∈V d(v, xnew).
b) If d(vnearest, xnew) exceeds the maximal allowed

travel distance, replace xnew with an allowable point
along Extend(vnearest, xnew).

c) If Extend(vnearest, xnew) ⊂ Xfree, add the point
xnew to V and add the edge (vnearest, xnew) to E.
Otherwise, proceed to the next iteration.

The RRT* algorithm interpolates between PRM* and RRT,
producing an RRT-type tree (V,E) in the short-term while
also incorporating a local optimization process that allows it
to build near-optimal trajectories from the root in the long-
term, and in the process improve on the trajectories built by
the RRT sub-algorithm.

Algorithm 3 (RRT*). Let V = {p}, E = ∅, and iterate until
V contains n points, returning the resulting tree at the end.
At each iteration:

1) Sample a point xnew ∈Xfree using Random.
2) Make an initial connection:

a) Let vnearest = argminv∈V d(v, xnew).
b) If d(vnearest, xnew) exceeds the maximal allowed

travel distance, replace xnew with an allowable point
along Extend(vnearest, xnew).

c) If Extend(vnearest, xnew) ⊂ Xfree, add the point
xnew to V and add the edge (vnearest, xnew) to E.
Otherwise, proceed to the next iteration.

3) Identify the locally-optimal parent:
a) Let A be the set of vertices v ∈ V such that

d(v, xnew) < r∣V ∣ and Extend(v, xnew) ⊂ Xfree,
excluding xnew.

b) If A is empty, proceed to Step 4.
c) Let xbest = argmina∈A(Cost(a) +

ℓ(Extend(a, xnew))). Remove the edge
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(xnearest, xnew) from E and add the edge
(xbest, xnew).

4) Identify the locally-optimal children:

a) Let A be the set of vertices v ∈ V such that
d(xnew, v) < r∣V ∣ and Extend(xnew, v) ⊂ Xfree,
excluding xnew.

b) For each a ∈ A, if Cost(xnew) +
ℓ(Extend(xnew, a)) < Cost(a), remove the
edge from a to its parent and add the edge (xnew, a).

Theorem II.1. Consider a robustly feasible trajectory plan-
ning task satisfying Assumptions 1. Then, with probability 1:

1) RRT provides a feasible solution,
2) PRM* provides an asymptotically optimal solution if the

connection radius satisfies ri > γ ( log ii
)

1
Q ,

3) RRT* provides an asymptotically optimal solution if the

connection radius satisfies ri > γ ( log ii
)

1
Q+1 ,

where γ > 0 is a parameter that does not depend on the choice
of starting and ending points in the planning task.

Sketch of Proof. Let γ be a solution to the search problem
such that Nδ(γ) ⊂ Xfree. The idea is to approximate γ by a
sequence of samples along the trajectory, positioned in such
a way that each algorithm has the opportunity to make the
corresponding connections or pick better ones.

One can then use the methods of [45], [31] to prove Theo-
rem II.1, which were restricted to the holonomic (Euclidean)
setting under our more general assumptions. Let us recall these
methods for completeness.

For RRT, choose a sequence of balls
B(x1, r), . . . ,B(xM , r) of some small radius r < δ/4
centered on γ and covering all of γ. Assume also that r is
smaller than the maximum allowed travel distance. Each ball
has a positive measure and, therefore, a positive probability
of being sampled at each iteration. Therefore, a point x′1
will, almost surely, be eventually discovered in B(x1, r) and
connected to x0 or a closer point in the tree (note that the
restriction r < δ/4 together with the triangle inequality ensure
that the connecting trajectory is collision-free). Subsequently,
a point x′2 will be sampled in B(x2, r) and connected to the
tree (possibly connecting to x′1). Continuing in this way, one
eventually adds a point xM that is within distance r of the
destination.

Let us next sketch the proof for PRM*, following
[45]. For each time parameter j, one defines a radius
r′j , points x1, . . . , xMj along γ, and a sequence of balls
B(x1, r

′
j), . . . ,B(xMj , r

′
j) such that any pair of samples in

adjacent balls is within the connection radius rj . On the one
hand, the radii r′j need to go to zero so that eventually, the
trajectory remains in the δ-neighborhood of γ and therefore
does not intersect any obstacles. On the other hand, one wants
to ensure that for some j each of the balls B(xi, r

′
j) contains

a sample. One computes the probability pj of this event and
then uses the Borel-Cantelli Lemma to conclude that, as long
as ∑∞j=1(1 − pj) < ∞, then the event is guaranteed to happen
for infinitely many choices of j. The condition rj ≥ γ( log jj

)
1
Q

is then tailored to ensure that this happens (note that in

the original proof, the dimension is only used to compute
the volume of balls). One then concludes that for arbitrarily
large choices of j, one has a trajectory γj that follows γ.
One concludes that PRM* is probabilistically complete. A
refinement of the argument using Poissonization shows that
the samples used to build γj can be guaranteed to lie arbitrarily
close to the centers of the balls so that one furthermore has
ℓ(γj) → ℓ(γ). Thus, one gets trajectories that approximate
γ arbitrarily well in length. Thus, PRM* is asymptotically
optimal.

The argument for RRT* is essentially the same; see [31]
for details. The primary difference is that the samples vi
in the balls B(xi, r

′
j) must be produced in the right order

so that RRT* is able to connect each x∗i+1 to x∗i or to a
lower-cost edge. In particular, the trajectory γj constructed by
connecting all of the x∗i in the sequence is either chosen when
building the tree or a lower-cost alternate trajectory γ′j joins the
starting point of the search with the point x∗Mj

. In either case,
one concludes that limn→∞ ℓ(γ′j) ≤ limj→∞ ℓ(γj) = ℓ(γ).
The correct sampling order of the points x∗i is achieved by
breaking up the time interval [0, n] into Mj approximately-
equal intervals and requiring x∗i to be sampled in the ith

time interval. Thus, the probability analysis for the sampling
process takes place in the space X × R, of dimension Q + 1
rather than Q, affecting the constraint on the connection
radius sequence. One furthermore argues that step (2b) of
the algorithm does not affect the long-term distribution of the
points; indeed, the RRT part of the algorithm ensures that the
vertex set is asymptotically dense, so the nearest connections
become arbitrarily short after an initial exploratory period.

Remark II.2. One can remove step (2) from RRT* without
losing the asymptotic optimality guarantees of Theorem II.1
(although one would lose the ability to produce RRT-type
exploratory solutions in the short term). Indeed, the proof does
not make use of this step, apart from needing to show that step
(2b) does not affect the long-term distribution of points.

Remark II.3. If we assume that the free space Xfree is open,
the assumption of robust optimality is unnecessary. Optimal
trajectories may not exist in this case, but any trajectory has
strong δ-clearance for some δ > 0.

C. Collaborative trajectory planning with convergence guar-
antees

We will now define what it means to combine multiple
search problems into a single collaborative problem and will
prove:

Theorem II.4. Given individual search problems that satisfy
Assumptions 1, any joint search problem corresponding to a
parameter 1 ≤ p ≤ ∞ also satisfies Assumptions 1.

Theorem II.4 relies on the following definition, including
the use of a coupling parameter 1 ≤ p ≤ ∞, which is motivated
and explored in III.

Definition II.5. For i = 1, . . . , n, consider the individual
search problem with data (Xi, di, µi), (Xrand)i, (Xfree)i,
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Extendi, and Randomi. A joint search problem correspond-
ing to a coupling parameter 1 ≤ p ≤ ∞ is a search problem
consisting of the following data:

1) A joint state space X = X1 × ⋯ × Xn, given by the
Cartesian product of individual spaces and equipped with
an ℓp combination d of the metrics di and the product
measure µ1 ×⋯ × µn,

2) The joint search space Xrand = (Xrand)1 ×⋯ × (Xrand)n,
3) Any choice of free space Xfree ⊂Xrand containing the set
{(x1, . . . , xn) ∈X ∶ for all i = 1, . . . , n, xi ∈ (Xfree)i},

4) An ℓp combination Extend of the trajectories Extendi,
5) A random variable Random on Xrand given by Random =
(Random1, . . . ,Randomn).

6) Any choice of the remaining data.

Remark II.6. Generally, Xfree needs to be further restricted to
avoid collisions between the systems, e.g., by removing some
neighborhood of the set

{(x1, . . . , xn) ∈X ∶ for some i ≠ j, xi = xj}.

Note that in non-holonomic planning, only the location coor-
dinates should be compared rather than the full pose.

We now elaborate on Definition II.5. The products of spaces
are Cartesian products. The product measure is the unique
Borel measure such that for any Borel set of the form A =
A1 ×⋯×An one has µ(A) = µ1(A1)⋯µn(An). In particular,
if the measures µi are Lebesgue measures, then µ is again a
Lebesgue measure.

We combine the distances, and trajectories using the ℓp

norm, which is a norm on Rn given by:

∥(v1, . . . , vn)∥p =
⎧⎪⎪⎨⎪⎪⎩

(∑n
i=1 ∣vi∣

p)1/p 1 ≤ p < ∞
maxni=1 ∣vi∣ p = ∞

. (1)

Definition II.7. For our 1 ≤ p ≤ ∞, we define:
The ℓp combination of distances d1, . . . , dn is given by:

d((x1, . . . , xn), (x′1, . . . x′n)) = ∥(d(x1, x
′
1), . . . , d(xn, x

′
n))∥p

The ℓp combination of trajectories γi ∶ [0, Ti] → Xi is the
trajectory G = (g1, . . . , gn) ∶ [0, ∥(T1, . . . , Tn)∥] → X = X1 ×
⋯ ×Xn given by:

gi(t) = γi (t
Ti

∥(T1, . . . , Tn)∥p
) .

Remark II.8. The ℓp combination of the geodesics is defined
such that the individual systems arrive at their destinations
simultaneously. When p = 1 or p = ∞ (but not for 1 < p < ∞),
other choices of geodesics are also available. For p = 1, one
may, e.g., ask the systems to move one at a time. For p = ∞,
one may, e.g., allow “faster” individual systems to arrive at
the destination and wait for “slower” ones to complete their
maneuvers. See III for more details.

Lemma II.9. The ℓp combination of unit-speed geodesics
γ1, . . . , γn with time intervals [0, Ti] is a geodesic.

Proof. Using the definition d and fact that each γi is a unit-
speed geodesic, we obtain

dp(G(s),G(t)) =

= ∥(d(γi(s
Ti

∥T1, . . . , Tn∥
), γi(t

Ti

∥T1, . . . , Tn∥
))

n

i=1

∥
p

= ∥((t − s) Ti

∥T1, . . . , Tn∥
)ni=1∥

p

= t − s,

as desired.

Lemma II.10. If each metric measure space (Xi, di, µi) is
Qi-Ahlfors-regular on small scales, then the metric measure
space (X,d) is Q-Ahlfors-regular on small scales for Q =
∑n

i=1Qi.

Proof. If p = ∞, then a metric ball in X is of the form

B((x1, . . . , xn), r) = B(x1, r) ×⋯ ×B(xn, r)

Because µ is a product measure, we have

µ(B((x1, . . . , xn), r)) = µ(B(x1, r))µ(B(xn, r))

The result is then immediate from the fact that each Xi is
Qi-Ahlfors-regular on small scales.

For other values of p, one has the standard inequality

∥v∥∞ ≤ ∥v∥p ≤ ∥v∥1 ≤ n ∥v∥∞
which implies the corresponding fact for distances:

dℓ∞(x,x′) ≤ dℓp(x,x′) ≤ ndℓ∞(x,x′).

Combining this with the case p = ∞ completes the proof.

III. APPLICATIONS

We now consider concrete applications of our methods,
focusing on illustrating the approach. We first consider cou-
pled one-dimensional systems to clarify the meaning of the
coupling parameter 1 ≤ p ≤ ∞. Next, we demonstrate
trajectory planning for individual and collaborative Reeds-
Shepp vehicles, for which Theorem II.1 provides the first
guarantee of convergence (cf. [29], which discusses closely-
linked sub-Riemannian geometries). Lastly, we demonstrate
trajectory-finding in the fractal Sierpinski Gasket geometry,
which requires us to use highly non-Euclidean distances,
measures, and sampling methods.

A. Coupled robotics systems: a simple example

Consider a robotic system consisting of two robots Rx and
Ry moving along independent linear rails, whose positions are
given by variables x and y, respectively.

Let us explicitly write down a search problem for one
of them, say, Rx. We work with the metric-measure space
(R, d(x,x′) = ∣x − x′∣ ,L1) where L1 is Lebesgue measure.
This is, of course, a space that is Q-Ahlfors-regular on small
scales with Q = 1. We will work with Xrand = [0,3] and
Xfree = Xrand. We take Extend(x,x′)(t) = x + t x−x′

∣x−x′∣
, for

t ∈ [0, ∣x − x′∣], and Random a uniformly-distributed random
variable on the interval [0,3].
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Fig. 1: trajectory planning in R2 with respect to the ℓ1, ℓ2,
and ℓ∞ metrics (top, middle, bottom, respectively) produces
markedly different trajectories. Here, trajectory planning oc-
curs in the square [0,3] × [0,3] while avoiding the middle
square [1,2] × [1,2]. The tree produced by RRT ∗ is shown,
along with the best trajectory from (1.5,0.5) to (1.5,2.5).
Each model uses the same 1000 samples.

We build a joint planning task as described in Section II-C,
further restricting Xfree to exclude the square [1,2] × [1,2].
The configuration space for the joint system is then R2

equipped with a metric d((x0, y0), (x1, y1)) and Lebesgue
measure L2. Depending on the coupling parameter p, we
obtain three reasonable choices: the ℓ1 Manhattan metric given
by ∣x0 − x1∣+ ∣y0 − y1∣, the familiar ℓ2 Euclidean distance, and
the ℓ∞ maximum norm given by max(∣x0 − x1∣ , ∣y0 − y1∣).
The ℓ1 metric can be interpreted as computing the total
energy expenditure, while the ℓ∞ metric computes the fastest
transition time. The Euclidean metric does not have a natural
interpretation but provides a middle point between ℓ1 and
ℓ∞ among the ℓp norms given by p

√
∣x0 − x1∣p + ∣y0 − y1∣p for

1 ≤ p < ∞. More generally, the coupling parameter p calibrates
the trade-off between total trajectory length minimization
(when p = 1) and total time minimization (when p = ∞).

Trajectory planning with respect to the ℓ1, ℓ2, and ℓ∞

metrics produces markedly different results (Figure 1). The
ℓ1 metric imposes no penalty for traveling along the coordi-
nates one at a time since the corresponding cost is additive
and therefore results in the coordinates mostly changing in
sequence. For multi-robot systems, this corresponds to the ℓ1

metric inadvertently incentivizing excessive sequential vehicle

Fig. 2: Evolution of the RRT* tree for the ℓp metric with
p = 10. The high value of p causes ℓ∞-like behavior at first,
and eventual convergence to a streamlined solution.

motion. Conversely, the ℓ∞ metric inadvertently incentivizes
excessive joint motion, since the slower robotic system can
move without imposing an additional total cost. This results
in unnecessary motion, as seen in Figure 1, where the optimal
trajectory moves further left along the x-axis than is strictly
necessary, since such motion is not penalized by the ℓ∞ metric.
The Euclidean ℓ2 metric provides a middle ground between the
two options: both excessive waiting and excessive joint motion
are penalized.

Other choices of ℓp distances, with 1 < p < ∞, can also
be used, with low values of p favoring joint motion and
high values of p favoring individual motion. Because free-
space optimal trajectories for ℓp distances with 1 < p < ∞
are straight lines, in simple cases the long-term behavior
of trajectory planners will resemble the Euclidean solution
Figure 2. However, in complex scenarios, different choices
of p will lead to different trajectories.

Lastly, we demonstrate the fact that the choice of changing
the Extend function, by working with R2 with the ℓ1 metric
and the Manhattan trajectories, which adjust each coordinate
one at a time. Asymptotically-optimal ℓ1 trajectories are again
recovered, as in Figure 3.

Remark III.1. This example additionally demonstrates the
reason we do not consider auxiliary cost functions in our
framework. Namely, if we were interested in identifying Eu-
clidean shortest trajectories using a Manhattan Extend
function, we would fail. This is, perhaps, surprising given that
the Manhattan metric and Euclidean metric are related by the
bi-Lipschitz inequality

dℓ2(p, q) ≤ dℓ1(p, q) ≤
√
2dℓ2(p, q),

which preserves many geometric notions. It is, therefore,
unclear under what conditions on a cost make it compatible
with a search framework.
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Fig. 3: An implementation of RRT* using a Manhattan
Extend function is asymptotically optimal with respect to
the ℓ1 cost (shown), but not with respect to the Euclidean
cost, since it produces staircase trajectories whose Euclidean
length corresponds to the Manhattan distance.

B. Coupled Reeds-Shepp Vehicles

Let us describe a more involved example, using car-like
robots. We prove in Section III-B1 that a single-vehicle search
problem for the Reeds-Shepp vehicle satisfies Assumptions 1,
then discuss the joint planning space in further detail in Section
III-B2, and demonstrate joint trajectory planning for two and
three vehicles in III-B3

1) Reeds-Shepp car: The Reeds-Shepp car model is the
standard representation of a vehicle for trajectory planning
problems in low-speed environments. It represents a vehicle
using three coordinates: the planar location (x, y) and a
heading θ. Motion in response to the velocity action v and
steering action u is modeled using the equations

ẋ = v cos θ ẏ = v sin θ (2)

θ̇ = uv ∣u∣ ≤ ∣v∣
ρ
, (3)

where ρ is the turning radius of the vehicle. The Reeds-
Shepp model enforces the ∣v∣ ≤ 1 constraint. According to
Reeds-Shepp theory [46], [47], optimal trajectories for the
Reeds-Shepp vehicle are given by a combination of straight
trajectories and maximal-angle turns with ∣v∣ = 1.

Remark III.2. One can furthermore impose the constraint
v ≥ 0, producing a Dubins vehicle model. The Dubins vehicle
is not short-time controllable (e.g. backwards displacement is
only possible via long trajectories), finite-length trajectories
are not reversible, and its state space is not modeled by a
metric space. We will, therefore, not consider it here.

The state space R̃T for the Reeds-Shepp vehicle can be
given as a metric-measure space of a sub-Finsler manifold,
see [47], [2]. Specifically, R̃T is the space R3 = {(x, y, θ)}
equipped with the vector fields ξ(x, y, θ) = (cos(θ), sin(θ),0)
and η(x, y, θ) = (0,0,1). One interprets ξ as motion in the for-
ward direction and η as a rotation. A trajectory in R̃T is then
a controllable trajectory (also known as permissible or hori-
zontal) if (ẋ(t), ẏ(t), θ̇(t)) ∈ span(ξ, η). The plane spanned

Fig. 4: Optimal Reeds-Shepp (Blue line) and Dubins (Orange
line) trajectories.

by ξ and η changes depending on the basepoint (Figure 5), so
that combining forward/backward motion and left/right turns
unlocks sideways motion, as is familiar from parallel parking.
Mathematically, this is encoded by the Lie bracket of the
two vector fields: the [ξ, η] = (− sin(θ), cos(θ),0) encodes
sideways motion.

Fig. 5: Sub-Finsler geometry encodes non-holonomic controls
by specifying a linear subspace of controllable directions at
each point.

Given a controllable trajectory γ(t), one can write γ̇ = vξ+
uη. Choosing a norm ∥⋅∥ on span(ξ, η) allows one to compute
the length of γ as ℓ(γ) = ∫ ∥γ̇(t)∥dt. One shows that any two
points in R̃T are connected by a finite-length pair of points,
and defines a sub-Finsler metric d(p, q) on R̃T , given by the
infimum of lengths of controllable trajectories joining p and
q. If the norm ∥⋅∥ is induced by an inner product, then the
metric is called sub-Riemannian. For the Reeds-Shepp vehicle,
taking ∥(u, v)∥ =max(∣u∣ ,2πρ ∣v∣) gives a sub-Finsler metric
d such d(p, q) equals the shortest possible transition time for
a Reeds-Shepp vehicle from pose p to pose q. (Note that while
the Reeds-Shepp model appears to prohibit turning in place,
one can effectively do so by rapidly alternating the motion
direction and turning angle.) One then shows that small balls
B((x, y, θ), r) are approximated (see the Ball-Box Theorem
in [2]) by boxes

Box((x, y, θ), r) ={(x, y, θ) + uξ + vη +w[ξ, η] ∶
∣ξ∣ ≤ r, ∣u∣ ≤ r, ∣v∣ ≤ r, ∣w∣ ≤

√
r}.

That is, each ball contains a box of a similar radius and is, in
turn, contained in a slightly larger box. One concludes that
the notion of continuity on (X,d) is the same as on R3

with the Euclidean metric. Additionally, if we take µ to be
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Lebesgue measure on R3 we have that µ(B((x, y, z), r)) is
approximately r4 and conclude that (X,d,µ) is Q-Ahlfors-
regular on small scales for Q = 4.

In practice, one can compute the Reeds-Shepp distance by
finding optimal straight-trajectory and radial-trajectory dis-
tances as in Figure 4 and computing the length of the resulting
trajectory. For our illustrations, we use the implementation of
this algorithm in the OMPL Library [48].

From the description of the underlying geometry, we con-
clude:

Theorem III.3. Consider any search problem incorporating
the following data:

1) The space R̃T equipped with the Reeds-Shepp distance
d and Lebesgue measure µ,

2) Any Xfree ⊂Xrand ⊂X such that 0 ≤ µ(Xrand) ≤ ∞,
3) A function Extend that provides Reeds-Shepp geodesics,
4) A function Random that is uniformly distributed on Xfree.

Then the search problem satisfies Assumptions 1 with Q = 4.
In particular, one obtains convergence guarantees for PRM*,
RRT, and RRT* as in Theorem II.1, using Q = 4.

2) Fleet of Reeds-Shepp cars: A search problem for a fleet
of n Reeds-Shepp vehicles can be immediately constructed as
in Section III-A, with convergence guarantees coming from
Theorems II.1, II.4, and III.3. Let us describe a particular
implementation of this joint search process more explicitly.

We represent a fleet of n cars as a Cartesian product of
individual vehicle configurations. That is, a fleet is represented
by 3n coordinates (x1, y1, θ1), . . . , (xn, yn, θn), with each car
i satisfying the motion equations in §III-B1. Correspondingly,
we model the motion of the fleet as a single 3n-dimensional
joint motion function (or multitrajectory)

P (t) = (x1(t), y1(t), θ1(t), . . . , xn(t), yn(t), θn(t)) (4)

that can be decomposed, via projection, into trajectories

pi(t) = (xi(t), yi(t), θi(t)) (5)

for each car i.
Conversely, suppose we are given starting and ending poses

for the fleet:

a = (x1, y1, θ1, . . . , xn, yn, θn), (6)
b = (x′1, y′1, θ′1, . . . , x′n, y′n, θ′n), (7)

For each vehicle, let T1 be the Reeds-Shepp distance between
(xi, yi, θi) and (x′i, y′i, θ′i) and pRS

i (t) the unit-speed Reeds-
Shepp geodesic joining these poses, with t ∈ [0, Ti]. Fix a
coupling parameter 1 ≤ p ≤ ∞. Then the distance d on the
joint planning space between P and P ′ is given by ∥(Ti)∥p,
and we combine the trajectories into a multi-trajectory P (T )
with t ∈ [0, ∥(Ti)∥p] given by

pi(t) = pRS
i (t

Ti

∥(Ti)∥)p
) .

By Lemma II.9, P (T ) is then a unit-speed geodesic in the
joint space.

Remark III.4. For p = ∞, the distance can be equivalently
expressed as

d∞(a, b) =min . Time(P ), (8)

where Time(P ) is the time necessary to complete the multi-
trajectory P and the minimum is taken over all multi-
trajectories P joining a to b, subject to the model’s constraints.

Remark III.5. Note also that at this stage of model devel-
opment, we have not specified Xfree, so that the vehicles do
not detect any collisions, including collisions with each other,
and may pass through each other. This allows us to obtain the
optimal multi-trajectories P (t) explicitly and will be rectified
when we choose Xfree to avoid collisions below.

Next, we equip our search space with a measure, search
space, and random variable. The natural measure for the
Reeds-Shepp vehicle happens to be the Lebesgue measure
of R3, so the multi-vehicle space is again equipped with
the Lebesgue measure on R3n. The resulting metric-measure-
space is Q-Ahlfors-regular on small scales with dimension
Q = 4n, since the individual vehicle’s configuration space is
Qi-Ahlfors-regular on small scales with Qi = 4. We restrict
our attention to a rectangular search region Xrand = [0,W ]3n,
and give it a random variable Random by combining 3n-many
copies of a uniform random variable on [0,W ].

In building Xfree, we avoid three types of collisions: (i)
inter-vehicle collisions, (ii) collisions by individual vehicles
with environmental obstacles, and (iii) trajectories that allow
an individual vehicle to leave the model’s region (note that
the trajectories are non-linear so this is not automatic). For
collision-avoidance purposes, we model the vehicles as a union
of two (Euclidean) disks of radius r centered at the coordinates
Fi = (xi, yi) and Ri = (xi, yi) − 1.5r(cos(θi), sin(θi)). Inter-
vehicle collisions are prohibited by restricting the Euclidean
distance between any pair of disks i ≠ j:

d(Fi, Fj) ≥ 2r, d(Fi,Rj) ≥ 2r,
d(Ri, Fj) ≥ 2r, d(Ri,Rj) ≥ 2r.

For purposes of the implementation, type 2 and type 3
constraints are replaced with a list of edges Ej that may not
be touched by any vehicle:

d((xi, yi),Ej) ≥ r,
d((xi − 1.5r cos(θi), yi − 1.5r sin(θi)),Ej) ≥ r.

where the Euclidean distance to the edge is computed as the
minimum of the distance to the endpoints of Ej and the
distance to the perpendicular projection of (xi, yi) to the line
containing Ej .

3) Simulations: We now demonstrate specific applications
of the above search problem in the cases n = 2 and n = 3.

Note that precise joint motion planning for small numbers
of vehicles is required even when planning for larger numbers
of vehicles. In such settings, local conflicts in trajectories are
resolved by locally increasing the dimension of the problem
in the relevant region. In the local sub-dimensional expansion
problem, a limited number of vehicles enter a box with specific
poses and need to leave with desired poses while avoiding
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each other and other obstacles in the box. We assume that the
problem cannot be simplified any further by reassigning the
tasks or similar methods, and joint planning is needed.

Consider first the scenario shown in Figure 6, where two
cars are navigating a small region with obstacles: the blue car
is moving from the bottom-right corner of the region, with
starting pose [70, 20, π], to the upper-left corner of the region,
with ending pose [30, 80, 0]; while the red car is positioned in
the middle of the region with pose [50, 57.5, π/2], and needs
to return to the same pose.

(a) ℓ1 multi-trajectory (b) ℓ1 speed profile

(c) ℓ2 multi-trajectory (d) ℓ2 speed profile

(e) ℓ∞ multi-trajectory (f) ℓ∞ speed profile

Fig. 6: Trajectory planning for two car-like robots in a 100x100
cm2 region with obstacles using (a) ℓ1-norm, (c) ℓ2-norm, and
(d) ℓ∞-norm. We show the starting pose of each vehicle using
dashed lines and arrows, and the final pose using solid lines
and arrows. Static environmental obstacles are shown as gray
boxes. The speed of each vehicle over time is shown in the
corresponding figures (b), (d), (f).

We perform trajectory planning with respect to coupling pa-
rameters p = 1, p = 2, and p = ∞, corresponding (see Sections
II-C, III-A). The three planning tasks result in different multi-
trajectories, shown in (a,c,e) of Figure 6, each of which is
near-optimal for the respective metric.

The distinction between the three multi-trajectories is ap-

parent in the speed profiles1 seen in (b,d,f) in Figure 6. We
note that:

● the ℓ∞ planner provides the fastest multi-trajectory
(12.3s), since the ℓ∞ cost of the multi-trajectory corre-
sponds exactly to the time required to traverse it; while
the ℓ2 and ℓ1 multi-trajectories take longer to traverse
(12.9s and 15s, respectively),

● the ℓ1 planner provides the smallest total amount of
motion (152.4cm total), since the ℓ1 cost computes the
total travel distance for both vehicles; while the ℓ2 and
ℓ∞ multi-trajectories have longer total travel distance
(158.5cm and 158.6cm, respectively),

● the speeds of the two cars are highly matched in the ℓ∞

case, which prioritizes joint motion, and is highly varying
in the ℓ1 case, which prioritizes individual motion; with
ℓ2 motion providing a middle ground.

The simulations thus illustrate the fact that the p value in the
ℓp metric provides a way to choose the extent to calibrate the
planner to the designer’s preference in the tradeoff between
fastest-motion or shortest-total-motion multi-trajectories.

Next, Figure 7 shows the simulation results for three Reeds-
Shepp cars maneuvering in an environment with polygonal ob-
stacles with an ℓ2 cost function, which provides a compromise
between the shortest-time and shortest-total-length options for
multi-trajectory planning.

(a) Initial pose, t = 0 (b) Intermediate pose, t = 2s

(c) Intermediate pose, t = 5s (d) Final pose, t = 10s

Fig. 7: Trajectory planning for three car-like robots in a
100x100 cm2 area. The red robot returns to its initial pose,
while the blue and magenta robots switch sides.

1Note that the multi-trajectories are parametrized such that the faster car is
always moving at the maximum allowed speed, which does not correspond
to a unit-speed parametrization in the ℓp metric.



10

In this example, the blue and magenta cars move from initial
poses of [70,20, π] and [80,80,0], as shown in Figure 7a, to
their destinations at [30,80,0] and [70,20, π], respectively,
while the red gatekeeper car returns to its original pose
[50,57.5, π/2] as shown in Figure 7d. Static environmental
obstacles are shown as gray boxes.

We show two important intermediate poses for the fleet.
First, in Figure 7b, we see that the blue and magenta cars
have changed direction and started to move toward the center
of the region, while the red car has started to make space for
their trajectories. Next, in Figure 7c, the red car is out of the
way of the blue and red cars, and the blue and magenta cars
move through the opened passage at the same time. Finally, the
blue and magenta cars reach their destinations in Figure 7d,
and the red car returns to its initial pose at the center of the
region.

C. Fractal trajectory Planning
Our assumptions, while motivated by vehicle trajectory

planning, apply to a wide range of scenarios. We illustrate
this by implementing RRT* in the Sierpinski gasket S , a self-
similar fractal set in R2 of Hausdorff dimension Q = log 3

log 2
.

We start by describing the Sierpinski gasket, making use
of the notation and results of [49]. A common description of
S is as follows: start with a solid equilateral triangle, remove
the central triangle defined by the mid-points of the sides,
and repeat the process iteratively with the remaining three
triangles. To specify a point p ∈ S, we can specify a sequence
of triangles that it resides in, e.g., the bottom-left corner of
the top triangle is given by p = (0,1,1, . . .) where the 0
indicates that it is in the top triangle, and the 1s indicate
that under further subdivisions p remains in the left triangle.
Here, we use the convention that 0 is the top triangle, 1 is the
left one, and 2 is the right one. Note that infinite sequences
correspond to points, while finite sequences can be interpreted
as “triangular” subsets of S. As with real numbers, a point may
have multiple descriptions, e.g., (0,1) = (1,0). We can convert
a digit sequence (ai)∞i=1 into Cartesian coordinates by taking
(x, y) = ∑∞i=1 2−i corner(ai) where corner(0) = (1/2,

√
3/2),

corner(1) = (0,0), and corner(2) = (1,0).
Distances in S are computed abstractly by taking d(p, q) =

inf ℓ(γ) where the infimum is taken over all finite-length
trajectories γ ⊂ S ⊂ R2 joining p and q. One can construct
optimal trajectories explicitly as follows. Start by zooming
in and orienting S such that p is in the left triangle and
q is in the right triangle, i.e. after normalization we have
p = (1, p2, p3, . . .) and q = (2, q2, q3, . . .). While there are, in
some cases, as many as five optimal trajectories between p and
q, we construct a specific one as follows. One possibility is that
an optimal trajectory passes through the mid-point indexed by
(1,2) = (2,1). From here, it goes left towards p through the
vertices (1, p2, . . . , pi,2), and to the right towards q through
the vertices (2, q2, . . . , qi,1). Another possibility is that an
optimal trajectory passes through the higher vertices (1,0)
and (2,0), in which case we connect p to (1,0) as before
by replacing digits, then connect (1,0) to (2,0), and then
interpolate towards q as before. In our implementation, we
compute both of these trajectories and return the shorter one.

A random point in S can be selected by specifying a random
infinite digit sequence, at each stage choosing uniformly
between 0,1,2. The resulting random variable is uniformly
distributed with the measure µ that assigns each triangle of
depth size 3−n. Equivalently, we can select a random point in
the interval [0,1], extract its base-3 digits, and reinterpret the
sequence of digits as a point in S .

The resulting metric-measure space is Q-Ahlfors-regular at
small scales with Q = log 3

log 2
, which can be seen from the self-

similarity of the space. The identification of any of the three
first-level triangles and the full space rescales the measure by
a factor 3 (since it is made up of three identical triangles) and
distances by a factor 2 (with the right choice of coordinates,
the mapping is given by (x, y) ↦ (2x,2y) which doubles
lengths).

We conclude that any search problem on S implementing
the above data satisfies Assumptions 1 and obtains the con-
vergence guarantees of Theorem II.1 with Q = log 3

log 2
. We show

the results of two RRT* searches in S in Figure 8.

Fig. 8: RRT* search tree (blue) and near-optimal trajectories
(red) in the Sierpinski gasket S , after 200 iterations. The
top figure shows unobstructed trajectory-finding. The bottom
figure’s grey region indexed by (2,0) was obstructed.

IV. SUMMARY AND CONCLUSIONS

We provided a new, broader framework for trajectory plan-
ning using sampling-based algorithms, including PRM*, RRT,
and RRT*, and proved the probabilistic completeness and
asymptotic optimality of these algorithms under our broader
assumptions. We then showed that multiple systems can be
combined into a single larger system using a coupling parame-
ter p, in a way that maintains compatibility with the framework
and the resulting convergence guarantees.
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We demonstrated the framework in three settings. First, we
worked with simple linear robots, illustrating the effect of the
coupling parameter p on the motion planning problem results,
including some undesirable side-effects of the choices p = 1
and p = ∞. We then applied the algorithms to the task of multi-
trajectory planning for multiple car-like robots by combining
several Reeds-Shepp vehicle state spaces into a single metric
space using an ℓp distance. We showed that the resulting multi-
trajectories depended on the parameter p, providing either
lowest-total-length multi-trajectories for small values of p or
fastest-time multi-trajectories for high values of p, with p = 2
providing convenient intermediate parameter. We finished with
an illustration of our framework in the highly non-Euclidean
setting of the Sierpinski gasket fractal.

The next step in the development of the method is to extend
the framework to allow the minimization of costs that are not
given by lengths of trajectories. As was illustrated in Figure
3, motion planning is very sensitive to the particular choices
of data, including the specific choice of Extend function,
and it is unclear at the moment what conditions on the cost
functional are sufficient to guarantee convergence.
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