
EDITORIAL MESSAGE

Special Track on Object-Oriented Languages and Systems
Davide Ancona, University of Genova, Italy

Introduction

Object-oriented programming (OOP) has become the mainstream programming paradigm for
developing complex software systems in most application domains.

However, existing OO languages and platforms need to evolve to meet the continuous demand
for new abstractions, features, and tools able to reduce the time, effort, and cost of creating
object-oriented software systems, and improving their performance, quality and usability.

To this aim, the Special Track on Object Oriented Programming Languages and Systems (OOPS,
http://oops.disi.unige.it) is seeking for research advances bringing benefits in all those typical
aspects of software development, such as modeling, prototyping, design, implementation,
concurrency and distribution, code generation, analysis, verification, testing, debugging,
evaluation, deployment, maintenance, reuse, and software evolution and adaptation.

Statistical Information
In response to the call for papers, 19 papers were submitted to the track.

All papers were referred by a high quality program committee consisting of the following 15 academic and
industrial researchers.

67 review reports were produced with three or four reviews per paper. I am highly grateful to the
members of the program committee and to the authors for submitting their contributions. Without
their valuable support, it would not have been possible to schedule such a high quality program
for the track.
Based on the reviewers’ reports, the general ACM SAC guidelines for acceptance and rejection
of submissions, and the unavoidable time and space constraints associated with any conference,
it was possible to select only five full papers for presentation at the track (acceptance rate 26%).

- Davide Ancona, University of Genova, Italy

- Erik Ernst, Google

- Alexandre Bergel, University of Chile, Chile

- Robert Hirschfeld, Hasso-Plattner-Institut, University of
 Potsdam, Germany

- Walter Binder, University of Lugano, Switzerland

- Marieke Huisman, University of Twente, The Netherlands

- Carl Friedrich Bolz, King's College London, UK

- Jaakko Järvi, Texas A&M University, USA

- Shigeru Chiba, University of Tokyo, Japan

- Doug Lea, Suny Oswego, USA

- Dave Clarke, Katholieke Universiteit Leuven/Uppsala
 University, Belgium/Sweden

- Pavel Parizek, Charles University in Prague, Czech Republic

- João Costa Seco, Universidade Nova de Lisboa, Portugal

- Marco Servetto, Victoria University of Wellington, New
 Zealand

- Wolfgang De Meuter, Vrije Universiteit Brussel, Belgium

Summary of Accepted Papers

The Omission Finder for Debugging What-Should-Have-Happened Bugs in Object-Oriented Programs.
Kouhei Sakurai and Hidehiko Masuhara

This paper proposes a novel feature called the omission finder for trace-based debuggers. This feature
correlates points-to analysis results with an execution history to show operations that could have been but
actually were not performed on a specified instance if the program behaved differently.

Adaptive Just-in-time Value Class Optimization: Transparent Data Structure Inlining for Fast
Execution. Tobias Pape, Carl Friedrich Bolz and Robert Hirschfeld
This paper presents a technique to detect and compress commonly occurring patterns of value
class usage to improve memory usage and performance.

Reifying the Reflectogram -- Towards Explicit Control for Implicit Reflection. Nick Papoulias,
Marcus Denker, Stephane Ducasse and Luc Fabresse
This paper presents five dimensions of meta-level control from related literature that try to remedy problems
concerned with reflective facilities in OO languages, such as computational overhead, the possibility of meta-
recursion and an unclean separation of concerns between base and meta-level.

Composable and Hygienic Typed Syntax Macros. Cyrus Omar, Chenglong Wang and Jonathan
Aldrich
This papers focuses on type-specific languages (TSLs) for well-behaved and unambiguously composed
syntax extension mechanisms. TSLs are supplemented with typed syntax macros, which are explicitly
invoked to give meaning to delimited segments of arbitrary syntax, at both the level of terms and types.

The Safety of Dynamic Mixin Composition. Eden Burton and Emil Sekerinski
This paper presents a methodology for developing mixins that can be composed without negatively affecting
their base object’s behaviour.

	Introduction
	Statistical Information
	Summary of Accepted Papers

