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Abstract

The Compute Unified Device Architecture (CUDA) is a programming model
used for exploring the advantages of graphics processing unit (GPU) devices,
through parallelization and specialized functions and features. Nonethe-
less, as in other development platforms, errors may occur, due to tradi-
tional software creation processes, which may even compromise the execu-
tion of an entire system. In order to address such a problem, ESBMC-
GPU was developed, as an extension to the Efficient SMT-Based Context-
Bounded Model Checker (ESBMC). In summary, ESBMC processes input
code through ESBMC-GPU and an abstract representation of the standard
CUDA libraries, with the goal of checking a set of desired properties. Exper-
imental results showed that ESBMC-GPU was able to correctly verify 85%
of the chosen benchmarks and it also overcame other existing GPU verifiers
regarding the verification of data-race conditions, array out-of-bounds vio-
lations, assertive statements, pointer safety, and the use of specific CUDA
features.

Keywords: GPU verification, formal verification, model checking, CUDA

1. Introduction1

The Compute Unified Device Architecture (CUDA) is a development2

framework that makes use of the architecture and processing power of graph-3

ics processing units (GPUs) [1]. Indeed, CUDA is also an application pro-4

gramming interface (API), through which a GPU’s parallelization scheme5

and tools can be accessed, with the goal of executing kernels [1]. Nonethe-6

less, source code is still written by human programmers, which may result in7
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arithmetic overflow, division by zero, and other violation types. In addition,8

given that CUDA allows parallelization, problems related to the latter can9

also occur, due to thread scheduling [2].10

In order to address the mentioned issues, an extension to the Efficient11

SMT-Based Context-Bounded Model Checker (ESBMC) [3] was developed,12

named as ESBMC-GPU [4, 5, 6], with the goal of verifying CUDA-based pro-13

grams (available online at http://esbmc.org/gpu/). ESBMC-GPU consists14

of an extension for parsing CUDA source code (i.e., a front-end to ESBMC)15

and a CUDA operational model (COM), which is an abstract representation16

of the standard CUDA libraries (i.e., the native API) that conservatively17

approximates their semantics.18

A distinct feature of ESBMC-GPU, when compared with other approaches19

[2, 7, 8, 9], is the use of Bounded Model Checking (BMC) [10] allied to20

Satisfiability Modulo Theories (SMT) [11], with explicit state-space explo-21

ration [12, 3]. In summary, concurrency problems are tackled, up to a given22

loop/recursion unwinding and context bound, while each interleaving itself23

is symbolically handled; however, even with BMC, state-space exploration24

may become a very time-consuming task, which is alleviated through state25

hashing and Monotonic Partial Order Reduction (MPOR) [13]. As a conse-26

quence, redundant interleavings are eliminated, without ignoring a program’s27

behavior.28

Finally, existing GPU verifiers often ignore some aspects related to mem-29

ory leak, data transfer, and overflow, which are normally present in CUDA30

programs. The proposed approach, in turn, explicitly addresses them, through31

an accurate checking procedure, which even considers data exchange between32

main program and kernel. Obviously, it results in higher verification times,33

but more errors can then be identified and later corrected, in another devel-34

opment cycle.35

36

Existing GPU Verifiers. In addition to ESBMC-GPU, there are other37

tools able to verify CUDA programs and each one of them uses its own ap-38

proach and targets specific property violations. For instance, GPUVerify [2] is39

based on synchronous, delayed visibility semantics, which focuses on detect-40

ing data race and barrier divergence, while reducing kernel verification proce-41

dures for the analysis of sequential programs. GPU+KLEE (GKLEE) [8], in42

turn, is a concrete plus symbolic execution tool, which considers both kernels43

and main functions, while checking deadlocks, memory coalescing, data race,44

warp divergence, and compilation level issues. In addition, Concurrency In-45

termediate Verification Language (CIVL) [9], a framework for static analysis46

and concurrent program verification, uses abstract syntax tree and partial47

order reduction to detect user-specified assertions, deadlocks, memory leaks,48

invalid pointer dereference, array out-of-bounds, and division by zero.49
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In fact, ESBMC-GPU differs from the aforementioned approaches due to50

its combination of techniques to prune the state-space exploration (i.e., two-51

thread analysis, state hashing, and MPOR) with COM, which demonstrated52

effectiveness in the verification of data-race conditions, array out-of-bounds53

violations, assertive statements, pointer safety, and the use of specific CUDA54

features (cf. Section 5).55

2. Architecture and Implementation56

ESBMC-GPU is built on top of ESBMC, which is an open-source context-57

bounded model checker based on SMT solvers for ANSI-C/C++ programs [12,58

3, 14], and adds four essential models, as described below.59
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Figure 1: Overview of ESBMC-GPU’s architecture.

CUDA Operational Model. An operational model for CUDA libraries60

that provides support to CUDA functionalities, in conjunction with ESBMC,61

is shown in Fig. 1. Such an approach, which was previously attempted in the62

verification of C++ programs [14, 15, 16, 17], consists of an abstract repre-63

sentation that reliably approximates the CUDA library’s semantics; however,64

COM incorporates pre- and post-conditions into verification processes, which65

enables ESBMC-GPU to verify specific properties (cf. Section 3). Indeed,66

COM allows the necessary control for performing code analysis, where both67

CUDA operation and knowledge for model checking its properties are avail-68

able. Importantly, COM encloses a representation for the Runtime, Math,69

and cuRAND APIs, which are important CUDA libraries widely used in real70

applications [1]. In particular, with respect to the number of methods/func-71

tions, COM covers 53%, 31%, and 17% of Runtime, Math, and cuRAND72

APIs, respectively.73

ESBMC was designed to handle multi-threaded software, through the use74

of an API called POSIX – ISO/IEC 9945 [18]. In order to support the veri-75

fication of CUDA kernels, COM applies code transformations to kernel calls76

using ESBMC’s intrinsic functions [6]. In particular, thread/block configu-77

rations in a CUDA kernel call are used as parameters in such intrinsic func-78

tions, which are responsible for checking for preconditions, configuring block79
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and threads dimension, and translating GPU threads to POSIX ones. Thus,80

COM is able to support thread interleaving (to create execution paths) and81

dynamic creation of threads, in order to check data race and specific C/C++82

programming language failures (e.g., array out-of-bounds and pointer safety).83

ESBMC models the Pthreads API [12] to support thread synchronization,84

i.e., mutex locking operations and conditional waiting, and dynamic creation85

of threads, which makes that representation very similar to the official CUDA86

scheduler [6], in such a way that our multi-threading model approximates to87

that of GPU kernels. Therefore, COM is able to use such aspects present in88

ESBMC, in order to handle variables in different types of memory and also89

in inter-warp communication.90

The ESBMC’s memory model uses static pointer analysis, padding in91

structures, with the goal of making all fields align to word boundaries, mem-92

ory access alignment rules enforcement, and byte array allocation, when the93

type of memory allocation is unclear [19]. Since ESBMC-GPU is built on top94

of ESBMC, its memory model for the different types of memory is complete.95

96

Two-threads Analysis. Similarly to GPUVerify [2] and PUG [7], ESBMC-97

GPU also reduces the number of threads (to only two elements), during the98

verification of CUDA programs, by considering a NVIDIA Fermi GPU archi-99

tecture [1], in order to improve verification time and avoid the state-space100

explosion problem. In CUDA programs, whilst threads execute the same101

parametrized kernel, only two of them are necessary for conflict check. Thus,102

such an analysis ensures that errors (e.g., data races) detected between two103

threads, in a given subgroup and due to unsynchronized accesses to shared104

variables, are enough to justify a property violation [6].105

106

State Hashing. ESBMC-GPU applies state hashing to further eliminate107

redundant interleavings and also reduce the state space, based on SHA256108

hashes [20]. In particular, its symbolic state hashing approach computes109

a summary for a particular state that has already been explored and then110

indexes the resulting set, in order to reduce the generation of redundant111

states. Given any state computed during the symbolic execution of a specific112

CUDA kernel, ESBMC-GPU simply summarizes it and efficiently determines113

whether it has been explored before or not, along a different computation114

path. When this behavior is confirmed, which happens during the ESBMC-115

GPU’s symbolic-execution procedure, then the current computation path116

does not need to be further explored in the associated reachability tree (RT).117

This way, if ESBMC-GPU reaches such a state, i.e., where a context switch118

can be taken (e.g., before a global variable or synchronization primitive) and119

all shared/local variables and program counters are similar to another ex-120

plored node, then ESBMC-GPU just considers that an identical node to be121
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further explored, since reachability subtrees associated to them are also sim-122

ilar [6, 21].123

124

Monotonic Partial Order Reduction. MPOR is used to reduce the125

number of thread interleavings, by classifying transitions inside a program126

as dependent or independent. As a consequence, it is possible to determine127

whether interleaving pairs always lead to the same state and then remove128

duplicates in a RT, without ignoring any program’s behavior [21].129

3. Functionalities130

COM models CUDA libraries and provides a multi-threading model much131

similar to the CUDA scheduler (cf. Section 2). Moreover, it is able to simu-132

late CUDA’s program structure and memory, being susceptible of handling133

CUDA programs. Thus, through the integration of COM into ESBMC (i.e.,134

ESBMC-GPU), one is able to analyze CUDA programs and verify the fol-135

lowing properties:136

Data race. ESBMC-GPU checks data race conditions, in order to137

detect if multiple threads perform unsynchronized access to the same138

memory locations;139

Pointer safety. ESBMC-GPU also ensures that (i) a pointer offset140

does not exceed object bounds and (ii) a pointer is neither NULL nor141

invalid;142

Array bounds. ESBMC-GPU performs array-bound checking, in or-143

der to ensure that any variable, used as an array index, is within known144

bounds;145

Arithmetic under- and overflow. ESBMC-GPU checks whether a146

sum or product exceeds the memory limits that a variable can han-147

dle, which can cause an error capable of spreading through the entire148

execution path;149

Division by zero. ESBMC-GPU analyzes whether denominators, in150

arithmetic expressions, lead to divisions by zero;151

User-specified assertions. ESBMC-GPU considers all assertions152

specified by users, which is essential to a thorough verification process,153

as some specific possible violations must be explicitly pointed out.154

In order to check the aforementioned properties, ESBMC-GPU explicitly155

explores the possible interleavings (up to the given context bound) and calls156
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the single-threaded BMC procedure on each one, whenever it reaches a RT157

leaf node. Then, the mentioned procedure will stop if it finds a bug or when158

all possible RT interleavings have been systematically explored [6]. Further-159

more, ESBMC-GPU has the following additional command-line options:160

--no-assertions: to ignore assertions;161

--no-bounds-check: to skip array bounds check;162

--no-div-by-zero-check: to skip division by zero check;163

--no-pointer-check: to skip pointer check;164

--memory-leak-check: to enable memory leak check;165

--overflow-check: to enable arithmetic under- and overflow check;166

--deadlock-check: to enable global/local deadlock check with mutex;167

--data-races-check: to enable data races check;168

--lock-order-check: to enable for lock acquisition ordering check;169

--atomicity-check: to enable atomicity check at visible assignments;170

--force-malloc-success: to consider that there is always enough171

memory available in the device;172

Thus, ESBMC-GPU is able to check CUDA programs for: deadlock, asser-173

tion, lock acquisition error, division by zero, pointer safety, arithmetic over-174

flow, and/or out-of-bounds array violation. The precision and performance175

of ESBMC-GPU will be further discussed in Section 5.176

4. Illustrative Example177

In this part, ESBMC-GPU usage is demonstrated, by using the CUDA178

program shown in Fig. 2. First of all, users must replace the default ker-179

nel call (line 16) by an intrinsic function of ESBMC-GPU (line 17). Then,180

the resulting CUDA program can be passed to the command-line version of181

ESBMC-GPU, as follows:182

esbmc-gpu <file>.cu --unwind <k> --context-switch <c>183

--state-hashing -I <path-to-CUDA-OM>,184
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1 #include <...>
2 #define BLOCKS 1
3 #define THREADS 2
4
5 global void ke rne l ( int ∗A) {
6 A[ threadIdx . x + 1 ] = threadIdx . x ;
7 }
8
9 int main (){

10 int ∗a ;
11 int ∗dev a ;
12 int s i z e = THREADS∗ s izeof ( int ) ;
13 a = ( int ∗) mal loc ( s i z e ) ;
14 cudaMalloc ( ( void∗∗)&dev a , s i z e ) ;
15 for ( int i = 0 ; i < THREADS; i++)
16 a [ i ] = 0 ;
17 cudaMemcpy( dev a , a , s i z e , cudaMemcpyHostToDevice ) ;
18 // ke rne l<<<BLOCKS,THREADS>>>(dev a ) ;
19 ESBMC verify kernel ( kerne l , BLOCKS, THREADS, dev a ) ;
20 cudaMemcpy(a , dev a , s i z e , cudaMemcpyDeviceToHost ) ;
21 for ( int i = 0 ; i < THREADS; i++)
22 a s s e r t ( a [ i ]== i ) ;
23 cudaFree ( dev a ) ;
24 f r e e ( a ) ;
25 return 0 ;
26 }

Figure 2: Illustrative CUDA code example.

where <file>.cu is the CUDA program, <k> is the maximum loop un-185

rolling, <c> is a context-switch bound, --state-hashing reduces redundant186

interleavings, and <path-to- CUDA-OM> is the location of the COM library.187

In the mentioned example, ESBMC-GPU detects an array out-of-bounds188

violation. Indeed, this CUDA-based program retrieves a memory region that189

has not been previously allocated, i.e., when threadIdx.x = 1, the program190

tries to access a[2]. Importantly, the cudaMalloc() function’s operational191

model has a precondition that checks if the memory size to be allocated is192

greater than zero. In addition, an assertion checks if the result matches to the193

expected postcondition (line 22). The verification of this program through194

ESBMC-GPU produces 54 successful and 3 failed interleavings. For instance,195

one possible failed interleaving is represented by the threads executions t0 :196

a[1] = 0; t1 : a[2] = 1, where a[2] = 1 represents an incorrect access to the197

array index a. It is worth noticing that CIVL, ESBMC-GPU, and GKLEE198

are also able to detect this array out-of-bounds violation, but GPUVerify199

fails, as it reports a true incorrect result (i.e., a missed bug).200

5. Experimental Evaluation201

In order to evaluate ESBMC-GPU’s precision and performance, a bench-202

mark suite was created, which comprises 20 CUDA kernels from NVIDIA203

GPU Computing SDK v2.0 [22], 20 CUDA kernels from Microsoft C++204

AMP Sample Projects [23], and 114 CUDA-based programs that explore a205

wide range of CUDA functionalities. In summary, the chosen suite contains206

47.4% bug-free and 52.6% buggy benchmarks, which were organized into 5207
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sets, in order to simplify our discussion, according to the properties it tackles:208

array bounds (5), assertive statements (7), data-race conditions (17), pointer209

safety (7), and other specific CUDA functionalities (118). The latter includes210

device function calls, general CUDA functions (e.g., cudaMemcpy), gen-211

eral libraries in CUDA (e.g., curand.h), type modifiers (e.g., unsigned), type212

definitions, and intrinsic CUDA variables (e.g., uint4).213

The present experiments answer two research questions: (i) How accu-214

rate is ESBMC-GPU when verifying the chosen benchmarks? (ii) How does215

ESBMC-GPU’s performance compare to other existing verifiers? In order to216

answer both research questions, all benchmarks were verified with 4 GPU217

verifiers (ESBMC-GPU v2.0, GKLEE v2012, GPUVerify v1811, and CIVL218

v1.7.1), on an otherwise idle Intel Core i7-4790 CPU 3.60 GHz, with 16 GB219

of RAM, running Ubuntu 14.04 OS. Importantly, all presented execution220

times are actually CPU times, i.e., only the elapsed time periods spent in221

the allocated CPUs, which was measured with the times system call (POSIX222

system). An overview of the experimental results is shown in Fig. 3, where223

True represents bug-free benchmarks, False represents buggy benchmarks,224

Not supported represents benchmarks that could not be verified, Correct rep-225

resents the percentage of benchmarks correctly verified, and Incorrect rep-226

resents the percentage of benchmarks incorrectly verified (i.e., a verification227

tool reports an unexpected result).228
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Figure 3: Experimental evaluation of ESBMC-GPU against other verifiers.

As one may notice, the present experimental results show that ESBMC-229

GPU reached a successful verification rate of approximately 85%, while GK-230

LEE, GPUVerify, and CIVL reported 72%, 50%, and 35%, respectively. More231

precisely, ESBMC-GPU correctly detected all data-race conditions present232

in the benchmarks, which is due to the COM’s multi-threading model that233

under-approximates the GPU kernels. It also outperformed GKLEE, GPU-234
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Verify, and CIVL, in the verification of array out-of-bounds violations (100%),235

assertive statements (86%), and pointer safety (72%), which is related to236

ESBMC’s capacity to handle arrays and pointers [3]. Furthermore, ESBMC-237

GPU presented the highest coverage rate for specific CUDA functionalities238

(82%) that is once again due to COM, which incorporates specific pre- and239

post-conditions into its verification processes.240

241

Limitations. ESBMC-GPU was unable to correctly verify 24 benchmarks,242

which are related to constant memory access (2%), CUDA’s specific libraries243

(e.g., curand.h) (4.5%), and the use of pointers to functions, structures, and244

char type variables, when passed as kernel call arguments (4.5%). In addi-245

tion, it only reported 3% of incorrect true, which are due to NULL pointer246

accesses, and 1% of incorrect false results, due to partial coverage of the cu-247

daMalloc function for copies over float variables. The remaining verifiers248

(i.e., GKLEE, GPUVerify, and CIVL) were unable to detect mostly data-249

race conditions, assertive statements, and array out-of-bounds violations.250

In addition, they lack support of CUDA specific features, e.g., GPUVer-251

ify does not support the use of the memset function nor function point-252

ers and CIVL does not support several CUDA features, such as atomic253

functions, cudaThreadSynchronize, threadIdx, curand functions, dim3,254

math functions, uint4, constant variables, among others.255

256

Performance. MPOR resulted in a performance improvement of approx-257

imately 80%, by decreasing the verification time from 16 to 3 hours, while258

the two-threads analysis further reduced that to 789.6 sec. Although such259

techniques have considerably improved the ESBMC-GPU’s performance, it260

still takes longer than the other evaluated tools: GPUVerify (98.36 sec), GK-261

LEE (105.18 sec), and CIVL (708.52 sec). On the one hand, this is due to262

thread interleavings, which combine symbolic model checking with explicit263

state-space exploration [6]. On the other hand, ESBMC-GPU still presents264

the highest accuracy, with less than 6 seconds per benchmark.265

266

Availability of Data and Tools. The performed experiments are based on267

a set of publicly available benchmarks. All benchmarks, tools, and results,268

associated with the current evaluation, are available at www.esbmc.org/gpu/.269

6. Conclusions and Future Work270

ESBMC-GPU marks the first application of an SMT-based context-BMC271

tool that recognizes CUDA directives [6]. Besides, it also applies MPOR,272

two-thread analysis, and state hashing, in order to further simplify verifi-273

cation models and provides fewer incorrect results, compared with GKLEE,274
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GPUVerify, and CIVL. Indeed, it presents improved ability to detect array275

out-of-bounds and data race violations.276

Future work aims to extend ESBMC-GPU, in order to fully support the277

verification of CUDA (parallel) streams and events [1]. In addition, more278

models of libraries will be integrated into COM, with the goal of increas-279

ing the coverage of CUDA’s API such as CUDA Driver API, NPP, and cu-280

SOLVER. Finally, we also aim to implement further techniques (e.g., invari-281

ant inference via abstract interpretation [24]), in order to prune the state-282

space exploration, by taking into account GPU symmetry.283
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Required Metadata393

Current executable software version394

Ancillary data table required for sub version of the executable software.395

Nr. (executable) Software metadata
description

Please fill in this column

S1 Current software version 2.0
S2 Permanent link to executables of

this version
http://esbmc.org/gpu/

S3 Legal Software License Apache v2.0
S4 Computing Operating System Ubuntu Linux OS
S5 Installation requirements & depen-

dencies
GNU Libtool; Automake; Flex & Bi-
son; Boost C++ Libraries; Multi-
precision arithmetic library devel-
opers tools (libgmp3-dev package);
SSL development libraries (libssl-
dev package); CLang 3.8; LLDB 3.8;
GNU C++ compiler (multilib files);
libc6 and libc6-dev packages

S6 Link to user manual http://esbmc.org/gpu/

S7 Support email for questions lucas.cordeiro@cs.ox.ac.uk

Table 1: Software metadata (optional)
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Current code version396

Ancillary data table required for subversion of the codebase.397

Nr. Code metadata description Please fill in this column
C1 Current code version v2.0
C2 Permanent link to code/repository

used for this code version
https://github.com/ssvlab/esb

mc-gpu

C3 Legal Code License GNU Public License
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
C++

C6 Compilation requirements, operat-
ing environments & dependencies

GNU Libtool; Automake; Flex & Bi-
son; Boost C++ Libraries; Multi-
precision arithmetic library devel-
opers tools (libgmp3-dev package);
SSL development libraries (libssl-
dev package); CLang 3.8; LLDB 3.8;
GNU C++ compiler (multilib files);
libc6 and libc6-dev packages

C7 Link to developer documentation http://esbmc.org/gpu

C8 Support email for questions lucas.cordeiro@cs.ox.ac.uk

Table 2: Code metadata (mandatory)
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