
HAL Id: hal-01701593
https://hal.univ-brest.fr/hal-01701593

Submitted on 6 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A feature-oriented model-driven engineering approach
for the early validation of feature-based applications

Glenn Cavarlé, Alain Plantec, Steven Costiou, Vincent Ribaud

To cite this version:
Glenn Cavarlé, Alain Plantec, Steven Costiou, Vincent Ribaud. A feature-oriented model-driven
engineering approach for the early validation of feature-based applications. Science of Computer
Programming, 2018, 161, pp.18 - 33. �10.1016/j.scico.2018.01.001�. �hal-01701593�

https://hal.univ-brest.fr/hal-01701593
https://hal.archives-ouvertes.fr


A feature-oriented model-driven engineering approach for the
early validation of feature-based applications

Glenn Cavarlé a,b,∗, Alain Plantec a,∗, Steven Costiou a, Vincent Ribaud a

a Univ. Bretagne-Occidentale, UMR CNRS 6285, Lab-STICC, F-29200 Brest, France
b Libre Informatique, 29000 Quimper, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 January 2017
Received in revised form 23 December 2017
Accepted 1 January 2018
Available online xxxx

Keywords:
Feature-oriented development
Early validation
Model driven engineering
Smalltalk

The software industry has to offer increasingly individualized software for a large number
of platforms. In a constantly evolving technical context, the appropriateness and the
profitableness of a software has to be ensured earlier, before most of the costs have
been incurred and before most of the risks have been taken. Feature-Oriented Model-
Driven Development (FOMDD) is a promising paradigm to tackle the issue of developing
software variants when multiple platforms are targeted. However, because of its model-
driven fundament, FOMDD suffers from limited capabilities regarding model execution and
early validation. In this paper, we present CrossFabrik, an approach for the design and
the early functional validation of feature-based applications. This approach allows the live
debugging and editing of the underlying models during a simulation without being forced
to stop and restart a validation process. Such an approach relies on the reflective capability
of the development environment. An implementation of our approach within Pharo is also
presented.

1. Introduction

In recent years, the software industry has faced many challenges as a result of the growing influence of mobile plat-
forms. While the cost of purchasing applications decreases, the cost and the complexity of development increases. Software 
industry has to deal with emerging user’s needs, with new business models and with the fragmentation of platforms. Since 
software platforms are moving toward fragmentation rather than unification and with the growing differences between 
platform features, dealing with multiple platforms is one of the most costly aspects in software development [1]. More-
over, the software industry has to offer increasingly individualized features to react to changing markets in order to keep 
a competitive advantage. This raises the question of software reuse across individualized software and across platforms. 
Thus, in a constantly evolving technological context and market, it becomes riskier to invest in software development. The 
appropriateness and the profitableness of a proposed software has to be ensured earlier, before most of the costs have been 
incurred and before most of the risks have been taken.

A common practice in software industry is to treat separately multiple variants of the same software to reach several 
market segments as well as to cope with the heterogeneity of platforms. As an example, a software could be distributed in 
two different versions: a first version with a restricted set of features which is made available for free and a full-featured 
paid version. To maximize the number of reachable end-users, each version is proposed on several devices (i.e., on mobile 

* Corresponding authors.
E-mail addresses: glenn.cavarle@univ-brest.fr (G. Cavarlé), alain.plantec@univ-brest.fr (A. Plantec).
https://doi.org/10.1016/j.scico.2018.01.001
.

mailto:glenn.cavarle@univ-brest.fr
mailto:alain.plantec@univ-brest.fr
https://doi.org/10.1016/j.scico.2018.01.001


and on desktop), taking into account the main operating systems for each device. Following this common practice, each 
version is treated for each platform separately to benefit from native look and feel, features and performances. Finally, each 
software is manually deployed and validated to ensure that the functionality is preserved across the multiple platforms and 
devices. In this example, making available a free and a paid version of a software on multiple platforms involves the actual 
development of at least twelve software variants to reach most of the desktop users (i.e., MS Windows, macOS and GNU 
Linux users) and most of the mobile users (i.e., WindowsPhone, iOS and Android users). This common practice have been 
criticized for a lack of software reuse and early feedback. Even if all software variants share a common conceptual architec-
ture and a set of common features, treating them separately makes it tedious the reuse of software artifacts across variants 
and increases the development and maintenance effort. Each targeted platform can impose its specific operating system, 
a particular development environment, the use of a dedicated programming language and the integration of specialized 
libraries. The validation process for each software variant arises close to the end of the development effort. This increases 
the risk of having developed the wrong product. Finally, it can increase the cost of a change. During this late validation 
phase, many bugs might be discovered. Moreover, some bugs might lead to a deep and costly redesign that might impact 
the other software variants already developed.

The Feature-Oriented Software Development (FOSD) [2] paradigm is an alternative to developing multiple software vari-
ants separately. FOSD aims at explicitly representing common parts and differences of a family of software systems with 
the goal of reusing software artifacts among the family members. From a set of features, several software variants can be 
produced by merging corresponding software artifacts. However, FOSD relies on a single platform-specific technology to re-
alize features. Software artifacts have to be implemented using the same programming language to be subsequently merged 
together. This constraint makes it difficult to tackle the development of software variants for different platforms.

The association between FOSD and Model-Driven Development (MDD) [3], also named Feature-Oriented Model-Driven 
Development (FOMDD) [4,5], allows the management of the variability even when multiple platforms are targeted. MDD is 
considered well suited to manage the fragmentation of platforms. Indeed, with MDD and especially with the Model-Driven 
Architecture (MDA) [6], a software can be designed in a platform-independent way and can be automatically refined to 
obtain platform-specific models from which source code can be generated. FOMDD approach benefits from both approaches. 
FOSD helps to define variants and MDD helps to implement software artifacts as platform-independent models. A well 
known approach for users and developers to assess what is really needed is to use a “working” system [7] but, even with 
FOSD or MDD, such a “working” system is available only close to the end of the development process, after most of the 
costs have been incurred and after most of the risks have already been taken.

In this paper, we propose a FOMDD approach associated with a dynamic modelling environment for the early design and 
the functional validation of software variants for multiple platforms. We propose an alternative to reduce the development 
risk by mean of software prototyping using FOMDD and software simulation within the development environment. With 
our approach, an even incomplete system can be run and tested early in the development cycle. A running system can be 
inspected and related models can be debugged live without being forced to stop or restart the execution.

We believe that model-driven prototyping can significantly help in defining the application scope, in assessing feasibility 
and in estimating efforts during early development activities [8]. By executing early and visualizing the software system to 
be built, developers and users can identify the true requirements and can detect problems in the early stages [9].

This paper is an extended version of a previous work [10] which was more focused on the synchronization process 
between models and the runnable artifacts. We extend our previous work by providing a larger overview of our approach in 
which the synchronization process takes place. In this paper, we describe with much more details the background concepts 
and how we extend the FOMDD approach to support the prototyping, the simulation and the debugging activities. Moreover, 
the technical aspects and the CrossFabrik implementation is also more precisely presented.

This paper makes three contributions. First, we propose a FOMDD approach to cope with the issues that arise when 
prototyping and validating software variants for multiple platforms. Second, we provide insights on how early validation 
can be achieved by means of simulation and live debugging of models. Finally, we show how the development environment 
can be adapted to bring together modelling and early validation activities. The remaining of this paper is organized as 
follows: Section 2 illustrates the approach with an example. Section 3 highlights and discusses the background concepts. 
Section 4 presents the overview of the proposed approach while Section 5 provides details about the design of CrossFabrik. 
Section 6 describes the implementation details of CrossFabrik using Pharo while Section 7 overviews the related work. 
Section 8 concludes the paper.

2. Illustrative example: the ContactApp software family

This section describes a simple application for managing contacts. This example is used throughout the rest of this paper
to illustrate the background concepts and our approach.

This application named ContactApp includes several features and can be summarized as follows. The entry point of the 
ContactApp is the login screen. The end-user has to be authenticated using a dedicated login service or an external provider 
like Twitter or Facebook. After the end-user has been authenticated, the ContactApp allows users to interact with contacts 
which are stored in a remote database. The end-user can list and edit his contacts and can quickly have access to his 
favourite contacts. Moreover, the end-user can send an SMS or an email, can make an audio or a video call and can also 
retrieve contacts around his current position.



Fig. 1. Example of mock-ups for the ContactApp mobile and desktop versions (from left to right).

The hypothetical company developing this application wants to provide two commercial versions: a free and a paid ver-
sion. The free version has limited features, it does not allow to login with external providers, to manage favourite contacts, 
to send SMS, to make video calls and to retrieve contacts around the current position.

According to the targeted market segment, this company wants to provide this application for mobile and desktop 
devices. The definition of the two previous versions is not sufficient to take into account the variability between devices 
(i.e., between the mobile and desktop variant of each version). As illustrated by the two mock-ups in Fig. 1, whatever 
the specific platform targeted, a desktop software diverges from a mobile software in the provided features and in the 
composition of the user-interface.

For example, the geolocation of the end-user in order to retrieve contacts around him is specifically useful for the mobile 
application but not for the desktop one. However, this feature has impacts on data model because it have to provide the 
mean to store the geolocation information, in this case the user-interface has to provide some specific menus and buttons, 
etc.

In the end, from the ContactApp specifications, four versions or variants of the same application have to be produced.

3. Background concepts

This section covers important concepts to understand the early validation in the context of feature-based applications.
Model-Driven Engineering and Feature-Oriented Software Development are two key approaches discussed in this section. Then, 
the concept of Feature-Oriented Model-Driven Development is introduced and explained.

3.1. Early validation

The validation process consists in evaluating software to ensure its conformity with respect to its expected use and the 
user requirements. Testing software and fixing bugs or design issues in the later stages of the development process or after 
the first deployment is time consuming. This often leads to an additional cost in terms of budget and planning. More than 
50% of the total cost of a software come from the testing and maintenance activities [11,12]. This is why it is important 
that validation activities be initiated very early in the development process. The more complex a system becomes, the more 
problematic the validation of the software is.

Thus, reducing the time allocated to correcting defects and validation is an important challenge answered by early 
validation. According to Boehm et al. [13], one of the main methods for the reduction of software defects is the ability to 
detect problems in the design phases. This article speaks of a cost 100 times higher for a correction made after the first 
delivery compared to a correction made upstream. This observation encourages to invest and focus on ways to improve the 
validation process in the early design stages, upstream of the development. In addition, this observation encourages the 
practices of prototyping and simulation in order to avoid or to limit the additional and unexpected downstream cost.

Applying early validation to our illustrative example would imply to be able to prototype, simulate and assess the four 
ContactApp variants before developing them in platform-specific technologies.

3.2. Model-driven engineering

With the Model-Driven Engineering (MDE) [3,14] paradigm, a program is represented using models. A model captures 
particular details of a program’s design. Several models can be used together to specify multiple aspects of a system with dif-
ferent levels of details. The Model-Driven Architecture (MDA) [6] is a particular approach that introduces a clear separation 



Fig. 2. The SPL approach.

Fig. 3. Extract of the ContactApp feature model (FMapp ).

between the business logic and the implementation details. It aims at developing a set of models, linked by transforma-
tions. These transformations allow mainly to start from a Platform Independent-Model (PIM) which is refined into several 
Platform-Specific Models (PSM), according to the platform-specific transformation rules. A PSM represents the concrete de-
sign and the implementation details of a system regarding a given platform. Hence, a model is an abstraction of a system 
from which it is possible to reason, communicate and automate part of the development process using model transformation 
and code generation.

Based on our illustrative example, MDE can solve the issue in managing desktop and mobile software variants by foster-
ing common models from which platform-specific source code will be generated. However, MDE does not provide the mean 
to describe which features have to be assembled together in order to produce a customized product (e.g. product with or 
without the geolocation feature).

3.3. Feature-oriented software development

The Feature-Oriented Software Development (FOSD) [2,15] paradigm comes from the Software Product Line Engineering 
(SPLE) [16] practices and promotes the application of the feature concept to analyze, design and implement software sys-
tems. As depicted in Fig. 2, the FOSD process is built around a Feature Model (FM) [17,18] and can be summarized in two 
phases: (i) the domain design and implementation and (ii) the product configuration and generation.

A FM is a logical presentation of the common and variable features for a set of software variants, also named products. 
A FM is represented as a tree of named nodes organized using a generalization/specialization relationship. In a FM, some 
constraints can be specified on a feature individually and between several features.

The domain design and implementation phase consists in defining the FM and specifying how each feature is imple-
mented. Implementing features involves developing software artifacts, also named core assets. Such a software artifact is 
generally developed using a general-purpose programming language. The whole set of core assets is called the core asset 
base.

During the product configuration and generation phase, features are selected by the designer to form the desired prod-
ucts. Such a features selection conforms to the constraints and relationships defined in the FM. This set of products is named 
a product family. Finally, the product derivation takes place. The product derivation is the process of constructing a particular 
software from a set of core assets. The complete source code of a software is generated for each product by composing and 
merging core assets which are bound to the product features.

Back to our illustrative example, Fig. 3 shows an excerpt of a feature model used to present the variations in the Contact-
App software family. This feature model is called FMapp . The FMapp comprises product features and process features [5]. By 
product features we mean those that characterize the product as such, whereas process features refer to features which drive 
the feature composition during the product derivation. Features related to the targeted device are such process features.

Constraints can be specified between features. For example in Fig. 3, some features are marked as Optional or Mandatory. 
This means that each ContactApp variant will have the Authentication, the Task, the Action, the Call and the Medium features.



Fig. 4. The FOMDD approach.

To facilitate the definition of optional and mandatory features, three kind of parent-child relationships can be specified: 
AND, OR and ALT. The AND relationship does not restrict the selection, zero or more child features can be present in a 
product according to the optional and mandatory constraints. The OR relationship ensures that at least one child feature 
is present in all products. The ALT relationship ensures that only one child feature is present in all software variants. In 
addition, other restrictions can be specified separately. They can be used between unrelated features to define conditional 
inclusions or exclusions. In Fig. 3, the ALT relationship is used for the Medium feature to ensure that Mobile and Desktop
features cannot be selected at the same time in the same product. Fig. 3 shows the definition of such a constraint between 
the Mobile and the Geolocation features. This constraint means that the Geolocation features implies the Mobile feature and 
therefore cannot be part of a product which includes the Desktop feature.

3.4. Feature-oriented model-driven development

The Feature-Oriented Model-Driven Development (FOMDD) [4,5] paradigm combines FOSD with MDE to produce models 
from the product derivation. This approach is depicted in Fig. 4.

In FOMDD, core assets are not platform-specific source code artifacts as in FOSD but model fragments which are weaved 
together during the product derivation. According to an EMOF-compliant [19] meta-model, a model fragment can be any 
element involved in the description of the structural and behavioural aspects of a software system (e.g., Package, Class, Prop-
erty, Operation, etc.). After the product derivation, the resulting product-specific model can be used as an input for model 
checking, model execution, model transformations and code generation. Hence, taking into account non-functional features 
and actual platform-specific constraints (e.g. performances, memory consumption, programming language specificities, etc.) 
can be postponed at the end of the process, after the product derivation, when the platform-specific source code have to be 
generated.

Applied to our illustrative example, FOMDD tackles both issues mentioned with MDE and FOSD. Customized products are 
defined for multiple devices and features are implemented not by platform-specific source code but with a combination of 
model fragments. Taking into account non-functional aspects and actual platform-specific implementation details is achieved 
late, during the code generation process.

3.5. Discussion

Section 3.2 showed how MDE helps in automating developments in the context of cross-platform development: stem-
ming from a cohesive set of models, different platform-specific systems can be fully or partially generated. Section 3.3
showed how FOSD improves the software reuse through the definition of several products sharing common features. Reusing 
a feature in several products involves reusing software artifacts in several actual software variants. But the definition of core 
assets using a single programming language implies difficulties to target multiple platforms. The FOMDD approach depicted 
in Section 3.4 combines the advantages of both FOSD and MDE to cope with the issue of the software reuse across individ-
ualized software and across platforms. However, FOMDD has also the same drawbacks as MDE and FOSD: platform-specific 
source code, most frequently stored in files, has to be produced before executing and validating the software under develop-
ment. Indeed, based on MDE, FOMDD is geared towards code generation. Platform-specific source code have to be generated, 
compiled and deployed on a given platform. The executable system is the final result of this process. An important issue is 
that, from the high level models to the final system to be executed, the production chain can be time and resource consum-
ing. Moreover, the causal connection between the models and the generated artefacts is lost because of the code generation 
step [20]. Some approaches provide a synchronization support based on meta-data included within the generated artefacts 
or written in an associated file. When a model is updated, the artefact and the meta-data have to be re-generated and the 
execution has to be restarted. Even with this kind of approach, the “live” aspect of the causal connection is lost. The running 
system does not always reflect the current state of the related model. The impact of model changes cannot be immediately 
observed and developers are faced with a traceability issue between a malfunction that is observed during the execution 
and the source model that should be fixed [21].



The prototyping The modelling of several software variants using a common meta-model
which supports the variability management and the structural as well as
the behavioural aspects of a software.

The simulation The execution of one software variant from models and within the mod-
elling environment.

The debugging The live inspection and correction of models through the running instance
of a software variant.

Fig. 5. The main activities supported by the approach.

Fig. 6. Overview of the approach.

4. An approach for early validation of feature-based applications

This section presents an overview of the proposed approach to debug feature-based software variants early in the de-
velopment process. As introduced in Section 3.1, the early validation should help identify and solve problems of a software 
product before it is actually developed in its final version. By prototyping models of a feature-based application in the early 
stages of the development process, we aim to collect the maximum knowledge and feedback about the application to be 
developed with minimal costs involved.

Our approach includes the following activities shown in Fig. 5.
As shown in Fig. 6, we extend the FOMDD approach to support these activities. During the simulation step, one can 

inspect and debug models while preserving the causal connection between the model fragments (i.e. the core assets) and 
the executed artifacts (i.e. the product-specific model).

Following the FOMDD approach, the specification of the variability is achieved through the use of a feature model to-
gether with the definition of products. The specification of core assets is achieved through the definition of model fragments 
which are bound to features.

According to Model-Driven Engineering, supporting the early execution of a modelled software implies the ability to 
define low-level specifications in the same way as high-level aspects of a software. For this purpose, the FOMDD process 
has to be supported by a dedicated meta-model which allows the specification of the behaviour.

At the product derivation step, the resulting models describe the distinctive software variants according to the defined 
products. We call these models the product-specific models (PrSM). A PrSM relies on the dynamic assembly of a subset of the 
core asset base and remains platform-independent. Given a PrSM, a software variant can be validated early by its simulation 
in the modelling environment. We call validation process this simulation step. Several simulation contexts can be used to 
validate a software variant across multiple devices and platforms. In case of an issue during this validation process, the core 
assets and the feature model can be fixed, this is depicted in Fig. 6 by the early feedback. When the PrSM is considered as 
mature enough, the code generation can take place to produce the final software variants. Then, non-functional aspects can 
be validated by running each software variant on the dedicated platforms.

Fig. 7 depicts an iteration in the development cycle including the validation process. The core assets, the product-specific 
models and the related executed artefacts are dynamically kept up to date. A change in a model fragment is automatically 
reflected in all related PrSMs. A running simulation is also dynamically impacted by such a change. This synchronization 
process allows the live debugging and editing of the underlying model fragments during a simulation without the necessity 
to stop and restart the validation process.

5. CrossFabrik: a prototyping framework and environment

In this section, we describe the key aspects of CrossFabrik, a framework and an environment that fit our approach for 
validating early feature-based software variants for multiple devices.



Fig. 7. The incremental and iterative development cycle within the modelling environment.

Feature modelling The meta-model supports the creation of a Feature Model and the configu-
ration of products.

Class modelling The meta-model supports the creation of detailed Class model in a package
hierarchy.

Feature/Element mapping A relationship between an element and features can be defined at the meta-
level and this relationship is navigable.

Elements overloading Any element of the meta-model can be defined multiple time as long as it
is distinguished by its associated features.

Fig. 8. The main concepts embodied in the CrossFabrik meta-model.

Fig. 9. The simplified CrossFabrik meta-model.

5.1. CrossFabrik meta-model

This section presents the CrossFabrik meta-model. The concepts embodied in this meta-model are summarized in Fig. 8. 
The goal is to define the core assets of an application and to specify the mapping between core assets and features.

Fig. 9 depicts the main elements of the CrossFabrik meta-model and the relation between core asset and feature mod-
elling. This core meta-model is inspired by object-oriented meta-model such as EMOF [19] and ECore [22], especially for the 
description of the class structure. The originality relies on the four following aspects. First, any element can be associated 
with a set of annotations. The annotations are used to mark an element as part of the assets of one or several features. This 
creates a relationship between features and assets. Second, the meta-model supports overloading elements. The annotations 
are distinctive attributes of Element. For instance, unlike an EMOF Class, a Class element can contain several Method ele-
ments with exactly the same signature but with distinctive annotations in order to specify different behaviours dedicated to 
different devices. Third, high-level abstractions, subclasses of Class, are also proposed and described in Section 5.2. Fourth, 
the behaviour specification is managed in an abstract form and it is associated with a Method element through models 
named ASTBody. This abstract form typically consists in an interpretable Abstract Syntax Tree (AST) that can be produced 
from a given detailed action language. We observed that the notions of Variable, Message, Message Receiver, Arguments and 
Return are the minimum requirements to obtain the basis of an interpretable AST. By the use of such a kind of AST, the 
behaviour can be directly interpreted in the modelling environment and later partially translated to platform-specific AST 
using additional metadata (e.g. type information) in order to generate source code.



Fig. 10. The User model and associated features.

Fig. 11. Extract of the CrossFabrik meta-model for application modelling.

Thus, this meta-model provides abstractions allowing fine-grained design of applications in a platform-independent way. 
It includes information required for managing variability, for modelling structural and behavioural aspects of an application, 
and also the support for the behaviour execution and the code generation.

5.2. Modelling core assets

Once the FMapp is defined, the next step is to model core assets. As introduced in Section 4, core assets are defined 
in terms of model fragments. Such fragments are used to define the business logic and the graphical user-interface of 
the software variants. As introduced in Section 5.1, core assets are basically defined using Package, Class, Attribute and 
Method elements and all of these elements can be bound to features by means of annotations. From this basis, part of 
the architecture and the business models can be shared across software variants and specialized according to the business 
requirements and the targeted devices.

Fig. 10 depicts an example based on a User entity that represents the authenticated user in the ContactApp example. 
For all variants of the software family, a User is made of some attributes including his email. But, in our example, some 
specific additions have to be made into the User entity for the Geolocation feature. These additions make it possible for 
a user to be geolocalized. In this way, two additional properties are inserted in the User entity, namely the location field 
and the updateLocation method. These properties are annotated to be part of the Geolocation feature. With regard to the 
ContactApp example, only the desktop and mobile paid versions will benefit from these geolocation additions. To stick with 
this example, the updateLocation method might be only needed for the mobile device because the location of a desktop user 
should not change too much. To achieve this, the updateLocation method can be also annotated to be part of the Mobile
feature. In this case only the paid version for mobile will include the updateLocation capability.

Based on these fine-grained modelling possibilities, CrossFabrik also provides high-level application-specific abstractions, 
subclasses of Class, that ease the definition of the software architecture and the user-interface. Applications expressed in 
CrossFabrik consist in the descriptions of model-view-controller (MVC) components. The MVC architecture is well suited to 
serve as an architecture abstraction for the major part of platform-specific frameworks and helps developers to structure 
applications.

As depicted in Fig. 11, the controller manages both the domain models, the services and the views. High-level ab-
stractions, subclasses of Binding, are proposed to define how elements are bound together. Event listeners, data bindings, 
navigation, etc., are such a kind of high-level bindings. The View is the main abstraction responsible for the user interface. 
The view is used as a root panel which contains widgets arranged along a layout strategy. As for any other abstraction 
provided by the CrossFabrik meta-model, the widget layer has to stay platform-independent while providing the mean to 
be executed. The widgets in CrossFabrik are logical and rely on the native widgets provided by the modelling environment 
to be simulated.



Fig. 12. The User model and its two implementations.

5.3. Validating software variants

The development cycle can be decomposed into two phases. First, the developer starts to model a software family by the 
means of feature, product and core asset modelling. Then, the developer can instantiate a defined product in a simulation 
context and can interact with it to validate and debug all or part of a software variant.

With CrossFabrik, the modelling environment is also used by the designer as the runtime environment for early vali-
dation. This lets developers explore new models or model changes with immediate and dynamic feedbacks. Moreover, this 
allows for a rapid prototyping style at the modelling phase. The modelling and validation phases take place in parallel. 
The execution of a software variant relies on the reflective capabilities provided by the modelling environment. Moreover, 
the execution has to take place in the same object space as the modelling tools to ensure the causal connection between 
meta-model instances and the executed artifacts.

In Section 5.1, we described how the structural and behavioural aspects of an application are defined using the Cross-
Fabrik meta-model. To be executed, these abstractions must be interpreted by the modelling environment. On the one hand, 
we propose to generate code in situ and to inject it in the modelling environment to be later executed. The Class elements 
defined using the CrossFabrik meta-model are transformed on the fly as native classes of the modelling environment. We 
call these generated classes the implementation classes. On the other hand, we provide an adaptation layer between the 
CrossFabrik logical widgets and the native widgets provided by the modelling environment. During the validation process, 
this adaptation layer binds the logical widgets as the data model of the native ones.

In the context of FOMDD, one model can be implemented in a slightly different way depending on the product configu-
ration. This create a one-to-many relationship between a model and its multiple implementations. Given the previous User
entity example, Fig. 12 depicts two different implementations for the User class.

These two implementations have to be generated from the source model together with the specification of the prod-
uct and have to stay synchronized. In currently available environments, after code generation, the implementation classes 
User_Impl1 and User_Impl2 are self-contained and are no longer linked with the related User model. This implies also a code 
duplication between the several implementations. In CrossFabrik, information duplication is avoided. An implementation 
class is associated with the model element that describes it. At runtime, this association allows all instances of an imple-
mentation class to have access to their related model. This means that information contained in the source model does not 
have to be duplicated in implementation classes. As an example, a method in an implementation class does not contain 
any source code. The source code of the method is only described once in the source model and it is dynamically used by 
instances of the implementation classes.

6. Implementation

In the previous sections, we explained the approach, the CrossFabrik main concepts and the requirements that the
development environment together with the architecture of the infrastructure must meet. In this section, we present the 
key aspects of our first implementation of CrossFabrik using Pharo, a Smalltalk inspired language and environment.

6.1. Focus on the Pharo reflectivity

Pharo [23] is an object-oriented programming language highly influenced by Smalltalk. It is also an extensible and 
flexible programming environment. This environment is image-based and built around a Meta-Object Protocol (MOP) [24]
that avoids the separation between the development and the runtime context. In Pharo, everything is an object. A class, 
an instance variable, a class variable (similar to a static attribute in Java) and a method namely Class, Slot, ClassVariable
and CompiledMethod, are first-class objects which can be manipulated as any other object in the environment. A Class is 
therefore an instance of a MetaClass and updating its structural aspects is achieved by calling methods defined at the 



Fig. 13. The ChangeManager acts as a mediator object.

MetaClass level. Such methods can be considered as the default “meta” behaviour of classes and, as any methods, they can 
be overridden to customize this behaviour.

Using the reflective capabilities of Pharo, it is possible to dynamically change the structural aspects of a Class. Such a 
change affects immediately the running system (i.e., all instances of the updated class). In the scope of a class, Slot and 
ClassVariable instances [25] are objects which contain the executable statements associated with getting (reading) and set-
ting (writing) the instance and class variables. Slot and ClassVariable can be subclassed to provide a specific reading and 
writing behaviour. Regarding methods, any object can play the role of a CompiledMethod as long as it has the specific 
method named run:with:in:. Such an object is called a method wrapper or a method proxy [26]. The method run:with:in:
takes three arguments: the original method name, the arguments and the object instance which own the method wrapper. 
In this way, the actual behaviour to be executed can be delegated to another object. To maintain the dynamic synchroniza-
tion between CrossFabrik elements and generated implementation classes, the synchronization mechanism implemented in 
CrossFabrik relies on slots and method proxies. The implementation of this synchronization mechanism is presented in the 
next section.

6.2. A runnable business behaviour

The difficulty in executing models resides in the gap between models and implementation details. The main issue is the 
representation of a runnable business behaviour within models. As introduced in Section 5.1, we propose to extend our 
meta-model using AST nodes which can be presented in the form of a concrete syntax.

In our implementation, we opted for the Pharo AST. Pharo provides a minimal syntax which can be represented by 
about ten different node types [27]. These node types include our minimal requirements for an interpretable AST: Variable, 
Message, Message Receiver, Arguments and Return. Contrary to mainstream programming languages such as C++, Java or 
Python, Pharo has only 5 reserved words (nil, true, false, self and super), no control structure statements, no built-in types 
and no operators. This makes Pharo AST an attractive target for language transformation from an arbitrary action language. 
The main benefit of using the Pharo AST is that it can be directly manipulated and executed in the Pharo environment. This 
choice was also motivated by the possibility to reuse the Pharo concrete syntax, the runtime and its infrastructure.

6.3. The synchronization implementation

We use an internal on the fly code generation approach to produce the implementation classes introduced in Section 5.3. 
Implementation classes are materialized as native Pharo classes in the runtime environment. Pharo native classes are gen-
erated from core assets and loaded in the runtime environment on demand. In the rest of this paper, we call Pharo classes
the generated implementation classes to clarify the distinction between a model and its executable representations in the 
runtime environment. A model may have several implementation variants according to the features set. For one model, a 
Round-Trip Engineering (RTE) process has to keep multiple Pharo classes synchronized. As any RTE, our implementation 
aims to automatically manage forward and reverse engineering:

• First, the forward engineering capability. Any change in a model has to be automatically applied to related Pharo classes.
• Second, the reverse engineering capability. Any change in a Pharo class has to be automatically reflected in the source

model.

Due to the one-to-many relationship, implementing the reverse engineering can be tedious. A change in a particular Pharo 
class can also impact other Pharo classes generated from other products. Moreover, reverse changes have to be limited, 
controlled and validated before being applied to models. Any ambiguity must be resolved and improper changes must be 
rejected in order to preserve the model integrity. The forward and the reverse engineering are implemented by a mediator 
object named ChangeManager. The role of the ChangeManager is depicted in Fig. 13:

• Forward engineering involves generating Pharo classes from a source model. This mechanism is event-based. Events are
emitted each time a source model is updated. Then, the ChangeManager reacts by propagating changes in the related
Pharo classes. The ChangeManager takes care of the one-to-many relationship between the source model and the Pharo
classes.

• Reverse Engineering is change-based. It relies on the redefinition of the default meta behaviour of the generated Pharo
classes. Indeed, a Pharo class is an object and it provides reflective facilities, also called meta behaviour, in order to



Fig. 14. User model instance (left) with related meta-entities (right).

Fig. 15. Sequence diagram to execute the updateLocation method of a User instance.

update its own structure and behaviour. The reverse engineering is based on the overriding of this meta behaviour. For 
instance, when a generated Pharo class is asked to add a new attribute, its default meta behaviour is prevented and the 
class is not actually updated. Instead, the ChangeManager is asked to update the related source model.
Sometime, a change is ambiguous. The relationship between the change to propagate and the features which have to 
be associated with it cannot be inferred automatically. For example, when a method associated with several features 
is updated, we cannot predict if one or all features are targeted. Thus, in case of an ambiguous change, the devel-
oper is warned by the ChangeManager and he can choose the way the models have to be updated. Hence, instead 
of having read-only Pharo classes, the reverse engineering allows developers to indirectly update models through the 
Pharo classes. This capability allows the transparent use of the native tools of the Pharo environment (e.g. code browser, 
inspector and debugger).

6.3.1. The forward engineering
The forward engineering takes place each time a source model is updated. When a CrossFabrik element is changed, an 

event is fired by the element. The ChangeManager reacts to these events by generating or updating related Pharo classes. 
In order to implement the RTE, CrossFabrik has to manage the way a class is installed in the system and has to change the 
default behaviour. For that purpose, CrossFabrik implements its own meta-entities to be used in place of Slot, ClassVariable 
and CompiledMethod. The use of these CrossFabrik meta-entities for our User example is depicted by Fig. 14. Instead of us-
ing a Slot, the mail attribute is implemented through an instance of FabrikAttributeSlot. Instead of using a CompiledMethod, 
the updateLocation method is implemented though an instance of FabrikMethodProxy. Instead of using a ClassVariable, the 
User source model is referenced by a FabrikClassVariable instance. All these meta-entities hold a reference to the CrossFabrik 
elements.

The running of a software variant relies on a proxy mechanism from the Pharo class to the source model. For each 
generated Pharo classes, methods are replaced by FabrikMethodProxy instances. A FabrikMethodProxy instance does not con-
tain any source code and executing the method body relies only on the source code specified in the source model. Fig. 15
indicates the flow of execution when the updateLocation method of a User instance is called. The role of FabrikMethodProxy
instance is to retrieve the AST nodes on demand from the source model. From the AST nodes, a CompiledMethod is created 
on the fly and executed to return the expected result.



Fig. 16. Sequence diagram to update a method of the User model from a related Pharo class and using the native code editor.

6.3.2. The reverse engineering
To perform the reverse engineering, the ChangeManager has to be aware of changes applied in generated Pharo classes. 

In Pharo, modifying structural aspects of a class as well as modifying body of methods is managed by the relevant Class 
instance as part of its meta behaviour. This meta behaviour can be overridden to implement a new update strategy directly 
in generated Pharo classes. Two kinds of changes have to be intercepted and propagated at the model side: the structural 
changes denoted by the addition/deletion of instance variables or of methods of an object and the behavioural changes 
denoted by the modification of a method’s body.

In Pharo, all structural changes are first handled by the class and finally delegated to the PharoClassInstaller. In CrossFab-
rik, the PharoClassInstaller is not directly used by generated Pharo classes. Instead, the ChangeManager acts as a mediator 
between the generated classes and the PharoClassInstaller.

When an instance variable is added, the ChangeManager is asked to update the related source model. It first checks the 
validity of the change, then it applies the change on the related source model and finally the forward engineering takes 
place.

In Pharo, the methods management is under the responsibility of the class itself. As depicted in Fig. 16, when a method 
is compiled, the class method named addAndClassifySelector:withMethod: is invoked to perform the actual changes. The term 
selector is the technical term to define the name of a method. The method addAndClassifySelector:withMethod: takes the 
selector and the related CompiledMethod as arguments and add the CompiledMethod in the method dictionary of the class 
using the selector as the key to identify it. In CrossFabrik, this method is redefined to delegate method changes to the 
ChangeManager. Fig. 16 depicts how the class method addAndClassifySelector:withMethod: is redefined. In the case of the 
update of an existing method, the AST of the source model is directly updated. In the case of the addition or the removal 
of a method, the request is forwarded to the ChangeManager in order to perform relevant changes on the source model.

6.4. Editing models

The CrossFabrik meta-model has been implemented using the Pharo language which makes the Pharo infrastructure fully 
reusable with CrossFabrik. This allows us to basically create and manipulate instances of this meta-model through the native 
Pharo tools. However, to ease the edition of source models and the debugging of generated classes, a set a tools has been 
specifically implemented. These tools are presented in this section.

6.4.1. Model browser and editor
Dedicated tools including editors and a specific declarative language were implemented to manipulate models. CrossFab-

rik provides an Integrated Development Environment (IDE) for that purpose.
Fig. 17 shows the CrossFabrik IDE for models editing. It is mainly composed on the left by a package browser which 

presents the hierarchy of models. From the package browser, Package and Class elements can be created, organized and 
opened. Tabulations are presented on the center. They show the details of a Class element from which Attribute and Method
elements can be edited. From the package browser and related tabulations, any element can be associated with features. 
The pop-up window at the bottom right shows a view to select a feature from the Feature Model currently in use. The 
developer can also open a model in a textual mode. Instead of the default model editor made by a set of panes, a text 
editor is opened that contains the textual representation of the selected model. This textual representation is based on a 
Domain-Specific Language (DSL) embedded in the Pharo language which makes it fully compliant with native Pharo tools. 
This embedded DSL is based on the builder pattern. Each statement constructs a particular instance of the CrossFabrik 
meta-model and pushes it in the parent instance previously built. This parent-child hierarchy is materialized by a block 
closure (i.e. the square brackets in the Smalltalk syntax).

As an example, the Fig. 18 shows the DSL syntax used to describe the User model. First, a Class element is instantiated by 
calling the class method named:def: of the CfClass builder. The first argument is the name of the class we want to define and 
the second argument is a block closure which contains the declaration of the class body. The class body contains statements 
which construct the attributes and the methods of the Class element. The relation between the features and the model 
instances is declared using an annotation syntax, by calling the @ unary method of the CfFeature builder with the name of 
the targeted feature as an argument.

Using the Pharo language as the host language for our syntax allows us to directly evaluate our DSL within any Pharo 
editor. We use this capability to use the DSL even during debugging.



Fig. 17. The CrossFabrik IDE.

Fig. 18. The declarative syntax used to describe the user model.

Fig. 19. The debugging of one User implementation during a mobile simulation.

6.4.2. Model inspector and debugger
Pharo provides the GTDebugger [28] that offers a way for developers to adapt visualization to new domains and scenarios. 

It is object-centric and retrieves the relevant visualizations directly from the inspected object. Thus, the debugger can be 
dynamically adapted when a particular inspected object contains methods that describe new visualization to use.

As an example, Fig. 19 shows a running mobile simulation to the left which displays a list of contacts. To the right, 
Fig. 19 shows the debugging visualization from the first item of the list.



The CrossFabrik debugging visualization is composed of two columns. The first column, in addition to allowing inspection 
of the current state of the inspected object, allows access to the attributes and methods resulting from the related model. 
When an item is selected in the list, the related source model (i.e. the Attribute or Method element) is displayed below the 
list in a code editor using the CrossFabrik textual representation. The second column displays the structure and the current 
state of this source model. As any other inspected object, the source model can be manipulated and edited.

In Fig. 19, the method named updateLocation is selected and its body can be directly edited within the code editor below 
the list. Updating the textual representation of the updateLocation method means updating the Method model displayed in 
the second column and, consequently, updating the current running object which reference this Method model.

7. Related work

In this section, we discuss related work on Model-Driven approaches, on model executability and on dynamic envi-
ronments. First, we focus on FOD and FOMDD approaches applied to cross-platform development and we highlight the 
contribution of our work with regard to the early functional validation. Then, we discuss executable models and we address 
the causal relationship and the reuse of native tools. Finally, we describe different Round-Trip Engineering processes and we 
expose how the CrossFabrik RTE applied to FOMDD differs from them.

7.1. Model-driven approaches

Albassam and Gomaa [29] present an application of variability modelling in the context of the video games domain in 
order to take advantage of the unique features of each platform and/or to address limitations. Based on their PLUS method 
that combine SPL and UML, they exploit feature modelling to express the different platform-specific capabilities and features. 
They use this variability as the basis for designing a component-based SPL architecture for multi-platform video games. They 
focus mainly in generating hardware-specific variants of video games using code generation.

Quinton et al. [30] present ApplIDE, an FOMDD approach to produce mobile software variants for multiple platforms. 
They propose to use two separated feature models, one for describing the application variability and the other for describ-
ing the device variability. To be able to determine on which devices an application product is able to run, a mapping is 
made between some functional features from the application and device features. Core assets are implemented using a 
meta-model specific to the mobile application domain that allows to model the business logic and the user-interface in a 
platform independent way. Restricted parts of the software behaviour can be described using the notion of action which are 
triggered by events. The proposed approach relies on code generation to produce platform-specific executable software.

Usman et al. [31] presents another FOMDD approach applied also to the mobile specific area. Instead of using two 
separated feature models as in [30], they propose a generic feature model that presents the variations for the mobile 
application domain specific concepts. From this generic feature model, device products can be defined and used as the basis 
for an extended application feature model. Core assets are implemented through UML modelling profiles and notations. 
Some parts of the business logic can be described using use-case diagrams and the definition of the user-interface relies 
on external platform-specific UI builders. As the previous approaches, a working software can be produced only after a 
platform-specific code generation process.

Our approach is close to the one proposed in [30]. We rely on a specific application feature model associated with a 
meta-model for implementing core assets which include the business-logic and the user-interface. Our approach aims to 
be more generic to take into account the business-specific as well as the device-specific functional variations in a software 
family. We argue that taking into account the non-functional aspects can be postponed to the end of the prototyping and 
development cycle when most of the software requirements are validated. Furthermore, none of the discussed approaches 
allows the fine-grained specification of the business logic and the early validation of the software variants without being 
forced to generate platform-specific software.

7.2. Model executability

The CrossFabrik approach is close to EMF [22]. Both approaches implement a MOF-oriented kernel in a general purpose 
language. The main difference is that EMF is geared towards code generation. To be run, the code of an application model 
must be generated and executed as a standalone program. In our approach, an application model is instrumented to be fully 
executed and debugged within the development environment.

The UML virtual machine and the runtime model for fUML [32,33], make it possible the interpretation of an application 
model within the modelling environment. However, as far as we know, the causal connection is not maintained at runtime. 
With CrossFabrik, structural as well as behavioural changes of the application model have immediate effects during the 
execution of a model.

Kermeta [34] use an executable meta-language close to EMOF. A dedicated language is provided to specify operational se-
mantics of meta-models [35]. In addition, following an aspect oriented approach, the business behaviour is included as part 
of the runnable application model thanks to a weaving process. In this approach, the tools from the underlying development 
environment are not suitable and the development and the debugging tools have to be specifically implemented.

In our approach, application model can be early executed within the development environment and the native tools are 
adapted to be used during modelling and debugging phases.



7.3. Round-trip engineering approaches

As far as we know, CrossFabrik is the only environment providing dynamic debugging and RTE support in the context of 
FOMDD.

In [36], a Change-Oriented Advanced Round-Trip Engineering (COARTE) is envisioned. In COARTE, changes are considered 
as first-class objects and the entire set of “changes” objects represents the complete history of a software system. As in 
COARTE, CrossFabrik uses a change-oriented RTE. Our implementation relies on an event model and on the change mecha-
nism provided by Pharo. But we do not maintain the history of changes made. Changes cannot be stored and replayed.

COARTE also provides multiple views on a software system with the distinction between static and runtime views and 
between design and implementation views. In CrossFabrik this distinction is also made. The CrossFabrik IDE depicts how 
a software is designed whereas the Pharo code browser and the debugger depict respectively how a software is statically 
implemented and how implementation instances live in the system.

But COARTE does not address the issue of the synchronization of multiple implementations from the same model. In 
CrossFabrik, the first requirement regarding the RTE is to maintain this one-to-many relationship. As far as we know, COARTE 
does not allow such a kind of synchronization.

SelfSync [37] is an approach and a set of tools for providing dynamic support for RTE in the context of Entity-Relationship 
diagrams. SelfSync is implemented in Self, a prototype-based dynamic object-oriented programming language, environment, 
and virtual machine. In SelfSync, the modelling and the execution take place within a unique environment. A source model 
and the corresponding implementation object are one and the same. Both share the same structure and the same behaviour 
namely its prototype and its traits. In CrossFabrik the modelling and the execution also take place within a unique environ-
ment at design and running time. As SelfSync, CrossFabrik consists in a dynamic support for RTE, synchronizing a model 
and its implementation parts even at runtime. In CrossFabrik, the behaviour is also shared between source models and 
implementation classes. It is made of AST nodes that can be produced at design time and executed during the assessment 
of implementation classes.

Our solution differs from SelfSync in the management of the relationship between model and implementation parts. In 
CrossFabrik, because a source model may have several implementations, the same object cannot be used, implementation 
classes have to be generated and a one-to-many relationship has to be maintained. Such a synchronization cannot be 
achieved with SelfSync. Moreover, SelfSync does not support a runtime RTE in the reverse direction [38]. In CrossFabrik, we 
provide such a reverse support especially during the debugging process. From an instance of an implementation class, the 
source model can be inspected and updated. Such updates automatically affect the source model, its implementation classes 
and their instances currently in use.

8. Conclusion

This paper addresses the issue of early validation when several software variants have to be envisaged. Such variants can
basically differ in the proposed features and in the targeted device. This brings new challenges in the early validation of 
software and the reuse of software artefacts.

In this paper, we presented CrossFabrik, a Feature-Oriented Model-Driven framework and environment which allows 
debugging and early validation of feature-based applications. Typically, validating a software in the context of FOMDD 
involves generating the final software from models and executing it separately from models. The CrossFabrik synchronization
process manages a one-to-many relationship between the source models and the implementation parts, even at runtime.

We implemented our approach using the Pharo environment that provides us with an image-based virtual machine 
where our modelling tools and the simulation process take place. Regarding our synchronization implementation, changes 
propagation is supported in the forward direction as well as the reverse direction and includes structural and behavioural 
changes. Such changes can be achieved statically or dynamically during the validation process. Regarding the reuse of the 
Pharo infrastructure, we presented how an existing development environment can be adapted and extended to allow custom 
visualization and dynamic debugging of source models during execution of implementation parts.

References

[1] M.E. Joorabchi, A. Mesbah, P. Kruchten, Real challenges in mobile app development, in: 2013 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 2013, pp. 15–24.

[2] D. Batory, J.N. Sarvela, A. Rauschmayer, Scaling step-wise refinement, in: Proceedings of the 25th International Conference on Software Engineering,
IEEE Computer Society, Portland, Oregon, 2003, pp. 187–197.

[3] S. Kent, Model driven engineering, in: M. Butler, L. Petre, K. Sere (Eds.), Integrated Formal Methods, Third International Conference, IFM 2002, Turku,
Finland, May 15–18, 2002 Proceedings, in: LNCS, vol. 2335, Springer, Berlin, Heidelberg, 2002, pp. 286–298.

[4] M. Anastasopoulos, T. Forster, D. Muthig, Optimizing model-driven development by deriving code generation patterns from product line architectures,
NetObject Days.

[5] S.T. Gonzalez, Feature Oriented Model Driven Product Lines, Ph.D. thesis, University of the Basque Country, 2007.
[6] J. Miller, J. Mukerji, MDA guide version 1.0.1, 2003.
[7] A.M. Davis, Software prototyping, in: Advances in Computers, vol. 40, 1995, pp. 39–63.
[8] A. Forward, O. Badreddin, T.C. Lethbridge, UMPLE: towards combining model driven with prototype driven system development, in: Proceedings of the

International Workshop on Rapid System Prototyping, IEEE, 2010, pp. 1–7.

http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4A6F6F72616263686932303133s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4A6F6F72616263686932303133s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4261746F727932303033s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4261746F727932303033s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4B656E7432303032s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4B656E7432303032s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib476F6E7A616C657A32303037s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib446176697331393935s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib466F727761726432303130s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib466F727761726432303130s1


[9] J. Fu, F.B. Bastani, I.-L. Yen, Model-driven prototyping based requirements elicitation, in: LNCS, vol. 5320, 2007, pp. 43–61.
[10] G. Cavarlé, A. Plantec, S. Costiou, V. Ribaud, Dynamic round-trip engineering in the context of fomdd, in: Proceedings of the 11th Edition of the

International Workshop on Smalltalk Technologies, IWST’16, ACM Press, New York, New York, USA, 2016, pp. 1–7.
[11] M.J. Harrold, Testing: a roadmap, in: Proceedings of the Conference on The Future of Software Engineering, ICSE ’00, 2000, pp. 61–72.
[12] P. Berander, L.-O. Damm, J. Eriksson, T. Gorschek, K. Henningsson, P. Jönsson, S. Kågström, D. Milicic, F. Mårtensson, K. Rönkkö, P. Tomaszewski, L.

Lundberg, M. Mattsson, C. Wohlin, in: C.W. Lars Lundberg, Michael Mattsson (Eds.), Software Quality Attributes and Trade-offs, Blekinge Institute of
Technology, 2005, pp. 1–100.

[13] B. Boehm, V.R. Basili, Software defect reduction top 10 list, Computer 34 (1) (2001) 135–137, https://doi.org/10.1109/2.962984.
[14] A. Rodrigues Da Silva, Model-driven engineering: a survey supported by the unified conceptual model, Computer Languages, Systems & Structures 43

(2015) 139–155, https://doi.org/10.1016/j.cl.2015.06.001.
[15] S. Apel, C. Kastner, An overview of feature-oriented software development, J. Object Technol. 8 (5) (2009) 49–84, https://doi.org/10.5381/jot.2009.8.5.c5.
[16] P.C. Clements, L. Northrop, Software Product Lines: Practices and Patterns, Addison–Wesley, 2001.
[17] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, A.S. Peterson, Feature-oriented domain analysis (FODA) feasibility study, Distribution 17 (November 1990)

161, https://doi.org/10.1080/10629360701306050.
[18] K. Lee, K.C. Kang, J. Lee, Concepts and guidelines of feature modeling for product line software engineering, in: Software Reuse Methods Techniques

and Tools, vol. 2319, 2002, pp. 62–77.
[19] Object Management Group, OMG meta object facility (MOF) core specification version 2.4.1, 2013.
[20] D. Riehle, S. Fraleigh, D. Bucka-Lassen, N. Omorogbe, The architecture of a UML virtual machine, in: Environment, vol. 36, 2001, pp. 327–341.
[21] M. Eisenstadt, My hairiest bug war stories, Commun. ACM 40 (4) (1997) 30–37, https://doi.org/10.1145/248448.248456.
[22] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: Eclipse Modeling Framework, 2nd edition, Addison–Wesley Professional, 2008.
[23] O. Nierstrasz, S. Ducasse, D. Pollet, Pharo by Example, Square Bracket Associates, 2010.
[24] G. Kiczales, J.M. Ashley, L. Rodriguez, A. Vahdat, D.G.D. Bobrow, Metaobject protocols: why we want them and what else they can do, in: Object-

Oriented Programming: The CLOS Perspective, 1993, pp. 101–118.
[25] T. Verwaest, C. Bruni, M. Lungu, O. Nierstrasz, C. Bruni, Flexible object layouts: enabling lightweight language extensions by intercepting slot access,

in: OOPSLA, 2011, pp. 959–972.
[26] M.M. Peck, N. Bouraqadi, L. Fabresse, M. Denker, C. Teruel, S. Ducasse, Ghost: a uniform and general-purpose proxy implementation, Sci. Comput.

Program. 98 (2015) 339–359, https://doi.org/10.1016/j.scico.2014.05.015, arXiv:1310.7774.
[27] L. Renggli, Dynamic Language Embedding With Homogeneous Tool Support, Ph.D. thesis, University of Bern, 2010.
[28] A. Chis, O. Nierstrasz, T. Girba, Towards a moldable debugger, in: Proceedings of the 7th Workshop on Dynamic Languages and Applications, DYLA ’13,

2013, pp. 1–6.
[29] E. Albassam, H. Gomaa, Applying software product lines to multiplatform video games, in: Proceedings of the 3rd International Workshop on Games

and Software Engineering: Engineering Computer Games to Enable Positive, Progressive Change, IEEE Press, San Francisco, California, 2013, pp. 1–7.
[30] C. Quinton, S. Mosser, C. Parra, L. Duchien, Using multiple feature models to design applications for mobile phones, in: MAPLE/SCALE Workshop,

Colocated with SPLC’11, Munich, Germany, 2011, pp. 1–8.
[31] M. Usman, M.Z. Iqbal, M.U. Khan, A product-line model-driven engineering approach for generating feature-based mobile applications, J. Syst. Softw.

123 (2016) 1–32, https://doi.org/10.1016/j.jss.2016.09.049.
[32] M.L. Crane, J.J. Dingel, Towards a UML virtual machine: implementing an interpreter for UML 2 actions and activities, in: Proceedings of the 2008

Conference of the Center for Advanced Studies on Collaborative Research Meeting of Minds, CASCON ’08, 2008, p. 8.
[33] T. Mayerhofer, P. Langer, G. Kappel, A runtime model for fuml, in: Mrt@Runtime, 2012, pp. 53–58.
[34] J.-M. Jézéquel, O. Barais, F. Fleurey, Model driven language engineering with Kermeta, in: Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), in: LNCS, vol. 6491, 2009, pp. 201–221.
[35] P.-A. Muller, F. Fleurey, J.-M. Jézéquel, Weaving executability into object-oriented meta-languages, in: Model Driven Engineering Languages and Systems,

October 2005, pp. 264–278.
[36] P. Ebraert, E.V. Paesschen, Change-oriented round-trip engineering, in: ICDL ’07 Proceedings of the 2007 International Conference on Dynamic Lan-

guages: In Conjunction with the 15th International Smalltalk Joint Conference 2007, Lugano, Switzerland, 2007, pp. 3–24.
[37] E. Van Paesschen, M. D’Hondt, W. De Meuter, Rapid prototyping of extended entity-relationship models, in: ISIM 2005, Czech Republic, 2005,

pp. 194–209.
[38] E. Van Paesschen, M. D’Hondt, Selfsync: a dynamic round-trip engineering environment, in: Satellite Events at the Models 2005 Conference, vol. 3844,

2006, pp. 347–352.

http://refhub.elsevier.com/S0167-6423(18)30001-7/bib467532303037s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib43617661726C6532303136s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib43617661726C6532303136s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib486172726F6C6432303030s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib426572616E64657232303035s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib426572616E64657232303035s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib426572616E64657232303035s1
https://doi.org/10.1109/2.962984
https://doi.org/10.1016/j.cl.2015.06.001
https://doi.org/10.5381/jot.2009.8.5.c5
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib436C656D656E747332303039s1
https://doi.org/10.1080/10629360701306050
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4C656532303032s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4C656532303032s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib526965686C654172636869746563747572653031s1
https://doi.org/10.1145/248448.248456
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib537465696E62657267454D463039s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib426C6163303961s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4B69637A616C65734D6574616F626A6563743933s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4B69637A616C65734D6574616F626A6563743933s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib5665727761657374466C657869626C653131s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib5665727761657374466C657869626C653131s1
https://doi.org/10.1016/j.scico.2014.05.015
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib486F6D6F67656E656F7573s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4368697332303133s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4368697332303133s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib416C62617373616D32303133s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib416C62617373616D32303133s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib5175696E746F6E32303131s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib5175696E746F6E32303131s1
https://doi.org/10.1016/j.jss.2016.09.049
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4372616E65546F77617264733038s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4372616E65546F77617264733038s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4D61796572686F66657272756E74696D653132s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4A657A657175656C4D6F64656C3039s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4A657A657175656C4D6F64656C3039s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4D756C6C657257656176696E673035s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib4D756C6C657257656176696E673035s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib45627261657274s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib45627261657274s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib56616E50616573736368656E32303035s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib56616E50616573736368656E32303035s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib56616E50616573736368656E32303036s1
http://refhub.elsevier.com/S0167-6423(18)30001-7/bib56616E50616573736368656E32303036s1

	A feature-oriented model-driven engineering approach for the early validation of feature-based applications
	1 Introduction
	2 Illustrative example: the ContactApp software family
	3 Background concepts
	3.1 Early validation
	3.2 Model-driven engineering
	3.3 Feature-oriented software development
	3.4 Feature-oriented model-driven development
	3.5 Discussion

	4 An approach for early validation of feature-based applications
	5 CrossFabrik: a prototyping framework and environment
	5.1 CrossFabrik meta-model
	5.2 Modelling core assets
	5.3 Validating software variants

	6 Implementation
	6.1 Focus on the Pharo reﬂectivity
	6.2 A runnable business behaviour
	6.3 The synchronization implementation
	6.3.1 The forward engineering
	6.3.2 The reverse engineering

	6.4 Editing models
	6.4.1 Model browser and editor
	6.4.2 Model inspector and debugger


	7 Related work
	7.1 Model-driven approaches
	7.2 Model executability
	7.3 Round-trip engineering approaches

	8 Conclusion
	References


