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Abstract

Use Case (UC) quality impacts the overall quality and defect rate of a system, as they
specify the expected behavior of an implementation. In a previous work, we have defined
an approach for a step-by-step translation from UCs written in natural language to a
formal description in terms of Graph Transformation (GT), where each step of the UC
was translated to a transformation rule. This UC formalisation enables the detection of
several specification problems even before an actual implementation is produced, thus
reducing development costs. In this paper, we extend our approach to handle UC evolu-
tion by defining evolution rules, which are described as higher-order rules, simultaneously
changing the behaviour of a set of transformation rules. We also support the use of neg-
ative application conditions (NAC) associated both to the transformation and evolution
rules. Analysis of the interplay between the evolution rules and the rules describing UC
steps shows the effects of an evolution and serves to identify potential impacts, even
before the changes are actually carried out. Besides defining the theoretical foundations
of UC evolution with NACs, we have implemented the evolution analysis technique in
the Verigraph tool and used it to verify impacts in 3 different case studies. The results
demonstrate the applicability and usefulness of our approach to help developers in the
evolution process based on UCs.

Keywords: Use Case, Graph Transformation, Software evolution, Higher-order
transformations, NACs

1. Introduction

Use Cases (UC) descriptions are typically informally documented, using natural lan-
guage [1]. Being informal descriptions, UCs might be ambiguous and imprecise, resulting
in a number of problems that can propagate to later development phases and jeopardize
the overall system quality [2]. Effective manual verification of these artifacts may be ex-
pensive, which makes it desirable to have a way of automating this task. UC correctness
is specially vulnerable during system evolution. As a system evolves, specification docu-
ments must change accordingly, describing new functionalities and/or including changes
in existing features. Depending on the number of UCs and their complexity, identifying
the impacts of an evolution can be extremely hard to do by human inspection. Ensuring
that the UCs have been correctly updated to reflect the necessary modifications can be a
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costly and time-consuming task. Hence, this process should be supported by techniques
that could guide the developer, indicating how to apply each of the required changes to
the UCs and how these changes affect local (intra-UC) and global (inter-UC) behaviour.
Thus, the translation of UCs to a formal model can help improve UC reliability and
correctness by enabling a variety of analyses using existing tool support. This allows the
detection of several specification problems before an actual implementation is produced,
thus reducing development costs.

In [3], we presented an approach for the translation of UCs to a formal model called
Graph Transformation (GT). Elements of a system are described as nodes of a graph
and edges between them represent their relationships (e.g., data dependency). System
behavior is specified by a set of transformation rules, creating/preserving/deleting nodes
and/or edges. Each rule specifies application pre-conditions (i.e., the necessary set of
nodes and their specific connections through edges that must exist as a subgraph of the
current system graph) and post-conditions (i.e., the resulting subgraph). Besides being
a visual and intuitive notation, GT is data-driven, allowing a very abstract description
of a system, without imposing any control not strictly enforced by data. Moreover, GT
analysis is supported by tools capable of pinpointing possible problems, which are easily
traced back to the original UC description.

The proposed translation method, although not yet fully supported by tools, can be
followed by developers with very basic knowledge of the formalism, as we provide step-by-
step guidelines. The subsequent analyses are automatically performed by available tools
(AGG [4] and Verigraph2). Types and severity of different classes of problems that can
be detected have been defined, as well as hints on the causes and possible solutions. The
UCs can then be modified until the analyses show that they present the desired behavior.
As a result, the GT-based UC verification approach increases the correctness of the UCs,
while keeping the informality and flexibility of their description in natural language. UC
analysis based on GTs has been evaluated on real UCs and revealed several problems
not detected during manual inspection [3]. From these problems, 75% were classified
as actual errors by the developers who had created the UCs. Hence, the approach has
proved to be useful and effective for UC analysis and enhancement.

In this paper, we extend our approach to support the description and analysis of system
evolution. By "evolution" we mean any modification in the system, which may or may
not affect the system behaviour. We expand the formal framework to define evolution in
terms of higher-order GTs, introduced in [5]. The main idea is to describe evolution as a
second-order rule, called evolution rules, which are rules that change other (first-order)
rules. Because evolution is also represented as a GT, the developer works within the same
formalism used to specify the system. We present the theoretical foundations for reliable
UC change in a system evolution scenario, offering not only a precise description of
evolution, but also the possibility of analyzing evolution effects even before modifying the
original rules, thus helping the decision-making process. The analysis technique is based
on critical pairs, and was implemented in the Verigraph tool, which is also able to apply
the changes defined by an evolution rule. We also extend the framework of higher-order
graph transformation to support evolution of rules with negative application conditions
(NACs), since NACs are required in the GT-based representation of use cases. Moreover,

2http://github.com/verites/verigraph
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we provide guidelines to interpret the analysis results and demonstrate the application
of our evolution framework in 3 case studies.

This paper contains the following structure: Section 2 presents the background on
GTs, the UCs formalization strategy proposed in [3], and critical pair analysis in the
context of UCs; Section 3 extends the notion of second-order transformation towards
rules with negative application conditions (NACs). Section 4 presents our approach to
describe and analyze UC evolution; in Sect. 5 the application of the proposed approach
on 3 case studies is presented; Section 6 describes some related work; and Section 7
presents conclusions and possible future work.

2. Background

2.1. Graph Transformations
In this section, we present the main concepts of Graph Transformations (GT). The

algebraic approaches for graph transformation use categorical operations in order to
perform the transformations defined by the rules [6, 7]. The approach we follow uses two
pushouts as gluing operations, therefore it is called Double-PushOut approach (DPO).
Examples are presented in the next section.

Graphs are structures that consist of a set of nodes and a set of edges. Each edge
connects two nodes of the graph, one representing a source and another representing a
target. A (total) homomorphism between graphs is a mapping of nodes and edges
that is compatible with sources and targets of edges. Intuitively, a homomorphism from
a graph G1 to a graph G2 means that all items (nodes and edges) of G1 can be found
in G2 (but distinct nodes/edges of G1 are not necessarily distinct in G2 ).

Definition 1 (graph, graph morphism). A graph G = (V,E, s, t) consists of a set V of
nodes, a set E of edges, and two functions, s, t : E → V , the source and target functions.
Given two graphs, G1 = (V1, E1, s1, t1) and G2 = (V2, E2, s2, t2), a graph morphism
f : G1 → G2 is composed by two total functions fV : V1 → V2 and fE : E1 → E2 such that
fV ◦s1 = s2◦fE and fV ◦t1 = t2◦fE. A graph morphism is injective/surjective/iso if both
components are injective/surjective/iso. The category of graphs and graph morphisms is
called Graph.

For practical applications, it is very convenient to distinguish different types of vertices
and edges in a graph. In the DPO approach, this can be achieved by the notion of typed
graph. Let TG be a graph that represents all possible (graphical) types that are needed to
describe a system, a homomorphism h from any graph G to TG associates a (graphical)
type to each item of G. The triple 〈G, h, TG〉 is called typed graph, where TG is the type
graph (nodes of TG denote all possible types of nodes of a system, edges of TG denote
possible relationships between the nodes).

Definition 2 (typed graph, typed graph morphism). A typed graph is a triple
(G1, typeG1, TG), denoted by G1TG, where G1 and TG are graphs and type : G1→ TG
is a graph morphism. Given two typed graphs over the same type graph, GTG1 and GTG2 ,
and their respective typing morphisms typeG1 : G1 → TG and typeG2 : G2 → TG, a
typed graph morphism is a pair (f, idTG), where f : G1 → G2 is a graph morphism
and idTG is the identity morphism of TG, such that: typeG2 ◦f = typeG1. A typed graph
morphism is injective/surjective/iso if f is injective/surjective/iso.
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G1

type1 !!

f
//

=

G2

type2}}

TG
The category of graphs typed over TG as objects and typed graph morphisms as mor-

phisms is called GraphTG. This category is the comma category (Graph ↓ TG).

A Graph Rule describes how a system may change. It consists of: a left-hand side
(LHS), denoting items that must be present for this rule to be applied; a preserved
part (also called gluing part K), describing items that will be preserved when the
rule is applied; a right-hand side (RHS), describing items that will be present after
the application of the rule; mappings from K to LHS and RHS, which mark in LHS
and RHS the items that will be preserved by the application of the rule; and a negative
application condition (NAC), that is actually a collection of conditions representing
situations that prevent the rule from being applied (NACs are described by mappings
from LHS to the graph representing the forbidden context). The mappings from K to
LHS and RHS (as well as from LHS to the NACs) must be compatible with the structure
of the graphs (graph homomorphisms). Items that are in LHS and are not in K are
deleted, whereas items that are in the RHS and are not in K are created. We assume
that rules do not merge items (rules are injective). The structure LHS ← K → RHS of
a rule is called rule span.

Definition 3 (rule, NAC, rule with NACs, NAC satisfiability). A (typed graph) rule
p consists of two typed graph morphisms l and r with the same typed graph as source,
p = L

l←− K
r−→ R, where l and r are monomorphisms (in the category GraphTG,

monomorphisms are injective mappings).
Given a rule p = L

l←− K
r−→ R, a negative application condition nac(n) for p

is an arbitrary typed graph morphism n : L → N . A NAC n : L → N is satisfied with
respect to a match m : L → G if and only if @q : N → G such that q is injective and
q ◦ n = g.

A rule with NACs (p, nacp) is composed by a rule p and a set of NACs for p (nacp).
A match m : L→ G satisfies nacp if and only if it satisfies all single NACs in nacp,

we denote as nacp � m (p,G).
Ni~~

q

~~

G L
m
oo

ni

OO

A GT System consists of a type graph, specifying the (graphical) types of the
system, and a set of rules over this type graph that define the system behavior.

Definition 4 ((first order) graph transformation system). A (first order) Graph
Transformation System consists of a set of (typed graph) rules with NACs and a
typed graph, called initial or start graph. The rules of a first-order graph transformation
system are called first-order rules.

The application of a rule (NAC, rs) where rs : L← K → R to a graph G is possible
if (i) an image of L is found in G (that is, there is a total typed-graph morphism from
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the LHS of rs to G); (ii) for each nac : L→ X in NAC it is not possible to find an image
for X in G (i.e., the forbidden items are not in G); and (iii) the gluing condition is
satisfied, this condition assures that the result of removing from G all items that should
be deleted by the rule yields a unique result that is a well-formed graph (for example,
it is not possible to delete a node from G if there are edges connected to it that are not
also marked for deletion in L). The result of a rule application deletes from G all items
that are not in the gluing graph K (step (1) below) and adds the ones created in R (step
2 below). Formally, these steps are constructed by pushouts in a suitable category.

X
��

�
//

��

�
//

��

e

//

L
nioo

m

��

K

(1) (2)

ooloo // r //

��

R

��

G Doo // H

Definition 5 (match, typed graph transformation). Consider a rule p = L
l←− K

r−→ R
and a typed graph G, as in the diagram below. A match is an arbitrary typed graph
morphism from L to G.

A match m satisfies the gluing condition iff both conditions below are satisfied:

(dangling condition) All edges of G that are connected to nodes that are in the image
of m are also in the image of m;

(identification condition) If an element e of L is deleted (not in the image of l), no
other element of L may be mapped to m(e) in G.

A match m : L→ G satisfies nacp if and only if it satisfies all single NACs in nacp,
we denote as nacp � m (p,G).

Ni~~
q

~~

G L
m
oo

ni

OO

Given a rule p and a match m, a (typed) graph transformation G
p,m
==⇒ H from

G to H is defined as the diagram below, where (1) and (2) are pushouts in the category
GraphTG.

L

(1)m

��

Koo
loo // r //

��

R

(2) m′

��

G Doo
l′
oo //

r′
// H

2.2. UC Formalization
The main purposes of a UC description are the documentation of the expected system

behavior and the communication between stakeholders - often including non-technical
people - about required system functionalities. For this reason, the most usual UC
description is textual, using natural language. Figure 1 depicts a UC of a bank system
describing the login operation, executed by a client.
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We use a general UC description format, containing a primary actor and a set of se-
quential steps describing interactions between the primary actor and the system towards
a certain goal. A sequence of alternative steps is often included to represent exception
flows (Extensions in Figure 1), when the primary goal is not achieved, or to describe
alternative ways to achieve it. Pre- and post-conditions are also listed to indicate, re-
spectively, conditions that must hold before and after the UC execution.

Figure 1: Login Use Case description.

In [3], we proposed a UC formalization and verification approach based on the GT
formalism. Given a UC, we build a type graph containing all relevant types for this UC
and a set of rules describing its steps, one rule for each step, which makes it easy to
understand the generated model and to trace it back to the UC. Figure 2 presents the
type graph for our bank example: a card can be either in possession of a user or inside
an ATM; a user can be logged to an ATM and has a password for access purposes, which
is provided to the ATM via an input; the ATM can generate outputs to a user via a
textual message.

Figure 2: Type graph.

Figure 3 presents the graph transformation rules derived from the Login Use Case,
shown in Figure 1. Each rule provides a representation of a step of the UC (see labels
inside black boxes). For instance, the act of a user inserting a card into an ATM is
represented by the creation of an edge between the ATM and the card (rule InsertCard).
The negative application condition (NAC) of rule InsertCard is used to disable the inser-
tion of a card if there is already a card inside the ATM. The Output node represents a
message on the ATM screen, which is used to interact with a user. Its type indicates the
type of the displayed message. The gluing component of the rule (K) is not explicitly

6



Figure 3: Graph rules obtained from the individual steps of the example Use Case (Figure 1).

represented; rather it is composed by items that are both in the LHS and the RHS of
the rule (in the edges and Input/Output nodes, numbers are used to make the mapping
more explicit). Similarly, the Input node is used to represent data input. For example,
rule AskPwd changes the output node type in the presence of a card. Then, rule EnterPwd
represents the act of a user entering a password. From this point on, there are two pos-
sibilities: either the user enters the right password, and the system creates a user session
(rule ValidateCard), or the password is invalid and the system presents a message (rule
InvalidCard), and then ejects the card (rule Exit).

After obtaining a first version of the GT from an UC, a series of automatic verifications
can be performed using the AGG tool [4]. All detected issues are annotated as open issues
(OIs) along with possible solutions (when applicable). Hence, any design decision made
over an OI can be documented and tracked back to the original UC. One important point
is that, during the formalization process, clarifications and decisions about the intended
semantics of the textual description must be made. Annotated OIs force stakeholders to
be more precise and explicit about tacit knowledge and unexpressed assumptions about
system invariants and desired behavior. The result of applying the approach proposed in
[3] is an improved UC, as well as a GT representing the UC described behavior. This GT
is the starting point of our contribution presented here: we propose a formal definition
of evolution and an analysis method that shows the impact of this evolution on UCs
(without actually performing the evolution). The analysis method is based on finding
critical pairs between evolution rules and rules describing UC steps. We now review the
main concepts of critical pair analysis in the context of GT.

2.3. Use Case Analysis based on Critical Pairs
In GT, conflicts and dependencies between rules can be detected by computing critical

pairs, which are pairs of rules such that the application of one rule may have an impact
on the application of the other (enabling or disabling it). For example, if a rule r1 deletes
an item of type X and a rule r2 needs this item to be applied, then applying r1 may
prevent the application of r2. Notice that this is a potential conflict: if there are multiple
items of type X in the state graph, then the two rules may be applied independently,
using different instances of X. There are essentially two types of conflict that may arise
in GT systems with NACs [8]:

7



Use-delete (ud): one rule uses (deletes or preserves) an element that is deleted by
another rule;

Produce-forbid (pf): one rule produces an element that triggers some NAC of another
rule.

A pair of rule applications may have a conflict in just one direction (r1 is in conflict
with r2, but r2 is not in conflict with r1), or in both directions, i.e., each rule deletes
items that the other rule uses, or creates items that trigger a NAC of the other rule.
We refer to the latter cases, respectively, as delete-delete (dd) conflicts and double-
produce-forbid (ff) conflicts. Note that, since rules may delete/create/preserve many
items, two rules may be simultaneously in more than one type of conflict. Although
there may be infinite conflicting situations involving two rules (because conflicts depend
on the actual state in which rules are applied and there is usually an infinite set of
states), there are only a finite number of critical pairs, which makes them useful for
static analysis techniques. Computing critical pairs involve comparing types of items
created/preserved/deleted/forbidden by two rules. Since the comparison is based on
types, critical pair analysis (CPA) detects potential conflicts between rules. For the
formal definition of critical pairs see [8].

Dependencies between two rules r1 and r2 arise when rule r1 creates some node or
edge which is required for the application of rule r2, or when r1 deletes something that
is forbidden by a NAC of r2. They can be defined analogously to conflict critical pairs.

CPA is essentially a brute force calculation of all critical pairs for all possible pairs
of rules. From this, it is possible to present an enumeration of all potential con-
flicts/dependencies between rule applications or, alternatively, to display this information
visually as in Figure 4. This is called a CPA graph: nodes represent the rules and edges
represent possible conflicts (solid lines) and dependencies (dotted lines).

Example: Figure 4 shows the conflicts and dependencies between rules from Figure
3. It is possible to see that all rules are in conflict with themselves. This represents the
fact that, after a match is found and the rule is applied, it cannot be applied again in
the same part of the graph. In a UC, this means that each step of the UC is supposed to
be performed only once. Rules ValidateCard and InvalidCard are related by an undirected
conflict line: they are in dd conflict. In this case, this is an expected conflict, as these
rules represent a decision point of the UC. Rule InsertCard is in ff conflict with itself,
which is also expected as one should not insert a card after it has already been inserted.
This graph was automatically generated from the rules by the AGG tool, which can also
inform which type of conflict/dependency each arrow represents and show the elements
that caused the conflict/dependency.

Figure 4: Conflicts and Dependencies from Figure 2.
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Each unexpected conflict/dependency in the CPA graph represents a possible error
either in the UC text or in its corresponding model. Thus, by checking each edge of the
CPA graph, an analyst performs a guided verification of both the UC original text and
its model. Problems can then be immediately corrected in either (or both) artifact(s).
In [3], we provided a list of OIs that may arise from the analysis of this graph. When all
issues are solved, the UC must be manually updated according to the changes made to
the rules so as to improve it and keep it up-to-date.

2.4. Second-order Graph Transformation
In this section we review the notion of rule-based modification of typed graph rules

with and without NACs presented in [9, 5]. This rewriting of rules is based on the DPO
approach, thus the rule format remains : L ← K → R. However, instead of rewriting
graphs, rules will be used to rewrite other rules. This new rule scheme is called second-
order rule, or 2-rule for simplicity, and it requires the definition of morphisms between
rules.

Definition 6 (span, span morphism). A (typed graph) span is a diagram with shape
G

l←− G′
r−→ G′′ in the category of T -typed graphs. For convenience, we refer to spans as

the pair of morphisms (l, r) with common source. A span morphism f : s→ s′ between
spans s = (l, r) and s′ = (l′, r′) is a triple (fL, fK , fR) of typed graph morphisms between
the objects of the spans such that the diagram below commutes.

L

=fL
��

K

=fK
��

ooloo // r //

��

R

fR
��

L′ K ′oo
l′
oo //

r′
// R′

A rule morphism is mono/epi/isomorphic if all three morphisms are also
mono/epi/isomorphic. Spans and span morphisms constitute a category, named Span.

Definition 7 (rule, rule morphism). A (typed graph) rule r is a span L l←− K r−→ R such
that l and r are monomorphisms, i.e. injective typed graph morphisms. A rule morphism
f : r → r′ is a span morphism (fL, fK , fR) between rules. Notice that fL, fK and fR
need not be injective.

Definition 8 (second-order rule (2-rule)). A second-order rule is span of monomorphic
rule morphisms. A second-order rule with NACs is a pair (s,NACs) composed by a
second-order rule s and a set of (second-order) NACs for s, where a second-order NAC
is defined as a rule morphism with source on the left hand side of s.

Second-order rules are analogous to first-order rules, the difference is that, instead of
defining transformations of graphs, they define transformations of rules (that transform
graphs). Examples of second-order rules will be given in Section 4 defining evolutions
the use case illustrated in Section 2.2.

The transformation of a rule by means of a 2-rule is defined by means of a DPO
diagram in the category Span, as in the case of graphs. One caveat exists, however: the
resulting span may not be a valid rule because injectivity is not necessarily preserved by
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the rewriting. To mitigate this, it is possible to build (for each individual 2-rule) a set of
structure preserving NACs that forbids any match that would result in a ill-formed rule.
In the following, we omit this set of structure-preserving NACs because they only affect
the selection of 2-rule matches, not the second-order rewriting itself. The construction
of this set of NACs is detailed in [9, 5].

Definition 9 (second-order transformation, rule evolution). Consider a second-order
rule α = (L{L,K,R} ← K{L,K,R} → R{L,K,R}), and a first-order rule p = (L ← K →
R), as in the diagram below. The upper part of this diagram is a 2-rule. A second-
order match is a rule morphism from L{L,K,R} to p. Let l = (LL ← KL → RL),
k = (LK ← KK → RK) and r = (LR ← KR → RR). A second-order transformation
p

α,m{1,2,3}
======⇒ p′′ (L′′ ← K ′′ → R′′) is defined by the diagram below, where L

l,m1
==⇒ L′′,

K
k,m2
===⇒ K ′′ and R r,m3

===⇒ R′′ are typed graph transformations and (L′ ← K ′ → R′) and
(L′′ ← K ′′ → R′′) are valid typed graph rules.

LR

m3

��

KR

��

oo // RR

��

LK

m2

��

<<

||

KK

��

;;

oo //

{{

RK

��

;;

{{

LL

m1

��

KL

��

oo // RL

��

R R′oo // R′′

K

;;

{{

K ′

::

oo //

zz

K ′′

;;

{{

L L′oo // L′′

The span of rules p← p′ → p′′ (the floor of the diagram above) is called rule evolution.

3. Second-order transformations and NACs

Negative Application Conditions (NACs) are widely used in practice, being very im-
portant in the modelling of real systems. In particular, conditional constructs within a
use case are mapped in a very direct way to rules with NACs.

The fact that second-order rewriting as defined in [9] does not provide support for
modifying rules containing NACs is an important limitation for its applicability. To be
able to employ second-order principles to describe and analyse evolution of use cases,
our formal setting needs to support the transformation of rules with NACs. Formally,
we need a solution for the following problem:

Evolution of first-order NACs. Given a rule with NACs (p,NACp) and a second-
order transformation p⇒ p′′ transforming p = L← K → R into p′′ = L′′ ← K ′′ → R′′,
the question is how to obtain a set NACp′′ to build a rule with NACs (p′′, NACp′′)
maintaining the same semantics of the set NACp with respect to p.

For this analysis in particular, notice that the full second-order DPO diagram is not
needed: we only require the respective rule evolution. Therefore, given a rule evolution
transforming p into p′′, and a set of NACs for p, we intend to obtain a set of NACs over
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p′′ that, ideally should forbid and allow exactly the same corresponding matches: i.e.,
the semantics of the NACs is preserved by the transformation. As the preconditions (the
left-hand side) of the rules can be modified by a second-order rule, the set of NACs must
be altered in a compatible way.

A solution for this problem has been found recently in the context of a master thesis
[10]. In this (rather technical) section we describe this solution, which serves as basis for
our implementation. We show that it is possible to generate a new set of NACs provided
that we restrict our matches to be injective.

We start formalizing the notion of semantic preservation, and characterize the situ-
ations in which such a semantics preservation occur. For a fixed graph G, we start by
defining when matches rules p and p′′ in G are related.

Definition 10 (Related matches). Given a rule evolution p l←− p′ r−→ p′′ (where p = L←
K → R, p′ = L′ ← K ′ → R′ and p′′ = L′′ ← K ′′ → R′′), a typed graph morphism m:
L → G (representing a match for p in G) and a typed graph morphism m′′: L′′ → G
(representing a match for p′′ in G). We say that m and m′′ are related matches (by
means of the rule evolution) if and only if

• m satisfies DPO gluing conditions for p

• m′′ satisfies DPO gluing conditions for p′′

• the equation m ◦ lL = m′′ ◦ rL holds, i.e. the following diagram commutes

R R′
lRoo

rR // R′′

K

88

xx

K ′
lKoo

rK //

77

xx

K ′′

77

ww
L

m

%%

L′
lLoo

rL // L′′

m′′

yy
G

Intuitively, matches of a rule and its evolution are related when they are essentially
the same considering the part of the left-hand side of the rule that was preserved by the
rule evolution. The following definition describes the meaning of semantics preservation
of NACs in an evolution.

Definition 11 (Preservation of NAC-behavior). Let p ← p′ → p′′ be a rule evolution,
NACp be a set of NACs for p and NACp′′ be a set of NACs for p′′.

We say that

• NACp′′ preserves the NAC-blocking behavior of NACp when, for every m : L→ G
and related m′′ : L′′ → G, we have

NACp 6� m⇒ NACp′′ 6� m′′
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• NACp′′ preserves the NAC-allowing behavior of NACp when, for every m : L→ G
and related m′′ : L′′ → G, we have

NACp � m⇒ NACp′′ � m
′′

• NACp′′ preserves the NAC-behavior of NACp whenever NACp′′ preserves the
NAC-blocking behavior and NAC-allowing behavior of NACp.

The purpose of NACs is to enable or disable a match m of rule r in graph G. Roughly
speaking, in DPO, a match is forbidden if (at least) one of the following situations occur:

• G has some element which does not appear in (the image of) L but appear in (the
image of) a NAC;

• m identifies elements preserved by r, but these elements are not identified in a
NAC;

• m does not identify elements preserved by r, but these elements are identified in a
NAC.

These effects can be observed in the Figure 5, which shows a rule L ← K → R
with set of NACs {n1, n2} together with three graphs G1, G2 and G3, together with one
match for each graph: m1 : L → G, m2 : L → G2, and m3 : L → G3. The mappings
are provided by the numbers within nodes. Match m1 is disabled by NAC n1 due to the
presence of a star in G1. Match m2 is disabled by NAC n2 due to the identification of
the circles. Match m3 is not disabled by n2 because n2 does not identify the squares,
even considering that m3 identifies the circles as specified by n2.

L
1

43

2
K

1

43

2
R

1

43

2

N11

43

2
N21,2

43

G2

43

G11

43

2
G3

3,4

1,2 1,2

l r

n1 n2

m1 m2 m3

Figure 5: NACs enabling and disabling matches.

Given a rule evolution p← p′ → p′′ and a setNACp of negative application conditions
for p, we now define how to build a set NACp′′ of NACs for p′′. We will show that
NACp′′ preserves the NAC-blocking behavior of NACp. We also present a counter-
example that shows that a NAC-allowing behavior preservation is not possible in general,
considering arbitrary evolutions, and propose a restriction to guarantee NAC-allowing
behavior preservation.
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In [11], Lambers defined a way to construct, from a graph A with NACs, a set of
equivalent NACs for a graph B related to A via a morphism t : A→ B. This construction
is called NAC-shift.

Definition 12 (NAC-shift (over a morphism)). Given a NAC n : A→ N , a morphism
A→ B and the diagram below, (1) is a NAC-shift if:

(i) (1) commutes.
(ii) t′ and n′ are jointly epi.
(iii) t′ is mono.

N
t′ // N ′

(1)

A
t
//

n

OO

B

n′

OO

Definition 13 (Shift of a NAC along a morphism). Given a NAC n : A → N and a
monomorphism t : A→ B:

Dt (n) = {n′ | n′ : B → N ′, t′ : N → N ′} where (1) is a NAC-shift.

Definition 14 (Shift of a set of NACs). Dt (NAC) =
⋃

n∈NAC
Dt (n)

Using NAC-shift it was possible to describe the NACs evolution process as a trans-
formation of two steps: first a pushout complement (as in DPO transformations), and
then the shift of NACs over a morphism. Note that in this process each NAC can be
evolved to zero or many NACs, which is not an issue since our aim is only to preserve
the behavior of the NAC, and not the NACs themselves. This construction was shown
in [11] to preserve the NAC-blocking behavior.

Definition 15 (Evolution of a set of NACs). Let p← p′ → p′′ be a rule evolution, where
p = L← K → R, p′ = L′ ← K ′ → R′ and p′′ = L′′ ← K ′′ → R′′. Let NACp be a set of
NACs for p. We define the evolved set of NACs NACp′′ as

NACp′′ = Dt(NACp)

Theorem 1 (Preservation of NAC-blocking behavior). Let p ← p′ → p′′ be a rule
evolution, where p = L ← K → R, p′ = L′ ← K ′ → R′ and p′′ = L′′ ← K ′′ → R′′. Let
m : L → G and m′′ : L′′ → G be related matches. Let NACp be a set of NACs for p,
and NACp′′ = Dt(NACp).

If NACp 6� m (p,G) then NACp′′ 6� m′′ (p′′, G).

Proof. See [11].

However, the preservation of NAC-allowing behavior is not as straightforward as the
preservation of NAC-blocking behavior. We start presenting a counterexample involving
non-injective matches.

Example 1 (Invalidation of NAC-allowing behavior). Figure 6 depicts an example of
evolution of a rule with NACs. The intermediate rule of the evolution is isomorphic to
the right-hand side rule and it is omitted from the diagram. The original rule deletes a

13



evolution

G3

m3 m3 ' '

n2n2

Figure 6: Evolution where NAC-allowing behavior is not preserved.

star in the presence of two circles and two squares. Its only NAC n2 : L → N2 forbids
the application whenever the preserved circles are identified. Notice that m3 : L → G3

is not disabled by n2, since there is only one square, and therefore there is no injective
morphism e : N2� G3. The evolution consists in removing one of the preserved squares
from the rule, generating a rule that deletes a star in the presence of two circles and
one square. The NAC evolution generates a single NAC n′′2 : L′′ → N ′′2 , without the
deleted square. Notice, however, that what prevented NAC n2 from disabling m3 was the
impossibility of identifying the squares in a monomorphism. Since now there is only one
square, there is actually a possible monomorphism e′′ : N ′′2 � G3 for n′′2 , and therefore
n′′2 disables the match m′′3 , which is related to m3 by the evolution.

This situation occurs because some NACs forbid more than one (preserved) elements
and if an evolution deletes some of these preserved elements, the distinction between
matches that would be allowed or disabled by the NAC may disappear. If, however, we
restrict second-order transformations to injective matches, these problematic situations
are impossible, and it is possible to obtain preservation of NAC-allowing behavior, as we
show in the following theorem.

Theorem 2 (Preservation of NAC-allowing behavior for injective matches). Let p ←
p′ → p′′ be a rule evolution, where p = L ← K → R, p′ = L′ ← K ′ → R′ and
p′′ = L′′ ← K ′′ → R′′. Let m : L� G and m′′ : L′′ � G be related injective matches.
Let NACp be a set of NACs for p, and NACp′′ = Dt(NACp).

If NACp � m (p,G) then NACp′′ � m′′ (p′′, G).

Proof.

14



• (by definition)
If for all n : L → N ∈ NACp there is no monomorphism e : N → G such that
e ◦ n = m, then for all n′′ : L′′ → N ′′ ∈ NACp′′ there is no monomorphism
e′′ : N ′′ → G such that e′′ ◦ n′′ = m′′.

• (contrapositive)
If there exists n′′ : L′′ → N ′′ ∈ NACp′′ and monomorphism e′′ : N ′′ → G such that
e′′ ◦n′′ = m′′, then there exists n : L→ N ∈ NACp and monomorphism e : N → G
such that e ◦ n = m.

• (existence of monomorphism e) consider the diagram below:

H G

N N ′ N ′′

L L′ L′′

y
v

y

eu

lN rN

e′ e′′

n

m

n′

lL rL

n′′

m′′

– assume monomorphisms m : L � G, m′′ : L′′ � G and e′′ : N ′′ � G in
the diagram above. Notice that each n′′ ∈ NACp′′ was created from some
n ∈ NACp by means of a pushout complement and a NAC shift commutative
square, as shown in the diagram;

– n′′ : L′′ → N ′′ is mono because m′′ = e′′ ◦ n′′ and m′′ is mono. By a similar
argument, note that n′ and n are also mono.

– let e′ : N ′ → G be the composition of monos e′′ ◦ rN ;
– let (u, v) be the pushout of (e′, lN ). Because the category of graphs is adhesive,

pushouts preserve monomorphisms and, therefore, both u : N → H and
v : G→ H are mono;

– let e : N → G be the unique arrow from pushout square (n′, lL, LN , n) towards
the cospan (m, e′);

– e : N → G is mono because u = v ◦ e, and u is mono.

As Theorems 1 and 2 show, NACs preservation is constrained by the kind of morphism
allowed as a rule match:

• with general matches, only preservation of blocking behavior is possible.

• with injective matches, preservation of allowing and blocking behavior is possible.

Considering this scenario, we use Definition 15 as appropriated algorithm for evolving a
set of NACs along a rule evolution, and we must employ only injective matches in our
graph grammars. This is the basis of our implementation of a second-order transforma-
tion model for first-order rules with NACs.
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4. Use Case Evolution

As software is always evolving, it is necessary to create ways to specify this evolution
and analyze the impact of changes. In order to evolve use cases, a very simple idea
would be to manually modify the UCs. However, modifying directly the UCs would
mean to work on an inherently ambiguous and imprecise language rather than using the
corresponding formal description (GT). Moreover, modifying the UC would make the
GT model of the system useless, as consistency would not be maintained, unless a new
translation was executed. Another aspect is that in large systems the effect of modifying
one UC on the whole system is not always evident, since changes may propagate to other
UCs due to dependencies. On the other hand, by modifying the GT model directly, one
can precisely define evolution (enabling automation) as well as get a detailed impact
analysis, whilst keeping all specification artifacts coherent with the desired evolution.

We propose to describe and analyze evolution using GT, updating the corresponding
UCs only at the end of the process. Hence, we only go back to the UCs after we are
certain that the evolution has the desired effect on the system. In this way, evolution
leads to an updated formal model (GT) and corresponding updated UCs.

In order to represent evolution in GT, we use as formal foundation second-order rules
[5], which are rules that modify other rules (the first-order rules). In this work, we call
second-order rules evolution rules, describing intended modifications to be applied to an
existing GT. The main idea is to construct a rule that defines a modification pattern. This
pattern denotes the items that must be changed and how they shall change for a given
evolution. Then, this pattern can be compared to all rules of a GT model, called step
rules (rules describing steps of a UC). In case of a match, the rule is modified accordingly
(an idea very similar to the use of aspects in programming [12]). This way of formalizing
the definition of an evolution guarantees a precise description, using a language similar
to the one used to describe the system itself. It also enables the possibility of analysis of
changes due to the evolution process (side-effects).

The proposed method consists of 3 steps:

Step 1 – Definition of evolution: The developer defines any behavior that has to be
modified, added to, or suppressed from the system in terms of GT rules. Behaviors
to be modified are described as evolution rules (second-order rules), whereas new
behavior is described as step rules (first-order rules). Rules to be deleted may be
specified explicitly or be selected in Step 3.2.

Step 2 – Analysis of evolution: Using evolution rules, analysis based on critical pairs
(CP) can be performed:

Step 2.1 – CPs between evolution rules: give hints on consistency and ter-
mination of the evolution process;

Step 2.2 – CPs between evolution and execution: describe how system’s
step rules (and corresponding UC steps) will be impacted by evolution rules.
By analyzing these CPs, the developer has to decide whether the evolution
should be performed as is or modified to prevent undesired behavior (the latter
case means going back to Step 1);

Step 3 – Execution of evolution: Perform the intended evolution:
16



Step 3.1 – Generate a new GT: Execute the modifications defined in Step 1
on the original GT;

Step 3.2 – Analyze the new GT: Construct the CPA graph for the new GT
and identify rules that shall be deleted (became useless), perform deletion,
and redo analysis until the GT exhibits the desired behavior;

Step 3.3 – Modify UCs: UCs whose step rules were affected by evolution should
be rewritten accordingly.

Before detailing how evolution is defined and performed, we illustrate the proposed
method with a simple example of evolution applied to our running. This example con-
siders only one UC, but more complex case studies are reported in Section 5.

1:Output
type=”Insert card”

5:out

LHS

1:Output
type=”Insert card”

5:outNAC

e
v
o
l
u
t
i
o
n

r
u
l
e

Output
type=”Insert card”

out

Output
type=”Choose id”

outRHS

Figure 7: Evolution Rule

Example: (Evolution 1: Insert fingerprint login.) As an example of evolution, suppose
the bank now decides to change the way in which a client logs in via an ATM: besides
the original card-and-password method, the bank also wants to allow identification via
fingerprint. With this change, any step of a UC leading back to the start state of the
ATM, showing the Insert card message, would have to be modified to show a Choose id
message, indicating that the user now has to select the identification method to be used.

Step 1: Figure 7 describes an evolution rule modeling this modification. To stress the
orthogonal nature of evolution with respect to the behaviour of the system, evolution rules
will be depicted vertically (contrasting to the horizontal description of step rules). The
LHS of the evolution rule (shown above the downward arrow) is the pattern to be found
in a step rule of the specification to trigger a modification on that rule. In this example,
it matches all step rules where an ATM is preserved and an Output node of type "Insert
Card" is generated. The effect, as specified by the evolution rule’s RHS (rule pattern below
the downward arrow), is to delete the Output node of type "Insert card" and replace it by
an Output node of type "Choose id". The NAC of the evolution rule (shown on the top) is
used to ensure that this transformation is applied only to step rules that create an Output
node "Insert Card", not to rules that preserve it. Besides changing existing step rules,
new rules are added to model the new behavior (see Figure 8): now the system starts by
asking the user to choose between card or fingerprint identification (rules ChooseId-card
and ChooseId-fprt), and rules that treat insertion and validation of fingerprints are added.

Step 2: This evolution consists of only one rule, which is in conflict with itself because,
once applied, it will change the step rule in a way that the evolution rule can not be applied
again (to this step rule). Thus, the evolution process is consistent and terminates. By
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Figure 8: UC Rules after application of the Evolution Rule

analyzing the matches and conflicts of the evolution rule with the execution ones, it is
possible to detect all step rules that should be modified and, consequently, all UC steps that
should be changed to apply the evolution. In our example, the only step rule that would
be modified is rule Exit (corresponds to Step 4a_2), that will now generate a message
Choose id instead of Insert card. This is exactly what was expected, hence the evolution
can be performed.

Step 3: We can now perform the evolution (Step 3.1) and generate the CPA graph (Step
3.2 – see Figure 9). In this example no step rule shall be deleted (the next example will
illustrate this case) and we can thus update the corresponding UC: steps of the original
UC corresponding to unchanged step rules remain unchanged; steps that correspond to
changed rules must be updated; and steps corresponding to new rules must be added. This
UC is shown in Figure 10.

Figure 9: CPA graph - evolution 1.

4.1. Formalization of Evolution
This section presents the formalization of the evolution steps previously discussed

and applied to to our ATM example.

Step 1: We now define how to represent the evolution of a system.

18



Figure 10: Login Use Case description - evolution 1.

When modifying a graph transformation system, one may alter the type graph (in-
serting or deleting types of elements), add new rules, delete deprecated rules and update
rules by means of second-order rules (which in this context will also be referred as evo-
lution rules). All these modifications are codified by the structure we call evolution
structure.

Definition 16 (Evolution structure). Let G = (T, P ) be a GT system. An evolution
structure for G is a tuple ES = (ET,EP,Del,New) where

1. ET = T
l←− T ′ r−→ T ′′ is a span of graph morphisms such that l and r are injective.

This describes how the type graph is modified by the evolution.

2. EP is a set of second-order rules (evolution rules) that describe how to update the
rules which are preserved during the evolution; the LHS of each evolution rule must
be typed over T and the RHS must be typed over T ′′;

3. Del ⊆ P is a set of GT rules to be deleted;

4. New is a set of GT rules (T ′′-typed) to be created.

Example: (Evolution 2: Remove card/password login) Suppose now that the bank
decides to remove the old card-and-password method and make the fingerprint recognition
the only available login method. In this case, all step rules that contain any reference to
card or password would have to be modified. Figure 12 shows examples of two evolution

19



(a) LEv

mEv

��

(1)

KEv
oo

lEvoo //
rEv //

��

(2)

REv

��

p p′oo // p′′

(b) LHS(LEv)

m
��

(1)

LHS(KEv)ooloo // r //

k
��

(2)

LHS(REv)

m∗

��

X Lp
noo Lp′

l∗
oo

r∗
// Lp′′

Figure 11: (a) Span rewriting (in Span) (b) Rewriting of a rule’s LHS (in T -Graph)

rules that may be used to accomplish this task. Rules rule-Evol1 and rule-Evol2 state that
step rules that preserve/produce bank card should have bank cards removed. Similar rules
can describe that references to bank cards, as well as references to Insert card, should be
removed. We will call these rules rule-Evol3 (rules that create references to cards should
be updated), rule-Evol4 (rules that preserve Insert card should be updated), rule-Evol5 (rules
that create Insert card should be updated), rule-Evol6 (rules that delete Insert card should be
updated). We also have rule-Evol7, analogous to the rule shown in Figure 7, that rewrites
step rules that create Choose id to rules that create Place finger (because now there is no
choice of identification method). Finally, rule-Evol8 removes references to Choose id from
the LHSs of step rules. The tuple (T ← T ′ → T ′, {rule-Evo1, . . . , rule-Evo8}, {}, {}}) is an
evolution structure, where T ′ is obtained from T by removing the node types card, Insert
card and associated edge types.
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Figure 12: Evolution of rules: Removing card

Step 2.1: In [5], critical pairs between higher-order rules were defined. Here we can
apply this notion to evolution rules obtaining a CPA graph describing the conflicts and
dependencies. We require that every evolution rule be in conflict with itself and do
not depend on itself. Moreover, we require that there are no conflicts nor dependencies
between two different evolution rules. This guarantees that every rule can be applied at
most once at each match and, therefore, the evolution process will eventually terminate
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(all rule sets and graphs are finite) and that the evolution process is deterministic.
Step 2.2: There are different ways in which an evolution rule may impact a step rule. In-
tuitively, the gluing problem occurs when the evolution rule cannot be applied because
the (second-order) gluing condition is not satisfied. This means that the application of
this rule would lead to side effects; for example, when we are trying to remove some node
of the step rule that is referenced by some edge not specified for deletion in the evolution
rule. The NAC-gluing problem represents a situation in which applying an evolution
rule implies the deletion of a NAC of the step rule: if the elements that were forbidden
by the NAC are removed, the NAC becomes useless. These situations actually prevent
the application of the evolution rule to this step rule since they would lead to side effects
that were not foreseen. When this occurs, the developer has to decide whether the side
effect is desired (in which case a new rule explicitly stating this not as a side effect but as
the effect of the rule must be added) or not (in this case, nothing must be done, since the
evolution rule is not applicable to the step rule in which side effects would occur). Other
situations to consider are when the evolution rule increases or restricts the step rule
applicability (the LHS of the step rule is changed), and when the evolution rule changes
the effect of the step rule (the RHS of the step rule is changed). These situations are
characterized below.

Definition 17 (Interplay between Evolution and Execution rules). Given an evo-
lution rule with NACs EvR = (EvNAC,α) that is not an isomorphism, where
α = LEv � KEv � REv, a step rule with NACs ExR = (exNAC, p) and a morphism
m : LEv → p, the interplay between the evolution rule EvR and the step rule
ExR can be classified in 4 groups:

1. Situations that prevent evolution:

Gluing problem (gp): there is no unique p′ such that diagram (1) of Figure
11(a) is a pushout 3;

NAC-gluing problem (np): there is a NAC n : Lp → X ∈ N such that n ◦ l∗ in
Figure 11(b) is an isomorphism;

2. Situations that increase rule applicability:

Delete2-delete (d2d): an item deleted by ExR is deleted from p by EvR;

Delete2-preserve (d2p): an item preserved by ExR is deleted from p by EvR;

3. Situations that restrict rule applicability:

Create2-delete (c2d): EvR creates an item to be deleted by p (i.e., inserts an
item in p’s LHS);

Create2-preserve (c2p): EvR creates an item to be preserved by p (i.e., inserts
an item in p’s LHS);

3The name gluing is standard in the graph transformation community, and denotes a situation in
which the gluing rule p′ can not be determined. This may occur due to a conflict between deletion and
preservation of items during rule application, or due to trying to delete items that are connected to
others by edges that are not specified for deletion by the rule.
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4. Situations that modify rule effect:

Create2-create (c2c): EvR creates an item to be created by p (i.e., inserts an
items in p’s RHS);

Delete2-create (d2c): EvR deletes an item created by p.

The open issues that may be raised by this analysis step are listed in Table 1.

Open
issue

Verification Problem Severity
level

Possible action

OI.Ev1 Evolution rule not
in conflict with it-
self

The rule may be
applied multiple
times Red

Review the evolution rule
(adding a NAC or an item
to be deleted).

OI.Ev2 Evolution rule
dependent on any
evolution rule

Evolution may not
terminate

Red

Review the rules.

OI.Ev3 Evolution rule in
conflict with other
evolution rule

May lead to non-
deterministic evo-
lution Red

Check LHSs of conflict-
ing evolution rules to make
sure that they are not ap-
plicable to the same step
rule

OI.Ev4 Gluing problem oc-
cured

An evolution is not
applicable to some
step rule due to ex-
tra context

Orange

Check whether the evolu-
tion should be applicable
to this step rule. If not,
nothing has to be done. If
yes, create a new evolution
rule with the extra context,
if such rule does not exist.

OI.Ev5 NAC-gluing prob-
lem occured

An evolution would
make the NAC of a
step rule useless Orange

Check the NAC: if it makes
sense that it become use-
less, delete this NAC. Oth-
erwise, review the evolu-
tion rule.

OI.Ev6 Undesired increase
of (step) rule appli-
cability

Delete2-delete or
Delete2-preserve
situation occurred Orange

Check the items that
will be deleted from the
step rule by the evolution
rule (items deleted in
LHS(LEv).

OI.Ev7 Undesired restric-
tion of (step) rule
applicability

Create2-delete or
Create2-preserve
situation occurred Orange

Check the items that will
be inserted in the LHS of
the step rule by the evolu-
tion rule (items created in
LHS(REv) .

OI.Ev8 Undesired modifi-
cation of (step) rule
behavior

Create2-create
or Delete2-create
situation occurred Orange

Check the items that are
created in/deleted from the
RHS of the step rule by
the evolution rule (items
created in/deleted from
RHS(REv).

Table 1: Open Issues concerning Evolution

Example: Many step rules in the grammar of Figure 8 will be affected by evolution 2
(removal of card and password authentication). Due to space limitations, it is not possible
to show all cases, but only examples of situations that arise from this evolution:
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Gluing problem: There is a gluing problem between rule ruleEvol2 and rule insertCard:
when we try to delete the card from the step rule insertCard, the gluing problem
warns that there is a connection of this card to a User and thus, by removing the
card, we would have to remove this connection as a side effect. If this is the desired
effect, either this evolution rule should be updated to include the card, or another
evolution rule including the card should be added (in case the two methods – with
an without card – are needed). Another possibility would be to mark the step rule
to be deleted by the evolution (in this example, this would be the desired effect since
without the card the rule do nothing, as shown in Figure 13).

NAC-gluing problem: Once again, the application of rule ruleEvol2 would impact in
rule insertCard. The NAC would become equal to the LHS of the rule, meaning that
it would not forbid anything, becoming useless.

Delete2-delete: rule AskPwd is in d2d-situation with rule-Evol6 because both delete the
node Output:InsertCard.

delete2-preserve: rule rule-Evol4 is in d2p-situation with rule InsertCard.

RHSNAC InsertCard LHS

Figure 13: Evolution of rule insertCard

The existence of such conflicts means that the evolution step will change the behavior
of the affected rules and, therefore, the developer has to check whether the outcome of the
evolution captures the desired behavior. If, despite the conflicts, evolution according to
the given rules is performed, this means the developer judged that these conflicts do not
represent undesired UC behavior.

Step 3.1: Let α = LEv ← KEv → REv be an evolution rule, let p be a graph transfor-
mation rule without NACs, and let mEv : LEv → p be a span morphism. The evolution
of p to p′′ via the application of (α,mEnv), denoted by p

α,mEnv
=====⇒ p′′, was defined in

[5]. We now extend this notion of evolution to step rules with NACs. If p α,mEnv
=====⇒ p′′,

then (N, p)
α,mEnv
=====⇒ (N ′, p′′), where N ′ is obtained from N as follows: for each NAC

n : Lp → X ∈ N , we can obtain a corresponding NAC n′ : Lp′′ → X ′ as the universal
pushout morphism from pushout (2) in Figure 11(b), where X ′ is the pushout (object)
from n ◦ l∗ ◦ k and r. With this, we can define how an evolution structure evolves a GT
system as a whole.

Definition 18 (Evolution). Let G be a graph transformation system, and ES = (T ←
T ′ → T ′′, EP,Del,New) be an evolution structure over G. An evolution of G induced
by ES is the GTS G′′ = (T ′′, P ′′) where P ′′ is obtained by

1. P1 = P \Del, i.e., remove all step rules marked for deletion;

2. Keep applying evolution rules in EP to step rules in P1, until no evolution rule is
applicable. This gives rise to the set of rules P2;
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3. P ′′ = P2 ∪New, i.e., add new rules to the specification.

Step 3.2: This step is a garbage collection step that deletes the step rules that are no
longer useful in the system. It is performed by constructing the CPA graph of the result
of the evolution and comparing it to the CPA graph of the system before evolution. Rules
that are disconnected in this graph are the first candidates for deletion (since they do
not use/create any item that is needed by other rules and thus represent actions that are
totally independent from others, which is not common in UCs). The second verification
concerns branching points: if a branching point (bi-directional conflict) disappeared,
probably all rules depending on one of the branches should be removed (because UCs do
not have usually two independent execution threads). Third, if a dependency disappears,
it should be checked whether the rule is still necessary. Note that selecting the rules to
be deleted is a manual task, since it involves choosing which behavior should be kept in
the UC. However, the CPA graph helps finding the rules to be deleted. Besides using the
CPA graph, we also look for rules that turned into isomorphisms due to evolution (and
thus, became useless) and also for rules that are duplicated.
Step 3.3: This step is done by removing from the original UC all steps that correspond
to deleted rules, modifying the steps that correspond to changed rules (by comparing the
old and new rules, it is usually obvious how the text should be rewritten), and add steps
corresponding to new rules. The order of steps must be compatible with the dependency
order of the CPA graph of the evolved system.

Example: (Evolution 2: Remove card/password login – Step 3) By performing an
evolution using evolution rules rule-Evol1 to rule-Evol8 and deleting step rule InsertCard,
we obtain the modified step rules shown in Figure 14 (rules corresponding to other steps
remain unchanged). After the application of evolution, the analyst may review the spec-
ification in order to check whether the remaining rules make sense in the new context.

Figure 14: Evolution of rules of UC1

The CPA graph of the resulting GT is shown in Figure 15 (we included InsertCard here
to show how it would appear, if it had not been explicitly deleted by the evolution step).
Rules InsertCard and ChooseId-card should be removed from the set of resulting step rules
because they have no effect (they do not delete/create anything, and are thus disconnected
in the CPA graph). Rule ChooseId-fprt is not in conflict with itself and thus can occur
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indefinitely many times: since this choice is actually no longer needed, it may be removed.
The starting point of the corresponding UC should be InsertFingerprint. Rules AskPwd,
InsertPwd, ValidateCard, InvalidCard and Exit are not reachable from InsertFingerprint. Since
these actions are not to be performed in parallel with others (if this would be the case,
being independent from InsertFingerprint would be correct), all these rules should also be
removed. The resulting UC is shown in Figure 16.

Figure 15: Conflict-dependency graph - evolution 2.

Figure 16: Login Use Case description - evolution 2.

5. Case Studies

We present 3 case studies to evaluate the use of our approach. For each case study,
we have previously constructed the original GT using the methodology described in [3].
Hence, here we only describe the evolution process of these systems, as well as quantify
the impact of the modifications. All original UCs and GTs, the evolution rules, and
the modified GTs can be found at http://www.ufrgs.br/verites. We used the Veri-
graph tool4 to perform analyses on each UC. Verigraph is implemented in the Haskell
programming language and offers (amongst other functionalities) critical-pair analysis
and evolution of graph transformation systems based on second-order rules. It is cur-
rently under development and, although freely available, provides at the moment only a
command-line interface. We used the AGG tool [4] to visualise analysis results and to
model first- and second-order graph transformation rules.

4Available at http://github.com/verites/verigraph
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The first case study involved 3 UCs describing a medical procedure at a Brazilian
research institute. The aim was to describe how to apply a saline solution to skin areas
with lesions. The quantity of solution and the adequate procedure to inject it on a
patient depend on the location, appearance, and size of the lesions. The specification
describes how to deal with each possible case. After the translation from the UCs to
GT, 32 rules were created. In this case, the evolution consisted in considering two types
of lesions (small and large), removing different types of needles, and treating anesthetic
buttons in an unified way. This evolution led to the merging of UCs (many rules became
isomorphisms and were deleted, 2 UCs became equivalent – i.e., they had repeated rules).

The bank case study contained 5 UCs describing how a customer accesses his account
in a given bank through an ATM and how a bank employee can certify that a deposit
is correct and, thus, can be completed. The shortest UC contained 7 steps, considering
the main scenario and extensions, whereas the longest contained a total of 17 steps. The
formalization resulted in a total of 48 rules. From this original GT, we applied evolution
1, described in the running example in Section 4, with an additional evolution rule to store
the type of login performed. Based on this evolution, a non-predicted second evolution
was necessary. The problem occurred because the login by card and password required
a card to be inserted in the ATM, which must be dispensed when the costumer logs out.
However, when the login was done by fingerprint, there was no card to be dispensed.
Hence, the first evolution allowed a costumer to login by fingerprint but required a card
to be dispensed at logout. The new second-order rule modified rules including a marker
in situations where the login was by fingerprint. This rule induced inter-level conflicts,
since the original rules were applicable to graphs without the marker, unlike the modified
rules. This ensured the card must be dispensed at logout only if it was inserted at login,
thus allowing the correct logout operation for each login type.

The third case study considered the specification of an e-commerce application5. For
this case study, we have formalized 5 UCs, considering the UC that corresponds to the
login operation and, therefore, is required by all other UCs, and 4 other UCs related
to basic operations of the system, such as browsing/searching the catalogue of items
and dealing with account information. Each UC contained between 6 and 20 steps. The
proposed evolution was to preserve the data of a user account when it is cancelled, rather
than simply deleting the account. Hence, when cancelling an account, this account would
just be marked as inactive and could be reactivated later on by a system manager. This
forced other three necessary modifications: (i) all rules mentioning a user have to consider
whether this user has an active account; (ii) when a new user account is created, it must
be initialized as deactivated until the user confirms its activation; and (iii) all operations
in the system must be restricted only to users with active accounts.

5.1. Results
Table 2 shows the quantitative results of our case studies. It presents, for each case

study: the number of UCs of each system; the total number of first-order rules present in
the original GT; the number of evolution rules created based on the proposed evolution;
number of inter-level conflicts (i.e., when a second-order rule creates a conflict with a

5Available at http://www.utdallas.edu/~chung/RE/Presentations07S/Team_3/UseCaseDocument.
doc. Last accessed on July 2, 2019.
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first-order rule); the number of rules affected by the evolution; the number of rules deleted
from the original GT because they became either obsolete (i.e., inapplicable) or useless
(i.e., without any practical effect) after an evolution; and the number of UCs modified
as a consequence of the evolution.

Table 2: Summary

Case Medical Bank Marvel
# of UCs 3 5 5
# of 1st-order rules 32 48 32
# of 2nd-order rules 8 2 4
# of inter-level conflicts 3 4 2
# of affected rules 11 7 5
# of deleted rules 7 0 0
# of affected UCs 3 3 3

The number of inter-level conflicts indicates the points where special care has to be
taken and decisions concerning the effects of an evolution have to be made. The sum of
affected and deleted rules indicates the amount of work that would be necessary to apply
the corresponding evolution. This means, for example, that applying the evolution of the
Medical case study would require dealing with a total of 18 rules. However, we were able
to automatically apply these changes by specifying 8 evolution rules. Considering that
this specific case study contained 32 first-order rules, applying the evolution manually
by identifying and modifying each rule could be difficult and error-prone. Instead, by
specifying evolution rules, we can automatically detect all step rules that have to be
changed, as well as which changes should be applied.

We only considered 3 case studies with a few UCs but, even with this reduced number
of cases, it was already possible to see the benefits our approach brings in contrast
with modifications carried out by hand. In particular, the experiments showed how an
evolution may trigger other changes, and keeping track of all these side-effects could be
a hard task. Therefore, the experiments demonstrate our approach is useful, scalable,
and applicable in practice.

Despite the need of some expertise to formally define the evolution, we noticed that
often evolution rules are not complex to specify. Moreover, considering the real gain in
having automatic analyses of the impact of system changes, it seems worth the effort.
The interpretation of the analysis results also require some knowledge about conflicts and
dependencies, but these concepts can be easily associated to similar ideas involving UCs.
It is worth to mention that our work provides support for the analysis of the impacts of
an intended evolution, but the user has the final decision on implementing it or not. As
the user can analyse how the evolution affects the system, they can decide whether the
impact is desirable and acceptable or the effects of the proposed evolution are more a
problem than a solution.

6. Related Work

CPA has already been used to support evolution in scenarios not connected with
UCs, such as described in [13] and in [14]. However, we consider that UC specification is
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important as a means to communicate with stakeholders. Although we specify evolution
in the GT language, we propose the corresponding changes to be applied to the UCs
so as to keep them up-to-date as a documentation of the software for developers and
stakeholders.

Considering support for UC evolution, Rui and Butler [15, 16] discussed a metamodel
for UCs along with a set of UC refactoring categories based on the metamodel. Refac-
torings correspond to changes in the syntax or structure of the UCs, such as changing
or deleting a UC entity. Although the mechanics of some refactoring operations were
discussed, the authors did not evaluate the effect of a UC refactoring in other UCs and
offer no support for semantic changes. In [17], an approach for evolution of metamodels
described by graphs was presented. They consider how to change the metamodel and
guarantee that models constructed from this metamodel are kept consistent. However,
neither of the two aforementioned approaches considers a combination of UC evolution
and GT to represent and analyze evolution. Although evolution rules work as a sort
of metamodel, they are used to describe changes in behavior, rather than only describe
restrictions on the connections of elements at the structural level.

In [18], the authors present a tool-supported approach for analysing change impact re-
garding evolving configurations of product line use case models, which applies an idea sim-
ilar to ours of impact analysis. They support decision-making about inclusion/exclusion
of variant UCs, allowing the analysis of different configurations (i.e., sets and orders of
UCs) for a product-line software and the effect of these changes in the specific products
derived from this more general UC. A particular version of UC description is used to
restrict rules and keywords constraining the use of natural language, thus enabling auto-
matic changes in the product-specific (PS) software once product-line (PL) configuration
changes have been approved. In this case, the PL UC plays a similar role as a second-
order rules in our work and, due to the restrictions of the language used in the UCs,
automated updates are possible. However, they focus on high-level decisions, changing
configurations, whereas our approach deals with a fine-grain specification, concentrating
on the specific behaviour described by each UC. Moreover, like other strategies used to
automate the process of dealing with UCs, they restrict the use of natural language in
the UC description. We believe this limits the expression of the requirements in terms
of the end-user language and may preclude the expression of unforeseen scenarios. For
this reason, we would like to keep the UC description in natural language and in the
well-known format, but take advantage of the formal model. Furthermore, we also de-
fine an analysis of the impact of evolution on UCs even before their actual application.
Therefore, we not only support the evolution of an existing system originated from a set
of UCs, but also help the decision-making process related to whether implementing or
not a certain evolution.

As far as we know, there is no previous work proposing the use of second-order graph
grammars to describe evolution. We advocate that GG is an intuitive way of describing
system behaviour and its mapping from UCs creates the possibility of formal analysis on
natural-language specification and their modification.

7. Conclusions

We described an approach to support the definition and analysis of impact of use case
(UC) evolution, extending previous work on the formalization and analysis of UCs using
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graph transformation (GT). In this work, we employed a high-order graph transformation
framework as basis for the definitions and analyses. This framework was extended to
allow higher-order transformation of rules with NACs, since NACs are required when
modelling conditional steps in use cases. Analysis of the impacts of evolution is based
on the conflicts between evolution rules and step rules. We detailed the conflicts that
may occur and implemented this verification technique in the Verigraph tool. We also
provided guidelines to interpret the results of this automatic verification, such that the
developer can have a hint on possible sources of evolution errors and on how to correct
them (Table 1).

We illustrated the impact of evolution within a single UC as a running example, but
our approach may be used to support evolution of systems consisting of several UCs,
where the analysis of the impacts of changes is an error-prone and time-consuming task.
Results on experiments with larger systems were reported in Sect. 5. We noticed that
even small changes usually affect more than one UC in a system, not always in obvious
ways. Therefore, techniques to detect the impacts of an evolution in a system that can
be automated, like the one proposed in this paper, are highly desirable. Although we
used the formal framework to provide a foundation for UC evolution, it is noteworthy
that the formal model is generic and could be used as a semantic model for evolution of
other artifacts used in the software development process (one would just have to define
a translation from this artifact to GT).

As future work, we plan to analyse the impact of evolution rules on the CPA graph of
a system, adding new hints on how behavior will be affected by evolution; and to work on
test case generation and on improving the automation of evolution by adding detection
of isomorphic and duplicate rules.
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